DBRIDGE: A PROGRAM REWRITE
TOOL FOR

SET-ORIENTED QUERY
EXECUTION

Mahendra Chavan*, Ravindra
Guravannavar, Prabhas Kumar Samanta, Karthik
‘ Ramachandra, S Sudarshan

‘ Indian Institute of Technology Bombay,

O Indian Institute of Technology Hyderabad

*Current Affiliation: Sybase Inc.

THE PROBLEM

= Applications often invoke

= Database queries/Web Service requests
« repeatedly (with different parameters)
= synchronously (blocking on every request)

« Naive 1terative execution of such queries is inefficient
« No sharing of work (eg. Disk 10)
= Network round-trip delays

The problem i1s not within the database engine!

The problem 1s the way queries are invoked from the
~application!!

Query optimization:
time to think out of the box

OUR WORK 1: BATCHING

Rewriting Procedures for Batched Bindings
Guravannavar et. al. VLDB 2008

= Repeated invocation of a query automatically replaced by
a single invocation of its batched form.

= Enables use of efficient set-oriented
query execution plans

= Sharing of work (eg. Disk I0) etc.

= Avolds network round-trip delays

Approach
= Transform imperative programs using equivalence rules

« Rewrite queries using decorrelation, APPLY operator etc.

OUR WORK 2: ASYNCHRONOUS QUERY SUBMISSION

Program Transformation for Asynchronous

Query Submission
Chavan et al., ICDE 2011 Research track — 8; April 13th, 14:30-16:00

« Repeated synchronous invocation of queries
automatically replaced by asynchronous submission.

« Application can perform
other work while query
executes

= Sharing of work (eg. Disk 10) on the database engine
« Reduces impact of network round-trip delays

= Extends and generalizes equivalence rules from our
VLDB 2008 paper on batching

DBRIDGE: BRIDGING THE DIVIDE

= A tool that implements these 1deas on Java programs
that use JDBC

= Set-oriented query execution
= Asynchronous Query submission

=« Two components:
= The DBridge API
= Handles query rewriting and plumbing

= The DBridge Transformer

= Rewrites programs to optimize database access

= Significant performance gains on real world
applications

THE DBRIDGE API

« Java API which extends the JDBC interface, and can
wrap any JDBC driver

« Can be used with:
= Manual writing/rewriting
= Automatic rewriting (by DBridge transformer)

= Same API for both batching and asynchronous
submission

« Abstracts the details of

= Parameter batching and query rewrite
= Thread scheduling and management

THE DBRIDGE API

stmt = con.prepareStatement(

"FROM part " +
"WHERE p_category=?");

while(!categoryList.isEmpty()) {

stmt.setInt(1, category);

"SELECT count(partkey) " +

category = categoryList.next();

ResultSet rs = stmt.executeQuery()

rs.next();

sum += count;

.,

}

Int count = rs.getint("count");

print(category + ”: 7 + count);

BEFORE

AFTER

stmt = con.dbridgePrepareStatement(

"SELECT count(partkey) " +
"FROM part " +
"WHERE p_category=?");

LoopContextTable Ict = new LCT();
while(lcategoryList.isEmpty()) {

}

LoopContext ctx=Ict.createContext();
category = categoryList.next();
stmt.setInt(1, category);
ctx.setint(”category”, category);
stmt.addBatch(ctx);

étmt.executeBatch();

for (LoopContext ctx : Ict) {

category = ctx.getint(”category”);
ResultSet rs = stmt.getResultSet(ctx);
rs.next();

Int count = rs.getint("count");

sum += count;

print(category + ”: ” + count);

DBRIDGE API — SET ORIENTED EXECUTION

LoopContextTable Ict = new LoopContextTable();

while(!categoryList.isEmpty()){

LoopContext ctx = Ict.createContext();

category = categoryList.next();
stmt.setint(1, category);
ctx.setInt("category”, category);

stmt.addBatch(ctx);

}

stmt.executeBatch();

for (LoopContext ctx : Ict) {
category = ctx.getlnt("category”);

ResultSet rs =
rs.next();

stmt.getResultSet(ctx);

Int count = rs.getint("count");

sum += count;

”,

print(category + ”: ” + count);

= addBatch(ctx) — insert tuple to parameter batch

= executeBatch() — execute set-oriented form of query

Parameter Batch
(temp table)

-

Set of ResultSets

= getResultSet(ctx) — retrieve results corresponding to the context

DBRIDGE API — ASYNCHRONOUS SUBMISSION

LoopContextTable Ict = new LoopContextTable();
while('categoryList.isEmpty()){ Thread
LoopContext ctx = Ict.createContext();
category = categoryList.next();
stmt.setint(1, category);
ctx.setint("category”, category); sSubmit Q
stmt.addBatch(ctx); - >
}
stmt.executeBatch(); Result array
for (LoopContext ctx : Ict) { &
category = ctx.getInt("category”);
ResultSet rs =|stmt.getResultSet(ctx);
rs.next();
Int count = rs.getint("count");

sum += count;
print(category + ”: ” + count);

= addBatch(ctx) — submits query and returns immediately

= getResultSet(ctx) — blocking wait

DBRIDGE - TRANSFORMER

« Java source-to-source transformation tool
= Rewrites programs to use the DBridge API
« Handles complex programs with:

= Conditional branching (if-then-else) structures
« Nested loops

= Performs statement reordering while preserving
program equivalence

= Uses SOOT framework for static analysis and
transformation (http://www.sable.mcgill.ca/soot/)

http://www.sable.mcgill.ca/soot/

DBRIDGE - TRANSFORMER

Source Java
File

(Péarsmg andt Intermediate Dataflow Def-Use DDG
onversion to Code (Jimple) Analysis Information Construction
Interm Rep

Apply

Decompile Trans Rules

Target Java \ o Modified Dependence
File Jimple Code Graph

BATCHING: PERFORMANCE IMPACT

® Original Program

® Transformed Program

Leaf(1) Middle(10) Top(78)
Category Level (Number of Subtree nodes/Loop Iterations)

= Category hiearchy traversal (real world example)
= For small no. of iterations, no change observed e
= At large no. of iterations, factor of 8 improvement

ASYNCHRONOUS SUBMISSION:
PERFORMANCE IMPACT

50
45 -
40 -
35 -
30 -
25 -

20 - ® Original Program
15 - ® Transformed Program
10 -
0 E e mmem
o B
1 2 5 10 20 30 40 50

Number of Threads

Time

= Auction system benchmark application
= For small no. (4-40) iterations, transformed program slower

« At 400-40000 1terations, factor of 4-8 improvement @
« Similar for warm and cold cache

COMPARISON:

BATCHING VS. ASYNCHRONOUS SUBMISSION

1.2

—

O
Qo
|

Time(normalized)
o O
= o

&
o

)
|

= Auction system benchmark application
= Asynchronous execution with 10 threads

400

Number of Iterations

® Original Program

® Asynchronous Mode

4000

40000

®m Batching Mode

CONCLUSIONS AND ONGOING WORK

Significant performance benefits possible by using
batching and/or asynchronous execution for

Repeated database access from applications
Repeated access to Web services
DBridge: batching and asynchronous execution
made easy
API + automated Java program transformation

Questions? Contact us at
http://www.cse.11tb.ac.in/infolab/dbridge

Email: karthiksr@cse.1itb.ac.in

http://www.cse.iitb.ac.in/infolab/dbridge

TRANSFORMATION WALK-THROUGH

Input: A Java Program which uses JDBC

PreparedStatement stmt = con.prepareStatement(
"SELECT COUNT(p_partkey) AS itemCount
FROM newpart
WHERE p_category = ?");

while(category = 0
stmt.setint(1, category);
ResultSet rs = stmt.executeQuery();
rs.next();
Int itemCount = rs.getint("itemCount");
sum = sum + itemCount;
category = getParent(category);,

TRANSFORMATION WALK-THROUGH

Step 1 of 5: Identify candidates for set-oriented
query execution:

PreparedStatement stmt = con.prepareStatement(
"SELECT COUNT(p_partkey) AS itemCount

FROM part ~
WHERE p_category = ?"); lterative execution
of a parameterized

while(category != 0){ query)

stmt.setint(1, cateqgory):

ResultSet rs = stmt.executeQuery();

rs.next();
Int itemCount = rs.getint("itemCount");
sum = sum + itemCount; Intention: Split loop at
category = getParent(category); this point
}

TRANSFORMATION WALK-THROUGH

Step 2 of 5: Identify dependencies that prevent
loop splitting:

PreparedStatement stmt = con.prepareStatement(
"SELECT COUNT(p_partkey) AS itemCount
FROM part B

WHERE p_category = ?"); lterative execution
of a parameterized

whtile(category|!= null){ query)
stmt.setint(1, category);

P

\ ResultSet rs = stmt.executeQuery(); |

rs.next();
Int itemCount = rs.getint("itemCount");
\sum = sum + itemCount;

category|= getParent(category);,

A Loop Carried Flow Dependency edge
crosses the query execution statement

TRANSFORMATION WALK-THROUGH

Step 3 of 5: Reorder statements to enable loop
splitting

PreparedStatement stmt = con.prepareStatement(
"SELECT COUNT(p_partkey) AS itemCount
FROM part
WHERE p_category = ?");

while(category !'= null){
Int temp = category;
category = getParent(category);
stmt.setInt(1, temp);

Move statement above the
Query invocation

ResultSet rs = stmt.executeQuery();

rs.next();
Int itemCount = rs.getint("itemCount"); Loop can be safely split
sum = sum + itemCount; now

}

TRANSFORMATION WALK-THROUGH

Step 4 of 5: Split the loop (Rule 2)

LoopContextTable Ict = new LoopContextTable(); To preserve split local

while(category != null){ values and order of
LoopContext ctx = Ict.createContext(); processing results
Int temp = category;
category = getParent(categg
stmt.setInt(1, temp);

@ccumulates parameters in case of batching;
ubmits query in case of asynchrony

stmt.addBatch(ctx); ~
} Query execution statement is
stmt.executeBatch(); out of the loop and replaced with a
call to its set-oriented form

J

for (LoopContext ctx : Ict) {
ResultSet rs = stmt.getResultSet(ctx);
rs.next();

int itemCount = rs.getInt("itemCount"); Process result sets In

sum = sum + itemCount: the same order as the
original loop

TRANSFORMATION WALK-THROUGH
Step 5 of 5: Query Rewrite

SELECT COUNT(p_partkey) AS itemCount
FROM part {Original Query 1
WHERE p_category = ?
§
CREATE TABLE BATCHTABLEL(Temp table to store
paramcolumnl INTEGER, loopKey1 INTEGER) Parameter batch
§
INSERT INTO BATCHTABLE1 VALUES(..., ...) zBatch Inserts into
Temp table
- J
SELECT BATCHTABLEL.*, gry.* P <

FROM BATCHTABLEL1 OUTER APPLY (

SELECT COUNT(p_partkey) AS itemCount :)
FROM part

WHERE p_category = paramcolumnl) gry

ORDER BY loopkeyl

Set-oriented Query

