
Holistic Optimization of Database

» synchronously (blocking on every reguest)

- Naive iterative execution of such queries: inefficient execution plans
* No sharing of work (eg. Disk I0)
¢ * Network round-trip delays & O o)

*Multiple queries could be issued concurrently

o & & &

. :

— — Microsoft: '

Applications :

L h\/l Sta PP Research

' RIZLRATA BB Karthik Ramachandra, IIT Bombay india
: with R Guravannavar (lIT Hyderabad), M Chavan & S Sudarshan (lIT Bombay) ;
- The Problem Soln 1: Batching Soln 2: Asynchronous Submission |
i i - - Repeated invocation of a query automatically *‘Repeated synchronous invocation of queries |
i Applications invoke DB queriesiWeb Service requests replaced by a single invocation of its batched form automatically replaced by asynchronous submission !
| * repeatedly (with different parameters) -Enables use of efficient set-oriented query -Application can perform other work while query executes

— _ Approach
The Problem is » not within the database engine Anal icat I - embedded .
> in the way queries are invoked nalyze application programs a_tong with empedde querl_es | | @
from the application *Transform programs using equivalence rules and semantics preserving reordering .,
*Rewrite queries using decorrelation, APPLY operator, etc. !v
Query optimization: time to think out of the &l ‘DBridge: Implementation for Java/JDBC, using Soot framework (http://www.cse.iitb.ac.in/dbms/dbridge)
Program Transformation Performance gains (upto 7x)!
S1:| while (category !'= null) { /GD« e \‘ S1: |while (category = null) { B Original Program ™ Asynchronous Mode B Batching Mode :
S2: gt.setint(1, category); / _ ’@ ! S5: Int temp = category; 12 |
It count = gt.executeQuery(); / 5 U S4: category = getParent(category); o |
S3: sum = sum + count; <O ‘) :,_ Reorder & [s2 gt.setint(1,{temp); = _
S4: category=getParent(category); @ ! \ \@ Int count = gt.executeQuery(); Nos - |
} Q } S3: sum = sum + count; E :
Oy N) = ,
Input program G - . E |
S _ Reordered program before Loop Splitting 20.4_ |
Spllt = |
Parsin |:> Data flow |:> Loop .
J analysis |:> Decompile
Threads Output program after Loop Splitting @ Parameter Batch | Number of Iteratic.Jns |
LoopContextTable Ict = new LoopContextTable(); (temp table) Experiment 1. DB Query invocation
. while(category != null){ (Auction System Benchmark)

LoopContext ctx = Ict.createContext();

1

|
|
\
\

. Submit Q stmt.setInt(1, category); AV Query o
S ctx.setInt("category”, category); rewrite 140 -
category = getParent(category); "
S O 120 -
stmt.addBatch(ctx); — S
\ \\\ ,"/ } é
stmt.executeBatch(); 2 o
for (LoopContext ctx : Ict) { S I
1 2 5 10 20

[

-
7 (&
[

_

category = ctx.getlnt("category”); 0 |
O Array of ResultSets > ResultSet rs = stmt.getResultSet(ctx); < — 20 -
int count = rs.getint("count™); Set of ResultSets 0 -
sum += count;

Number of Threads
print(category + ": ” + count);

Asynchronous mode } Batching mode Experiment 2: Web Service invocation

(Batching not possible here as there is no _set-oriented
ldentical API for Batching and Asynchronous approach interface exposed by the web service)
------------- N N = [\ =

