
DBRIDGE: A PROGRAM REWRITE

TOOL FOR

SET-ORIENTED QUERY

EXECUTION

Mahendra Chavan*, Ravindra

Guravannavar, Prabhas Kumar Samanta, Karthik

Ramachandra, S Sudarshan

Indian Institute of Technology Bombay,

Indian Institute of Technology Hyderabad

*Current Affiliation: Sybase Inc.

THE PROBLEM

 Applications often invoke

 Database queries/Web Service requests

 repeatedly (with different parameters)

 synchronously (blocking on every request)

 Naive iterative execution of such queries is inefficient

 No sharing of work (eg. Disk IO)

 Network round-trip delays

The problem is not within the database engine!

The problem is the way queries are invoked from the
application!!

2
Query optimization:
time to think out of the box

 Repeated invocation of a query automatically replaced by
a single invocation of its batched form.

 Enables use of efficient set-oriented
query execution plans

 Sharing of work (eg. Disk IO) etc.

 Avoids network round-trip delays

Approach

 Transform imperative programs using equivalence rules

 Rewrite queries using decorrelation, APPLY operator etc.

OUR WORK 1: BATCHING

Rewriting Procedures for Batched Bindings
Guravannavar et. al. VLDB 2008

3

 Repeated synchronous invocation of queries

automatically replaced by asynchronous submission.

 Application can perform

other work while query

executes

 Sharing of work (eg. Disk IO) on the database engine

 Reduces impact of network round-trip delays

 Extends and generalizes equivalence rules from our

VLDB 2008 paper on batching

OUR WORK 2: ASYNCHRONOUS QUERY SUBMISSION

Program Transformation for Asynchronous

Query Submission
Chavan et al., ICDE 2011 Research track – 8; April 13th, 14:30-16:00

4

DBRIDGE: BRIDGING THE DIVIDE

 A tool that implements these ideas on Java programs

that use JDBC

 Set-oriented query execution

 Asynchronous Query submission

 Two components:

 The DBridge API

 Handles query rewriting and plumbing

 The DBridge Transformer

 Rewrites programs to optimize database access

 Significant performance gains on real world

applications
5

THE DBRIDGE API

 Java API which extends the JDBC interface, and can

wrap any JDBC driver

 Can be used with:

 Manual writing/rewriting

 Automatic rewriting (by DBridge transformer)

 Same API for both batching and asynchronous

submission

 Abstracts the details of

 Parameter batching and query rewrite

 Thread scheduling and management

6

THE DBRIDGE API

stmt = con.prepareStatement(
"SELECT count(partkey) " +
"FROM part " +
"WHERE p_category=?");

while(!categoryList.isEmpty()) {
category = categoryList.next();
stmt.setInt(1, category);
ResultSet rs = stmt.executeQuery();
rs.next();
int count = rs.getInt(”count");
sum += count;
print(category + ”: ” + count);

}

stmt = con.dbridgePrepareStatement(
"SELECT count(partkey) " +
"FROM part " +
"WHERE p_category=?");

LoopContextTable lct = new LCT();
while(!categoryList.isEmpty()) {

LoopContext ctx=lct.createContext();
category = categoryList.next();
stmt.setInt(1, category);
ctx.setInt(”category”, category);
stmt.addBatch(ctx);

}
stmt.executeBatch();

for (LoopContext ctx : lct) {
category = ctx.getInt(”category”);
ResultSet rs = stmt.getResultSet(ctx);
rs.next();
int count = rs.getInt(”count");
sum += count;
print(category + ”: ” + count);

}
7

BEFORE

AFTER

DBRIDGE API – SET ORIENTED EXECUTION

LoopContextTable lct = new LoopContextTable();
while(!categoryList.isEmpty()){

LoopContext ctx = lct.createContext();
category = categoryList.next();
stmt.setInt(1, category);
ctx.setInt(”category”, category);
stmt.addBatch(ctx);

}
stmt.executeBatch();
for (LoopContext ctx : lct) {

category = ctx.getInt(”category”);
ResultSet rs = stmt.getResultSet(ctx);
rs.next();
int count = rs.getInt(”count");
sum += count;
print(category + ”: ” + count);

}

DB

Parameter Batch
(temp table)

Set of ResultSets

 addBatch(ctx) – insert tuple to parameter batch

 executeBatch() – execute set-oriented form of query

 getResultSet(ctx) – retrieve results corresponding to the context

8

LoopContextTable lct = new LoopContextTable();
while(!categoryList.isEmpty()){

LoopContext ctx = lct.createContext();
category = categoryList.next();
stmt.setInt(1, category);
ctx.setInt(”category”, category);
stmt.addBatch(ctx);

}
stmt.executeBatch();
for (LoopContext ctx : lct) {

category = ctx.getInt(”category”);
ResultSet rs = stmt.getResultSet(ctx);
rs.next();
int count = rs.getInt(”count");
sum += count;
print(category + ”: ” + count);

}

DBRIDGE API – ASYNCHRONOUS SUBMISSION

Submit Q

Result array

Thread

DB

 addBatch(ctx) – submits query and returns immediately

 getResultSet(ctx) – blocking wait

9

DBRIDGE - TRANSFORMER

 Java source-to-source transformation tool

 Rewrites programs to use the DBridge API

 Handles complex programs with:

 Conditional branching (if-then-else) structures

 Nested loops

 Performs statement reordering while preserving

program equivalence

 Uses SOOT framework for static analysis and

transformation (http://www.sable.mcgill.ca/soot/)

10

http://www.sable.mcgill.ca/soot/

DBRIDGE - TRANSFORMER

11

BATCHING: PERFORMANCE IMPACT

12

 Category hiearchy traversal (real world example)

 For small no. of iterations, no change observed

 At large no. of iterations, factor of 8 improvement

0

5

10

15

20

25

30

35

40

Leaf(1) Middle(10) Top(78)

T
im

e
 (

in
 s

e
c
)

Category Level (Number of Subtree nodes/Loop Iterations)

Original Program

Transformed Program

0

5

10

15

20

25

30

35

40

45

50

1 2 5 10 20 30 40 50

T
im

e

Number of Threads

Original Program

Transformed Program

13

ASYNCHRONOUS SUBMISSION:

PERFORMANCE IMPACT

 Auction system benchmark application

 For small no. (4-40) iterations, transformed program slower

 At 400-40000 iterations, factor of 4-8 improvement

 Similar for warm and cold cache

COMPARISON:

BATCHING VS. ASYNCHRONOUS SUBMISSION

14

0

0.2

0.4

0.6

0.8

1

1.2

400 4000 40000

T
im

e
(n

o
r
m

a
li

z
e

d
)

Number of Iterations

Original Program

Asynchronous Mode

Batching Mode

 Auction system benchmark application

 Asynchronous execution with 10 threads

CONCLUSIONS AND ONGOING WORK

 Significant performance benefits possible by using

batching and/or asynchronous execution for

 Repeated database access from applications

 Repeated access to Web services

 DBridge: batching and asynchronous execution

made easy

 API + automated Java program transformation

 Questions? Contact us at

http://www.cse.iitb.ac.in/infolab/dbridge

 Email: karthiksr@cse.iitb.ac.in

15

http://www.cse.iitb.ac.in/infolab/dbridge

TRANSFORMATION WALK-THROUGH

PreparedStatement stmt = con.prepareStatement(
"SELECT COUNT(p_partkey) AS itemCount

FROM newpart
WHERE p_category = ?");

while(category != 0){
stmt.setInt(1, category);
ResultSet rs = stmt.executeQuery();
rs.next();
int itemCount = rs.getInt("itemCount");
sum = sum + itemCount;
category = getParent(category);

}

Input: A Java Program which uses JDBC

16

TRANSFORMATION WALK-THROUGH

PreparedStatement stmt = con.prepareStatement(
”SELECT COUNT(p_partkey) AS itemCount

FROM part
WHERE p_category = ?");

while(category != 0){
stmt.setInt(1, category);
ResultSet rs = stmt.executeQuery();
rs.next();
int itemCount = rs.getInt("itemCount");
sum = sum + itemCount;
category = getParent(category);

}

Iterative execution
of a parameterized
query

Step 1 of 5: Identify candidates for set-oriented
query execution:

Intention: Split loop at
this point

17

TRANSFORMATION WALK-THROUGH

PreparedStatement stmt = con.prepareStatement(
"SELECT COUNT(p_partkey) AS itemCount

FROM part
WHERE p_category = ?");

while(category != null){
stmt.setInt(1, category);
ResultSet rs = stmt.executeQuery();
rs.next();
int itemCount = rs.getInt("itemCount");
sum = sum + itemCount;
category = getParent(category);

}

Step 2 of 5: Identify dependencies that prevent
loop splitting:

A Loop Carried Flow Dependency edge
crosses the query execution statement

Iterative execution
of a parameterized
query

18

TRANSFORMATION WALK-THROUGH

PreparedStatement stmt = con.prepareStatement(
"SELECT COUNT(p_partkey) AS itemCount

FROM part
WHERE p_category = ?");

while(category != null){
int temp = category;
category = getParent(category);
stmt.setInt(1, temp);
ResultSet rs = stmt.executeQuery();
rs.next();
int itemCount = rs.getInt("itemCount");
sum = sum + itemCount;

}

Step 3 of 5: Reorder statements to enable loop
splitting

Move statement above the
Query invocation

Loop can be safely split
now

19

TRANSFORMATION WALK-THROUGH

LoopContextTable lct = new LoopContextTable();
while(category != null){

LoopContext ctx = lct.createContext();
int temp = category;
category = getParent(category);
stmt.setInt(1, temp);
stmt.addBatch(ctx);

}
stmt.executeBatch();

for (LoopContext ctx : lct) {
ResultSet rs = stmt.getResultSet(ctx);
rs.next();
int itemCount = rs.getInt("itemCount");
sum = sum + itemCount;

}

Step 4 of 5: Split the loop (Rule 2)

Query execution statement is
out of the loop and replaced with a
call to its set-oriented form

To preserve split local
values and order of
processing results

Process result sets in
the same order as the
original loop

Accumulates parameters in case of batching;
submits query in case of asynchrony

20

TRANSFORMATION WALK-THROUGH

CREATE TABLE BATCHTABLE1(
paramcolumn1 INTEGER, loopKey1 INTEGER)

INSERT INTO BATCHTABLE1 VALUES(..., …)

SELECT BATCHTABLE1.*, qry.*
FROM BATCHTABLE1 OUTER APPLY (
SELECT COUNT(p_partkey) AS itemCount

FROM part
WHERE p_category = paramcolumn1) qry
ORDER BY loopkey1

Step 5 of 5: Query Rewrite

Original Query

Set-oriented Query

Temp table to store
Parameter batch

Batch Inserts into
Temp table

SELECT COUNT(p_partkey) AS itemCount
FROM part

WHERE p_category = ?

21

