COMAD 2012

Proceedings of the
18" International Conference on
Management of Data

December 14-16, 2012
Pune, India

Editors

Amr El Abbadi
University of California, Santa Barbara, USA

Karin Murthy
IBM Research, India

Arnab Bhattacharya
Indian Institute of Technology, Kanpur, India

© Computer Society of India, 2012






COMAD 2012

Sponsors and Facilities

Gold Sponsors

YAHOO' PEVELOBMENT

INDIA
Silver Sponsor Bronze Sponsor
_— T AEROSPIKE
Facilities

jr
D | 0SS
PERSISTENT






PREFACE

For close to two decades, the Internationd Corference on Management of Data (COMAD), modeled
aongthe lines of ACM SIGMOD, has been the premier internaiond daabase conference hosted in
India. The first COMAD was held in Hyderabad in 1989 and the most recent version was haosted in
Bangdore in Decanber 2011 The 18th editionin the COMAD seriesis hdd a the campusof Persistent
Systems in Pung Maharashtrafrom Decanber 14-16, 2012 Named Queen of the Deccan, Oxford of the
East, and aulturd capital of Maharashtra, Puneis known for its educationd fadliti es.

COMAD seeks to provide the community of reseachers, practitioneas, developers and users of daa
management technologies, aforumto present and discuss proldems, solutions innowations experiences
and emerging trends During the past few yeas, the scope of COMAD has expanded to include in
addition to traditiond database areas, topics in web tednologies, information retrieval, and daa
mining.

Thisyea's cdl for papes attracted 29 reseach submissonsfrom acoss theworld. Each reseach pape
was rigorousy reviewed by three members of the program committee which feaured 26 data
management experts from acalemia and industry from 8 diff erent countries. After in-depth discussions
we seleded 7 high-quality papes for presentation at the conference. The authors of accepted reseach
papes come from France, India, Japan, Switzerland, and the US, show-casing COMAD's internationd
appedl. In addition to regular research papers we also acceted 5 work-in-progress presentationsto give
young reseachers a dhance to receve feedback from expertsin thar field.

COMAD 2012 fedures three keynate talks by Dr. Ra&kesh Agrawal (Heal of Seach Labs Microsoft
Reseach, USA), Shem Amer-Yahia (Prindpd Reseach Scientist, CNRS, Laboraoire d'Informatique
de Grenoble, France), and Rajeev Rastogi (Director of Madiine Leaning, Amazon, India). The
keynotes span topics from advanced tedhnology for eduction and soda media andytics to web-scde
information extraction. The program aso hosts 4 tutorials from lealing internationd experts covering
big daa technologies, Markov logic networks, spatio-tempord indexing, and data fusion. Finaly, to
round out the acalemic program we invited 10 posters and demos from the acalemic community in
India. We aso continued the tradition started by COMAD in 2010to invite Indian authors of papes
published in premier internaiond conferences to present ther work at COMAD. This yea feaures
three papers from VLDB 2012 and ore pgoe from SIGMOD 2012

In addition to acalemic taks, presentations and tutorials COMAD 2012 also fedures two invited
indwstry talks and two spon®r talks, giving paticipants a chance to interact with lealing industry
experts. To ensure visibility of COMAD beyond this conference, these proceealings will aso be
available through ACM SSIGMOD and DBLP.

We would like to thank al the members of the COMAD Organizing Conmmittee and the COMAD
Progran Committee for their generous suppat, enabling us to put together such a high-quality
program. We are also grateful for the suppat and generosty of our spon®rs Without our gold
sponrs SAP and Yahoo as well as our silver sponsor IBM this conference would not be possible. We
also thank Persistent Systems for providing a campusfor the conference and Infosys for providing free
acommodaion at their guest howse. Findly, we adknowledge the sustained coopeation and asgstance



extendad by the Conputer Sodety of Indiain arganizing tis event.

In closng, we welcome you to the COMAD 2012 conference in Puneand hopeyou will have a fruitful
and gimulating experience.

Chandrashekhar Sahags abudhe

Persistent Systems, Pune, India
(Generd Chair)

Amr El Abbadi

Univesity of California, Sara Barbara, USA
Karin Murthy

IBM Research - India

(Program Co-Clairs)

Arnab Bhattacharya

Indian Ingtitute of Techndogy, Kanpur, India
(Procedlings Char)

Vi



ORGANIZING COMMITTEE

General Chair Demo Chair
¢ ChandashekharSahagabudhe,Persistent * Sriram Raghavan, IBM Resach - Bangalore
Systens, Pune
Program Chairs Panel Chair
* Amr El Abbadi, University of California, Sarta * Sharma Chakiavarthy, The University of Texas
Barbara at Arlington
» Karin Murthy, IBM Resarch - Bangalore
CSl Div Il Chair Publication Chair
* T.V.Gopal AnnaUniversity, Chennai * ArnabBhatachaya, II T Kanpur
Work in ProgressChair Organizing CommitteeChair
+ SrikataBedahur, I T Delhi * ArunKadeodi, Sdt Corne, Pune
Industry Chair Web Chair
* SudashanMurthy, The Else Ingitute, Portland, * AnandJogleka, Ameya Sdtware, Pune
Oregon
Tutorial Chair Hog Chapter Chair
*+  MayaRamanah, lll T Delhi * Amit Danglé, National School of Leadeship,
Pune

PROGRAM COMMITTEE

* AlfredoCuzzocea,ltalian National Research * SameepMehta, IBM Research — Delhi, India
Council, Italy

* Anirban Mondal IIIT Delhi, New Delhi, India * Sanjgy Chawla, The University of Sydney,

Australia

* Arvind Aradl, Microsoft Research, Seattle, » Shridhama Aithal, The Else Institute, Bangalore,
Washington India

e BalaramanRavindran,IIT Madras, Chennai, *  Sharma Chakmavarthy, The University of Texas
India at Arlington, Texas

* ChetanGupta, HP Labs, Palo Alto, California * SitaramAsur, HP Labs, Palo Alto, California

* Fan Wang, Microsoft Corporation, Bellevue, * Sourav S. Bhowmick, Nanyang Technological
Washington University, Singapore

* HodaMokhtar, Cairo University, Egypt * Sudipto Das Microsoft Research, USA

* MaitreyaNatu, Tata Consultancy Services, *  Sumit Negi, IBM Research — Delhi, India
Pune, India

* MohanmedMokbel University of Minnesota, * Sunil Prabhaka, Purdue University, West
Minneapolis Lafayette, Indiana

* P. Sreenivasa Kumar, IIT Madras, Chennai, * QiongLuo, Hong Kong University of Science
India and Technology, Hong Kong

* Rajiv Ranjan, The University of New South * Vaishdi P. SadaphalTata Consultancy
Wales, Sydney, Australia Services, Pune, India

* Ralf Schenké, Max Planck Institute, * Vivek Narasyya, Microsoft Research, Seattle,
Saarbruecken, Germany Washington

* RamanupmHaaspuram IBM Research — * Walid Aref, Purdue University, Indiana

Bangalore, India

Vii



CONTENTS

Preface Y
Organizing Committee Vii
Keynotes
« Reimagining Textbooks Throughthe Data Lens 3
» Rakesh Agrawal

* UserActivity Andyticson the Social Web of News 4
» SihemAme-Yahia

+ Building Knowledge Basesfrom the Web 5

» Ragees Radogi

Tutorials

* Spafo-Temporal Indexing: Current Scenario, Chalergesand Approaches 9
» AdityaTelang, DeepakPadnanabha, Prasad Deshpande

« Big Data Tednologiescirca2012 12
» Vinayak Borkar, MichaelJ. Carey

« Markov Logic Networks: Theay, Algorithms and Applicaions 15
» ParagSingla

+ Reliabiity Aware Data Fuson 16

» SameepMehia, L. Venkata Subramaniam

Resarch Track

* Connecivity-TolerantQuety Optimizaion over Distributed Mobile Repostories 21

» Sharma Chakmavarthy, Aditya Telang, MohanKumar, Mark Lindeman, Sanjgy Madria,
Waseem Nagvi

* Context Aware Ontology based Information Extracion 32
» SapanSheah, Sreedlar Reddy

+ REBOM: Reovely of Blocksof Missng Vauesin Time Series 44
» MouradKhayati, Michaé H. Bohlen

* A Novel Query-Based Approach for Addresing Summarizability Issuesin XOLAP 56
» MarouaneHachicha,ChanvolaKit, Jerome Darmont

¢ Hybrid HBas: Leveraging Flash SPsto Improve Cost per Throughputof HBase 68
» Anurag Awasthi, Avani Nandini, ArnabBhatachaya, Priya Sehgal

* Entity Ranking andRelationship Queries usng an ExtendedGraphModel 80
» Ankur Agrawal, S. Sudashan,Ajitav Sahoo,Adil Anis Sandalvala, Prashent Jaiswall

+ TowardsEfficientDiscovery of Frequert Patterns with Relaive Suppat 92

» R. Uday Kiran,Masamu Kitsuregava
Demonstration Track

* Excel Solversfor the Traveling Salesnan Problem 103
» Mangeh Gharote, Dilys Thomas Sadin Lodha

viii



Work in Progress

A Lightweight Distributed OrderandDuplicaion Insenstive Algorithm for Approximate Top-k
Queriesusng Order Statistics

» Vinay Deollikar, Kave Eshghi, HernanL affitte
Who's Who: Linking User's Multiple Identitieson Online Social Media
» Paridhi Jain, Ponnurangan Kumaraguru, AnupamJoshi

MODETL: A Complete MODelingandETL Methodfor Designing Data Warehousesfrom
Sementic Databases

» SelmaKhoui, Ladjel Bellatreche, Nabil a Berkani

Web Persondi zation andReconmenderSystens: An Overview
> R.B.Wagh, J. B. Patil

EfficientApproximate Dictionary Matching

> SaurbhKishore, Ashish V. Tendulkar

111

112

113

114

115






HEYNOTES






Reimagining Textbooks Through the Data Lens

Rakesh Agrawal
Search Labs, Microsoft Research

Abstract

Textbooks are the primary vehicles for delivering subject knowledge to the students and are known to be the educational
input most consistently associated with improvements in student learning. With the emergence of abundant online content,
cloud computing, and electronic reading devices, textbooks are poised for transformative changes. Inspired by the
emergence of the electronic medium for “printing” and “distributing” textbooks, we present our early explorations into
developing a data mining based approach for enhancing the quality of electronic textbooks. Specifically, we first describe a
diagnostic tool for authors and educators to algorithmically identify deficiencies in textbooks. We then discuss techniques
for algorithmically augmenting different sections of a book with links to selective content mined from the Web.

Our tool for diagnosing deficiencies consists of two components. Abstracting from the education literature, we identify the
following properties of good textbooks: (1) Focus: Each section explains few concepts, (2) Unity: For every concept, there
is a unique section that best explains the concept, and (3) Sequentiality: Concepts are discussed in a sequential fashion so
that a concept is explained prior to occurrences of this concept or any related concept. Further, the tie for precedence in
presentation between two mutually related concepts is broken in favor of the more significant of the two. The first
component provides an assessment of the extent to which these properties are followed in a textbook and quantifies the
comprehension load that a textbook imposes on the reader due to non-sequential presentation of concepts [1]. The second
component identifies sections that are not written well and can benefit from further exposition. We propose a probabilistic
decision model for this purpose, which is based on the syntactic complexity of writing and the notion of the dispersion of
key concepts mentioned in the section [3].

For augmenting a section of a textbook, we first identify the set of key concept phrases contained in a section. Using these
phrases, we find web articles that represent the central concepts presented in the section and endow the section with links to
them [4]. We also describe techniques for finding images that are most relevant to a section of the textbook, while
respecting the constraint that the same image is not repeated in different sections of the same chapter. We pose this problem
of matching images to sections in a textbook chapter as an optimization problem and present an efficient algorithm for
solving it [2].

We finally provide the results of applying the proposed techniques to a corpus of widely-used, high school textbooks
published by the National Council of Educational Research and Training, India. We consider books from grades IX--XII,
covering four broad subject areas, namely, Sciences, Social Sciences, Commerce, and Mathematics. The preliminary results
are encouraging and indicate that developing technological approaches to embellishing textbooks could be a promising
direction for research.

References

[1] R. Agrawal, S. Chakraborty, S. Gollapudi, A. Kannan, and K. Kenthapadi. Empowering authors to diagnose comprehension burden in
textbooks. In KDD, 2012.

[2] R. Agrawal, S. Gollapudi, A. Kannan, and K. Kenthapadi. Enriching textbooks with images. In CIKM, 2011.

[3]1 R. Agrawal, S. Gollapudi, A. Kannan, and K. Kenthapadi. Identifying enrichment candidates in textbooks. In WWW, 2011.

[4] R. Agrawal, S. Gollapudi, K. Kenthapadi, N. Srivastava, and R. Velu. Enriching textbooks through data mining. In ACM DEV, 2010.

Biography

Dr. Rakesh Agrawal is a Microsoft Technical Fellow, heading the Search Labs in Microsoft Research in Silicon Valley. He
is a Member of the National Academy of Engineering, a Fellow of ACM, and a Fellow of IEEE. He is the recipient of the
ACM-SIGKDD First Innovation Award, ACM-SIGMOD Innovations Award, IIT-Roorkee Distinguished Alumni Award,
ACM-SIGMOD Test of Time Award, VLDB 10-Yr Most Influential Paper Award, and ICDE Most Influential Paper
Award. Scientific American named him to the list of 50 top scientists and technologists in 2003. Dr. Agrawal has been
granted more than 60 patents and has published more than 150 research papers. He has written the first and second highest
cited papers in the fields of databases and data mining. Before Microsoft, he worked as an IBM Fellow at IBM Almaden
and at Bell Laboratories, Murray Hill. He received his Ph.D. degree in Computer Science from the University of Wisconsin-
Madison.

The 18th International Conference on Management of Data (COMAD),
14th-16th Dec, 2012 at Pune, India.
Copyright © 2012 Computer Society of India (CSI)



User Activity Analytics on the Social Web of News

Sihem Amer-Yahia
Qatar Computing Research Center

Abstract

The proliferation of social media is undoubtedly changing the way people produce and consume news online. Editors and
publishers in newsrooms need to understand user engagement and audience sentiment evolution on various news topics.
News consumers want to explore public reaction on articles relevant to a topic and refine their exploration via related
entities, topics, articles and tweets. I will present MAQSA, a system for social analytics on news. MAQSA provides an
interactive topic-centric dashboard that summarizes social activity around news articles. The dashboard contains an
annotated comment timeline, a social graph of comments, and maps of comment sentiment and topics. The analysis of both
content and user engagement in social media in MAQSA enables the exploration of new ways of immersing users in a news
consumption experience.

Biography

Sihem Amer-Yahia is Principal Research Scientist at Qatar Computing Research Center (QCRI) and DR1 CNRS at LIG in
Grenoble. Sihem's interests are at the intersection of large-scale data management and analytics, and social content at large.
Until May 2011, she was Senior Scientist at Yahoo! Research for 5 years and worked on revisiting relevance models and
top-k processing algorithms on datasets from Delicious, Yahoo! Personals and Flickr. Before that, she spent 7 years at
AT&T Labs in NJ, working on XML query optimization and XML full-text search. Sihem is editor of the W3C XML full-
text standard. She is a member of the VLDB Endowment and the ACM SIGMOD executive committee. Sihem is track chair
at PVLDB and SIGIR this year. She serves on the editorial boards of ACM TODS, the VLDB Journal and the Information
Systems Journal. Sihem received her Ph.D. in Computer Science from Univ. Paris-Orsay and INRIA in 1999, and her
Diplome d'Ingenieur from INI, Algeria in 1994.

The 18th International Conference on Management of Data (COMAD),
14th-16th Dec, 2012 at Pune, India.
Copyright © 2012 Computer Society of India (CSI)



Building Knowledge Bases from the Web

Rajeev Rastogi
Machine Learning, Amazon

Abstract

The web is a vast repository of human knowledge. Extracting structured data from web pages can enable applications like
comparison shopping, and lead to improved ranking and rendering of search results. In this talk, I will describe two efforts
to extract records from pages at web scale. The first is a wrapper induction system that handles end-to-end extraction tasks
from clustering web pages to learning XPath extraction rules to relearning rules when sites change. The system has been
deployed in production within Yahoo! to extract more than 500 million records from ~200 web sites. The second effort
exploits machine learning models to automatically extract records without human supervision. Specifically, we use Markov
Logic Networks (MLNSs) to capture content and structural features in a single unified framework, and devise a fast graph-
based approach for MLN inference.

Biography

Rajeev Rastogi is the Director of Machine Learning at Amazon. Previously, he was the Vice President of Yahoo! Labs
Bangalore, and a Bell Labs Fellow at Bell Labs in Murray Hill, NJ. Rajeev is active in the fields of databases, data mining,
and networking, and has served on the program committees of several conferences in these areas. He currently serves on the
editorial board of the CACM, and has been an Associate editor for IEEE Transactions on Knowledge and Data Engineering
in the past. He has published over 125 papers, and holds over 50 patents. Rajeev received his B. Tech degree from IIT
Bombay, and a PhD degree in Computer Science from the University of Texas, Austin.

The 18th International Conference on Management of Data (COMAD),
14th-16th Dec, 2012 at Pune, India.
Copyright © 2012 Computer Society of India (CSI)






TUTORTIALS






Spatio-Temporal Indexing -
Current Scenario, Challenges and Approaches

Aditya Telang, Deepak Padmanabhan, Prasad Deshpande

IBM Research — India
Bangalore, INDIA
{adtelang, deepak.s.p, prasdesh}@in.ibom.com

1. MOTIVATION

With rapid advancements in computing hardware, tracking de-
vices such as GPS receivers and sensors have become pervasive,
generating a large amount of spatio-temporal data, such as mea-
surements of temperature, pressure, air quality, traffic, etc. using
sensors, GPS data from mobile phones and data from radars that
capture location information about people and other moving ob-
jects such as cars and aeroplanes. This has enabled a wide variety
of spatio-temporal applications, resulting in a renewed interest in
techniques for handling spatio-temporal data. Over the past two
decades or so, a large number of indexes for supporting spatial,
temporal and spatio-temporal data have been independently pro-
posed in the database and data mining communities. However,
there exists no clear-cut guidelines or a prescriptive formula for
pointing out which index should be chosen when specific needs of
the underlying application are known. In addition, since spatio-
temporal indexes have been proposed under various domains, it is
hard for researchers and practitioners to determine whether some
specified indexes are indeed available to address the problem at
hand. For instance, an index like PO-Tree [7] is suitable for mon-
itoring static spatio-temporal objects (such as sensors, cell-phone
towers, etc.) but it is completely undesirable for handling mov-
ing object data (e.g., location tracking of cell-phone users, GPS
tracking of vehicles and so on). Likewise, if the semantics of the
application require indexing trajectories of moving objects, only
a specific set of indexes (such as PA-Tree [6]) are useful whereas
others such as (APR-Tree [3]) are undesirable.

We design this tutorial to expose the audience to the vast reser-
voir of spatio-temporal indexing techniques that are available in
literature. In addition, apart from introducing the various indexes,
our aim is to analyze the pros and cons of different indexing mech-
anisms when applied to various diverse scenarios. Given the large
recent interest in spatio-temporal data analytics among corporates
and academia, we hope that this tutorial is well-positioned in time
to enhance and enrich the understanding of spatio-temporal data
processing. Further, we think that the subject matter of this tutorial
is a perfect fit for the COMAD conference that has a focused track
for data management and its disciplines.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

The 18th International Conference on Management of Data (COMAD),
14th-16th Dec, 2012 at Pune, India.

Copyright (€)2012 Computer Society of India (CSI).

2. TUTORIAL ORGRANIZATION

We propose to organize this tutorial for a duration of 3 hours. A
brief outline of the organization of the tutorial is as follows:

1. Motivation: (10 minutes)
2. Spatial Indexing: (30 minutes)

e Spatial Data Types
e Spatial Query Categories
o (lassification of Spatial Indexes

— Grid-based technique
— Tree-based technique

e Analysis of Different Spatial Indexes (such as Geodesic
Grid, R Tree, KD-Tree and so on)

— Semantics of each index

— Typical Usage

— Applicability for real-time applications
* Pros & Cons

3. Temporal Indexing: (20 minutes)

e Need for temporal indexing
e Types of Temporal Indexes

— Semantics of each index

— Typical Usage

— Applicability for real-time applications
* Pros & Cons

4. Spatio-temporal Indexing: (75 minutes)

e Motivation & Basic Techniques
— Native Space Indexing
— Parametric Space Indexing
o Types of Spatio-Temporal Indexes
— Semantics of each index
— Typical Usage
— Applicability for real-time applications
* Pros & Cons

5. Comparative Analysis: (35 minutes)

e Different Spatio-Temporal Application Scenarios
— Application of Different Indexes
— Implications
— Pros & Cons



6. Conclusion & Discussion (10 minutes)

e Summary of the Tutorial
e Pointers to Exciting New Problems

A set of transparencies(in PDF format) and a recommendation
of papers will be made available to the participants.

3. TUTORIAL CONTENT

Here we present a detailed description of the material presented
in this tutorial.

3.1 Motivation

In this segment, we introduce the problem of managing and han-
dling spatio-temporal data. We present the different types of query
scenarios that are typically posed on such data and illustrate the
need for indexing mechanisms for organizing this data for effective
retrieval of results. We provide a brief overview of the different
contexts in which spatio-temporal data management has been ad-
dressed i.e., organizing historical data for analysis, warehousing
data for mining, maintaining real-time data for frequent updates
and queries, isolating and organizing trajectory data as well as in-
dividual data points for moving objects, and so on.

3.2 Spatial Indexing

In this part of the tutorial, we dig deeper into different types of
spatial indexes (such as Geodesic Grid, R-tree [4], R+Tree [12],
R*Tree [11], KD-Tree [8] along with its derivatives such as the
Quad-Tree [9] and Oct-Tree [5]) that have been purely proposed
for organizing different kinds of spatial data such as — surface of
the earth (e.g., volcanic zones, earthquake regions, etc.), natural
entities (e.g., forests, rivers, etc.), man-made entities (e.g., univer-
sities, castles, etc.) and moving spatial entities (e.g., cars on roads,
ships in oceans, etc.). We discuss the semantics associated with
each index . Specifically, we demonstrate how each of this index
behaves when subjected to standard paradigms of spatial querying
i.e., range queries and k-nearest neighbour queries. Further, we also
provide insights as to which index to select (i.e., either a grid-based
or a tree-based) depending on the needs of the problem setting.

3.3 Temporal Indexing

Similar to spatial indexing, temporal indexing has received a lot
of attention for organizing database tuples based on their time-
stamps. We briefly touch base with Allen’s Algebra [2] in or-
der to understand the type of temporal queries typically issued on
databases. Accordingly, we survey the different temporal index-
ing techniques and their performance aspects when handling such
queries.

3.4 Spatio-Temporal Indexing & Comparative
Analysis

This section forms the core component of this tutorial. We elabo-
rate of the different types of indexing techniques for different kinds
of spatio-temporal needs i.e., indexing data for statistical analysis,
organizing trajectory-related data, managing data with respect to
constantly moving and frequently updating objects, and so on. We
discuss the semantics of each of these techniques, and provide a
comparative analysis of different spatio-temporal indexing mecha-
nisms (such as the TPR-Tree [10], the TPR*-Tree [13], the COLR-
Tree [1], the Q+R-Tree [14] and others such as RT-Tree, 3DR-Tree,
MV3R-Tree, HR-Tree, etc [3]) with respect to their performance,
their ability to support range and kNN queries, and their overall
applicability to different kinds of real-time monitoring of moving
objects in the context of a spatio-temporal setting.

10

3.5 Analysis and Conclusions

Here, we summarize the contents of the tutorial and present a
various pointers for future work.

4. TARGETED AUDIENCE &
EXPECTATIONS

This tutorial is mainly targeted at several kinds of audience such
as researchers, graduate students and industry professionals work-
ing in and/or interested in the area of handling, maintaining and
working with spatio-temporal data in the context of real-time ap-
plications. The tutorial is organized in a self-contained way and
does not assume any particular expertise from the audience. At the
end of the tutorial, we hope that the attendees will be equipped with
insights into different aspects involved in indexing spatio-temporal
data, and would have a clear picture in terms of what indexing tech-
niques to select for specific needs of applications using such data.
We attempt our best to maintain a striking balance between the-
oretical concepts and practical importance of the problems in the
tutorial. Thus, we hope that practitioners also get benefited from
this tutorial.

5. BRIEF BIOGRAPHY

Aditya Telang: Aditya is a researcher at IBM Research India since
2011. Prior to joining IBM, he finished his PhD from University of
Texas at Arlington. His current research interests include Spatio-
Temporal Data Analytics, Information Management, and Business
Analytics.

Deepak Padmanabhan: Deepak works with the Information Man-
agement Group at IBM Research India at Bangalore. He obtained
his masters degree from IIT Madras prior to joining IBM.

Prasad Deshpande: Prasad M Deshpande is a Senior Researcher
at IBM Research - India and Manager of the Information Analytics
group. His areas of expertise lie in data management, specifically
data integration and warehousing, OLAP, data mining and text ana-
lytics. He received a B. Tech in Computer Science and Engineering
from IIT, Bombay and a M.S. and Ph.D. in Database systems from
the University of Wisconsin, Madison. He has worked at several
companies, including startups, IBM Almaden Research Center and
currently at IBM Research - India. He has more than 35 publica-
tions in reputed conferences and journals and has several patents
to his name. He has served on the Program Committee of many
conferences, most recently being the PC Chair for COMAD 2011
and ACM Compute 2010.

6. REFERENCES

[1] Y. Ahmad and S. Nath. Colr-tree: Communication-efficient
spatio-temporal indexing for a sensor data web portal. In
ICDE, pages 784-793, 2008.

[2] J. F. Allen. Maintaining knowledge about temporal intervals.
Commun. ACM, 26(11):832-843, 1983.

[3] H.-J. Cho, J.-K. Min, and C.-W. Chung. An adaptive
indexing technique using spatio-temporal query workloads.
Information & Software Technology, 46(4):229-241, 2004.

[4] A. Guttman. R-trees: A dynamic index structure for spatial
searching. In SIGMOD Conference, pages 47-57, 1984.

[5] C. L. Jackins and S. L. Tanimoto. Quad-trees, oct-trees, and
k-trees: A generalized approach to recursive decomposition



of euclidean space. [EEE Trans. Pattern Anal. Mach. Intell.,
5(5):533-539, 1983.
[6] J. Niand C. V. Ravishankar. Pa-tree: A parametric indexing
scheme for spatio-temporal trajectories. In SSTD, pages
254-272,2005.
G. Nol, S. Servigne, and R. Laurini. The po-tree: a real-time
spatiotemporal data indexing structure. In //th International

[7

—

Symposium on Spatial Data Handling, pages 259-270, 2005.

[8] B. C. Ooi. Spatial kd-tree: A data structure for geographic
database. In BTW, pages 247-258, 1987.

[9] M. H. Overmars and J. van Leeuwen. Dynamic
multi-dimensional data structures based on quad- and k - d
trees. Acta Inf., 17:267-285, 1982.

[10] S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A.
Lopez. Indexing the positions of continuously moving

11

(11]

[12]

[13]

[14]

objects. In SIGMOD Conference, pages 331-342, 2000.

T. K. Sellis. Review - the r*-tree: An efficient and robust
access method for points and rectangles. ACM SIGMOD
Digital Review, 2, 2000.

T. K. Sellis, N. Roussopoulos, and C. Faloutsos. The r+-tree:
A dynamic index for multi-dimensional objects. In VLDB,
pages 507-518, 1987.

Y. Tao, D. Papadias, and J. Sun. The tpr*-tree: an optimized
spatio-temporal access method for predictive queries. In
Proceedings of the 29th international conference on Very
large data bases - Volume 29, VLDB ’03, pages 790-801.
VLDB Endowment, 2003.

Y. Xia and S. Prabhakar. Q+rtree: Efficient indexing for
moving object database. In DASFAA, pages 175-182, 2003.



Big Data Technologies circa 2012

Vinayak Borkar*
University of California, Irvine

vborkar@ics.uci.edu

1. INTRODUCTION

The growth of the World Wide Web has led to an as-
tronomical amount of data being generated. More recently,
the amount of user-generated content has seen tremendous
expansion thanks to social media like Facebook and Twit-
ter. Enterprises, researchers, and even governments consider
this data to be an invaluable source of insight into people’s
behavior, creating a race to analyze as much data as possi-
ble. This race has driven virtually everyone, ranging from
Web companies to brick and mortar businesses, into a “Big
Data” frenzy. On the systems side, traditional relational
databases have proven to be un-scalable, too expensive, too
rigid, and/or too heavy-weight for dealing with current Big
Data problems. As a result, there has been an explosion in
the number of systems being developed, both within indus-
try as well as in academia, to manage massive amounts of
data.

Traditionally, data management systems were classified
broadly into Online Transaction Processing (OLTP) systems
and Decision Support Systems (DSS). Key-Value stores [13]
have become the system of choice in the Big Data universe to
perform short, single-record “transactions” at scale, playing
the role of OLTP systems, albeit with limited functionality
and weaker transaction guarantees. On the analytics side,
MapReduce [17] and Hadoop [5] have dominated the space
for scalable data analyses. There has also been an emergence
of specialized systems for Big Data problems that are not
naturally solved by MapReduce (those involving iterations,
for example).

2. BIG DATA BACKGROUND

Google, being at the forefront of the Big Data “revolu-
tion”, was forced to take matters into its own hands to stay
competitive in the search engine space. Falling costs of com-
modity hardware made it evident that the only way to reign

*Presenter

fCo-author of tutorial content, but not presenting at the
conference

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

The 18th International Conference on Management of Data (COMAD),
14th-16th Dec, 2012 at Pune, India.

Copyright (©)2012 Computer Society of India (CSI).

12

Michael J. Carey?

University of California, Irvine
mjcarey@ics.uci.edu

in the growing data was to use many computers in paral-
lel. In 2004, Google proposed the MapReduce [17] system
in conjunction with the Google File System [22] as a way
to perform computation at massive scale using commod-
ity computers. The MapReduce framework greatly simpli-
fied parallel computation for programmers by letting them
avoid parallel programming. Programmers simply had to
implement simple single-threaded code in the form of “Map”
and “Reduce” functions which was invoked by the MapRe-
duce infrastructure in parallel on different instances of data
spread across Google’s distributed file system. In addition
to being able to index the entire web in reasonable amounts
of time, the MapReduce system allowed programmers at
Google to perform massive data processing tasks quickly us-
ing a simple programming model. Yahoo!, motivated by the
MapReduce system from Google, implemented Hadoop [5]
(and the Hadoop Distributed File system) and released it as
open-source software.

The MapReduce paper marked the beginning of a new era
of Big Data technologies. High-level layers were soon de-
veloped on top of MapReduce, further increasing program-
mer productivity for domain-specific tasks. Sawzall [29] and
(much later) Tenzing [25] were two systems built by Google
using the MapReduce layer as a runtime and parallelizing
framework for text-processing and SQL execution, respec-
tively. Outside of Google, Hadoop has become the de-facto
standard for scaling data-processing and Yahoo! created
the PigLatin [27] language and the Pig [28] system to run
on top of Hadoop. Facebook released Apache Hive [6], a
SQL-like language that also uses Hadoop as the runtime
layer. Besides the Hadoop/MapReduce family of systems,
alternate large-scale data-processing frameworks were pro-
posed by various companies as well as research groups at
universities. Some examples of alternative technologies in-
clude Dryad [24], DryadLINQ [32], and SCOPE [14] from
Microsoft, Nephele/PACTs [7] from TU Berlin, Hyracks [10]
and ASTERIX [8] from the UC Irvine, and Spark [33] from
UC Berkeley.

While the MapReduce approach has been successful at
analyzing large datasets that are rarely modified, there was
also a need for systems to store large amounts of data and
perform quick inserts, updates, and deletes of records iden-
tified by a key. This requirement led to the introduction of
Key-Value stores into the Big Data ecosystem. Google de-
veloped BigTable [15], Amazon created Dynamo [18], Face-
book created the Dynamo clone, Cassandra [1], and Yahoo!
created the BigTable clone, HBase [2] as well as a new sys-
tem, PNUTS [16] to satisfy this growing need.



Today’s Big Data systems also include specialized plat-
forms for solving niche problems. Pregel [26] and its open-
source clones (Giraph [4] and GoldenOrb [23]) are used for
parallel computation over large graphs. Similar in spirit to
the MapReduce programming model, Pregel provides a sim-
ple API for programmers to express complicated graph algo-
rithms using single-threaded code (the logic for a single ver-
tex) which is then parallelized by the Pregel infrastructure.
Machine-Learning has been another domain that has seen
the emergence of specialized systems based on the Iterative-
Map-Reduce-Update model [12]. Vowpal Wabbit [3] is a
system custom built at Yahoo! for solving Machine Learn-
ing problems involving aggregation trees.

No list of Big Data Technologies can be considered com-
plete without the mention of Parallel Databases, a heavily
researched [20, 9, 21] area in the period from the early 1980s
to the mid 1990s. Commercially, Teradata [30] and NonStop
SQL [31] were tremendous successes in the parallel database
space. DeWitt and Gray [19] describe important princi-
ples surrounding partitioned-parallel data computation us-
ing shared-nothing computers; the very same principles gov-
ern the operation of all the “modern” Big Data systems
mentioned earlier in this section. A longer discussion of Big
Data technologies can be found in [11].

3. TUTORIAL OUTLINE

The outline for the tutorial is as follows:

1. Background: Parallel Database Systems
e Shared Everything vs. Shared Disk vs. Shared
Nothing Systems

e Three Forms of Parallelism in Parallel Database
Systems: Pipelined Parallelism, Partitioned Par-
allelism, and Independent Parallelism

e Parallelization Metrics: Speedup and Scaleup

e A Case Study: Gamma
2. MapReduce and Hadoop

e The MapReduce Programming Model
e The Hadoop Platform

— Hadoop Distributed File System (HDFS)
— Fault-Tolerance in MapReduce

e Examples

— Word Count
— Join and Aggregate Processing

3. High-Level Languages for Big Data

e Piglatin
o HiveQL
e ASTERIX Query Language (AQL)

4. Alternative Data-Parallel Platforms

e Overview of the Space of Big Data Platforms
e Case Studies

— Hyracks

— Stratosphere (Nephele/PACTS)

5. Key-Value Stores

13

e Key Value API
e Consistency in Key-Value Stores
e Case Studies

— Cassandra
— HBase
— PNUTS

6. Specialized Systems

e Pregel
e Iterative-Map-Reduce-Update

4. PRESENTER BIO

Vinayak Borkar is a PhD. candidate and a Research Scien-
tist at the University of California, Irvine in the Computer
Science department. His research focuses on the efficient
use of large clusters in solving Big Data problems. He was
the primary developer of the Hyracks data-parallel platform.
Prior to his affiliation with UCI, he developed various data-
management products for close to ten years at Informatica
Inc., BEA Systems Inc., and several startups. He received
his Masters in Computer Science and Engineering from the
Indian Institute of Technology, Bombay in 2001.

5. REFERENCES

[1] Apache Cassandra website.
http://cassandra.apache.org.

[2] Apache HBase website. http://hbase.apache.org.

[3] Vowpal wabbit. http://hunch.net/ vw/.

[4] Giraph: Open-source implementation of Pregel.
http://incubator.apache.org/giraph/.

[5] Hadoop: Open-source implementation of MapReduce.
http://hadoop.apache.org.

The Hive Project. http://hive.apache.org/.

Dominic Battré, Stephan Ewen, Fabian Hueske, Odej

Kao, Volker Markl, and Daniel Warneke.

Nephele/PACTs: a Programming Model and

Execution Framework for Web-Scale Analytical

Processing. In SoCC, pages 119-130, New York, NY,

USA, 2010. ACM.

Alexander Behm, Vinayak R. Borkar, Michael J.

Carey, Raman Grover, Chen Li, Nicola Onose, Rares

Vernica, Alin Deutsch, Yannis Papakonstantinou, and

Vassilis J. Tsotras. Asterix: towards a scalable,

semistructured data platform for evolving-world

models. Distrib. Parallel Databases, 29:185-216, June

2011.

H. Boral, W. Alexander, L. Clay, G. Copeland,

S. Danforth, M. Franklin, B. Hart, M. Smith, and

P. Valduriez. Prototyping Bubba, A Highly Parallel

Database System. IEEE Trans. on Knowl. and Data

Eng., 2(1):4-24, March 1990.

Vinayak R. Borkar, Michael J. Carey, Raman Grover,

Nicola Onose, and Rares Vernica. Hyracks: A Flexible

and Extensible Foundation for Data-Intensive

Computing. In ICDE, pages 1151-1162, 2011.

Vinayak R. Borkar, Michael J. Carey, and Chen Li.

Inside “Big Data Management”: Ogres, Onions, or
Parfaits? In EDBT, 2012.

B

[9

[10]

[11]



(12]

(16]

(17]

(18]

(21]

Yingyi Bu, Vinayak Borkar, Michael J. Carey, Joshua
Rosen, Neoklis Polyzotis, Tyson Condie, Markus
Weimer, and Raghu Ramakrishnan. Scaling datalog
for machine learning on big data. Technical report,
CoRR. URL: http://arxiv.org/submit/427482 or
http://isg.ics.uci.edu/techreport/TR2012-03.pdf,
2012.

Rick Cattell. Scalable SQL and NoSQL data stores.
SIGMOD Rec., 39:12-27, May 2011.

Ronnie Chaiken, Bob Jenkins, Per A. Larson, Bill
Ramsey, Darren Shakib, Simon Weaver, and Jingren
Zhou. SCOPE: Easy and Efficient Parallel Processing
of Massive Data Sets. Proc. VLDB Endow.,
1(2):1265-1276, 2008.

Fay Chang, Jeffrey Dean, Sanjay Ghemawat,

Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows,
Tushar Chandra, Andrew Fikes, and Robert E.
Gruber. Bigtable: A distributed storage system for
structured data. ACM Trans. Comput. Syst.,
26(2):4:1-4:26, June 2008.

Brian F. Cooper, Raghu Ramakrishnan, Utkarsh
Srivastava, Adam Silberstein, Philip Bohannon,
Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and
Ramana Yerneni. Pnuts: Yahoo!’s hosted data serving
platform. Proc. VLDB Endow., 1(2):1277-1288,
August 2008.

Jeffrey Dean and Sanjay Ghemawat. MapReduce:
Simplified data processing on large clusters. In OSDI
04, pages 137-150, December 2004.

Giuseppe DeCandia, Deniz Hastorun, Madan
Jampani, Gunavardhan Kakulapati, Avinash
Lakshman, Alex Pilchin, Swaminathan
Sivasubramanian, Peter Vosshall, and Werner Vogels.
Dynamo: amazon’s highly available key-value store.
SIGOPS Oper. Syst. Rev., 41(6):205-220, October
2007.

David DeWitt and Jim Gray. Parallel Database
Systems: The Future of High Performance Database
Systems. Commun. ACM, 35:85-98, June 1992.
David J. DeWitt, Robert H. Gerber, Goetz Graefe,
Michael L. Heytens, Krishna B. Kumar, and

M. Muralikrishna. GAMMA - a high performance
dataflow database machine. In VLDB, pages 228-237,
1986.

Shinya Fushimi, Masaru Kitsuregawa, and Hidehiko
Tanaka. An Overview of The System Software of a
Parallel Relational Database Machine GRACE. In
Proceedings of the 12th International Conference on
Very Large Data Bases, VLDB 86, pages 209-219,
San Francisco, CA, USA, 1986. Morgan Kaufmann

14

[22]

23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]

31]

32]

[33]

Publishers Inc.

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak
Leung. The Google File System. In Proc. 19th ACM
Symp. on Operating Systems Principles, SOSP 03,
New York, NY, USA, 2003. ACM.

GoldenOrb: Open-source implementation of Pregel.
http://www.raveldata.com/goldenorb/.

Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell,
and Dennis Fetterly. Dryad: Distributed Data-Parallel
Programs from Sequential Building Blocks. In
FEuroSys, pages 59-72, 2007.

Liang Lin, Vera Lychagina, and Michael Wong.
Tenzing A SQL Implementation on the MapReduce
Framework. Proceedings of the VLDB Endowment,
4(12):1318-1327, 2011.

Grzegorz Malewicz, Matthew H. Austern, Aart J.C
Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and
Grzegorz Czajkowski. Pregel: a system for large-scale
graph processing. In Proceedings of the 2010
international conference on Management of data,
SIGMOD 10, pages 135-146, New York, NY, USA,
2010. ACM.

Christopher Olston, Benjamin Reed, Utkarsh
Srivastava, Ravi Kumar, and Andrew Tomkins. Pig
Latin: A Not-so-Foreign Language for Data
Processing. In SIGMOD Conference, pages 1099-1110,
2008.

Pig Website. http://hadoop.apache.org/pig.

Rob Pike, Sean Dorward, Robert Griesemer, and Sean
Quinlan. Interpreting the Data: Parallel Analysis with
Sawzall. Scientific Programming, 13(4):277-298, 2005.
J. Shemer and P. Neches. The Genesis of a Database
Computer. Computer, 17(11):42 —56, Nov. 1984.

The Tandem Database Group. Nonstop SQL: A
distributed, high-performance, high-availability
implementation of SQL. Second International
Workshop on High Performance Transaction Systems,
September 1987.

Yuan Yu, Michael Isard, Dennis Fetterly, Mihai
Budiu, Ulfar Erlingsson, Pradeep Kumar Gunda, and
Jon Currey. DryadLINQ: A System for
General-Purpose Distributed Data-Parallel
Computing Using a High-Level Language. In Richard
Draves and Robbert van Renesse, editors, OSDI,
pages 1-14. USENIX Association, 2008.

Matei Zaharia, Mosharaf Chowdhury, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Spark:
cluster computing with working sets. HotCloud’10,
page 10, Berkeley, CA, USA, 2010.



Markov Logic Networks: Theory, Algorithms and
Applications

Parag Singla
Indian Institute of Technology Delhi
Hauz Khas, New Delhi

parags@cse.iitd.ac.in

ABSTRACT

Most real world problems are characterized by relational
structure i.e. entities and relationships between them. Fur-
ther, they are inherently uncertain in nature. Theory of logic
gives the framework to represent relations. Statistics pro-
vides the tools to handle uncertainty. Combining the power
of two becomes important for accurate modeling of many
real world domains. Last decade has seen the emergence
of a new research area popularly known as Statistical Rela-
tional Learning (SRL) which aims at achieving this merger.
Markov logic is one of the most well-known SRL models
which combines the power of first-order logic with Markov
networks. The underlying domain is represented as a set of
weighted first-order logic formulas. The associated weight
of a formula represents the strength of the corresponding
constraint. Higher the weight, stronger the constraint is.
Markov logic theory can be seen as defining a template for
constructing ground Markov networks, and hence, the name
Markov logic networks.

Inference problem in Markov logic corresponds to finding
the state of a subset of nodes (query) given the state of
another subset of nodes (evidence) in the network. Learn-
ing corresponds to finding the optimal set of weights for
the formulas as well as discovering the formulas themselves.
Many of the standard algorithms for inference and learning
in ground Markov networks do not scale well to the size of
the networks that can be represented using Markov logic.
Further, there is a rich template structure across ground
formulas which can be exploited to devise efficient infer-
ence and learning algorithms. Due to their representational
strength, availability of inference and learning algorithms,
ease of use and the availability of an open source imple-
mentation, Markov logic has been effectively applied to a
variety of application domains including entity resolution,
web-mining, link prediction, social network analysis, im-
age analysis, robotics, natural language processing and plan
recognition, to cite a few.

This tutorial will cover in detail the theory behind Markov

Permisdon to make digital or hard copies of al or part of this work for
personal or clasgoom use is granted withou fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bea this notice and the full citation onthefirst page. To copy atherwise, to
repubish, to post on servers or to redistribute to lists, requires prior spedfic
permisson and/or afee

The 18th Internationd Conference on Management of Data (COMAD),
14th-16th Dec 2012at Pune, India.

Copyright (©2012Computer Society of India (CSl).

15

logic starting from the basics of first-order logic and Markov
networks. We will also look at various inference and learning
algorithms for Markov logic. Second half of the tutorial will
focus on some of the applications to which Markov logic has
been applied. We will look at the modeling aspect of the
problem as well as actually writing up the theory using the
open source software, Alchemy, which implements Markov
logic framework.

Bio-Sketch

Parag is an undergraduate from IIT Bombay batch 2002.
He studied at the University of Washington Seattle to get
his Masters and PhD degrees. His PhD work focused on
Markov logic, a formalism to combine the power of logic
and probability. He has done some pioneering work in de-
veloping lifted inference techniques for Markov logic. He has
also worked extensively in applying Markov logic to a variety
of real world problems including entity resolution, link pre-
diction, abductive plan recognition and vision related prob-
lems. His paper on a new technique for entity resolution
using attribute-mediated dependences won the best paper
award at PKDD 2005. After finishing his PhD in 2009, he
spent a couple of years at UT Austin for a post-doc. He has
been working as an Assistant Professor at IIT Delhi since
December 2011. His current research work continues to fo-
cus on developing efficient inference and learning algorithms
for SRL (statistical relational learning) models. He is also
looking at their application to social network analysis and
video activity recognition. Parag has over a dozen publi-
cations in top tier peer-reviewed international conferences
and workshops, one best paper award and two patents to
his name. He has been a reviewer for many reputed inter-
national journals and served on the program committee for
several premiere international conferences including senior
program committee for IJCAI-11 and program committees
for AAAI-12 and ECAI-12.



Reliability Aware Data Fusion

Sameep Mehta
IBM Research India
New Delhi, India

sameepmehtal@in.ibm.com

1. OVERVIEW

Due to ubiquitous sensors (GPS, Accelerometer), easy of
use apps (Facebook, Twitter etc), presence of audio & video
recording devices and higher internet connectivity, the key
characteristics of raw data is changing. This new data can
be characterized by 4Vs Volume, Velocity, Variety and Ve-
racity. Moreover, due to popular trend of crowd sourcing or
citizen sensors, it is reasonable to assume that people will
provide multiple evidence of same event using different data
types. For example during a Football match, some people
will Tweet about Goals, Penalties etc while others will take
a picture and upload it. Although the underlying modali-
ties are different (text and image), the data describes the
same event. Such multi modal evidences should be used
to strengthen the belief in underlying physical event. Fi-
nally, each of the data point will have inherent uncertainty.
The uncertainty can arise from inconsistent, incomplete, and
ambiguous data as well as the trust worthiness of the user.
Similarly, some sources are more reliable than others which
will also play a part in overall reliability. The volume, veloc-
ity and variety are measurable/observable, however, there is
no measure of truthfulness.

Traditionally, CS research has focused on Volume and Ve-
locity. However, multimodal data fusion and reliability are
less explored. Through this tutorial will wish to draw the at-
tention of researchers towards these dimensions by present-
ing some real life use cases, highlighting the key technical
challenges, existing techniques and need for new .

2. TOPICS

We intend to over the following topics during the tutorial

e Data Characteristics with 4V dimensions and use cases
from Public Safety Domain.

e Key Technical Challenges (non exhaustive list)

— Entity Resolution
— Data Cleaning

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

The 18th International Conference on Management of Data (COMAD),
14th-16th Dec, 2012 at Pune, India.

Copyright (©)2012 Computer Society of India (CSI).

16

L. Venkata Subramaniam
IBM Research India
New Delhi, India

lvsubram@in. ibm. com

Performance

Indexing and Storage
— Updating of Data
— Use Case: Generating Single View of Entity

e Data Fusion Methods

— Probabilistic Data Fusion using Bayes Theorem,

— Information Measures like Entropy, Mutual Infor-
mation, Fisher Information

— Interval Calculus, Fuzzy Logic and Evidential Rea-
soning

— Kalman Filters & variants, Nearest Neighbor Fil-
ters and Probabilistic Data Association Filter

e Reliability

— Bayesian Methods
— Dempster Shafer Theory
— Transferable Belief Theory

e Recent Work in Data/Information Fusion

e Overview of Public Safety using Crowd Sensors Initia-
tives (National Technical Challenge by IRL)

3. TARGET AUDIENCE

This tutorial is designed for students and researchers in
Computer Science. Elementary knowledge of text mining is
assumed. This topic is expected to be of wide interest given
its overlap with data mining, text mining, NLP, Streaming
Data and BigData. We plan to give a 3 hour tutorial.

4. SPEAKERS

L Venkata Subramaniam manages the information pro-
cessing and analytics group at IBM Research India. He
received his PhD from IIT Delhi in 1999. His research fo-
cuses on unstructured information management, statistical
natural language processing, noisy text analytics, text and
data mining, information theory, speech and image process-
ing. He often teaches and guides student thesis at IIT
Delhi on these topics. He co founded the AND (Analyt-
ics for Noisy Unstructured Text Data) workshop series and
also co-chaired the first four workshops, 2007-2010. He was
guest co-editor of two special issues on Noisy Text Analyt-
ics in the International Journal of Document Analysis and



Recognition in 2007 and 2009. He can be reached at lvsub-
ram@in.ibm.com.

Sameep Mehta is researcher in Information Management
Group at IBM Research India. He received his MS and Ph.D
from The Ohio State University, USA in 2006. He also holds
an Adjunct Faculty position at International Institute of In-
formation Technology, New Delhi. Sameep regularly ad-

17

vises MS and PhD students at University of Delhi and IIT
Delhi. He regularly delivers Tutorials at COMAD (2009,
2010 and 2011). His current research interest includes Data
Mining, Business Analytics, Service Science, Text Mining,
and Workforce Optimization. He can be reached at sameep-
mehta@in.ibm.com.






RESEARCH TRACH






Connectivity-Tolerant Query Optimization Over Distributed
Mobile Repositories:

Sharma Chakravarthy, Aditya Telangi Mohan Kumar
Mark Lindermani Sanjay Madriaj Waseem Naqvif

Department of Computer Science and Engineering
University of Texas at Arlington
Arlington, TX, USA

sharma@cse.uta.edu, adtelang@in.ibom.com, kumar@cse.uta.edu,
Mark.Linderman@rl.af.mil, madrias@mst.edu, Waseem_Naqvi@raytheon.com

ABSTRACT

Query processing and optimization in centralized and dis-
tributed environments is well-researched. Centralized query

optimization focused on minimizing the number of input/output

(or I/O) from disk. Distributed query processing focused
mainly on maximizing local computation and minimizing
data transfer between nodes. Here the distribution of data
was pre-determined and both connectivity and bandwidth
were pre-defined and guaranteed. Work on sensor data ac-
quisition deal with non-join queries without taking mobility
and connectivity interruptions into consideration. However,
these assumptions are no longer true when queries are exe-
cuted over repositories stored in mobile aerial vehicles which
collect, process, and store data in real-time, and connectiv-
ity changes significantly over the duration of interest. Cur-
rently, only data in one vehicle can be queried by the ground
control.

This paper explores query processing and optimization
issues along with concomitant metadata needed for process-
ing/optimizing queries over distributed, mobile, connectivity-
challenged environments. Since response-time and fault-
tolerance are the main focus, we propose plans using join,
semi-join, and replication-based approaches. We propose
and evaluate several heuristics for this environment rang-
ing from greedy to cumulative approaches along with the
use of replicated copies of data. We have performed elabo-
rate experimental analysis to validate heuristics that work

*AFRL has approved this work for public release; distribu-
tion unlimited. Case No. 88ABW-2012-5499

fIBM Research, Bangalore, India

tAir Force Research Labs, Rome, NY
$Missouri University of Science and Technology
YRaytheon Corporation, MA

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

The 18th International Conference on Management of Data (COMAD),
14th-16th Dec, 2012 at Pune, India.

Copyright (©)2012 Computer Society of India (CSI).

21

well for this environment. As maintaining replication is a
challenge in this environment, we summarize our initial ap-
proach. This work on connectivity-tolerant query optimiza-
tion is part of a larger middleware-based, service-oriented
architecture.

1. INTRODUCTION

As part of a larger effort on distributed middleware-based
architecture for fault-tolerant computing over distributed
repositories, we address query processing and optimization
in this paper. A brief description of the larger problem is
provided for understanding the context for this work.

E st

Ground controller 1

Ground controlier n

Ground confroller 2

Figure 1: Example of Nodes and Connectivity

The general problem can be stated as follows: Consider
a number (2 to 15) of nodes (unmanned aerial or other ve-
hicles termed UAVs in this paper, and ground operators)
whose connectivity is dynamically changing, and whose data
bandwidth can vary from low to high. In this setting, how
do we accomplish a specific task (query, search, subscrip-
tion notification) that uses data and services from multiple
nodes (for computation or collaboration) that are subject
to QoS (Quality of Service) requirements (e.g., time to first
result, response time). In other words, each node is inde-
pendently acquiring multiple/different data types (e.g., lo-
cation, telemetry, and images) and storing them locally. The
data is stored in the form of Managed Information Objects



(or MIOs) and can be sent on-demand to ground operators,
and others nodes based on connectivity. There is also a need
for combining (or joining) data from multiple nodes to get
a better understanding of the overall situation. Data stored
in a node is defined using type, metadata, and the payload.
The communication between the nodes is through RF or sat-
com or other types of links (e.g., Link 16). It is also assumed
that the nodes can be of different types based on processing
capacity, storage, types of data it can collect, up/down link
bandwidths, and latencies of data transfer. Nodes can also
play different roles (depending upon the resources available
onboard): i) collect data and forward it, ii) collect data, pro-
cesses it, and forward both collected and processed data, and
iii) collect, process, store/hold, and forward data. A single
node can play different/multiple roles for different types of
data. Their roles may change over time.

A typical scenario consists of a number of Airborne plat-
forms (UAVs, Helos, Fighters, AWACs, etc.) which are trav-
eling at various speeds (100, 200, 500 knots etc.), some in
formation and some on independent tracks. Each has an as-
sociated ground platform that are either stationary or mov-
ing. Stationary platforms have semi permanent positions
whereas Mobile ones may be on vehicle or foot. The con-
nectivity among all airborne platforms is intermittent based
on distance, line-of-sight, obstacles, cloud coverage etc. The
transmission bandwidth is different for receiving and send-
ing and depends on a number of factors such as distance,
orientation, obstacles along the path etc. Each node (an
airborne platform) has storage that is meaningful for the
node type. Although computing power varies from node
to node, we can assume that it is sufficient to run a local
database management system (DBMS). Relational DBMS
is assumed. Power is assumed to be a non-issue in this work
because these platforms, we were told, have enough juice for
the duration of the mission. This general scenario arises in
various contexts:

e Disaster management, such as flooding, hurricanes,
and evacuation. Information needed: evacuation routes,
extent of damage, view of the area affected.

e Cooperative Combat Air Patrol. Mixture of UAVs,
manned fighters, and AWACs cooperatively defending
a region. Information needed: Signals, Lines of Bear-
ing, contact positions, tracks

The scenario described above is illustrated in Figure 1.
It is assumed that ground controllers are always in contact
with their respective UAVs. Connectivity of other nodes (or
UAVs) depends on dynamic factors. The connectivity (or
disruption) of the nodes changes dynamically in this scenario
as illustrated by solid lines and broken lines. Each line type
(solid or broken) represents a different configuration of the
network — one partitioning the nodes into two graphs and
the other maintaining reachability for all nodes. The figure
also shows new nodes coming into and existing nodes going
out of the network.

Currently, it is only possible to process queries on data
stored in a single airborne platform. Current state-of-the-art
in distributed query processing assumes fixed, hard-wired
connectivity among participating nodes. Replication is con-
sidered from an availability (of data) viewpoint and not
from connectivity viewpoint. Latest work in sensor query
processing [17] does not deal with mobile platforms with

22

Limited Resources
Mobility
Heterogeneity
Disconnections

Network of computing nodes:
Unmanned vehicles, Sensors. Robots, PCs |

Servers. Ground Controlling devices ‘

Queries, Tasks, Requests, Continuous Queries
Publish/Subscribe

SOA Distributed Middleware

Fault Task planning Join computation Context/
Tolerance Composition Knowledge
Services Conte Base

Publish
Subseribe
Capability

== — :: = Query
Raw Data / fused data / Capability |
data from other nodes

= Local fusion/
| Materialization |

|

Figure 2: Pluggable Middleware Architecture

resident relational DBMS and intermittent connectivity. It
is also possible to download data into ground nodes (from
all nodes) and then process queries over those nodes. This
results in delays that is not acceptable. Also, the data col-
lected by multiple vehicles for a situation provides a holistic
view and hence it is important to have the capability to is-
sue queries in real-time that can be processed over all the
relevant data available in one or more airborne platforms.
Based on the requirements of the situations listed earlier
(especially response time), it is important to have the capa-
bility to process queries over data in multiple nodes as they
are being acquired.

The following are examples of queries that need to be
executed on networked, distributed information sources.

1. Get all images taken within last 5 minutes of the area
bounded by (latitudel, longitudel)
and (latitude2, longitude2).

2. Get all SAM (surface to air missile) locations within 12
NM (nautical miles) of the area bounded by (latitudel,
longitudel) and (latitude2, longitude2).

Since each node is autonomous and may belong to a group
that needs to solve problems collaboratively, there is a need
for two fundamental components that form the core of our
overall approach:

e a common middleware component that is common to
and present in all the nodes and a context (as a knowl-
edge base or KB) that holds the capabilities, network
configuration, and

e current state of the network at each node which is
managed and used by the middleware.

The KB will also include the global requirements as capa-
bilities of connected nodes are dynamically gathered. The
context information can be customized/tailored either to a
node, a task or for a set of tasks. The middleware heav-
ily relies on the context to perform operations, knows the
capabilities of self and other nodes, and to perform tasks
collaboratively. A service oriented architecture (SOA) for
the middleware is used to build larger systems in which this
fits as a component seamlessly.



Figure 2 shows the service-oriented architecture (SOA)
for the middleware for supporting query processing (and
other services) over distributed repositories and accommo-
date fault tolerance. The overall architecture includes a mid-
dleware in each node that has a number of services (based on
SOA) for collecting, managing, replicating data and meta-
data for the purposes of routing and query processing. Each
node will have the SOA middleware and as many plugin
components as needed. As a node collects data, it is stored
in the repository on that node. Connectivity and replication
information is periodically exchanged between nodes and
stored in the context/kowledge base. For details on other
services, please refer to [7] which contains an accessible url.
Contributions: Some of the key contributions of this paper
are as follows:

1. Formulation of the distributed query optimization prob-
lems for ad-hoc connectivity in the presence of connec-
tivity interruptions,

2. A cost metric that is different from traditional dis-
tributed cost metrics,

3. A query processing strategy with partial independent
computations in different nodes, and

4. Replication of data for dealing with availability and
incorporating it into query optimization

Overall, the novelty is in generalizing distributed query
optimization to ad-hoc networks with mobile platforms, in-
termittent connectivity, and replication.

The remainder of the paper is organized as follows. Sec-
tion 2 defines the problem being addressed in this paper.
Section 3 discusses related work on query processing and
metadata management. Section 4 discusses meta data used
for query processing and its management. Section 5 briefly
summarizes our replication strategy. In Section 6, we dis-
cuss our approach for processing queries, plan generation
alternatives, and introduce heuristics appropriate for this
environment. Section 7 has elaborate experimental analysis
and their interpretation. Section 9 has conclusions.

2. PROBLEM STATEMENT

The focus of this paper is on processing SQL queries over
distributed repositories collected /stored on each vehicle with
the specified constraints on connectivity and reachability.
This will allow for holistic queries without even having to
know which repository contains what information. Although
we are using SQL queries referring to relations in a node in
this paper, a GUI can easily generate these queries from
an interactive interface. It is meaningful to assume that
each node has secondary storage of reasonable size. It is
also assumed that each node has enough computing power
to support a database management system (DBMS) that
can process queries from its local (secondary) storage. A
relational DBMS is assumed at each node.

The problem at hand is somewhat different from the tradi-
tional query processing that has been developed for central-
ized, distributed, and federated architectures. Although the
computations/operators (e.g., join, semijoin) are the same
as that of traditional query processing systems, the environ-
ment and the goals of these computations are quite differ-
ent. Instead of knowing the schema, the data is published

23

using a managed information object (or MIO) that needs to
be used efficiently. An MIO (used to represent/encapsulate
data) consists of: data type, metadata, and the payload.
The metadata could be as simple as schema information or
it can consist of additional information, such as range val-
ues, organization of data, number and types of objects in a
picture etc.

Another difference is the need for replication of data — not
from the viewpoint of local processing, but from the view-
point of accessibility or reachability. Compared with earlier
approaches where the nodes at which data was stored (or
even replicated) were pre-determined, in the current sce-
nario it is an important decision that has to be made dy-
namically by the system. As connectivity is not complete,
multiple hops may be needed to reach a copy of the data.
Furthermore, nodes can even store data that may not be di-
rectly useful to that node but is in close proximity for others
that need it. When a node moves away (i.e., is not a neigh-
bor anymore), there is a need to decide whether to keep the
copy in that node or not. The utility of data and its copies
need to be optimized using some metric (or a combination)
such as cost of storage, cost of communication, time for data
transfer, and longevity of storage.

In this paper, we address the problems of: query plan
generation for this environment, relevant heuristics that are
meaningful for this architecture, and use of replication for
improving query processing. A prototype implementation
developed in Java is used for extensive experimental results
that validate our approaches and inferences.

3. RELATED WORK

Traditional relational database management systems
(DBMSSs), consisting of a set of persistent relations, a set
of well-defined operations, and highly optimized query pro-
cessing and transaction management components, have been
researched for over several decades and are used for a wide
range of applications. Typically, data processed by a DBMS
is less frequently updated, and a snapshot of the database is
used for processing queries. Abstractions derived from the
applications for which a DBMS [5, 1, 15, 12, 18] is intended,
such as consistency, concurrency, recovery, and optimization
have received a lot of attention.

Query processing is a key consideration in database man-
agement systems. For this reason, query optimization has
been one of the most active research areas since the advent
of relational DBMSs. The acceptance and success of rela-
tional systems can be attributed largely to advances in query
optimization over several decades [19, 11]. A major advan-
tage of relational systems over earlier technologies is that
the users of a relational DBMS are relieved of the need to
describe their queries procedurally. More important, users
are not required to understand the details of physical repre-
sentation and its impact on queries posed to the DBMS.

In a distributed (or even a multi-database) environment,
queries are decomposed, and query fragments are directed
to particular sites (or databases) for processing [3, 2, 16].
Distribution of the database reduces the size of the data
stored at each node, increases the locality of reference for
the queries processed at a given node. Replicated databases
provide an additional opportunity — that of choosing the site
(at which a subquery is sent for processing) to increase the
probability of overlap with other subqueries. Hence, queries
processed at a site may have a lot of overlap of the data they



access.

Other forms of query optimization, such as semantic query
optimization [9], multiple query optimization [8, 20], and
more recently, continuous query processing [6] have focused
on modeling, scheduling, and load shedding strategies. The
work presented in this paper is related, but is distinctly dif-
ferent from them. In this work, queries are not transformed
using semantics, multiple queries are not batched and op-
timized, and continuous query processing techniques deal
with a different set of metrics and their optimization is very
different from what is required for this scenario.

Several middleware architectures have been developed in

the recent past to support mobile ad hoc networks (MANETS),

sensor networks, and pervasive systems. Boulkenafed and Is-
sarny develop a comprehensive middleware for data sharing
in MANETSs [4]. The focus of the work however is min-
imizing energy consumption. Kalasapur et al. developed
an elegant middleware for service provisioning in pervasive
systems with mobile nodes [13]. Tamhane and Kumar have
developed a resource management mechanism for pervasive
systems with underlying ad hoc networks [21]. None of these
works consider dynamic networks such as that of UAVs,
where node mobility is a regular feature rather than a rarity.
Christman and Johnson discuss a customized self configur-
ing architecture designed for UAVs [10]. However, they
do not deal with on content sharing and query processing.
The middleware architecture proposed in [14] attempts to
address this important issue in UAV based networks.

4. METADATA AND ITS MANAGEMENT

In order to process queries, minimal information about
the schema, connectivity of the nodes, replication informa-
tion (if any) as well as available cardinality and other statis-
tics need to be available in each node. Furthermore, some
of the above need to be kept current in this dynamic envi-
ronment. At the core of our middleware is the use of graph
theoretic and sub-graph matching techniques to ensure net-
work status awareness and data access. A graph structure
is created to capture the essence of data objects/services,
corresponding computing nodes and the relationship among
the data objects as well as the nodes. The associated mid-
dleware tools facilitate the response to queries in dynamic
heterogeneous environment comprising mobile nodes. The
proposed service provisioning framework is flexible in rep-
resenting metadata and services, and adaptive to changing
environments by incorporating the replicated copies. We
assume the following information in the form of tables ac-
cessible to the local database.

Data at each node is assumed to be a relation with the
schema shown in Table 1. R;; corresponds to relation R; at
node j. Ry (i = j) will be used to represent the primary
copy of a relation at node i. R;; (i <> j) will be used to
indicate the replica of R; in node j. A field ‘TimeOfUpdate’
is maintained for each update that happens over the Meta
Data to estimate the accuracy of data and keep a track of
how recently the update has been done.

A number of additional information about the character-
istics of each R;; is maintained in a node i (and periodically
propagated to all other nodes) for the purpose of query plan
generation and cost estimation. If a relation R; is replicated
at this node (7), then for each replicated relation R;;, we
need to maintain the same information as in Table 1. The
difference is that this information may not be current. Every

24

node maintains a copy of its original relation that is stored
at some other node. Currently, replication is assumed to be
a single copy and complete for each relation. Network Man-
aged data is maintained and updated by the middle-ware,
and accessed for processing by the local query processor for
executing intermediate steps of a query plan.

Selectivity for simple and composite conditions are calcu-
lated using standard formulas [19, 16] based on the informa-
tion in Table 2.

A Relation-to-Node mapping table, as shown in the Ta-
ble 3, is maintained by the message management system at
each node which indicates the location of the original and
the replica of a Relation. A value of 0 in the replica node
column indicates that the replica is not complete at this
point in time and hence is not considered for generating a
query plan.

Name | Original Node | Replica Node
R1 1 4
R2 2 1
Rn N k

Table 3: Relation and Replica Locations

Finally, a Connectivity map is maintained at each node
which checks for the existence of a connection between any
two nodes and the corresponding bandwidth between them.
If the Received Signal Strength (RSS) is zero or below a
threshold, then the connection is considered to be 0 and 1
(or present) otherwise. RSS value lies on a scale of 1 to 10.
The actual RSS value is used in cost estimation. LSF (Link
stability Factor) is a function of rate of change of RSS value
over a period of time. LSF, to some extent, measures the
stability of the link over a period of time. This is important
as the plan is generated once and the execution of steps take
some time. A pair is considered for the plan generation if the
RSS value at the instant is 1. A sample connectivity map
is shown in Table 4. Note that bi-directional connectivity is
maintained as the bandwidth is different between uplink and
downlink. See [14] for network related issues.

5. REPLICATION STRATEGY

In order to ensure accessibility and fault-tolerance, each
data object is replicated on other nodes. Currently, there
exists only one replica of a given data item. Ny represents
the source node, where the original copy of data item D;
was acquired. N, is the candidate node that will contain
a replica of data object D;. When N, decides to replicate
its contents on another node N., a node from the set of the
nodes that are immediate neighbors of the source node is se-
lected as candidate nodes for replication. Immediate neigh-
bors are those nodes which are directly connected to the
source node. The source node tries to replicate all its tuples
on the chosen candidate node. For each of the above se-
lected candidate nodes, a cost function C(s,¢) is computed.
The node with the lowest cost is selected as a candidate for
replication. The cost function to determine the candidate
node for replication is dependent on the following factors:
Bandwidth defines the closeness of N, from N, in terms of
bandwidth. Greater bandwidth is desirable; Linkstability is
a measure of stability of the link between nodes N, and N..
Greater stability of the link between the two nodes implies
better longevity; and greater DegreeofthenodeN. indicates



better accessibility of replicated data. Additional details can
be found in [14].

6. QUERY PROCESSING AND PLAN GEN-
ERATION

Although it is tempting to try to optimize a query from
scratch as is done traditionally, we need to take the envi-
ronment and constraints into account for proposing an ap-
propriate solution. The focus here is to generate a query
plan that can complete the execution of a query with mini-
mal data transmission cost and good response time. Hence,
a plan generator that tries minimize I/O in each node is
not the best way as the local DBMS is likely to do a better
job; and we need to leverage that. Hence, we decided to
delegate local optimization to the DBMS at each node and
concentrate on a plan that minimizes data transfer (or data
movement) for processing a query. As a result, a query plan
for this scenario is envisioned as numbered sequence of plan
steps that can be easily interpreted and executed at any
node!. Table 5 gives a description of a plan format. Each
step includes the operation to be applied, the data items in-
volved, the node where it is applied, the name of the result
and the node where it is created.

Unlike traditional query processing, the plan needs to be
sent from node to node? (or partial plans generated at each
node which is not considered in this paper) for the purposes
of query processing. A counter, as part of each plan, indi-
cates the next step to be executed and is initialized to 1. An
example of a query plan is shown in Table 6.

The plan format described above is sufficient to describe
any arbitrary relational query plan involving selects, projects,
and joins (also known as an SPJ query). The above format
can also accommodate SQL aggregate operators, such as a
SUM, COUNT, AVERAGE, MINIMUM, and MAXIMUM.
A query is executed as follows. A complete plan is generated
at the node where the query is received using the metadata
stored in that node. The plan is then sent to the node in
which the first operation takes place (if it is different from
the node where the query plan is generated) along with the
plan step counter. The interpreter in that node uses the
plan step counter to execute as many steps as possible in
that node. When a move or copy is encountered, it sends
the data as well as the plan (actually the remaining portion
of the plan to reduce the amount of data transferred) to the
next node. This process continues until the last step of the
plan is executed. The result of the query will always be sent
to the node at which the query was received.

Currently, a complete query plan is generated as follows.
Each node in the architecture has the same query plan gener-
ator and uses only the Metadata in that node. Note that the
metadata is updated by the underlying mechanism briefly
indicated in Section 4. The query plan is constructed one
join/semijoin at a time. Costs of partial plans are com-

'In fact, we assume that at each node, plan steps are com-
bined to generate an SQL query to be processed locally ac-
cessing only local data.

2As an alternative, it is possible to simultaneously send the
entire plan or preferably portions of the relevant plan steps
to each node. If this alternative is used, a synchronization
mechanism is needed to execute plan steps in the correct
sequence without any need to transfer plans. It is also pos-
sible to dynamically generate plan steps at each node when
needed rather than generating the entire plan to start with.

25

puted using well-defined statistics and formulae for comput-
ing selectivities for conditions and join. The lowest total
cost query plan is used as the final plan after the plan space
is explored either exhaustively or using heuristics. This will
result in a good plan (or an optimal plan). Several heuristics
are explored as part of this project to reduce the total com-
putation required for generating a plan and still generate a
good plan®. These heuristics are compared experimentally
with respect to replication and connectivity scenarios.

The complexity of the optimal plan generation is k" where
n is the number of joins and & is the number of alternatives
for each join. Currently, k being used is 18 (three alterna-
tives for join, semijoin, & hybrid alternatives, and the same
using replica as well). Note that this is at the logical level.
For each logical join alternative, there will be many phys-
ical alternatives making the plan space significantly larger.
Assuming three joins, we need to explore 5000+ alternative
query plans and compute cost for each one of them. For
plans with more than three joins, this exhaustive approach
is not viable. Hence, we have incorporated some heuristics
to limit the number of plans generated by pruning plans
carried forward after each join. A query optimizer has been
implemented to validate the heuristics and their effective-
ness on synthetic data and multi-join queries that simulate
actual data sets.

Cost for our plans is mainly data transfer cost which in
turn depends on the width of the tuple and cardinality of
the relation (intermediate or otherwise). Hence it is impor-
tant to estimate the number of tuples as well as their width.
Statistics in the form of cardinality and domain characteris-
tics are used for this purpose. Join and condition selectivity
are inferred from the statistics maintained. Intermediate
result sizes are also estimated as its accuracy is important
as the choice of the best query plan is primarily based on
the cost of data transfer based on availability of connectiv-
ity. The statistics used for evaluating the cost of a (partial)
query plan is the same as the ones used in traditional and
distributed query processing [19, 16]. All of these are well-
established for the relational model. We do not include the
processing cost for the operation/plan, but only the data
transfer cost. Processing cost depends upon the availabil-
ity of index and other structures and mainly influences the
order of join (which we take into account in our plan gener-
ation process). As future work, it will be useful to explore
what access structures are meaningful and take the process-
ing cost into account as well. In each node, the plan can
be executed by converting it into an SQL statement if a
relational database is used for storing data in that node.

To improve the accuracy of selectivity, for each attribute
of R;; on which a condition has been applied, selectivity
information is maintained as follows. Table 7 reflects the
actual selectivity values for conditions on that relation and
will be used when the same or similar condition is encoun-
tered in a later query. Otherwise, selectivity formulas are
used for calculating the resulting relation cardinality. The
conditions are maintained at the component level using a
hash table which can be associatively searched using the re-
lation and condition. The intermediate relation cardinality
and width are also maintained.

3Note that, in general, the objective of query optimization
is not as much as generating an optimal plan by spending a
lot of resources, but to certainly avoid bad plans and do it
fast.



Relation | C1 | C2 C3
R1 0.2 0.5
R2 0.6 | 0.67
R1 09 | 0.1 0.7

Table 7: Selectivity Table

6.1 Plan Generation Implementation

The query plan generator is implemented in Java. A re-
lational database is used for storing metadata (as will be
done in each node). A constants Java file is used for con-
ducting experiments and to setup parameters for varying
connectivity and replica information (as shown in Figure 3).
An interactive option is also available to input query, load
metadata from a file, and analyze individually best, worst,
or any plan generated. For details of implementation refer
to [7].

The generator begins by generating all distinct partial
plans (from an initial empty set) for each join. As an ex-
haustive algorithm, it generates 18™ plans for a query con-
taining n joins. It is evident that this approach is not viable
beyond a few joins. This is being done so that we can com-
pare heuristics-based plans with the optimal ones to analyze
the effectiveness of heuristics we come up with (e.g., top-k
in each iteration, top-k cumulatively, top-k for each type
of plan.) for queries with fewer joins. The generator then
iterates through the relation list and creates the necessary
plan steps. Then all of the attributes required are projected
on the output and join condition attributes to minimize the
data transfer across nodes which form the bulk of the cost
of query processing in this environment. Since most of the
plans will use these initial select or project statements (to
reduce the width and cardinality of the relation), these same
statements are attached to every plan. For plan alternatives
using joins the generator moves the required relations to
the location of the join and then performs the join. Even
for this, projections are applied to reduce the overall width
and cardinality of relations moved. The plan class takes
care of updating intermediary name, location, and condi-
tion information. Then the generator moves on to the next
plan.

For plan alternatives using semijoins, the relation that will
be semijoined to is copied and projected on the attributes
used in the specific join condition to minimize data transfer.
Then it is moved to the location of the semijoin. The semi-
join is performed. When the semijoin step is added to a plan
the plan updates name, location, and condition information
and in the case of semijoins the output relation and the rela-
tion that still needs to be semijoined to finish the operation
is added to a stack to keep track of the remaining semijoins
(to generate chained semi join plans). Note that a join can
be processed as a sequence of two semijoins. However, when
multiple semijoins are performed in a sequence, the second
semijoin needs to be performed in reverse order (hence a
stack). The next plan is then processed. For multiple joins,
after all of the plans have been processed with the first join,
all of the joined relations will be projected on the remain-
ing join attributes required and then algorithm will iterate
through all the plans again performing the remaining joins
and semijoins. After a relation has been joined, its current
location is considered to be that of the result of the join even
if it currently has a replica, which may cause some of the
plans to be the same. After all cases have been exhausted,

26

the algorithm goes through and finishes each case by iter-
ating through the stack of remaining semijoins completing
the remaining semijoins in reverse order and then moves the
final relation to its output node. During each step of the
plan generation, the cost associated with a move or a copy
is calculated, if there is no direct connection between nodes
the cost is considered prohibitively high and value is auto-
matically forced to a very high level by using a very low
bandwidth for the calculation. After calculation the plans
can be viewed in sorted form. The plan generator generates
a summary of: number of plans generated, lowest and high-
est cost plan numbers. It is possible to view any of the plans
in detail. The same process is used for generating plans us-
ing heuristics except that a subset of plans are used in each
iteration which are selected based on the specific heuristic.

The plan generator also includes a network component
that generates the connectivity matrix using the seed pro-
vided. Each element in the matrix represents the cost of
the link from node x to node y. Number of connections is
also specified as part of the configuration. The connectivity
matrix generated is consistent with the bandwidth assump-
tions for this scenario. The connectivity matrix is updated
to simulate movements of the nodes.

6.1.1 Sample Best and Worst Plans

Consider a multi-join query that is sent to node 1 and the
results expected back in node 1.

Node TARGET 1
SELECT *
FROM U_1_D,U_2_D,U_5_D
WHERE ((U_5_D.0BJTYPE=1))
AND ((U_1_D.LAT>U_2_D.LAT))
AND ((U_2_D.LONG>U_5_D.LONG));
Plan Total Cost Remarks
Number | (in milli secs)
253 493.873 alternatives 15 (first join)
and 2 (second join)
263 585.942 alternatives 15
and 11 (only semijoins)
3 175117.8 alternatives 1 and 3

Table 8: Sample Plan Costs

Below, we present Lowest cost, semijoin only cost, and
highest cost plans for the above query in Table 8 and addi-
tional information about how they were generated in terms
of plan combinations for a network configuration. In the
above the best plan seems to be a combination of join and
semijoin. The worst plan seems to be made of only joins. As
can be seen, the difference between the best and the worst
plan is significantly large. Hence, it is important to choose
plans closer to the best plan (i.e., a good plan).

6.2 Heuristics-Based plan generation

The purpose of generating an exhaustive plan space as in-
dicated above is to demonstrate the cost differences between
the best and the worst plans. The above algorithm is still
not exhaustive in that it does not consider all possible join
combinations. As can be seen clearly, there is a significant
difference between the best and the worst plan. The goal of
query optimization is not necessarily to choose the optimal
plan, but to avoid bad plans and choose a good (closer to
the optimal and far from the worst) plan.



During testing, we also realized that the connectivity plays
a critical role in that if only one way connection is available
between nodes, it impairs good plan generation as semijoin-
based plans need to finish the second half of join by bringing
the results back to that node. In order to generate a plan
without exhaustive search of the plan space, we have pro-
posed a number of heuristics to the above algorithm to com-
pare their performance with the optimal plan. We use this
prototype implementation to analyze various aspects such
as connectivity, bandwidth, as well as selectivity to under-
stand the types of plans generated and the effect of these
parameters on total plan cost. We have identified the fol-
lowing heuristics to be useful and have implemented them
so that we can compare them to the optimal ones to deter-
mine when and which heuristics to use for queries with more
joins.

1. Top-k Iteration: Plan generation is iterative with
respect to joins. For this heuristic, we choose top k
(where k can be specified as a parameter) lowest cost
partial plans in each round of expansion or iteration.
Note that each iteration in our approach corresponds
to processing a join. The number of iterations is equal
to the number of joins. The intuition behind this ap-
proach is to use a greedy local selection and hope that
it will turn out to be good globally as well. This sig-
nificantly reduces the size of the explored plan space.

2. Top-k Cumulative: For this heuristic, we choose
top k lowest cumulative cost (up to that point) plans
in each round/iteration of expansion. Again, the in-
tuition is that the cumulative cost up to this point is
more meaningful (than Top-k-iteration, for example)
and this would lead toward a good overall plan. Note
that this and the above heuristic will be identical up to
two joins. We expect this heuristic to do better than
the previous one as the number of joins increase.

3. Top-k Join-type: For this heuristic, we categorize
plans into join-based, semijoin-based, and hybrid (a
combination of join and semijoin). we choose top k
lowest cost plan from each category for expansion in
each round. The Top-k join-type is a different type
of heuristic as we have different types of partial plans
and their costs are likely to be different. Here, k lowest
cost plans from each type is chosen for the next round.
In order to compare them in a fair manner, the k value
need to be lower (1/3 as we have 3 join types) so that
the same number of plans are carried forward in each
round. Otherwise, this approach is likely to explore
a larger plan space and do better than the other two
heuristics.

In addition to the above, a number of other possibilities
for plan generation exist: i) incremental plan generation,
ii) looking ahead at connectivity and pruning plan alterna-
tives, iii) getting dynamic cost information and then gener-
ating partial plans

Note that connectivity, in this context, is likely to play
a significant role not only in the generation of a complete
plan, but also its cost. If sufficient connectivity does not
exist among the nodes that participate in the query (includ-
ing the nodes that have a replica), a complete query plan
may not even be feasible. The presence of replica increases

27

the probability of generating a complete plan and if several
exist, heuristics hopefully will choose a good one without
having to generate all plans. A heuristic that incorporates
connectivity would be very useful for this environment.

The above three heuristics have been implemented in our
prototype. The software has two modes: interactive and ex-
perimental to make it easy to test and use. In the interactive
mode, a query can be given at the prompt (or in a file) and a
heuristic specified for its plan generation. The generator will
indicate the number of plans generated as well as the lowest
and highest cost plans (along with plan number). One can
output (or look at) any plan in details by typing the plan
number. It is also possible to provide a file input to process
multiple queries in this mode. The selectivity and cardinal-
ity information is statically initialized. The connectivity is
also initialized at the start of the system. This can be easily
changed by loading a new or different relations and connec-
tivity information before executing the plan generator.

In the experimental mode, the configuration is set using
a Java Constants class (a sample is shown in Figure 3. The
input consists of: number of queries to be generated, seed
for query generation, number of connectivity configurations
to be used in the experiment, seed for configuration genera-
tion, and connectivity factor. The generator has a random
query generator on the schema stored in the system and
generates the desired number of queries for which minimum
and maximum number of joins can be specified. The seed
is to ensure repeatability of experiments as well as gener-
ate a new sequence of pseudo-random queries. The same is
true for network configurations and its seed. The connectiv-
ity factor is use to control the sparseness of the connectivity
matrix. If there are n nodes, the connectivity factor can vary
from 0 to (n-1), 0 indicating no connectivity at all and (n-1)
indicating complete connectivity. The connectivity itself is
generated randomly to satisfy the parameters specified.

The above setup allows one to perform different types of
experiments. For each query, connectivity can be changed
to determine how the plan cost changes and can also com-
pare the optimal cost with heuristics-based plan costs. It
is possible that due to the connectivity, a number of plans
cannot be completed resulting in a high cost. Queries or
connectivity sequences can be changed, independently, by
varying the corresponding seed.

7. EXPERIMENTAL ANALYSIS

In order to test the effectiveness of the heuristics pro-
posed for the query plan generator, we performed several
experiments using these heuristics across different connec-
tivity matrices and several different queries. The following
Java interface (see Figure 3) was typically used for setting
up parameters for all experiments.

A sample set of queries used for experimentation is shown
in Figure 4. Two and three join queries with different se-
lection and join conditions have been purposely chosen so
that they can be compared with optimal results. This will
force the execution of plan in multiple nodes and also brings
in the use of replicated relations based on the connectivity.
These queries were generated by domain experts who have
experience in these scenarios. Finally, the cardinality for all
relations ranges from 100000 tuples to 505000 tuples. This
cardinality also represents the amount of data acquired dur-
ing a mission. We have presented tables instead of plots as
the range of values from our experiments is quite large and



hence is not conducive to plotting.

7.1 Comparison of Heuristics

In this experiment, we tested the five queries (shown in
Figure 4) and tested the three heuristics along with the opti-
mal algorithm on the same configuration of the connectivity
matrix. Table 9, shows the cost (in milliseconds) incurred
by the various approaches towards generating the top-3 best
plans (average) for 5 different queries on the same connec-
tivity matrix configuration. Based on the results, it can be
observed that the plan generation process depends hugely on
the connectivity between the nodes. Among optimal plans,
the semijoin ones seem to perform better as expected since
data transfer is reduced significantly. Further, amongst the
different heuristic approaches, the semijoin approaches (ei-
ther top-k-iterative or top-k-cumulative) appear to perform
better for the current set of connectivity configurations.

7.2 Plans costs with and without replication

In this experiment, we compare the costs of generated
plans with and without replication to establish the need for
replication and its importance for this environment. In or-
der to test in the absence of replication, we selected each
query independently and altered the settings of Table 3 such
that for the nodes involved in the corresponding query no
replica existed. For instance, considering Query 2, we mod-
ified Table 3 such that replicas for nodes 5 and 10 did not
exist in any other node. We then evaluated the optimal
as well as heuristic-based plans for each query in the ab-
sence of replication, by averaging the costs obtained from
the corresponding top-3 plans. We then enabled replication
by creating replicas of the nodes, as shown in Table 3, and
evaluated the costs in the presence of replication.

Table 11 shows for a specific query (Query 3) the costs
obtained by each plan in the presence and absence of replica-
tion. It is clear that the processing cost without replication
is significantly higher (as high as 6 times). We also wanted
to understand the behavior of averages. Table 12 displays
the average costs obtained across all five queries, when repli-
cation was present and absent. We observed that, in the ab-
sence of replication, it was difficult to obtain a low cost plan
(due to the nature of the connectivity between the different
nodes); as a result, a relatively high-cost plan has to be se-
lected. In contrast, replication provides a distinct advantage
as a low cost plan, involving the replica nodes can be ob-
tained even though the connectivity between actual nodes
involved in the query may not exist. Consequently, the pres-
ence of replication yields comparatively low-cost plans, and
hence proves to be fruitful in such scenarios where the con-
nectivity between nodes is dynamic and susceptible to fre-
quent changes. This is for a single copy replication. It would
be interesting to study the tarde-offs between number of
copies and plan costs.

7.3 Impact of Connectivity on Plan Cost

In this experiment, we present a single query (shown be-
low) and computed the top-3 plan cost using the heuristics
proposed along with the optimal plan cost on six different
configurations of the connectivity matrix. We had to keep
the connectivity large; otherwise, no (or not many) plans
were generated. Since the connectivity matrix is large in
size, we do not show it here. Instead, we have displayed a
sample configuration file earlier. We have done this experi-

28

Method Replication No
Replication
Optimal Join 63.76 175.73
Optimal semijoin 135.33 326.28
Top-K Cumulative Join 85.57 195.14
Top-K Cumulative semijoin 78.46 179.07
Top-K Iterative Join 70.76 379.54
Top-K Iterative semijoin 129.39 894.21
Top-K Join-type Join 80.76 391.72
Top-K Join-type semijoin 129.39 666.67

Table 11: Replication Vs. No Replication: Effect on
costs for Query 3

Method Replication NO
Replication
Optimal Join 8.91 29.41
Optimal semijoin 29.33 126.81
Top-K Cumulative Join 527.21 143.73
Top-K Cumulative semijoin 279.21 795.41

Top-K Iterative Join 33.11 177.14
Top-K Iterative semijoin 318.25 828.21
Top-K Join-type Join 801.49 935.72
Top-K Join-type semijoin 304.71 899.67

Table 12: Replication Vs. No Replication: Effect on
costs across all queries

ment on several queries with similar results.

Query 1 target 2
SELECT ~ * FROM UAV_2_DATA, UAV_4_DATA, UAV_6_DATA
WHERE ((UAV_2_DATA.NODEID=76)) AND ((UAV_2_DATA.LONG>=804))

AND ((UAV_6_DATA.LONG<=540) AND

((UAV_2_DATA.LAT=UAV_4_DATA.LAT)) AND (UAV_4_DATA.LONG=UAV_6_DATA.LONG));

Table 10 shows the cost (in milliseconds) incurred by the
various approaches towards generating the top-3 best plans
for the given query. Based on the results, it can be ob-
served that the plan generation process depends heavily on
the connectivity between nodes. For many network con-
figurations, no plan is generated even in optimal join case.
However, amongst the different heuristics, the semijoin ap-
proaches (both iterative and cumulative) appear to do better
and very close to optimal for the current set of connectivity
configurations. However, determining the exact relationship
between the type of join and the corresponding costs of plan
generation will require further analysis and is beyond the
scope of this paper.

7.4 Desiderata

It is very clear from the experiments that the proposed
heuristics are meaningful and generate good plans that are
not too far from the optimal without exploring the entire
plan space. The presence and absence of replication makes
a significant difference both for the number of plans available
and the cost of the plan. This is only for directly connected
replica. If multiple hops are included, reachability will be
even better (at the cost of transmission cost). Connectiv-
ity of the network certainly plays a central role and more
attention needs to be placed on heuristics and optimization
to include predicted stability of network and its leveraging.
Alternate plan precessing strategies will also be beneficial
for this environment. As an example, parallel execution of



plan steps in different nodes is likely to reduce response time
substantially.

8. ACKNOWLEDGEMENTS

Authors would like to acknowledge the support from Air
Force Research Laboratory (AFRL) for this work. The work
presented in this paper is partially supported by Air Force
Research Laboratory (AFRL) grant. Authors would also
like to acknowledge the contributions of Danny Hua, Nick
Steffen, and Chance Eary on the implementation of the
query optimizer prototype used for experimental analysis
and all students who worked on this project from all partic-
ipating institutions.

9. CONCLUSIONS AND FUTURE WORK

In this paper, we have explored SQL query processing
and optimization in distributed environments where connec-
tivity is changing rapidly. Instead of optimizing the query
from scratch, we have relied on local optimization and have
used an incremental plan generation approach with several
heuristics for processing a query at the granularity of joins
and semijoins and concomitant data transfers. Replicated
copies are assumed and taken into account in order to al-
leviate availability of data due to connectivity issues and
increase the probability of an available copy during query
processing.

A number of extensions are currently being investigated:
i) optimum number of replicated copies instead of a single
copy, ii) generating the query plan incrementally and dy-
namically (due to connectivity issues), iii) use of parallel
plan evaluation with concomitant complexity to plan gener-
ation and evaluation, and iv) various QoS issues pertaining
to query results.

10. REFERENCES

[1] Abraham Silberschatz and Henry F. Korth and S.

Sudarshan, Database System Concepts, 8rd Edition.

McGraw-Hill Book Company, 1997.

P. A. Bernstein and N. Goodman, “The theory of

semi-joins,” Computer Corporation of America, Tech.

Rep. Tech Report CCA-79-27, 1979.

P. A. Bernstein, N. Goodman, E. Wong, C. L. Reeve,

and J. B. Rothnie, “Query processing in systems for

distributed databases (SDD-1),” ACM TODS, vol. 6,

no. 4, pp. 602-625, Dec 1981.

M. Boulkenafed and V. Issarny, “Middleware service

for mobile ad hoc data sharing, enhancing and data

availability,” in ACM Middleware, vol. 2672, no. 1.

LNCS, 2003, pp. 6-25.

C. J. Date, An Introduction to Database Systems,

Volume 2, Sizth Edition. Addison-Wesley, Reading,

1995.

[6] S. Chakravarthy and Q. Jiang, Principles of Stream
Data Management. Springer, 2008.

2l

B3l

(4]

29

[7] S. Chakravarthy, M. Kumar, S. madria, and

W. Nagvi, “A Distributed Middleware-Based
Architecture for Fault-Tolerant Computing Over
Distributed Repositories,” TR CSE-2011-8, UT
Arlington, Dec 2011, http://www.cse.uta.edu/
research/publications/Downloads/CSE-2011-8.pdf.

S. Chakravarthy, “Divide and Conquer: A Basis for
Augmenting a Conventional Query Optimizer with
Multiple Query Proceesing Capabilities,” in ICDE,
1991, pp. 482-490.

U. S. Chakravarthy, J. Grant, and J. Minker,
“Logic-Based Approach to Semantic Query
Optimization,” ACM Trans. Database Syst., vol. 15,
no. 2, pp. 162-207, 1990.

H. C. Christmann and E. N. Johnson, “Design and
implementation of a self-configuring ad-hoc network
for unmanned aerial systems,” in ATAA, 2007.

G. Graefe, “Query evaluation techniques for large
databases,” Computing Surveys, vol. 25, no. 2, pp.
73-170, Jun. 1993, (Survey Article).

J. D. Ullman, Principles of Database and
Knowledge-Base Systems, Vol. II. Computer Science
Press International, Inc., MD 20850, 1989.

S. Kalasapur, M. Kumar, and B. Shirazi, “Dynamic
service composition in pervasive computing systems,”
IEEE Transactions on Parallel and Distributed
Systems, vol. 18, no. 7, pp. 907-918, July 2007.

M. Kumar, M. L. Sharma Chakravarthy,

Sanjay Madria, and W. Naqvi, “Middleware for
Supporting Content Sharing in Dynamic Networks,”
in MilCom2011, The Military Communication
Conference, November 2011.

M. Stonebraker, Ed., Readings in Database Systems.
Morgan Kaufman Inc., 1988.

M. T. Ozsu and P. Valduriez, Principles of Distributed
Database Systems. Prentice Hall, Englewood Cliffs,
New Jersey, 1991.

S. R. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong, “Tinydb: an acquisitional query processing
system for sensor networks,” ACM Trans. Database
Syst., vol. 30, no. 1, pp. 122-173, Mar. 2005. [Online].
Available:
http://doi.acm.org/10.1145/1061318.1061322

R. Ramakrishnan, Database Management Systems.
WCB/McGraw-Hill, 1998.

P. G. Selinger, M. M. Astrahan, D. D. Chamberlin,
R. A. Lorie, and T. G. Price, “Access path selection in
a relational database management system,” Proc. of
ACM SIGMOD Conference, pp. 23-34, Jun. 1979.

T. K. Sellis, “Multiple -query optimization,” ACM
TODS, vol. 13, no. 1, 1988.

S. Tamhane and M. Kumar, “Middleware for
decentralised fault tolerant service execution using
replication in pervasive systems,” in IEEE PerCom,
Sixth International Workshop on Middleware Support
for Pervasive Computing, March 2010.

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

18]

[19]

20]

(21]



[ Timestamp [ Nodeid [ Lat [ Long [ Obj_type [ Obj_desc [ Object_ptr ]
| 8bytes [ 4 bytes | 4 bytes | 4 bytes | 8 chars [ Varchar (64) | Pointer (8 bytes) |
Table 1: Relation Format

Attr Name Type Cardinality | Position | Width | Min Value | Max Value | Unique values in the range
Timestamp number 1200 1 100 50 140 90
Lat number 1200 2 4 10 100 90
ObjType varchar 4000 3 64 20 350 330
ObjPtr categorical 2000 3 8 Null Null 10

Table 2: Relation Metadata

[ Nodei [ Nodej [ RSS [ LSF [ Bandwidth | Start-up Cost |
[ 1 | 3 | 1 ] 5 | 100 | 10 |

Table 4: Connectivity map

[ Operation n | Parameter [ Operand-1 | Operand-1 Loc | Operand-2 | Operand-2 Loc | Result Name | Result Loc |

Table 5: Plan Format

Operation Param Operandl | Operandl Loc | Operand2 | Operand 2 Loc | Result Name | Result Loc
Select A > 100 R1 1 Null Null R1’ 1
Projoct AT, A3, Ad R T Null Null R i
Move or copy Null R1” 1 Null Null R” 2
Semi Join A>C R” 2 R2 2 SR1 2
Join B = R12 2 R2” 2 JR1 2
Table 6: Example Query Plan
Configuration File:
package afrl;
public interface afrlConstants {
int NUMBER_OF _QUERIES = 1; //queries generated
String FILE_NAME = "outputFiles/apr13_queries_expl.txt"; // file name
String NETWORK_FILE_NAME = "outputFiles/network/apri13_network_expl"; //conn matrix file
int SEED = 4406235; //for query generator
int NETWORK_DEGREE = 11; //# of connected nodes
int NUM_NETWORKS = 6; //# of connectivity matric to be generated
int NETWORK_SEED = 33152035; //seed for connection matrix generator
int NUM_NODES = 13; //# of nodes in connection matrix
int TopKOptimal = 3; // optimal plans to display; 0 (all)
int TopKCumulativeCost = 3; //carry K plans, O (not use this heuristic)
int TopKIterationCost = 3; //carry K plans, O (not use this heuristic)
int TopKJoinType = 9; //carry k number of join type heuristic applying
//cumulative heuristic to k/3 of each type
boolean displayNonConnective = false; //true to display non connective plans
boolean heuristicDebug = false; //true to dump heuristic execution data to files}
Figure 3: A Sample Configuration Specification
Method Query 1 | Query 2 | Query 3 | Query 4 | Query 5
Optimal Join 8.19 55.34 63.76 2.89 2.52
Optimal semijoin 3.29 8.61 135.33 4.74 2.17
Top-K Cumulative Join 20.54 68.07 85.57 62.78 4.70
Top-K Cumulative semijoin 9.91 39.31 78.46 12.21 4.29
Top-K Iterative Join 8.19 59.54 70.76 5.34 5.62
Top-K Iterative semijoin 4.19 9.31 129.39 162.62 4.95
Top-K Join-type Join 174.20 485.37 80.76 7.12 7.70
Top-K Join-type semijoin 11.91 390.31 129.39 3.21 3.29

Table 9: Heuristics Vs. Optimal:

30

Costs incurred across top-3 plans



Query 1:
SELECT
FROM
WHERE

Query 2:
SELECT
FROM
WHERE

Query 3:
SELECT
FROM
WHERE

Query 4:
SELECT
FROM
WHERE

Query 5:
SELECT
FROM

target 2
*

UAV_2_DATA, UAV_4_DATA, UAV_5_DATA

((UAV_2_DATA.NODEID=66)) AND((UAV_2_DATA.LONG>=614)) AND ((UAV_5_DATA.NODEID=77))
AND ((UAV_2_DATA.LAT=UAV_4_DATA.LAT)) AND ((UAV_4_DATA.NODEID=UAV_5_DATA.NODEID));

target 5
*

UAV_5_DATA, UAV_10_DATA

((UAV_10_DATA.LAT=609)) AND ((UAV_10_DATA.OBJPTR<=246)) AND ((UAV_5_DATA.OBJPTR=UAV_10_DATA.OBJPTR));

target 9
*

UAV_9_DATA, UAV_10_DATA, UAV_5_DATA
((UAV_9_DATA.LONG>351)) AND ((UAV_9_DATA.LAT>=40)) AND ((UAV_5_DATA.LONG<=804))
AND ((UAV_9_DATA.OBJPTR=UAV_10_DATA.OBJPTR)) AND ((UAV_10_DATA.LAT= UAV_5_DATA.LAT));

target 6
*

UAV_6_DATA, UAV_10_DATA, UAV_4_DATA
((UAV_6_DATA.LAT<55)) AND ((UAV_6_DATA.NODEID<=260)) AND ((UAV_4_DATA.NODEID=22))
AND (((UAV_6_DATA.TIMESTAMP=UAV_10_DATA.TIMESTAMP)) AND (UAV_10_DATA.OBJPTR= UAV_4_DATA.OBJPTR));

target 9
*

UAV_9_DATA, UAV_3_DATA, UAV_2_DATA, UAV_4_DATA WHERE ((UAV_9_DATA.TIMESTAMP<=764))
AND ((UAV_9_DATA.LONG<102)) AND ((UAV_2_DATA.NODEID=66)) AND ((UAV_2_DATA.LONG>=614))

AND ((UAV_9_DATA.LAT=UAV_3_DATA.LAT)) AND ((UAV_3_DATA.LAT=UAV_2_DATA.LAT))

AND ((UAV_2_DATA.OBJPTR=UAV_4_DATA.O0BJPTR));

Figure 4: Sample Queries Used

Method Network 1 | Network 2 | Network 3 | Network 4 | Network 5 | Network 6
Optimal Join 8.07
Optimal semijoin 4.53 4.79 3.67 3.18 3.17 4.01
Top-K Cumulative Join 44.01 20.44 20.44 17.78 13.52 16.05
Top-K Cumulative semijoin 4.51 272.38 272.38 4.61 4.31 272.38
Top-K Iterative Join
Top-K Iterative semijoin 5.18 5.55 14.48 3.15 4.17 4.47
Top-K Join-type Join 33.31 20.44 16.73 17.78 16.23 14.55
Top-K Join-type semijoin 6.81 4.55 4.47 4.81 4.17 6.06

Table 10: Heuristics V/S Optimal: Costs incurred across different connectivity configurations

31




Context Aware Ontology based Infor mation Extraction

Sapan Shah and Seedha Reddy

Tata Research Development and esign Center
Tata Consuiang Services Limited,
Pune411013
India
{sapan.hs, sredha.reddy} @tcscom

Abstract

We hawe deweloped an ontology based
information extradion system where property
and relation name occurrences are used to
idertify domain entiti es using pattemns written in
tems of deperdency relations. Our key intuition
is that, with resped to a given ontology,
properties ard relations are much easier to
idertify than ertities, as the former generally
occur in a limited number of teminological
varnations. Once idertified, properties ard
relations provide cuesto idertify relatal entities.
To adiieve this, we have deweloped a patten
language which uses the grammaticd relations of
deperdercy parsing aswell as linguistic feaures
over text fragmerts. Ontology constructs such as
clas®s, propetties ard relations are integral to
patten spedfication and provide a means for
extrading entities and property values. The
patten matcher usesthe patterns to construct an
objed graph from a text document. The objed
graph comprises entity, property and relation
nodes. We have deweloped a global context
aware algorithm to detemine the ontological
typesof these nodes. Type of one node can help
detemine the types of other relatel nodes. We
use the concept of erntropy to measure the
uncertainty associated with the type of a noce.
The type information is then propagatedthrough
the graph from low enropy nodes to high
ertropy nodesin an iterative fasion. We show
how the global propagation algorithm doesbetter

Permission to make digital or hard copies of al or part of this work for
persona or classioom useis granted withou feeprovided that copies are
not made or distributed for profit or commercial advantage and that
copies bea this ndatice and the full citation on the first page. To copy
otherwise to republish, to post on savers or to redistibute to lists,
requires prior spedfic permisson andor afee

The 18" Internationad Conference on Management of Data (COMAD),
14"-16" Dec 2012at Pure, India

Copyright ©2012Computer Society of India (CSl).

32

thanalocd algorithm in detemining the typesof
nodes. The main contributions of this paper are:
an ontology aware patten language; a global
context aware type identification algorithm.

1.

We live in a networked world where information is
growing at an explosive rate. The ahility to draw useful
insights from this information is going to be a key
competitive advantage for ertermrises. New business
models are emerging that require highly dynamic
configurations of suppy chains. Effedive management of
such supdy chains requires constant monitoring and
aralyss of information on supgiers, consumers,
competitors, their operating environments ard so on. This
cdls for a highly flexible and dynamic information
architecture that allows us to collect and integrate
information not only from within the erterprise but also
from outside the enterprise such asonline sources, social
meda sitesand so on. The ahility to dynamically discover
ard integraterelevant information sources is a key feaure
of this architecture.

With this in mind, we have developed aninformation
integration architectue (seefig. 1) where ontologies and
ontology driven information extradion play a key role.
We have an enterprise level ontology that provides a
unified view of information at the erterprise level. This
ontology is mapped to source level ontologies. A source
level ontology providesa conceptual view of information
available atthe source.

Integration of a new source into the framework
involves spedfying the relevant ontology and building an
adapor. The adapor is resmnsible for extrading
information and preseting it asaninstarce of the source
ontology. Integation of structured sources is relatively
eaier amd we will not discuss that in this paper.
Integration of unstructured sources is more complex. First
we have to idertify the relevant ontology fragment (using
ontology discovery techiques) and then we have to build
a suitable information extraction comporert. Building an

Intr oduction



Enterprise Level Ontology

Figure 1: Enterpriselnformation Integration Framework

information extradion comporent using tradtional IE
techiques is a fairly involved job as they require
extensive customizations (training, mark-up, tweeking
rules, and so on). This is not a viable approach in a
dynamic discovery and integration scerario. We need a
more nimble approach. We discuss one such approach
where information extradion can be drivenertirely by the
ontology, without any domain spedfic customizations.
This obviously hasits trade-offs. The approach places a
higher premium on predsion than on recall, asreliahlity
of informaton is much more critical in a dynamic
integration scenario where there is minimal expert
intervention.

1.1. Ontology based I nfor mation Extraction

Information Extradion (IE) is the task of extrading
structured information from unstructured or semi-
structured sources. |E systems are suppied with the
information of what is to be exracted in the form of
output templates. Ontology basedinformation extracion
(OBIE) hasrecertly emerged as a sub-field of 1E where
ontologies are used in the information extradion process
Output of the extradion processmay alsobe represened
in terms of an ontology. Ontology is defined asa formal
ard explicit spedfication of a shared conceptualization
[11]. An ontology models a domain terminology in terms
of concepts, properties ard relations which can be usedto
spedfy information extradion targets. OBIE systems are
broady classfied as ontology leaming systems arnd
ontology popuation systems. The task of an ontology
leaming OBIE system is to construct domain spedfic
concepts and properties from unstructured text. Wheress,
anontology popuation OBIE system extrads instances of
domain spedfic concepts ard their property valuesfor a
given ontology. In this paper, our focus is on anontology
popuation system.

1.2. Our Approach

The key ideabehind our approad is thatit is much easier
to idertify property (ard relaion) name occurrerces than
ertity name occurrerces. The reason for this is that while
an ertity name may occur without an associated concept

33

name refererce a property value rarely ever occurs
withou the as®ciated property name refeence To
illustrate, suppase we have an ontology fragment having
one concept i.e. Courtry ard two propetties i.e.
Courtry.popuation and Courtry.capital. Senterces such
as tre following are quite common:

India has a population of 1.2 billion.
Its capital is Delhi.

While refererces to India frequertly occur without the
as®ciatal concept name refererce (i.e. Courtry), it is
difficult to imagine property values ‘1.2 billion’ and
‘Delhi” without the asociated property name references
(popuation and capital). Similarly it is difficult to
imagine relation values withou the associated relation
name refererces. Also, while there can potentially be an
infinite number of ertity name occurrerces, property
(relation) namestypically only occur in alimited number
of terminological variations (eg. popuation, popuace.
Thus in our approach we start by idertifying occurrences
of property and relation names and use them to identify
ertities. To adieve this, we have developed a patten
language which uses the grammaticd relations (such as
subjed, vem, objed, etc) of deperercy parsing to locae
ertities once the properties and relations are idertified.
The language also providesconstructsto referto ontology
elements. These constructs serve two purposes: one, to
spedfy constraints over ontology elements, and two to
provide semartics for extrading information.

The patten matcher uses the pattens written in the
patten language to construct an objed graph from the
input text document. The nodes of the objed graph
represen ertities, properties ard relations found in the
documert. The next stepis to detemine their ontological
typesfor which we have developeda global context aware
algorithm. We use the concept of ertropy to measure the
uncertainty associated with the type of a node. The type
information is then propagated through the graph from
low entropy nodesto high entropy nodesin an iterative
fashion. The intuition behnd this approadc is that a node
with a higher degree of certainty about its type can help
detemine the types of related nodes that have alower
degee of certainty about their types. For example,
consider an ontology with classes such as City, Sate and
Courtry and objed property® located in between: City
and State; State and Country. Let’s say a text document
contains a sentence Gujarat 1is located in
India. Here the relation occurrerce located in is not
empugh to dedde the type of Gujarat which can
potertially be City or Sate. Similarly, the type of India
can be Sate or Courtry. Let’s say the same document
contains arothersenterce India is a country in
South Asia. This serterce provides the information
that the type of India is Country. Now, if the information

! We will use the tems relation and object property
interchangeably (similarly, property and data type property).



from India (a node with higher certainty about its type) is
propagated to Gujarat (node with lower certainty), we can
decide that the type of Gujarat is Srate.

The rest of the paper is organized as follows. Section 2
describes some of the systems developed for OBIE in the
past. Section 3 discusses how domain ontology can be
enriched to facilitate IE. Section 4 discusses details of
input text pre-processing. Section 5 discusses pattern
language constructs and their semantics. We present the
global context aware type identification algorithm in
section 6. Section 7 discusses experimental results.
Section 8 ends with concluding remarks.

2. Related Work

Ontology based information extraction has recently
emerged as a sub-field of IE. Research in this field has
mostly concentrated on finding instances of domain
specific concepts and learning taxonomic relations. Not
much work has been done on finding non-taxonomic
relations.

One of the first IE systems using ontology was the
Embley’s system [8] based on extraction ontologies,
where ontologies are extended with regular expression
based linguistic rules for ontological classes and
properties. Other notable systems based on linguistic rules
include FASTUS [1], PANKOW [4,5], OntoX [19],
Ontosyphon [13], KIM [15]. FASTUS uses a cascade of
finite state automata to extract the events and entities of
interest. To extract instances of domain specific concepts,
PANKOW, Ontosyphon and KnowItAll [9] systems use a
set of generic Hearst patterns. These patterns are
instantiated with ontological constructs for extraction
purposes. For example, <Concept>s such as <Instance> is
one of the Hearst patterns [12]. Here, Concept can be
instantiated with country class to extract country
instances. PANKOW [4,5] system first finds all proper
nouns in a document and then conducts web based
searches for every combination of proper noun and
ontological class for a set of Hearst patterns. It then uses
the number of hits recorded for each class to determine
the correct class label for the proper nouns. Ontosyphon
system uses a similar approach where instead of focusing
documents, it uses web based searches to find possible
instances of classes in the ontology. In addition to the
linguistic rules, systems such as KIM [15] and iDocument
[3] use gazetteer lists for some classes to facilitate IE.

As the constituency based parsers are typically closer
to the syntactic structure than the semantics of the
sentence, other parsing mechanisms such as dependency
parsing, link grammar, etc. are used by different systems
for relation extraction. Fundel et al. [10] have built RelEx
system for Biolnformatics domain. It uses dependency
tree paths to extract interaction between genes and
proteins. It uses gazetteer lists for extracting genes and
protein names from natural language sentences. Similarly,
Schutz and Buitelaar have developed RelExt system [17],

where the goal is to extract relations between concepts for
ontology learning. The authors motivate the use of verbs
to express relation between classes that specify domain
and range of some action or event. Similarly, Banko et al.
[2] present open information extraction approach, where
binary relationships between the entities can be obtained
using verb-centric lexico-syntactic patterns.

IE systems perform linguistic processing (e.g.
tokenizing, POS tagging, chunking, etc.) over the input
text before the actual task of extraction. The generated
linguistic features then can be used as part of extraction
rules. Various NLP tools such as GATE? Stanford
CoreNLP are used for this purpose. As we are building a
new pattern language, it is worthwhile to compare it with
JAPE? component of GATE. JAPE provides finite state
transduction over document annotations based on regular
expressions. It is used by Saggion et al. [16] and KIM
[15] to write regular expression for entity extraction. It is
possible to write ontology aware JAPE transducers where
classes in the ontology can be referred as part of regular
expressions. However, The JAPE regular expressions are
written in terms of annotations over tokens while the
pattern language we have developed can be used to write
regular expression over trees in additions to tokens.
Second notable difference is that, one has to write explicit
JAVA code using GATE ontology APIs to store extracted
information into the ontology. In our case, we have
extended the pattern language itself with a set of
constructs that specify how to store the extracted
information into the ontology.

3. Ontology Enrichment for TE

To facilitate IE, ontologies in [8,19] are enriched with
annotations. On similar lines, we have added following
annotations to the domain ontology (A domain expert
assigns values for these annotations).

o Description: The classes of ontology should be
enriched with description annotations describing their
meaning. This can be useful for assigning initial
probability of an entity having a particular class type.
For each class, the similarity between the words in
the context of a given entity and the words in the
class description is calculated. These similarity
values are then normalized to get initial probability
values.

o Identification Weight: For each ontological class,
relative identification weights are assigned for its
data and object properties. These weights indicate the
relative importance of a property or relation in
identifying the class. For example, consider an

> GATE - General Architecture for Text Engineering: java suite
of tools to perform NLP tasks developed at University of
Sheffield. (http://gate.ac.uk/)

* JAPE — Java Annotation Patterns Engine: regular expression
language in GATE.



Organization domain with two classes i.e. Employee,
Department and three properties i.e. Employee.name,
Department.name, Employee.reports_to. Here, the
occurrence of reports_to in text can provide cues that
the type of the associated entity is Employee. The
same is not true for name. Hence, reports_to is given
more identification weight than name.

e Synonyms: While finding out property and relation
mentions in the text, we also want to consider their
synonyms. Hence, we provide an annotation to
manually add synonyms for properties, relations and
classes. The WordNet* synonyms can also be added
as part of this annotation.

e Value Patterns: Stricter constraints on the values of
data type property may be required in some cases.
Hence, we enrich the ontology with value patterns
annotation that specifies the regex patterns that the
values of the data type property should match. For
example, consider a Camera Review domain with a
property Camera.megapixel. As observed in the
Camera Review corpus, the regex for the value
pattern can be: \d+(\.\d+)?(mpImegapixel).

The pattern matcher uses above mentioned annotation
for identification as well as classification of entities and
their property values.

4. Pre-Processing

IE from unstructured text generally employs a series of
pre-processing steps where linguistic features of the input
text are collected. This section describes these pre-
processing steps and builds a data structure which will be
used by the pattern matcher.

4.1. Linguistic features using Stanford CoreNLP

Stanford CoreNLP’ is an integrated suite of natural
language processing tools for English. The input text is
first tokenized and passed to sentence splitter which
converts the input text document into a sequence of
sentences. The sentences are then POS tagged using
Maximum Entropy based tagger. It uses Penn Tree bank
tag set for POS tagging. The sentences are then parsed
using lexicalized PCFG parser and the constituent parses
are stored in a data structure. Stanford has also developed
rules for converting phrase structure trees to dependency
trees. A dependency tree provides a representation for
grammatical relations between words in a sentence. It
uses the concepts of dependency parsing [14] such as
relation, governor and dependent. Pronominal co-
reference resolution is also important for information

* WordNet is a large lexical database of English developed at
Princeton University. (http://wordnet.princeton.edu/)

> Stanford CoreNLP: a set of natural language analysis tools
provided by Stanford University.
(http://nlp.stanford.edu/software/corenlp.shtml)

35

extraction. We use Stanford’s co-reference resolution
system for this purpose.

4.2. Induced Tree data structure

As mentioned earlier, we use the grammatical
relations of dependency parsing to locate entities once the
property (relation) occurrences are found. We use
Stanford dependencies for this purpose. Stanford
dependencies (SD) [7] provide a representation of
grammatical relations between words in a sentence. These
relations are binary in nature and can be represented in the
form of triplets: <name of relation, governor, dependent>.
Few examples of the relations follow.

e Nominal Subject (nsubj): It is a noun phrase
(dependent) which is a syntactic subject of a clause
(governor).

e Direct Object (dobj): The direct object of a VP is the
noun phrase (dependent) which is the (accusative)
object of the verb (governor).

SD representation contains a total of 53 grammatical
relations [6]. The words of a sentence along with their
grammatical relations form a tree called dependency tree
where nodes represent the words and edges represent the
grammatical relations (as an example see figure 2a).

We need regular expressions to be matched over this
tree structure as part of our pattern matching algorithm.
Stanford provides Tree Regular Expression (TRegex): a
utility for matching patterns in trees. The regular
expressions in TRegex are written in terms of node labels
and they do not consider edge labels. The regular
expression patterns that we need to apply use edge labels
in addition to node labels. To solve this problem, we
created a tree data structure different but derived from

/ borders \

i borders 3
§ % nsubj prep
§ _ ! !
India with India with
-
ol l
R=a
(a) Pakistan (b) pek)
[+ %) y
- f Pakistan \
and China 4
cc conj
borders ¥ Jz
f X and China
nsubj prep
) )
India with
(c) 7 pobj \
China  Pakistan

India borders with Pakistan and China.

Figure 2: Induced Tree data Structure for an Example
Sentence



Table 1: TreeTr ansfor mati on Patter ns

TreeTransformation| TRegex Pattern - condtion TSurgeon Operations Remarks
ConjunctionAnd  |/.*/=head < (cc=vCC < move brother $- head; All the conjunctsin and conjunction becomes
and=vAnd) < (conj=vConj < |deletevConj siblings; children of Parent of heal conjunct.
1.*|=brother) (India borders with Pakistan and China)
CompoundNoun  |/.*/=heal < (nn=vNN < acaimulate compoundheal Words inacompoundnounare considered as
/.*/=compound compound single unit e.g. India borders with Sri Lanka; Sri
excise VNN compound Lanka is stored as a simgle induced treenode.
ModifierList [*I=hea < (/.*mod.*/=vMod |acawmulate modifier head All modifiersare stared along with an induced
< /.*/=modifier) modifier; excisevMod modifier |treenode of word that they modify.
CompoundNumber |/.*/=head < (number=vNumber |prune vNumber All the words incompoundnumber are tregtedas
< /.*/=compound asingle node e.g. | lost$ 3.2 billi on. Here, $3.2
billionis treaedas a sigle node of number type.

deperercy tree This data structure contains nodes for
words as well asgrammaticd relations as shown in figure
2b. The grammatical relation nodes are intemal nodes:
usedonly for pattens, not for extradion. We will referto
this datastructure asinduced treein the restof the paper.
It shoud be noted that Starford provides a utility for
patten matching over deperdercy trees cdled Sangrex.
However, it does not provide any means of integrating
ontology information.

Node desciption in a TRegex patten is spedfied
using literal or regular expressin (spedfied between /).
During patten matching, it matches with node labels of
the tree Relations are spedfied between the node
desciptions. All relations in a patten are relative to the
first node. Parerthesk can be usedto grouprelated noces.
For example, A < B < C mean A isthe parert of B and C;
A < (B <C) measA is aparent of B and B is a parert of
C. Namednodesare usedto bind a variable with the value
matching the specified regex. For example, /NN.*/=Var is
anamed noce ard variable Var can be usedto referto the
acdual nocke label that matcheswith regex NN.*.

4.3. Tree Transfor mations

A set of tree trarsformations are applied to the
induced tree before the adual patten matcing starts.
Starford provides TSugeon - a tree trarsformation
language. TSugean pattein consists of a singe TRegex
patten P ard a number of TSurgeon operations that are
exeaited when P matdhes on the tree Theseoperations
refer to the named nodesin the TRegex patten for tree
marnipulations. Suppose we want to perform IE for
GedPaliticd Entities domain having a Courtry classand
borders with relation. Figure 2b shows an indwed tree
for a serterce from this domain. A TRegex patten to
extrad this relation is

/.*/=Verb < (nsubj < /.*/=Source)

< (prep < (with < (pobj < /.*/= Target))) (1)

Where, Verb, Source and Target are TRegex variables.
Whenthis patten is applied to the induced treg it returns
a match where the variable bindings for Verb, Source ard
Target are borders India and Pakistan respedively. As
Verb matdches with the relation name, we can extrad an

36

RDF triple viz. (India, borders with, Pakistan). If we
observe the example serterce closely, we missed
extrading one more RDF triple viz. (India, borders_with,
China). To solve this problem, the induced tree needs to
be trarsformed such that China-Node becomes the child
of polj-Node. Starford depemnlercies hande and
conjunctions the following way: one of the conjuncts is
seleded asheal (Pakistan here) the restof the conjuncts
become children of the heal conjunct with conjunction
(conj) relation. Lets derote the parent of the hea
conjunct as H (polj here) First we neead to aply a
TRegex patten to find and conjunction ard then apply
TSugem operations such that all the conjuncts becme
children of H. Figure 2c shows the induced tree after the
application of this tree transformation (see tabe 1:
ConjunctionAndTrarsformation). As we can see the
missed RDF triple can be extraded now, asit matctes
with the TRegex pattein in 1. Tale 1 lists a set of tree
trarsformations we have used

5. Pattern Language

We have developed a patten language for processirg
the induced treeard extrading information. Due to space
constraints, we preseit only a subset of the grammar of
this language (seetext box 1 below).

A pattein consists of a premise and a sequerce of

patterns:- pattern* <EOF>

pattern:- patternID "{" premise "}"
"_>" "{" actions "}"
patternID:- (DIGIT)+
premise:- (treePath ";")+
(ontologyConstraint ";")+

("{" boolean expression
Il}ll ll;ll)?

treePath:-element| element"--" treePath
ontologyConstraint: -

ontologyElement = variable
actions:—- ("{" action + "}")+
action :-= LHS = RHS ";"

LHS:- ontologyActionElement
RHS:-variable |identifier
laction function
Grammar for Pattern Language

| variable

1.




actions. A premise is a set of conditions that should hold
true for the actions to be executed. It consists of,

o Tree paths: A tree path specifies a sequence of
elements. These elements are matched against node
labels in the induced tree. An element can be a
variable, identifier or a regular expression. A
variable can be bound or unbound. While an unbound
variable is bound with a value during pattern
matching, a bound variable specifies a constraint: a
matching tree node label must have the same value.
Ontology Constraints: An ontology constraint is of
the form ‘<lhs> = <rhs>’. It specifies that the value
bound to a variable on the right hand side (rhs) must
match with an ontology element on the left hand side
(lhs). An ontology element can be a class, property,
relation or an instance. Looking at the example
sentence in figure 2, one would like to check whether
the variable Verb gets a binding that matches with
some ontology relation or its synonyms (which
happens to be borders_with in the example). If so, we
have a possible relation extraction  with
corresponding source and target entities. We can
specify this constraint using

relation =< Verb >

This way, our pattern language provides language
constructs to explicitly refer to various ontological
elements.

Boolean Expression: We support two boolean
operators: And, Or. The basic operand in a boolean
expression is a Boolean function. We support
boolean functions over ontological constructs as well
as linguistic features. For example, to check whether
the type of the value bound to a variable matches
with a pre-defined data type in the ontology, we have
a function — isTypeMatching.

The actions component in the pattern specifies a
sequence of actions to be performed over variable
bindings from the premise. The basic constituent used in
an action is assignment. An assignment is of the form
‘<lhs> = <rhs>’. The left hand side (lhs) of an assignment
can either be a variable or an ontology element
(ontologyActionElement in the grammar). We have a set
of predefined keywords to refer to ontology elements with
the following semantics,

o relation (property): value of the right hand side (rhs)
expression must be interpreted as an object (data)
property in the ontology.
class: value of the rhs expression must be interpreted
as a class (concept) in the ontology.
source (target): value of the rhs expression must be
interpreted as a source (target) entity of the property
or relation occurring in the action.
entity: value of the rhs expression must be
interpreted as an entity (class instance) in the
document.

37

e previous_entity: value of the rhs expression must be
interpreted as an entity matched in the previous
sentence in the document.

When lhs is a variable, it specifies that the values of
both lhs and rhs expressions refer to the same underlying
domain entity. This essentially says that lhs and rhs are to
be treated as aliases of the same domain entity.

The rhs expression of an assignment can be,

e Variable: bound value of the variable is used in the

action assignment.

Literal: literal value specified as an identifier is used
in the action assignment.

Action Function: We may want to manipulate the
bound value of a variable before it can be used for
extraction. To do this, we provide action functions.
The value returned by executing the action function is
used as an action assignment. For example, if we
have an instance of country and want to assign value
for the official name of the country, we can use a
function — concat(Republic, of, <Country>). During
execution, if variable Country is bound to India, we
can get the official name Republic of India using this
function.

As mentioned, an action is specified by a group of
assignments. For example, a relation extraction with
source and target entities are specified by,
{source=<Entity1>;target=<Entity2>;relation=<Relation>}

Similarly there are actions to specify extraction of
property with source entity and target value; extraction of
class instance pair; extraction of an equivalent name
(name aliases) for an entity (India and Republic of India).

5.1. Example Patterns

We will go through an example to see how one specifies
patterns in this language. Consider GeoPolitical Entities
domain with a Country Class and coastline property. Let’s
look at a sample sentence (Table2 — Pattern 1):
India has a coastline of 7517 km.
In the dependency tree of this sentence, has is the root
verb; India is a subject and coastline is a direct
object of has; 7517 km is the prepositional object of
preposition-o £ which modifies the direct object. So, paths
that a pattern should look for in the induced tree are,
has -- dobj -- <Property> -- prep -- of - pobj -- <Value>;
has -- nsubj -- <Entity>
In addition, the direct object should match with some data
type property in the ontology. An ontology constraint to
specify this would be,
property=<Property>;
The premise built using paths and an ontology constraint
above can match any data type property in the ontology
hence it matches with coastline. The actions part for
this pattern should perform property extraction and can be
specified as,
{source=<Entity>;target=<Value>;property=<Property>}



Table 2: Generic Domain Independent patterns - Examples

India has a coastline of 7515 km. |property extraction

1 {

<HAS=has> -- dobj -- <Property> -- prep -- of —-- pobj -- <Value>; property = <Property>;
<HAS> -- nsubj -- <Entity>; {isRoot(<HAS>) && isTypeMatching(<Value>, Number)};

P>
source=<Entity>; target=<Value>; property=<Property> }

Ratan Tata launched Tata Nano in 2010. | relation extraction
2 {
<Verb> -- nsubj -- <Subject>; <Verb> -- dobj -- <Object>;

relation = <Verb>; {isRoot (<Verb>)};
P> o
source = <Subject>; target = <Object>; relation = <Verb>; }

India is a country in South Asia. Class Identification
3 A
<Concept> —-- nsubj -- <Instance>; <Concept> -- cop;

class = <Concept>;
P> o
class = <Concept>; entity = <Instance>; }

If we look closely at the dependencies exhibited in this converted to a sequence of induced trees. The pattern
example sentence, they are generic and can happen across matching algorithm then applies a set of patterns on these
sentences from different domains. As long as a sentence  trees and generates a graph structure. We will refer to this
has a direct object matching with a data type property  graph structure as object graph in the rest of the paper.

from a domain specific ontology, the entity and property  The object graph contains three types of nodes viz.
value extraction is possible. In that sense the pattern

described above is generic and can be used across
different domains. We have compiled a set of such
generic, domain independent patterns. There are a total of
18 patterns out of which we list only 3 patterns in Table 2
due to space constraints. First two patterns in the table are
based on property extraction and relation extraction
respectively. The last pattern shows one of the class property.
identification patterns.

entity found in the document.

values.

e Entity Node: represents an instance of a domain
e Property Node: links an entity node with its property

e Relation Node: links two entity nodes that represent
domain and range of some ontological object

These nodes just represent the entities, properties and

relations identified in the document; their ontological

6. A Greedy Algorithm for Type types still have to be determined. The possible ontologl(.:al
e e types for the three types of nodes are: classes for entity
Identification

We will first describe the ontology we have used for our ~ properties for relation nodes. As we also account for co-
experiments. We will be referring to it in the rest of the  references, the same entity node is used if the entity is
paper. We have downloaded FAO (Food and Agriculture referred in different parts of a document.

Organization of the United Nations) Geopolitical Table 3 gives a simple algorithm to determine the
ontology and modified it for our experiments. Figure 3 ontological types for the nodes in the object graph. We
shows a section of this ontology. will refer to this algorithm as LocallE in the rest of the

As described in section 4 and 5, the text document is paper. The first step in the algorithm applies a set of class-
identification patterns to determine types for the entity

Territory nodes. We have used the Hearst patterns [10] for class-
. identification. The type of an entity which matches these
borders_with — population . .
/ patterns can directly be inferred; one does not have to rely
‘\ on property or relation occurrence for its type
Country - identification. For example, consider a sentence: India
—official_name District . . .
e - is a country in South Asia. The type for the
- as . . . . .
_ coastline . entity India can directly be deterrmneq using the pattern:
located_in CGtY footedin <Instance> is a <Concept>. Pattern 3 in table 2 captures
has this pattern in terms of dependency relations. For the
entity nodes which do not match these patterns and for the
has located_in . . .
State property and relation nodes, the algorithm assigns equal
Figure 3: GeoPolitical Entities Ontology fragment scores for their ontological types.

38

nodes; data properties for property nodes; object



Table 3: An Algorithm for IE using Local Context
Locdl E — An Algorithm for IE usinglocd context

1. Apply class-idertification pattens (eg. Talde 2-
Pattein 3) to get the type information for the ertity
nodes inobjed graph.

2. Useformula 2 to find the typesof property nodes
(Similarly find the types d relation nodes).

3. For each entity node (whose type is not detemined
in step 1):

a. Find the score for eat ontology classusing
formula 3. As shown, this formula uses the locd
context (relatad property and relation nodes)along
with their idertification weights.

b. Asdgn classwith the highest score as the
corred type for the entity node (formula 4).

4. Convert the objed graph to RDF triples.

type(A)
= argmax
1<i<|property|

{similarity(P;.words, A.words)}

where, 2)
P;= i data property in the ontology;

P;.words = words in the data property P; (includingits

synonyms),

A.words = words acaurringin the property node A.

score (Ci/E) =
|property|

¥ [scm (Pf/ A) * Gy iWeight(P,-)]

Jj=1
|reltion|

+ kZ score (Rk/B)

. Z [c.. iWeight(RkL)]]
LeRange(Ry)

©)

where,
E isan entity nocde in focus having a property node A and arelation
node B.
C.iWeight(P) = identificaion weight of property P for classC;
C.iWeight(RL) = identificaion weight of relationR for classC;
L € Range(R);
C;=i" class nthe ontology, P;= ™ property in the ontology;
R,= k" relation in the ontology.
score(T/N) = scorefor an ontologicd type T given noce N.

- Ci 4

type(E) fgSgllcxlljS);l{score( / E)} (4)
The types for the property ard relation nodes are
foundby matching them with ontological dataand objed
propetties respedively (step 2). Here, the edt-distarce
basedsimilarity scores are cdculated between the words
of aproperty (relation) node and anontology data(objed)
property. The synonyms of a data (objed) property are
also taken into account. The data (objed) property with
the highest similarity score is then chosen as the corred
type for the property (relation) node (formula 2). To
detemine the type of an ertity node, the scoresfoundfor

39

the neighbaring property and relation nodes as well as
their identification weights are used (formula 3). This
algorithm uses only the locd context to find the corred
type of anentity nocke.

More informed dedsion for the type of an entity node
can be mace if the global context is also taken into
accourt. Let us first motivate the need of such a global
context aware algorithm. Consider the ontology in figure
3. It contains an objed propetty located in between State
ard Courtry; City ard State; District and City. Whenever
this relation occurs in the text document, there is an
ambiguity about the typesof the source and target ertity
nodes ashe same name is used to referto three different
objed propertiesin the ontology. Consider atext fragment

from this domain,

Surat is located in Gujarat. It is

recognized for its textile and diamond
businesses. Vadodara is also located in
Gujarat. It 1is the third most populated
city with a population of almost 1.6
million.

The underlined phrasesin this fragment are the instances
of domain entities and their properties (relations). As we
can seein the first sentence, the relation locatedin cannat
provide corred type information for the related entities
i.e. Surat and Gujarat, asthey may referto any of the four
clasgsviz District, City, Stae or Courtry. However from
the lag sentence, we can easly infer that the type of the
ertity Vadodaa is City. If we use the type information of
Vadodaa along with the located in relation in the third
sertence, we can infer that the type of Gujarat is State.
Now, if we use the type information of Gujarat in
sertence 1, we can infer that the type of Surat is City. The
locd algorithm we descibed in tade 3 neither takes
global context into account nor performs this kind of
information propagation.

6.1. Entropy - Information Theay

We use the concept of ertropy from information theary
[18] to quartify the uncertainty as®ciated with the type of
a nocke. Entropy is a measure of uncertainty associated
with a rardom variable and defined in tems of its
probability distribution. Let’s denote X as a discrete
rardom varnable having a set of posside values
{x1, x5, ..., x, } and a probahlity massfunction p(X) (such
thatvi: p(x;) € [0,1]; X1=,p(x;) = 1;). The ertropy of
X is then definedas,

HO) = = ) p(x) *log, p(xo) ®)
i=1

i=

For example, consider two experiments. tossng a fair
coin (p(head) = 0.5 and p(tail) = 0.5); tossng a two-
headed coin (p(head) = 1andp(tail) =0). The
outcome of the former experiment is most uncertain and
thus has highest ertropy, while the later has a definite



Table 4: An Entr opy based Greedy Algorithm for IE
GloballE — An Entropy based Greedy Algorithm for I1E
1. Exeaute step 1 to step 3a of the LocdlE agorithm to
determine the types of property and relation nodes, and to
get initial scores for entity nodes.
2. Normalize the class-saore for eath entity node E swch
that,
Vi:1 < i < |class|; score(C;/E) € [0,1];Zlifsslscore(6i/E) =1
Cdculateentropy vaues d al entity nodes.
3. Create amin-priority queue Q; add al entity nodes in Q.
visited_nodes =¢;
4. While(Q = empty) {
E =remove anode from Q with the least ertropy value;
Assign correct type for node E using formula 4.
AddE to visited_nocks;
propagae_swre(visited_nodes, E);
}
5. Convert the objedt graphto RDF triples
propagae_swre(visited_nodes, entity _node E) {
For(each relation B where E is the saurce entity) {
X =target entity for relation B;
propagetlfLow(E, X);

For(each relation B where E is the target entity) {
Y = saurce entity for relation B;
propagatelfLow(E, Y);

}

propagaelfL ow(entity _node E, entity _node A) {
If (entropy(A) > entropy(E) AND
A ¢ visited_nodes)) {
Foreat classC;;1 < i < |class]|,
Update score(C;/A) using formula 6.
Normali zethe class-soore for noce 4;
Re-cdculatethe entropy of node 4 ;
propagae_soore(visited_nodes, A);

}
}
score (Ci/D) +=
R:
score |’ )

|relation| < /B
Z Z C.iWeight (R;.L) +\| (©)
j=1 * | Lerange(Rj)

score(L/g)

where, D ard E are saurce and target of relation node B

outcome and the entropy is 0. The ertropy of a random
variable is propartional to the uncertainty of the outcome.

In our context, we use the concept of ertropy to
measure the uncertainty associated with the type of a
node. For example, for an entity node the possidde types
are the clas®s in the ontology. Let C;;1 <i < |class]|
derote the classes. If we do not have any information
about the type of an entity noce E (highest uncertainty
ard ertropy), we assgn uniform score for the classesi.e.

score(C;/E) = 1/|class|. In our algorithm, we use the
locd formula in 2 to asdgn initial scores for the clas
types d the ertity nodes.

6.2. An Entropy based Greedy Algorit hm

To find the corred type of an ertity node, the Locdl E
algorithm just uses the neighbouing property ard relation
noces. If the information about the corred type of some
ertity noce in the objed graph is availabe, it shoud be
used for claséfication of other related ertity nodesin the
graph. Tale 4 descibesa global context aware algorithm
which usesrelated ertity nodesin addition to the property
and relation nodesfor classificaion. We will referto this
algorithm asGloball E in the rest d the paper.

GloballE uses edt-distance basedsimilarity score for
classfying property and relation nodes(same asLocdl E).
The main difference is the use of related entity nodesto
classfy current ertity in focus. The ertity nodesin the
objed graph are ordered according to their ertropy values.
The rationale behind this ordering is: the nodeswith high
information about their corred type can help detemine
the types of other relatal nodes having low information
about their types.

In GloballE, once the types for the property and
relation nodes are detemined, the entity nodesare added
to a min-priority queue (step 3). The nodesin this queue
are ordered in the increasing order of their entropy values.
To cdculatethe entropy value corredly, the scoresfor the
class types of an ertity node E must satisfy two
conditions:v i: 1 < i < |class|; score(C;/E) € [0,1] ard
Z'lefss' score(C;/E) =1. To adieve the same, we
normalize thesescoresin the following way Vi:1 <i <

|class|; score(C;) = score(C) /XK score(Cy).
During eat passof the while loop in step 4, an ertity
noce with the least entropy value is removed from the
guele and assigned its corred type using formula 4. The
information contained in this noce is then propagatedto
other nodesthroughthe graph structure. In patticular, the
type information is propagated through the graph from
low entropy nodes to high entropy nodes (see function:
propogate score). As we do not want to update the score
of anode which is already assigned its type, we maintain
a list of visited nodes (visited_nodeslist in step 3). The
time complexity of GloballE is in the order of the size of
the objed graph. Let’s now go through an example to
denonstrate how the information is propagated between
the nodes and how the entropy based ordering is
bereficial for ertity classfication.

6.3. An Example demonstrating Global | E

Consider again the GedPaliticd ertities domain (fig. 3)
ard the example text fragment mertioned ealier in this
sedion. We used a set of gereric patteins asdescribed in
sedion 5 for information extracion and applied the
patten matcher over this fragment. Figure 4 shows the



Vadodara
City

- @ _Gujarat

population
1.6 million

o
Surat
Figure 4: Object graph for text fragment

gererated objed graph. Let’s now go through the
exeadtion of GloballE. Tabe 5 shows the scoresof clas
types of the entity nodes and their ertropy values at
various points in time during the exeaution of the
algorithm. Initially, the scores are equal for all ertity
nodes (except Vadodaa, as it is diredly assgred its
corred type by the class-idertification patten) as shown
in row 1. The scores of the property ard relaion nodes
(along with their identification weights) are then used to
update the scores of the ertity nodes (step 1). Row 2
shows these scores after normalizaion (step 2). During
the first passof the while loop in step 4, Vadodaa is
seleded and removed from the priority queue, as ithas he
least entropy value. The scores of the class types of
Vadodaa are then propagated through the graph
structure. The objed graph has a relation node located in
for which Vadodaa is a source ertity and Gujarat is a
target ertity. Herce, the scores for the class types of
Gujarat are updated using the scores of Vadodaa (row
4). In the seaond pass Gujarat is seleded ard renmoved
from the priority quewe asit hasthe leastentropy value
now. The classtype of this noce is then detemined using
formula 4. Now, this noce is conneded to two entity
nodesin the objed graphi.e. Vadodaa and Surat. As the
erntity node Vadodaa is already visited ealier, it is
ignored and the scores for the classtypes of Suat are
updatedusing the scoresof Gujarat (row 5). In the third
pass we are left with only one entity noce i.e. Suat.
Herce it is seleded and removed from the priority queue
(row 6) and its classtype is detemined using formula 4.
The priority quewe is empty now and the algorithm
teminates.The classtypesassigned by this algorithm for
the entity nodes are City, Sate and City for Vadodaa,
Gujarat ard Suat respedively. As we can seg the

algorithm finds the corred values for the class types of
the entity nodes.When we exeauted Locdl E algorithm on
the same text fragment, it incorredly assgned classtypes
District and Courtry for the ertity nodes Suat and
Gujarat respedively (The classtype having highestscore
in table 5 - row 2 is seleded asthe corred type of the
ertity noce in Locdl E).

7. Experiments

7.1. Digital Camera Reviews domain

Yildiz et al.[19] have developed anontology drivenEs —
OntoX. It focuses mainly on identifying propery
mertions ard their values. The ontology contains one
class i.e. camega having five data properties It is
erhanced with a set of keywords for each data type
property. The system usesregular expressions to find the
instances of pre-defined XML data types in the text
document ard looks for keywords in their vicinity. The
property whose keyword is closest to the data type
instance and having the same XML datatype is seleded
For example, consider a sentence: Powershot A95is a5.0
megajxel camera. Here, 5.0 is XSD:float and megapxel
is a property having keyword megapxel and data type
XSD:float. Herce 5.0 is a value of megapxel property.
The datasetconsists of 138 digital camera reviews. The
focus of this experiment is to show how the patteins based
on grammaticd relations are useful for relating ertities
with their property values.

It shoud be nated here that the task performed by
OntoX system is to just find property values.In our case,
we also find ertities ard as®ciate them with their
property values. We have used the set of generic pattems
descibed in sedion 5.1 for IE over camera reviews
dataset.Table 6 shows the predsion and reall valuesfor
some of the camera properties The predsion of our
system is better than the OntoX system while the reall
values are very low. The reason is in our approach we
only identify those propetties for which entities are
idertified. Thus, we miss some of the properties Whereas
OntoX focuses only on property values, so its reall is
higher. It is interesting to note that we get very high
predsion values which suggest that our approach is
conservative. The system may not be alde to extrad all
the ertities ard property valuesbut whatever is extraced

Table 5: The scores of classtypesof the entity nodesin the example text fragment. The first coumn specifies
the algorit hm step; the rest of the coumns specify the scores of class types of the entity nodes using the

format: (Territ ory, State, District, Country, City)

Step Gujarat Vadodara Surat
Init. (0.2,0.2,0.2,0.2,0.2) - 1.61 (0,0,0,0,1)-0 (0.2,0.2,0.2,0.2,0.2) - 1.61
2 (0.05,0.25, 0.05,0.41,0.25 -1.35 | (0,0,0,0,1)-0 (0.08,0.24,0.37,0.08,0.24) — 1.44
While loop of step4
passl (0.03,0.48,0.03, 0.28,0.17) - 1. 24 (0,0,0,01) -0 (0.08,0.24,0.37, 0.08, 0.24) — 1.44
pass2 (0.03,0.48,0.03 0.28,0.17) - 1. 24 (0,0,0,01) -0 (0.05,0.17,0.26, 0.05,0.47) — 1.31
pass3 (0.03,0.48,0.03 0.28 0.17) - 1. 24 (0,0,001) -0 (0.05,0.17,0.26,0.05,0.47) — 1.31

41



Table 6: Comparision of Our System with OntoX on
Camera Review domain

Our System OntoX
FIEER Prec Rec Prec Rec
Megapxel 0.93 0.39 0.52 0.51
Display Size | 0.88 0.2 0.80 0.82
Model Name | 0.76 0.64 0.79 0.79
Table 7: Results on GeoPdlitical Entiti es Damain
/C;o;;ei;:)tlﬁProperty Precision Recdl
Country 0.85 0.69
borders with 0.72 0.39
locaed in 0.86 0.78
official_name 1.0 0.74
popuation 0.92 0.57
coastline 0.57 0.80
area 1.0 0.60
Total 0.82 0.54

is extraded with high acarragy. If we look at the reall
values closely, the reaall for the property model_name is
high. It then deaeases for megapxel and very low for
display_size. If we observe ary file from the corpus, the
model_name property is same asthe name of an extracted
ertity. The megafxel property occurs very nea to the
ertity occurrence (mostly in the same sertence). The
display_size property is mentioned very far from the
ertity (mostly in the next paragraph), thus deaeasing the
probability of associating the property with the ertity. The
induced tree paths used in our pattens do not consider
word relations aadoss sertences. We rely on co-refererce
resdution when the entity and property mertions are in
different senterces. We have also provided a language
construct cdled previous_entity using which a pattein can
refer to the entities found in ealier senterces. Despte
this, it is not easy to relatean entity with its propetty if
they are widely separatedin the text.

7.2. GedPolitic al Entities damain

We have downloaded36 Wikipeda pages of country
profile, converted them to text and manually tagged them
for corred ertity and property values. As part of this
experiment, we have considered the data and objed
propetties of only the country class(seefig. 3). We used
the gereric pattens described in sedion 5.1 for IE. Our
experiments helped us identify these pattens and during
the course of the experimerts our initial set went through
several additions amd modifications. We randomly
seleded 10% of corpora (4 pages to aralyze whether the
gereric pattens we have are good eroughfor extradion,
espedally we looked at the entity, property and relation
occurrerces and how they are related by the deperdency
relations. At the erd of this exercise,we hadto add 3 new
pattens ard modify 4 existing pattens. In total we used
14 pattens ard performed the experiments. Tabe 7 lists
the predsion and recll values for clas®s, properties and
relations. The overall predsion is 0.82 ard reall is 0.54

42

which again strengthens our argument that the system is
consevative and makes fewer mistakes (high predsion).
The reason for higher predsion is that unlike in tradtional
approadies where identification is primarily text patten
based (which can throw up spurious matches), we also
consider an entity’s property and relationship context
which reduces spurious matches. However, this can have
anadverse impad on recall as some of the valid matches
might also be turned down on account of not having
matching property and relation contexts. As explained
ealier, this behavour of higher predsion and lower recall
is fine, as reliablity is a key concern in our ertermrise
information integration framework.

We would like to point out here that the extra patteins
that we hadto add were due to the peauliar ways in which
some properties were written in the text corpora. The
gereric pattemns we have collected will work bestwhen
the senterces in the text document are property formed
ard follow the Engish grammar, such as in pulished
atticles. The text documents in differert genres may have
different styles of writing English sentences (puhblications
vs. blog posts) and it’s important to capture them in the
form of depemlercy relaions. For this reason, we may
have to arelyze different genres of text documerts ard
augment the list of generic pattens.

7.3. Analysis of our OBIE system

The key congtituerts of our system are: a pattein language
ard a global type idertification algorithm. A relevant
guestonin this context is what varieties of pattems can be
expresedin our patten language. The constituerts of the
language (deperdercy relaions, bodean functions,
ontology constraints) provide the necessary power to
write varous kinds of pattems mertioned in the I|E
literatre. A lot of systems in the literatuwe have used
Heast patten [12] ard lexico-syntactic pattens [2] for
extradion. We could successfully convert these pattens
into equivalert pattensin our patten language.

Once the objed graph is gererated by the patten
matcher, the type of the objed graph nodes has to be
idertified. The aacuracy of type idertification can
improve if we go beyond the locd context and make use
of all the relevant information available in the document.
That’s what our global propagation algorithm aims to
adhieve. The diredion of propagation is detemined by
ertropy ordering where information flows from nodes of
high certainty to nodes of low certainty. In many cases
mere preserce of properties and relations is sufficient to
uniquely identify an entity’s type. This is possible when
the names of thesepropetties and relations are unique in
the ontology. However dugicatenamesare quite common
in red-life ontologies. For example, the located in objed
property given in sedion 6 relates three different clas
pairs. Similarly, reports to structure in an organization
ontology; part_of structure in a product ontology, and so



on. A global propagation algorithm can make a big
differencein such cases.

8. Conclusion and Future Work

We presered an information extradion approach where
we first idertify property ard relation name occurrernces
in the text and then use pattens written in tems of
deperercy relations to idertify related ertities. To
achieve the same, we have developed an ontology aware
patten matcher which uses thesepattens to gererate an
objed graph from a text documert. We hawe also
developedaglobal context aware algorithm to identify the
ontological types of the objed graph nodes.The algorithm
is grealy ard it uses the erntropy ordering to dedde
information propagation between the nodes where type
information is pas®d from low entropy nodes to high
ertropy nodes The main contributions of this paper are:
an orntology aware patten larguage; a global context
aware type identification algorithm.

We have experimented with GedPoliticd ertities
domain with a small set of text documents from
Wikipeda. The resut looks promising. An immedate
(alsoimportart) task at hand is to test our approach on
larger ard varied set of corpora to ched its applicability
in general. We alsowant to integrate our system into the
larger ertemprise information integration framework to
ched its utility.

References

[1] Dougdlas E. Appelt, Jerry R. Hobbs, JohnBea, David
J. Israd, and Mabry Tyson, "FASTUS: A Finite-state
Procesor for Information Extradion from Red-
world Text," in 1IJCAI, Chambéry, France, 1993 pp.
11721178

[2] Michele Barko, Oren Etzioni, Stefhen Sadedand,
ard Daniel Weld, "Openinformation extradion from
the web” Communication of ACM, vol. 51, no. 12,
pp. 68-74, 2008

[3] Adrian Berjamin, Hees Jorn, van Elst Ludger, and
Dergel Andreas, "iDocument: Using Ontologies for
Extrading and Annoctating Informaton from
Unstructuredtext,” in KI, 2009 pp. 249-256.

[4] Philipp Cimiano, Siedried Hardschuh, and Steffen
Staah "Towards the self-amotating web” in
Proceedngs of the 13th intemational confererce on
World Wide Web, NY, USA, 2004 pp. 462-471

[5] Philipp Cimiano, Gunter Ladwig, and Steffen Staah
"Gimme' the context: context-driven auomatic
semantic amotation with  C-PANKOW," in
Proceedngs of the 14th intemational confererce on
World Wide Web, Chiba, Japan 2005 pp. 332-341

[6] Marie-Catherine de Marneffe ard Christopher D.
Manning, "Starford typed depemercies manual,”

Starford University, 2008

[7] Marie-Catherine de Marneffe ard Christopher D.
Manning, "The Starford typed deperercies
represettation,” in 22ndInternational Confererce on

Computational Linguistics, Manchester, United
Kingdam, 2008 pp. 1-8.
[8] David W. Embley, "Towards Semantic

Understanding -- An Approach Basedon Information
Extradion Ontologies," in Proceedngs of the
Fifteerth Australasian Database Confererce,
Dunedn, New Zedand, 2004 pp. 18-22.

[9] Oren Etzioni et al, "Webscde information
extradion in knowitall: (preliminary reailts),” in
Proceedngs of the 13th intemational confererce on
World Wide Web, New York, NY, USA, 2004 pp.
100-110.

[10] Katrin Fundel, Robert Kuffner, and Ralf Zimmer,
"RelEx - Relation extradion using depertercy parse
trees,”" Bioinformatics, vol. 23, pp. 365-371, 2007.

[11] Thomas R. Gruber, "A trardlation approach to
portable ontology spedficaions” Knowledge
Acquisition, vol. 5, no. 2, pp. 199-220, July 1993

[12] Marti  A. Heast, "Automatic aauisition of
hyponyns from large text corpora” in 14th
Internation  Confererce  on  Computational

Linguistics, Narntes,France, 1992 pp. 539-545

[13] Luke K. McDowell and Michad Cafarella,
"Ontology-driven  information extradion with
ontosyphon" in ISVC, Athens, GA, 2006 pp. 428
444,

[14] Joakim Nivre, "Deperdercy Grammar ard
Deperdercy Parsing," Vaxjo University: Schod of
Mathematics and Systems Engineeaing, 2005

[15] Borislav  Popov, Atanas Kiryakov, Damyan
Ognyanoff, Dimitar Manov, and Angel Kirilov,
"KIM - a semantic platform for information
extradion and retrieval," Natural Language
Engineeing, vol. 10, no. 3, pp. 37592, 2004

[16] Horado Sagyion, Adam Funk, Diana Maynard, ard
Kalina Bontcheva, "Ontology-Based Information
Extradion for Businessintelligerce™ in ISWVC, 2007,
pp. 843-856.

[17] Alexander Schutz and Pau Buitelaar "RelExt: A
Tod for Relation Extradion from Text in Ontology
Extersion,” in ISWC 2005 2005

[18] E. Claude Shamon "A mathematicd theay of
communication,” Bell Systemtechmical journal, vol.
27, pp. 379423 1948

[19] Burcu Yildiz and Silvia Miksch, "ontoX - a method
for ontology-driven information extradion,” in
ICCSA'07, vol. 3, Kuala Lumpur, Malaysia, 2007,
pp. 660-673.



REBOM: Recovery of Blocks of Missing Values in Time
Series

Mourad Khayati
Department of Informatics
University of Zirich
Binzmahlestrasse 14, CH-8050
Zurich, Switzerland

mkhayati@ifi.uzh.ch

ABSTRACT

The recovery of blocks of missing values in regular time se-
ries has been addressed by model-based techniques. Such
techniques are not suitable to recover blocks of missing val-
ues in irregular time series and restore peaks and valley.
We propose REBOM (REcovery of BlOcks of Missing val-
ues): a new technique that reconstructs shapes, amplitudes
and width of missing peaks and valleys in irregular time se-
ries. REBOM successfully reconstructs peaks and valleys by
iteratively considering the time series itself and its correla-
tion to multiple other time series. We provide an iterative
algorithm to recover blocks of missing values and analyti-
cally investigate its monotonicity and termination. Our ex-
periments with synthetic and real world hydrological data
confirm that for the recovery of blocks of missing values in
irregular time series REBOM is more accurate than existing
methods.

Keywords

Missing blocks recovery, irregular time series, Singular Value
Decomposition, ranking matrix.

1. INTRODUCTION

Time series data arise in a variety of domains, such as
environmental, telecommunication, financial, and medical
data. For example, in the field of hydrology, sensors are
used to capture environmental phenomena including tem-
perature, air pressure, and humidity at different points in
time. For such data, it is not uncommon that more than
20% of the data is missing as blocks, i.e., multiple consecu-
tive measurements are missing.

Existing techniques effectively recover blocks of missing
values in regular time series, i.e., time series series contain-
ing peaks and valleys with a possibly varying frequency or
amplitude that follow one or more periodic models, e.g., the
sinus model where the frequency varies over time. The re-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

The 18th International Conference on Management of Data (COMAD),
14th-16th Dec, 2012 at Pune, India.

Copyright (©)2012 Computer Society of India (CSI).

Michael H. Bdhlen
Department of Informatics
University of Zirich
Binzmihlestrasse 14, CH-8050
Zirich, Switzerland

boehlen@ifi.uzh.ch

covery accuracy of these techniques decreases for irregular
time series, i.e., time series containing peaks and valleys
that do not follow any model. In this work, we address the
problem of finding the optimal recovery of blocks of miss-
ing values in irregular time series. We propose REBOM
(REcovery of BlOcks of Missing values), a new data driven
recovery technique for blocks of missing values that is able
to restore missing peaks and valleys. We use the correlation
[1] between time series to recover blocks of missing values.
Intuitively, time series that tend to change their peaks and
valleys simultaneously are correlated and we use the Pearson
coefficient to quantify this correlation.

REBOM is an iterated low rank Singular Value Decom-
position (SVD) [2]. We decompose a matrix V of corre-
lated time series, where missing values have been initialized
through linear interpolation combined with nearest neighbor
imputation, into the product L x ¥ x RT of three matri-
ces. By nullifying the smallest singular value of ¥ we give
higher priority to the correlation between the time series.
The subsequent matrix multiplication yields an approxima-
tion of V that better approximates the missing values. After
each iteration, the ranking of the most correlated time series
with respect to the time series to recover, is updated. The
iterative recovery terminates if the total ranking, which is
determined by considering all observations of the time se-
ries, is identical to the partial ranking, which is determined
by considering only observations with timestamps of missing
values. If the total and the partial ranking are equal, the
correlation can no longer be used to improve the recovery of
missing values.

Problem definition: Assume a set of n irregular
correlated time series X° = {X?,X9,...,X2} where
X% X9, ..., X2 contain blocks of missing values. We pro-
pose a recovery method that determines, in j iterations, a
set of time series X7 = {X7, XJ,..., X/} where the missing
blocks of X?, X9,..., X% have been restored.

The result of REBOM for the recovery of peaks and val-
leys for two correlated time series is illustrated in Figure 1.
Each time series is displayed as a 2d plot where the x-axis
shows the timestamp ¢ and the y-axis the value v for a given
t. X7 represents an air pressure time series and contains
a missing block for the time range ]90,130[. X9 represents
a temperature time series that contains a missing block for
the time range ]60,90[. REBOM can be used to restore the
missing blocks of X? and X3.

Figure 1 illustrates that REBOM accurately recovers
shape, amplitude and width of the missing blocks. REBOM



value

0 20 40 60 80
time

(a) Original Time Series

Recovered peak

value

0 20 40 60 80
time

(b) Restoration of Missing Blocks of X? and XJ

Figure 1: Recovery Performed by REBOM

detects that the peaks and valleys of X? and X3 are cor-
related (high pressure corresponds to low temperature and
vice versa). The shape and the width of the missing block
are recovered from the position of the local extrema of X?
with respect to the local extrema of the correlated time series
X9. The amplitude of the missing block of X} is recovered
based on the two preceding peaks of X?.

At the technical level, we show how to iterate the low rank
SVD and we analytically investigate the main properties of
the method. The main contributions of this paper are:

e We propose REBOM: an iterated low rank SVD that
iteratively refines the initial recovery of missing values.

e We propose a greedy algorithm that repeatedly selects
a time series with missing values that have been ini-
tialized and uses the k& most correlated time series to
iteratively refine the recovery of the missing values.

e We prove that our greedy algorithm is stepwise mono-
tonic, i.e., the accuracy of the recovery increases by
choosing, at each step, the most correlated time se-
ries. The algorithm terminates when the set of the
most correlated time series does not change anymore.

e We empirically show that the recovery accuracy of RE-
BOM is invariant to the initial recovery. Different ini-
tialization methods lead to the same recovery accuracy
but with different number of iterations.

e We present an experimental evaluation of the accuracy
of our technique that compares REBOM to state-of-
the-art techniques for the recovery of blocks of missing
values. The results show the superiority of our algo-
rithm for the restoration of peaks and valleys.

45

The rest of the paper is organized as follows. Section 2 re-
views related work on reduction methods and existing tech-
niques for imputing missing values. Section 3 defines the
initialization method and describes the basics of the low
rank SVD. Section 4 introduces and discusses REBOM and
its properties. Section 5 empirically compares the results of
REBOM to other techniques proposed in the literature for
the recovery of blocks of missing values.

2. RELATED WORK

Prediction models such as Maximum Likelihood Estima-
tion (MLE) [3], Bayesian Networks (BN) [4, 5] and Expec-
tation Maximization (EM) [6] were used to estimate single
missing values or small blocks of missing values in time se-
ries. These techniques are parametric and require a specific
type of data distribution, e.g, Gaussian distribution. There-
fore, they only perform well for the recovery of blocks of
missing values in regular time series where peaks and val-
leys follow a periodic model of constant frequency and am-
plitude.

Liet al. [7] presented an approach called DynaMMo that is
based on Expectation Maximization (EM) and Kalman Fil-
ter [8]. This technique is intended to recover missing blocks
in non linear time series that contain peaks and valleys. Dy-
naMMo allows to use one reference time series in addition to
the time series that contains the missing block. The Kalman
Filter uses the data of the time series that contains missing
blocks together with a reference time series, to estimate the
current state of the missing blocks. This estimation is per-
formed as a multi step process that uses two different esti-
mators. The first estimator represents the current state and
the second estimator represents the initial state and the er-
ror of the estimation. For every step of the process, an EM
method predicts the value of the current state and then the
two estimators are used to refine the predicted values of the
current state and to maximize their likelihood. DynaMMo
does not allow to use more than one reference time series for
the block recovery. DynaMMO performs an accurate block
recovery for any type of regular time series. The accuracy
of the block recovery decreases for irregular time series (cf.
Section 5).

Techniques that rely on basic statistical methods such as
mean imputation, piecewise approximation (linear spline,
cubic spline, ...) [9, 10], regression [11, 12] and k Nearest
Neighbors [13, 14] have been proposed for the recovery of
blocks of missing values. Figures 2(a) and 2(b) illustrate
the block recovery performed respectively by linear spline
and k nearest neighbor using values at t=60 and ¢t=90. Fig-
ure 2(c) shows that the regression method replaces missing
values by points lying on the line that minimizes the regres-
sion error of all existing points. These techniques are not
able to accurately recover any of the two missing blocks in
X9 and X9. The cubic spline technique finds a third order
polynomial that connects three successive values. Figure
2(d) shows that the cubic spline replaces the missing block
by a block opposite to the one that precedes the missing
block. Cubic spline is able to perform a good recovery only
for the missing block of X?. All basic methods are not
suitable techniques for block recovery in regular time series
where peaks and valleys follow a periodic model of varying
amplitude or frequency, or in irregular time series.

Kurucz et al. [15] proposed a technique based on EM and
Singular Value Decomposition (SVD) [16, 17, 18, 19] for



Recovered peak Recovered peak

vallue(v)
value(v)

vallue(v)

X —
X§ —
Recovered peak -~

0

Xa —_—

Xy =——
Recovered peak

o

value(v)

20 40 60 80

time(t)

40 60 80

time(t)

100 120 140

(a) Linear Spline Recovery

(b) k Nearest Neighbor Recovery

40 60 80

time(t)

100 120 140 20 40 60 80

time(t)

(c) Regression Recovery (d) Cubic Spline Recovery

Figure 2: Recovery using Different Techniques

comparing recommender systems where one of them con-
tains missing values. A recovery of the missing values is per-
formed before the comparison process. Each recommender
system is represented by one column of values in a rating
matrix which is decomposed using SVD. The result of the
decomposition is modified using a method called gradient
boosting [20]. The EM algorithm is then applied to refine
the result of gradient boosting. The proposed solution dy-
namically discovers data dependencies from coordinate axes
that represent the recommender systems and is applicable
for more than one reference recommender system. How-
ever, the application of gradient boosting on different recom-
mender systems looses the dependencies among the original
values of recommender systems. Therefore, this technique
yields bad results for block recovery in case where more than
one recommender system contains missing blocks.

Tree-based methods were proposed to impute missing val-
ues. He [21] and Ding and Simonoff [22] present an overview
of tree classification methods that are able to replace miss-
ing values in time series. These trees find the optimal way to
classify missing values using a regression approach and are
called Classification and Regression Trees (CART). These
techniques are designed to create a classification of the miss-
ing values. Missing values that belong to the same class will
be recovered with the same value. Therefore, these methods
are not able to effectively restore missing peaks and valleys
in regular and irregular time series.

3. PRELIMINARIES AND BACKGROUND
3.1 Notation

We use the following notation: sets and vectors are upper-
case, matrices are upper-case bold, and elements of sets and
matrices are lower-case. A time series X1 = {x1,22,..., 20}
is a set of n observations. Each observation z; from X is a
pair (t;,v;) where t; and v; are respectively the timestamp
and the value of the observation. 71 = {t |(¢,-) € X1)}
denotes the set of all timestamps from X1; Vi = {v |(_,v) €
X1)} denotes the vector of all values from the time series
X1. A time series X; with missing values that have not
been recovered yet, is denoted as X?.

3.2 Preprocessing of Time Series

The first preprocessing step uses basic statistical methods
to initialize all missing values. After the initialization the
timestamps of all time series are aligned.

DEFINITION 1 (MISSING TIMESTAMPS). Given a set of
n time series {X?, .. .,Xg}, the set of missing timestamps

46

of time series X with respect to the timestamps of the other
time series is TP = {t | ((t,.)) € XYV...V(t,)) € X2) A
(t,-) & X7'}.

Note that missing timestamps of one time series have to be
present in at least another time series. Timestamps missing
in all time series are not considered. An additional pre-
processing step can be added if such timestamps shall be
recovered as well.

X1 = {(t1,v1), ..., (tn, vn)} is the initial recovery of X7 iff
Vie{l,...,n}

(ti,vi) if (ti,v;) € X7

(ti,0) if (s(t:), ) & X7,
(p(ti),v) € X7

(ti,v) if (p(t:), ) & X7,
(s(t;),v) € X?

(ti))(s(vi)—p(vi))
s(t;)—p(ts)
otherwise

ti,vi) =
(ts, vi) Else

(t;, L= + s(vs))

p(t;) = maz{t; | (t;,-) € X{ At; < t;} is the predecessor
of timestamp t; in Xy and s(t;) = min{t; | (t;,.) € X{ A
t; > t;} is the successor timestamp of ¢; in X{. Similarly,
p(vi) = {vj | (tj,-) € X? At; = p(t;)} is the predecessor of
value v; in XV and s(v;) = {t; | (t;,) € X{ At; = s(t:)} is
the successor value of v; in X f. Thus, the initial recovery
of the missing values is a linear interpolation. If the missing
values occur as the first or the last elements of X?, we use
the nearest neighbor imputation.

Two time series Xi and X3 with initialized missing values
define a set of multidimensional points: {(v,v) | (t,v) €
X1 A(t,v") € X2}, The second preprocessing step constructs
a matrix with n m-dimensional points from m time series
with n observation each.

ExamMPLE 1. Figure 3 shows two time series X9 and X9
with missing values, the initialized time series X{ and X3,
and the set of multidimensional points V. The initialized
missing values are highlighted in gray.

From Definition 1 we get TY = {100,110,120} and T%
{70,80}.

3.3 Low Rank Matrix Decomposition

3.3.1 Singular Value Decomposition

The Singular Value Decomposition (SVD) is a matrix de-
composition method that decomposes a matrix V into three
matrices L, ¥ and RT. The product of the three matrices
is equal to V.



X7 x5 X; x: )Y

t v t v t v t v Vi Va

0 0 0 0 0 0 0 0 0 0
10 1 10 | -0.25 10 1 10 | -0.25 1 -0.25

20 0 20 0 20 0 20 0 0 0
30 | -1 30 0.25 30 | -1 30 0.25 -1 0.25

40 0 40 0 40 0 40 0 0 0
50 | -1 50 0.25 | | 50 | -1 50 025 |~ | -1 025

60 0 60 0 60 0 60 0 0 0
70 1 90 0.25 70 1 70 | 0.08 1 0.08
80 | -1 100 0 80 | -1 80 0.16 -1 0.16
90 | -1 110 | -0.25 90 | -1 90 0.25 -1 0.25

130 | -1 120 0 100 | -1 100 -1 0
140 | O 130 | 0.25 110 | -1 110 | -0.25 -1 | -0.25

150 | 1 140 0 120 | -1 120 0 -1 0
150 | -0.25 130 | -1 130 | 0.25 -1 | 0.25

140 | O 140 0 0 0
150 | 1 150 | -0.25 1 -0.25

Figure 3: Original Time Series X{, XJ; Initialized
Time Series Xi, X5; Multidimensional Points V

DEFINITION 2 (SVD). A matrizc V = [Vi|Va]...|[V,] €
R™*™ can be decomposed into a product of three matrices:

SVD(V) = LxZxR"
R{
_/_/ Rn
L(mxn) ———
Z(nxn) RT (nxn)
Where:

1. 3: 1s a n X n square diagonal matriz that contains
strictly positive singular values of V. The diagonal
entries o; of 3 are the square roots of the eigen values
of VIV and are ranked in decreasing order such that
o1 >02 > ...>0p.

2. L: is an m X n orthogonal matriz whose columns are
the orthonormal eigen wvectors of VVT (LTL 1,
where I is the identity matriz). The eigen vectors of
L are computed by solving Det(c1 — VVT) = 0 where
Det(X) is the determinant of matriz X.

3. R: is an n X n orthogonal matrix having as columns
orthonormal eigen vectors of VIV (RTR = 1). The
eigen vectors of R are computed by solving Det(cI —
vTv) =o.

4. A singular value o; defines the variance of vector L,
along dimension RY. FEach dimension represents an
azis of projection: var(L;) = o;.

EXaAMPLE 2. Consider time series Xi and X3 from Fig-
ure 3. Figure 4 illustrates the SVD of V.

3.3.2 Dimensionality Reduction

SVD allows to perform a dimensionality reduction from a
dimension n to a lower dimension r. The dimensionality re-
duction is performed by nullifying the n—r smallest singular
values from matrix 3, where 0 < o, < o,. Figure 5 illus-
trates the dimensionality reduction for r = n — 1, i.e., the
smallest singular value of ¥ is nullified. We write SV D,.(V)
for the result of a low rank SVD of a matrix V. REBOM
uses the low rank SVD for improving the initial imputation
of the missing values as described in the next section.

47

SVD(V) =

_ 0 01
0.31 —0.22
0 0
—0.31 022
0 0
—0.31  0.22
0 0
—0.30 —0.11 | [ 3.35 0 ] o [ 0.99 —0.14
—0.30  0.04 0 0.51 0.14  0.99
—0.31 022
—0.30 —0.27 = RT
—0.30 —0.75
—0.30 —0.27
—0.31 022
0.00  0.00
0.31 —0.22 |
— ————
L

Figure 4: Example of Singular Value Decomposition

SVD,(V) =
g1 0 0 RT
{Ll‘...‘Lm}x : 0 | x
0O |...|lo0r1]0 —r
R,
L(mxn) 0 0 0 0 —_——
Sr(nxn) RT (nxn)

Figure 5: Illustration of Dimensionality Reduction

4. REBOM

REBOM combines the characteristics of a time series with
missing values with the characteristics of its most correlated
time series to recover blocks of missing values in irregular
time series.

4.1 Correlation Ranking Matrix

We define the top-k ranking matrix to capture the cor-
relation between different time series. The correlation is
defined over all values of the first vector of the matrix with
respect to all values of another vector. The Pearson coef-
ficient is used as a correlation metric. Given two vectors
Vi = [viy,vig, ..., v5,] and Vj = [v,,0j,,...,0;,] of the
same length n, the Pearson correlation coefficient p of V;
with respect to Vj is defined as follows:

cou(Vi, V)
var(Vs)var(Vj)
> (vi, =) (05, — 7))

p=1

(vi, = 0)*Y _(v5, = 7;)°

p=1
n n
v T= >
— Vs v; = — Vj
n P J n Jp
p=1 p=1

p(V;,V;) is undefined if all values of V; or V; are equal.
The vectors of the correlation ranking matrix are ranked in
decreasing order of the Pearson coefficient between the first
vector and the remaining vectors.

p(Vi, V3)

n

>

p=1

with v; =

DEFINITION 3
[Vi,Va,..., Vo] be a matriz of n wvectors.

(TOP-K RANKING MATRIX). Let V
Vtop-k



[V, Vs,...,Vi] is defined as the top-k ranking matriz of V
with respect to a given vector that contains initialized miss-
ing values Vq1 eV iff:

o VPk contains the k vectors that are most correlated
to Vy': YV € VIRV, € VAV p(V/ V)| >
lp(V;, V)l

o The elements of V'°P™* are sorted by their correla-
tion coefficient to V' : V1 < i < k : |p(V{,V;))| >
lp(Via, Vi)

For  each  matric  V'P*  we define a cor-
responding  top-k ranking  vector  pyrtop-k =
[p(‘/'ql7 ‘Gtop-k)7 p(‘/ql7 VQtop-k), o 7P(Vq17 thop-k)] fOT Vql
with the 1-norm ||pyrops| = S5, (1o(VE, V7).

EXAMPLE 3. Consider Figure 6 with V = [V1, V2, V3, V4]
and top-8 ranking VP> = [Vy, Vs, V1] for Vi.

top-3 _
bl V -

N R-NES N
o~ o
0 © = w
~ 00w N
~ 00w N
0 © = w
- O Ut

Figure 6: Example of VP

We get Pvtop-3 = [p(waw)vp(‘/‘hv?))?p(‘/‘h‘/l)] =
[1,0.93,0.87] and ||pytops|| = 2.75.

4.2 Stepwise Correlation Monotonicity

We prove that REBOM is stepwise monotonic, i.e, choos-
ing a bigger correlation value in the same iteration implies a
bigger sum of variances. Lemma 1 states that the [;-norm of
a ranking vector py is proportional to the sum of the vari-
ance of vectors obtained by the application of the low rank
SVD. In what follows a submatrix V; = [V;,,Vi,,..., V5]
that contains k different columns of V is denoted as V; € V.

LEMMA 1. Let V; = [Viy,Viy,...,Vi] and V; =
Wi, Vigs .-, V] be two different m x k matrices and let
V be m x n matriz such that n > k and V;,V; € V.
Let Wl = [Wi17Wi27'~~7Wik] = SVDT(VZ) and VVJ =
Wiy, Wiy, ... ,W;,.] = SVD.(V;) such that Vi, = V;,. The
li-norm of pv, and pv; is proportional to the sum of the
variances of W; and Wj:

k k
lovill > llov, || = > var(W,) > > “var(Wi,)

p=1 p=1

Lemma 1 states that choosing a matrix with a bigger ;-
norm of the ranking vector implies a higher sum of variances
over the vectors obtained by the SVD. Therefore, more cor-
related vectors of the input matrix yields a higher sum of
the variances after the application of SV D, (). Thus, by
considering the top-k ranking matrix, the result of SV D,.()
maximizes the following objective function:

Z var(V;)

V,€SV D, (V)

4 6 3 2 42 5.6 2.3 2.8
5 7 1 3 49 71 14 24
V= 6 79 8|’ W= 6.6 6.6 89 7.7
7 6 8 7 6.2 64 81 7.1

Figure 7: Example of a matrix and its SV D, trans-
formation

ExXAMPLE 4. Consider matriz V. = Vi, Va, V3, Vy from ex-
ample 3 and the result matriz of the application of SV D, (V)
as shown in Figure 7.

Let’s take the example of Vi,Vo € V where Vi =
{Va, V3, Vi} and Vo = {V4, Vo, Vi }, and let Wi = SV D,.(V1)
and Wz = SVD,(Va) .

If we apply the computation with respect to vector Vi, we
get ||Vi|| = 2.75,|[Va|| = 2.07, 3% var(Wh,) = 24 and
Z?):1 var(Wa,) = 9.4.

Lemma 1 holds for any other matrices V;, V; € V .

4.3 Iterative Recovery of REBOM

This section proves that REBOM terminates. In each step
we compute the partial correlation ranking for the time se-
ries based on the missing values. If this partial ranking is the
same as the global ranking, the recovery stops. For all miss-
ing values t € T? (cf. Definition 1) the partial correlation
p(Vi, V) is defined as follows:

170
(vi, — 03)(vj, — 5)
p(Vi, Vy) = —=

0 0
77| 17|

D (i =) (v, — ;)

t=1

Where |T?| is the length of T?. 5(Vi,V;) is undefined if
all missing values of V; or Vj are equal. The partial ranking
matrix contains the partially most correlated vectors to the
vector that contains the missing blocks to recover.

DEFINITION 4  (PARTIAL RANKING MATRIX).
Given a matric V. = [Vi,Va,...,V,] of n wvectors,
Vior-k VI, V5,...,Vi] is defined as the top-k par-
tial ranking matriz of 'V with respect to a given wvector

V) eV iff:

o VP contains the k vectors that are partially most
correlated to Vj: YV € V'PFyy, € vV \ Vierk .
PV V) = p(Vi, V)

o The elements of Vtor+t gre sorted by their partial cor-
relation coefficient to V; 1 V1 < i < k : p(V{,V}) >
p(Via, Vy)

The top-k ranking and the top-k partial ranking are used
to terminate the iterative recovery process.

LEMMA 2 (TERMINATION CONDITION). Let WPk —
Wiy, Wiy, ..., Ws,] and let Ranking() be the ranking of vec-
tors inside a matriz. If WEOp'k and its partial correlation
matriz have the same ranking then the algorithm can not
anymore create a matric W1 with bigger sum of variances
along its vectors. Formally:



Ranking(W'P*) = Ranking(W'P™") =

> 2

Wi, € Wi Wiit1); € Wit

var(Wi;) > var(Wiit),)

After each iteration, REBOM compares the ranking of
vectors in the top-k ranking with the ranking of vectors in
the top-k partial ranking. If the two rankings are equal, the
recovery process terminates. As long as the two rankings
are different or one of the two rankings is undefined, the
most correlated time series can be used to further improve
the accuracy of the recovery.

EXAMPLE 5. Let Vi = [V, Vi,, Vi, Vi, Vi, ] and k = 3.
After each iteration we create matriz W; with recovered val-
ues and compare Ranking(W'P™3) with Ranking(W*'P™3).
Initially, p(V1,Vi) and Ranking(Vt°"®) are undefined and
thus, REBOM iterates. REBOM terminates after two steps
since Ranking(W.P%) = Ranking(WP>) = {Vi, Va, Vs }.
The vectors of the top-k ranking and top-k partial ranking
are highlighted in gray and the recovered values are displayed

in bold.

Vi
My | M | M | M4 | Mg
-1 0.5 0.25 0.75 1
0 0 0.2 0 0
-1 0.5 0.25 0 1
0 0.5 0 0.75 0
1 0 0 0 0
0 0 -0.25 0 0
-1 0.5 0.25 0.75 -1
-1 0.2 0 0 0.7
-1 0.4 -0.25 0 0.4
-1 0.2 0 0.75 0.8
-1 0.5 0.25 0.75 1
0 0 0 0 0
-1 0.5 0.25 0.75 1
l (V. Vi) 1 Z0.69 | -0.33 | -0.43 | -0.46
101
[ 704, %)
Wy
W, Wiy Wiy Wiy Wig
-1 0.5 0.25 0.75 1
0 0 0.2 0 0
-1 0.5 0.25 0 1
0 0.5 0 0.75 0
1 0 0 0 0
0 0 -0.25 0 0
-1 0.5 0.25 0.75 -1
-0.5 0.2 0 0 0.7
-0.8 0.4 -0.25 0 0.4
-0.5 0.2 0 0.75 0.8
-1 0.5 0.25 0.75 1
0 0 0 0 0
-1 0.5 0.25 0.75 1
l p(w11 R Wli) 1 Z0.78 | -0.45 -0.47 | -0.41
l 5(W11 s Wli ) 1 =1 1 0.5 0.97
Wy
Yo, Yoy Woq Vo, Wor
-1 0.5 0.25 0.75 1
0 0 0.2 0 0
-1 0.5 0.25 0 1
0 0.5 0 0.75 0
1 0 0 0 0
0 0 -0.25 0 0
-1 0.5 0.25 0.75 -1
-0.2 0.2 0 0.7
-0.8 0.4 -0.25 0 0.4
-0.2 0.2 0 0.75 0.8
-1 0.5 0.25 0.75 1
0 0 0 0 0
-1 0.5 0.25 0.75 1
‘ p(Wy Wy ) 1 -0.8 -0.48 | -0.46 | -0.36
1 i
‘ ,3(W21 s Wzi) 1 -1 1 0.5 0.97

Figure 8: Iterative Recovery of REBOM

49

4.4 Algorithm

Algorithm 1 implements the block recovery of REBOM.
First, using the method described in subsection 3.2, X' is
created by initializing the missing values of X°. Then, the
vectors representing each time series of X' are inserted as
columns in the matrix of vectors Wi. The vector to re-
cover is inserted as the first column of W;. The order of
the selected vector to recover has no impact on the result of
the recovery since only the original vectors are used in the
recovery process. Therefore, the proposed recovery is deter-
ministic and does not depend on the order of time series to
recover. Next, if the ranking of the top-k ranking matrix
is different from the ranking of the top-k partial matrix or
one of the rankings is undefined (NAN), the recovery is per-
formed. If Ranking(WEoP’k) is equal to Ranking(W?Op’k)
the recovered time series is inserted into the set of recovered
time series, i.e, X?. Once all time series have been recov-
ered, X’ will be returned as the result of REBOM’s block
recovery.

Input: A set of n time series
X° = {X9,X9,..., X2}
Output: A set of recovered time series

X = {XJ", XP,....Xi"}
1 begin
2 | X'=Init(X%);
3 for each X} € X! do
4 Vi = Extract_val(X});
5 Jj=1
6 wW; = [Vi'];
7 for each )?; e X'\ X} do
8 vV, = E:ctract,val()?;);
9 W; = [ijvpl]§
10 while
Rank‘ing(W;Op’k) <> Ranking(wz(’p’k) or
Rankmg(W;{’p'k):NAN or
Ranking(VAV;-"p'k) = NAN do
11 LEXR" = SVD(W""™");
12 3, = Reduce_Dim(X,n,r);
13 M=Lx X, xRT;
14 W; = UMV (W!P* M);
15 i+=1
16 X7 = Add_ts(W;,);
|| X = (RO U{R
18 | i+=1
19 return Xj;
20 end

Algorithm 1: REBOM’s Block Recovery

Extract_val() and Add_ts() are used respectively to ex-
tract values from a time series and to add time stamps to a
vector.

The UMV algorithm (cf. Algorithm 2) updates missing
values. It accesses the database and uses procedural SQL to
determine the indexes of missing values (load_mv_indexes()).
The code of this function is described in the the first section
of the appendix.



1 Algorithm:UMV(Vi, Va)

2 begin

3 for each V; € Vi do

4 T?=load_mv_indexes(i);

5 for each vi; € V; do

6 if position(vi;) € T{ then

7 Insert_element(Vs, v{;);
// Insert vj; € Vo in row i and

column j of Vj

8 else

9 L Insert,element(Vg,vij);

10 return Vs;

11 end

Algorithm 2: Updating Initialized Missing Values

5. EXPERIMENTS
5.1 Experimental Setup

For the evaluation we use real world datasets and syn-
thetic data sets that describe hydrological phenomena of up
to 15 million observations produced by sensors in 242 moun-
tain stations. Our hydrological database contains 79 tem-
perature time series, 69 precipitation time series, 48 water
level time series, 15 humidity time series, 4 wind speed time
series and 3 air pressure time series. The data was provided
by an environmental engineering company [23].

We ran experiments to compare the recovery accuracy of
REBOM against state-of-the-art techniques.

5.2 Experiments with Hydrological Time Se-
ries

5.2.1 Restoration of Peaks and Valleys

In the first set of experiments, we compare the accuracy
of REBOM for the restoration of missing blocks against a
non parametric recovery technique that is the (non-iterated)
low rank SVD and a parametric recovery technique that is
DynaMMo [10]. These two techniques are the most accu-
rate techniques for the recovery of blocks of missing val-
ues in time series. We ran our experiment on wind speed
and humidity time series. Figure 9(a) shows two time series
measured during summer season (one measurement every
15 minutes) in two different areas of the region of Alto-
Adige (Italy). We drop a block of values for t €]160,220(
and restore it using the low rank SVD and DynaMMo. The
dropped block includes a valley with a small peak.

The recovery of the two techniques is shown in Fig-
ure 9(b). The low rank SVD is only able to detect part
of the trend of the missing block, i.e., only a valley is recov-
ered. The shape of the recovered valley resembles the shape
of the block that belongs to the same time interval of the
missing block in the other time series. DynaMMo is able
to detect the entire trend of the missing block, i.e., a valley
containing a small peak. However the shape of the original
block is not accurately restored. The recovered block looks
similar to a smooth spline that contains a small peak. Since
we use only tow time series REBOM will not iterate. There-
fore, the recovery of REBOM is similar to the recovery of
the low rank SVD.

We add a second humidity time series to the experiment to

50

Wind speed in Adige a Lasa SUMMer/2001 —— | |
Humidity in Col dei Baldi summer/2001 ——

value (km/hi%)

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280
time (every 15min)

(a) Time Series Measured in Two Different Ar-
eas

Wind speed in Adige a Lasa summer/2001 ==

Humidity in Col dei Baldi summer/2001 ——
4 Recovery using low rank SVD --------- q
Recovery using DynaMMo g

value (km/hi%))

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280
time (every 15min)

(b) Recovery of a Removed Block

Figure 9: Recovery using Low Rank SVD and Dy-
naMMo

compare the block recovery of REBOM against DynaMMo
(see Figure 10). The result of Figure 10(b) shows that the
recovery of DynaMMo does not change by the addition of a
third time series because DynaMMo cannot use more than
one reference time series in the recovery process. REBOM
exploits the two humidity time series in the recovery process.
It uses the history of the wind speed time series together
with the correlation with respect to the two humidity time
series to recover the missing block. Both the trend and the
shape of the missing block are accurately recovered. Adding
more correlated time series will further improve the block
recovery of REBOM (see Figure 12).

We run a second set of experiments in which we com-
pare the block recovery error using the Mean Square Error
(MSE):

1 n
S nigl(w v ")

where w is the recovered value, v™ is the original value and
n is the number of deleted observations.

Figure 11 shows the cumulative recovery error for removed
blocks of values of increasing length: we set a starting times-
tamp, we vary the length of the removed block and we com-
pute the cumulative MSE of each block. The x-axis repre-
sents the length (number of values) of the removed block
to recover and the y-axis represents the average cumulative
MSE. The experiments in Figures 11(a) and 11(b) are ex-
ecuted respectively on six different temperature time series
with 1000 values each measured in region of Alto Adige and
four different humidity time series with 1000 values each
measured in the region of Vipetino. For these two experi-
ments, we remove a block from one time series only while the
other time series are complete. The results in both exper-



55

10 |

I~

Cubic Spline &
50 H Low rank SVD - 90 ;
L H DynaMMo --%-- | | 5]
w % i REBOM —e— W 80 r H
@ 40 r x Q 70
= =
o 35 a ° L
2 H - z 60
T %0 X g g
E o5¢ ' - * g
3 g0 3 407
(O] o
30
2 s 2

Cubic Spline & Cubic Spline &
Low rank SVD - 90 Low rank SVD -
DynaMMo --%-- a] DynaMMo --%--
REBOM —e— |7 80 H REBOM —e—
9 70 X
60 X

AVG cumulative MSE
(&)
o

0 20 40 60 80 100 120 140 160 180 200 220
Length of removed blocks

0 20 40 60 80 100 120 140 160 180 200 220
Length of removed blocks

0 20 40 60 80 100 120 140 160 180 200 220
Length of removed blocks

(a) Average Cumulative Error for Successive (b) Average Cumulative Error for Successive (c¢) Average Cumulative Error for Successive
Removed Blocks in One Temperature Time Se- Removed Blocks in One Humidity Time Series. Removed Blocks in One Humidity Time Series.

ries.
used in the recovery are complete.

The correlated temperature time series The correlated humidity time series used in the The correlated humidity time series used in the
recovery are complete.

recovery contain missing values.

Figure 11: Recovery of Blocks of Different Lengths

Wind speed in Adige a Lasa SUMMer/2001 —— | |
Humidity in Col dei Baldi summer/2001 ——
4r Humidity in Monte Piana 0f

value (km/hl%))

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280
time (every 15min)
(a) Time Series Measured in Three Different Ar-
eas

Wind speed in Adige a Lasa summer/2001 ==
Humidity in Col dei Baldi summer/2001
4 Humidity in Monte Piana summer/2001
Recovery using REBOM -
Recovery using DynaMMo

value (km/hl%))

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280
time (every 15min)

(b) Recovery of a Removed Block

Figure 10: Recovery Using REBOM and DynaMMo

iments show that REBOM outperforms the low rank SVD
and DynaMMo for the recovery of successive blocks of miss-
ing values and cubic spline is off the scale. For blocks of
up to 100 removed values, the recovery error of REBOM
slightly increases with the number of removed values. For
blocks of more than 100 removed values, the error becomes
almost stable and is not anymore affected by the number
of removed values. In contrast, the recovery error of Dy-
naMMo and the low rank SVD increases with the length
of removed blocks. The small cumulative recovery error of
REBOM is due to the use of different correlated time se-
ries at every iteration of the algorithm. The experiment
of Figure 11(c) is executed on four humidity time series of
1000 values each. The first time series is complete, the sec-
ond time series contains a missing block in the time range
[0,100], the third time series contains a missing block in the

51

time range [100,200] and the fourth time series contains a
missing block in the time range [200,300]. We execute the
same process performed in the experiment of Figure 11(b)
for the complete correlated humidity time series. The exper-
iment shows that, compared to the result of Figure 11(b),
the recovery accuracy of REBOM, DynaMMo and low rank
SVD gets worse when using multiple time series with miss-
ing values. The recovery accuracy of REBOM is still better
than the one of the other techniques.

In the experiment of Figure 12, we use different correla-
tions and number of input time series (n) to evaluate the
impact on the recovery MSE. We vary n and we compute
the MSE of REBOM for the same block containing 90 miss-
ing values. Figure 12(a) shows that in the case of time series
of high correlation (1 > |p| > 0.7), the MSE of REBOM de-
creases only slightly as n grows. REBOM is able to restore
the missing block using a small number of highly correlated
input time series. This result is explained by the fact that,
for highly correlated time series, the starting top-k ranking
matrix is similar to the partial ranking matrix. Therefore,
the recovery of REBOM converges quickly. Figure 12(b)
shows that, using more time series of moderate correlation
(0.7 > |p| > 0.4), the MSE of REBOM decreases linearly.
REBOM uses all the time series to perform the most ac-
curate recovery. Figure 12(c) illustrates that, the MSE in-
creases for input time series with low correlated time series
(0.4 > |p| > 0).

In the experiment of Figure 13 we set n to 10 and we vary
the number of time series in the top-k ranking matrix. In
Figure 13(a) the minimum MSE is reached for k € [2,4].
In Figures 13(b) and 13(c), the minimum recovery MSE is
reached for a single value that is respectively £ = 4 and
k = 2. Again, the recovery accuracy of REBOM decreases
for time series with low correlation, i.e., 0.4 > |p| > 0, in
the top-k ranking matrix.

5.2.2 Invariance to Initialization Method

We run this experiment to test the impact of the initial-
ization method on the block recovery of REBOM. Figure 14
shows that with different initialization techniques, REBOM
needs more iterations to reach the minimum recovery er-
ror. Compared to our initialization method, a linear spline
initialization needs twice the number of iterations to reach
the minimum recovery error. Using a k Nearest Neighbor
initialization, REBOM needs 2.5 times more iterations than



8 T 20 T 80 T

; Block Recovery of REBOM —s— | Block Recovery of REBOM —=— 70 Block Recovery of REBOM —=—

6l .\\\__\—— 15 60 ]

5¢r 50 0
@ 4 @ 10 @ 40 | 1
=

3r 30 1

2 5 20 1

1+ 10 + 1

o 1 2 83 4 5 6 7 8 9 10 0o 1 2 3 4 5 6 7 8 9 10 o 1 2 383 4 5 6 7 8 9 10

number of input time series (n)

(a) Impact of Input Time Series in the Recov-
ery MSE. Each time series has a correlation

value: 1 > [p| > 0.7 value: 0.7 > |p| > 0.4

number of input time series (n)

(b) Impact of Input Time Series in the Recov-
ery MSE. Each time series has a correlation

number of input time series (n)

(c) Impact of Input Time Series in the Recov-
ery MSE. Each time series has a correlation
value: 0.4 > |p| >0

Figure 12: Impact of n in the Recovery MSE of REBOM

10 20 T 80 T
9l [ Block Recovery of REBOM —=— | [ Block Recovery of REBOM —=— | 70 [ Block Recovery of REBOM —=—
8 L
1 15 60 | :
L 50 q
% g @0 10 % 40
= =
4 r 30
3l
5| 5 20
1t 10} ]
0 0 0
0o 1t 2 3 4 5 6 7 8 9 10 0o 1t 2 3 4 5 6 7 8 9 10 0o 1 2 3 4 5 6 7 8 9 10

number of time series (k)

(a) Impact of k in the Recovery MSE. Each
time series has a correlation value: 1 > |p| >

0.7 0.4

number of time series (k)

(b) Impact of k in the Recovery MSE. Each
time series has a correlation value: 0.7 > |p| >

number of time series (k)

(c) Impact of k in the Recovery MSE. Each
time series has a correlation value: 0.4 > |p| >

Figure 13: Recovery MSE using different number of time series in the top-k ranking matrix

our initialization technique to reach the same recovery er-
ror. Thus, the accuracy of REBOM is independent from the
initialization method. However, our initialization initializa-
tion method provides a faster recovery of blocks of missing
values.

100

Linear spline -
KNN --3¢--
Linear spline + KNN —e— 1

80

AVG MSE

ol v v
12345678 91011121314151617181920

number of iterations

Figure 14: Number of Iterations using Different Ini-
tialization Techniques

5.2.3 Running Time Performance

The REBOM implementation uses the Golub/Kahan de-
composition algorithm [24] and has a run time complexity
of O(#iterations x (4n*k 4+ 8nk® + 9%®)), where n is the
length of the longest time series and k is the number of vec-
tors of VtP"*  The complexity of building V°P* is the cost
of computing k times p between two time series and that is

52

O(kn?). Therefore, the total complexity of using REBOM is
O(#iterations x (5nk + 8nk* 4+ 9%®)). Figure 15 compares
the total running time of REBOM against DynaMMo that
has a complexity of O(#iterations x (kn?)). 3000 differ-
ent time series were created by extracting 1000 observations
from 15 different temperature time series.

160

REBOM30%
3z 140 | REBOM?0%° 7
g 120 DynaMN:o — |
2 REBOM'0%0 —
= 100 r |
g
E gl |
j=
g
£ 60 |
€
2
o 40r |
< 20 + |

0

1000
number of observations

Figure 15: Average Running Time Comparison

Figure 15 shows the average running time comparison per-
formed on the created time series for the recovery of blocks
containing 200 missing values. We set the value of k£ to
four, since we reached the optimal recovery accuracy with
this value. The result of this experiment shows that with
1500 time series, REBOM is faster than DynaMMo. With
a higher number of input time series, the performance of
REBOM starts to be slower than DynaMMo.



5.2.4 Recovery Using Linear Time Series

In the experiment of Figure 16, we show the impact of
using extremely irregular time series. We take as input a
humidity time series measured in spring 2001 from which
we remove a block for ¢ €]120,160], a constant time series,
and a monotonic time series. The result of Figure 16(a)
shows that, since the correlation between the humidity time
series and the constant time series is undefined (all values are
equal), REBOM performs a bad recovery. In Figure 16(b),
the humidity time series and the monotonic time series are
correlated. Therefore, both time series are used to recover
the type of the missing block. The recovered block has an
increasing monotonic shape that looks similar to the mono-
tonic time series. In the experiment of Figure 16(b), both
the type and the shape of the missing block are accurately
recovered. The application of DynaMMo in the experiment
would set all the recovered values to 0.

Humidity in Monte Piana

Removed block -===== R
Recovery using REBOM
1r Constant time series

120 160
t (every 15min)

v (%)

40 80 200 240

(a) Recovery of REBOM using lines of function
v=c, where c is a constant. The result of the
recovery is the same for any given value of ¢

2
15 ¢

Humidity in Monte Piana

Removed block ------ 1
Recovery using REBOM
1r Monotonic time series

05
ol
05
a4t
15
ol

-25
0

v (%)

120 160 200 240
t (every 15min)

40 80

(b) Recovery of REBOM using lines of function
v=at+b, where a =0.5 and b=-2.5

Figure 16: Impact of Extremely Irregular Time Se-
ries in the Recovery of REBOM

5.3 Experiments with Synthetic Regular Time
Series

This subsection describes a set of experiments conducted
with synthetic data. We compare the block recovery of RE-
BOM against DynaMMo.

5.3.1 Different Amplitudes

Figure 17 compares the recovery of the two techniques
for two regular time series having different amplitudes. The
first time series is a sin(t) wave and the second time series
is a sine wave multiplied by a negative scaling factor, i.e.,
-0.25%sin(t). For ¢t €]70,110[, we drop a block from sin(t)
and we recover it using REBOM and DynaMMo. Both tech-

53

niques are able to accurately recover the missing block. RE-
BOM uses the correlation between the two time series in
order to determine the shape of the missing block, i.e, a
peak. The amplitude of the missing peak is determined us-
ing the amplitude of the existing peaks from sin(t). The
two techniques perform an accurate recovery for any other
scaling factor of the second wave.

5.3.2  Shifted Peaks

Figure 18 shows two regular time series shifted in time,
i.e., sin(t) and cos(t). For ¢ €]70,110[, we drop a block
from sin(t) and we recover it using REBOM and DynaMMo.
REBOM is applied without initial alignment of the two time
series. As expected, DynaMMo outperforms REBOM in
recovering the missing block. DynaMMo is able to compute
the periodicity model and performs a good block recovery.
However, REBOM recovers a block that is only influenced
by the shape of the block in cos(t) for ¢ €]70, 110], i.e., a peak
followed by a valley. For shifted time series, REBOM is not
able to use the history of sin(t) in the recovery process. The
decomposition performed by our technique is sensitive to
the row position of values inside the V¥°P* matrix. In order
to overcome this problem, an initial alignment between the
two time series must be performed in a preprocessing step
(cf. Subsection 3.2).

6. CONCLUSION

This paper studies the recovery of blocks of missing val-
ues in irregular time series. We develop an iterative greedy
algorithm called REBOM, that uses at every iteration the
most correlated time series to the time series that contains
the missing blocks to reconstruct missing peaks and valleys.
Empirical studies on real hydrological data sets demonstrate
that our algorithm has the most accurate block recovery
among existing techniques. In future work, it is of interest
to examine the impact of using the recovered time series in
the recovery process instead of the original ones. It is also
foreseen to investigate the impact the global correlation on
the recovery accuracy together with the local correlation.
Another promising direction, is to progress the interaction
with the database and develop an SQL based recovery solu-
tion that reduces the number of I/0’s.

Acknowledgments

The authors would like to thank HydroloGis company [23]
for providing the hydrological datasets that we have used for
our experiments, and Michal Koltonik for his contribution
in the implementation of REBOM. We wish also to give spe-
cial thanks to the anonymous reviewers for their insightful
comments.

7. REFERENCES

[1] Mueen, A., Nath. S., and Liu, J., : Fast Approzimate
Correlation for Massive Time-series Data, in
SIGMOD, 2010

[2] Srebro, N., and Jaakkola, T., :
Approximations, in ICML, 2003

[3] Tsechansky, M.S., and Provost, F., : Handling
Missing Values when Applying Classification Models,
in JMLR, 2007

Weighted Low-Rank



sin(x)
-0.25%sin(x)

function(t)
function(t)

-0.25"sin(x)
Recovered block -~ 4

sin(x) sin(x)
-0.25"sin(x)
Recovered block - 4

function(t)

80 20 40
t

0 20 40 60

(a) Original Waves

Figure 17: Recovery of DynaMMO and REBOM for Time Series

60

t

80

(b) Recovery of REBOM

80
t

(c) Recovery of DynaMMO

20 40 60

of Different Amplitudes

sin(t) ——
cos(t) =—

function(t)
function(t)

Recovered block - 4

sin(x)
cos(x

sin(x)
cos(x)
Recovered block -~ 4

function(t)

40

20

80 100 120 140 0
t

40 60

0 20

(a) Original Waves

60

t

80

(b) Recovery of REBOM

100

80 100 120 140
t

(c) Recovery of DynaMMO

40 60

20

120 140 0

Figure 18: Recovery of DynaMMO and REBOM for Shifted Time Series

[4] Romero, V., and Salmerén, F., : Multivariate
Imputation of Qualitative Missing Data using
Bayesian Networks, in SMPS, 2004

[5] Harvey, M., Carman, M.J., Ruthven, I., and Crestani,
F., : Bayesian Latent Variable Models for
Collaborative Item Rating Prediction, in CIKM, 2011

[6] Srebro, N., and Jaakola, T., : Weighted Low-Rank
Approximations, in ICML, 2003

[7] Li, L., MacCann, J., Pollard, N., and Faloutsos, C., :
DynaMMo: Mining and Summarization of Coevolving
Sequences with Missing Values, in KDD, 2009

[8] Jain, A., Chang, E.Y., and Wang, Y.F., : Adaptive
Stream Resource Management using Kalman Filters,
in SIGMOD, 2004

[9] Ding, H., et al. : Querying and Mining of Time Series
Data: Experimental Comparison of Representations
and Distance Measures, in PVLDB, 2008

[10] Chen, Q., Chen, L., Lian, X., and Yu, J.X., : Indezable
PLA for Efficient Similarity Search, in VLDB, 2007

[11] Gelaman, A., : Data Analysis using Regression and
Multilevel /Hierarchical Models, Publisher: Cambridge
University Press, 1 edition, 2006

[12] Yi., B.K., Sidiropoulos, N.D., Johnson, T. , Jagadish,
H.V., Faloutsos, C., and Biliris, A., : Online Data
Mining for Co-Fvolving Time Sequences, in ICDE,
2000

[13] Troyanskaya, O., et al : Optimal Multi-step k-Nearest
Neighbor Search, in J. Bioinformatics, 2001

[14] Seidl, T., and Kriegel, H.P., : Optimal Multi-step
k-Nearest Neighbor Search, in SIGMOD, 1998

[15] Kurucz, M., Benczur, A.A., and Csalogany, K., :

[16]

[17]

18]

[19]

[20]

21]

22]

23]
[24]

[25]

Methods for Large Scale SVD with Missing Values, in
KDD, 2007

Meyer, C.D., : Matriz Analysis and Applied Linear
Algebra, Publisher: STAM-Society for Industrial and
Applied Mathematics, pages 412-417 and 489-504,
2000

Kalman, D., : A Singularly Valuable Decomposition:
The SVD of a Matriz, in J. College Mathematics, 1996
Brand, M., : Incremental Singular Value
Decomposition of Uncertain Data with Missing Values,
in ECCV, 2002

Alter, O., and al., : Singular value decomposition for
genome-wide expression data processing and modeling,
in PNAS, 2000

Mohan, M., Chen., Z., and Weinberger, K., :
Web-Search Ranking with Initialized Gradient Boosted
Regression Trees, in JMLR, 2011

He, Y., : Missing Data Imputation for Tree-Based
Models, PhD dissertation, 2006

Ding, Y., and Simonoff., J.S., : An Investigation of
Missing Data Methods for Classification Trees Applied
to Binary Response Data, in JMLR, 2010

HydroloGIS company, available for online access at:
http://www.hydrologis.eu/

Erricos, J., : Handbook on Parallel Computing and
Statistics, Book, Chapter 4, 2005

Lagarias, J.C., : Monotonicity Properties of the Toda
Flow, the QR-Flow, and Subspace Iteration, in STAM
J. Matrix Analysis and Applications, 1991



APPENDIX

A. FUNCTION COMPUTING MISSING
TIME STAMPS

We consider two relations:

e Observation (series_id, ts, val) that stores the values of
observations, where series_id is the id of time series, ts
and val are respectively the time stamp and value of
observations

e Series (id, granul) that stores information about time
series, where id is the id of time series and granul is
the granularity of time series, i.e., a time series has a
granularity of two if the observations occur every two
minutes.

Given these two relations, we define function
load_mv_indezes() that efficiently finds the indexes of
all missing time stamps. This function uses the granu-
larity of each time series in order to create a sequence of
incremental granularities, e.g., {2,4,6,...}. Then, the set
difference between the sequence of granularities and the
existing time stamps gives the indexes of missing time
stamps. load_muv_indezes() is executed as an SQL function
on the database server side.

FUNCTION load_mv_indexes (in_series_id IN
INTEGER) AS
ts_lst INTEGER;
gran INTEGER;
out_mv_indexes INTEGER;
BEGIN
SELECT granul
INTO gran
FROM Series
WHERE id=in_series_id;

SELECT MAX(ts)

INTO ts_1st

FROM Observation

WHERE series_id=in_series_id;

SELECT ts
BULK COLLECT INTO out_mv_indexes
FROM (
SELECT * FROM (
SELECT (level-1)*gran ts
FROM dual
CONNECT BY LEVEL <= (ts_lst+gran)/gran
MINUS
SELECT ts
FROM Observation
WHERE series_id=in_series_id
) ORDER BY 1
);
RETURN (out_mv_indexes) ;
END;

B. PROOF SKETCHES
B.1 Lemmal

PRrROOF. We prove that our algorithm is stepwise mono-
tonic. We perform this proof by showing that the correlation

55

matrix used is monotonic at every step of the algorithm. i)
From Def. 2 (SVD) we know that the singular values de-
fine the variances along the vectors. ii) From the definition
of the top-k ranking matrix we know that at every step of
SVD, we take the matrix with the biggest -1 norm of corre-
lation. iii) From the definition of SV D, () we know that only
the smallest variance will be nullified and the biggest ones
will be kept. Using i), ii) and iii) we can deduce that our
algorithm takes the biggest ||pv, || in order to compute the
biggest Zvl.ewi var(Vi;) where W; = SV D,.(V,). There-
fore, the bigéer the correlation is, the bigger sum of variances

we will obtain. This implies that the correlation used by the
algorithm is stepwise monotonic. []

B.2 Lemma 2

PROOF. We prove that our algorithm terminates after
finding the matrix that has the maximum sum of variances
along its vectors. We perform this proof by showing that the
iterative refinement of missing values satisfies the following
two properties:

e a) finite number of rankings: i) From Def. 2 (SVD)
we know that the variance values obtained by SVD
are ranked in increasing order in matrix X. ii) From
[25] we have that the singular values obtained by SVD
are monotonic. Using i) and ii) it follows that the
variance obtained by the decomposition is monotonic
and thus: Wi, € W{P" AWy, ¢ WEPF = Wy, ¢
WEPF where WiP* = SV D, (WiPF) and WP+ =
SV D, (WLP*) | Therefore, the number of rankings
generated by our algorithm is finite and this property
is satisfied.

e b) ranking of a matriz determine the result of SV D, ():
Let R; be the ranking of matrix W,, R; be the par-
tial ranking of matrix W, and R;;1 be the ranking of

matrix W, , where W, , = SVD,.(W,). i) We have

from Def. 3 that the correlation value determines the
ranking inside a matrix and then ||pw; || = ||pw,,, || =

R; = Rit1. 1ii) Since UMV algorithm (cf. Subsec-

tion 4.4) is updating only the missing values of the ma-

trix, then: R; determines llpw;,. || and it follows that:

R = Ri = llpwill = llpwis |l Using i) and ii) we

deduce by transitivity that: R; = }NEZ = R; = Riy1 and

therefore, this property is satisfied.

Properties a) and b) hold for matrices whose vectors are
correlated. It follows the proof for this lemma. [



A Novel Query-Based Approach
for Addressing Summarizability Issues in XOLAP

Marouane Hachicha

Chantola Kit

Jérébme Darmont

Université de Lyon (ERIC Lyon 2)
5 avenue Pierre Mendes-France
69676 Bron Cedex
France
marouane.hachicha@univ-lyon2.fr, kchantola@gmail.com, jerome.darmont@univ-lyon2.fr

ABSTRACT

The business intelligence and decision-support systems used
in many application domains casually rely on data ware-
houses, which are decision-oriented data repositories mod-
eled as multidimensional (MD) structures. MD structures
help navigate data through hierarchical levels of detail. In
many real-world situations, hierarchies in MD models are
complex, which causes data aggregation issues, collectively
known as the summarizability problem. This problem leads
to incorrect analyses and critically affects decision making.
To enforce summarizability, existing approaches alter either
MD models or data, and must be applied a priori, on a
case-by-case basis, by an expert. To alter neither models
nor data, a few query-time approaches have been proposed
recently, but they only detect summarizability issues with-
out solving them. Thus, we propose in this paper a novel
approach that automatically detects and processes summa-
rizability issues at query time, without requiring any partic-
ular expertise from the user. Moreover, while most existing
approaches are based on the relational model, our approach
focus on an XML MD model, since XML data is custom-
arily used to represent business data and its format better
copes with complex hierarchies than the relational model.
Finally, our experiments show that our method is likely to
scale better than a reference approach for addressing the
summarizability problem in the MD context.

1. INTRODUCTION

Business intelligence and decision-support systems in gen-
eral are nowadays used in many business (e.g., finance, tele-
coms, insurance, logistics) and non-business (e.g., agricul-
ture, medicine, health and environment) domains. Such sys-
tems casually rely on data warehouses, which are designed,
both at the conceptual and logical levels, using multidimen-
sional (MD) structures [28]. In MD models, facts are anal-
ysis subjects of interest (e.g., sales) that are described by

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

The 18th International Conference on Management of Data (COMAD),
14th-16th Dec, 2012 at Pune, India.

Copyright (©)2012 Computer Society of India (CSI).

56

a set of (usually numerical) measures (e.g., sale quantity
and amount) w.r.t. analysis axes called dimensions (e.g.,
book category, sale date, sale location...). Dimensions may
be organized in hierarchical levels to allow data aggregation
at different granularities (e.g., store, city, state or country,
from the finer level to the coarser level).

MD modeling essentially aims at easing online analyti-
cal processing (OLAP), whose main operators help navigate
data through coarser (roll up) and finer (drill down) levels
of detail. In this context, aggregating measures works fine
when intradimensional relationships are one-to-many (e.g.,
a book belongs to one single category). However, in real-
world situations, dimension hierarchies may be much more
complex [3, 17], which leads to a semantic gap between MD
models and current OLAP tools [28], an issue known as the
summarizability problem [13]. Violating summarizability is
a critical matter, for it causes erroneous aggregations and,
therefore, erroneous analyses that can jeopardize important
decisions [21]. However, testing summarizability is a difficult
(coNP-complete) problem [10]. Finally, complex hierarchies
are difficult to both represent in classical database man-
agement systems and query with SQL-like languages, while
XML storage and interrogation with XQuery is much more
natural [3], which led to the design of XML data warehouses
and so-called XOLAP solutions.

The summarizability problem is widely acknowledged as
crucial and has received some attention in the Nineties, with
most solutions aiming at a priori normalizing data to en-
force summarizability. Quite surprisingly, few researchers
came back on this topic since then, although we identify two
types of shortcomings in normalization approaches. First,
normalizing data breaks initial conceptual MD models, pro-
voking the alteration or loss of some semantics. Thus, there
would be no point in exploiting XML’s flexibility to model
rich, complex hierarchies if they were “flattened” after nor-
malization. Second, data normalization applies a priori, on
a case-by-case basis, and requires the intervention of an ex-
pert in MD modeling. Such an approach is subjective, likely
to be costly and does not scale well w.r.t. data volume [20].
Finally, to the best of our knowledge, there is no existing
XOLAP approach that provides a practical solution to sum-
marizability issues, while they are much likely to occur in
an XML data warehouse with complex dimension hierar-
chies. The closest approach does detect summarizability
issues, but then returns no result [22, 23].

Thus, we propose in this paper a novel approach, set in the



XOLAP context, to the summarizability problem. By con-
trast to normalization, our approach does not alter data to
retain all semantics. We also favor paying the price of some
overhead and tackle the summarizability problem at query
time, without requiring any expertise beyond the user’s, to
avoid re-normalizing when data schema evolves, favor scal-
ability and eliminate human-related costs. In many institu-
tions, decision-support applications indeed require external
Web data [7]. Due to the heterogeneity and high evolutivity
of such data, an XOLAP run-time solution is more suitable
than a priori expert interventions.

The remainder of this paper is organized as follows. In
Section 2, we formalize the background information related
to data warehouses, and define what we term complex hi-
erarchies and summarizability. We also review the existing
approaches for enforcing summarizability. In Section 3, we
motivate and introduce our query-based solution to complex
hierarchy management in XOLAP, including novel pattern
tree-based data and query models, as well as the aggrega-
tion algorithm that exploits them. In Section 4, we provide
a complexity study and an experimental validation of our
work. Finally, in Section 5, we conclude this paper and hint
at future research.

2. BACKGROUND

In this section, we formalize data warehousing concepts
and define complex hierarchies that lead to summarizability
issues. Then, we discuss the approaches that address the
summarizability problem.

2.1 Data Warehouses
2.1.1 Data Warehouse

A data warehouse W modeled w.r.t. a snowflake schema
(i.e., with dimension hierarchies) is defined as W = (F, D),
where F is a set of facts to observe and D is a set of dimen-
sions or analysis axes. Let d = |D|.

2.1.2  Dimension and Hierarchy

Vi € [1,d], a dimension D; € D is defined as a hierarchy
made up of a set of n; levels: D; = {H;j|j = 1,n:}. By
convention, we denote H;1 as the lowest granularity level.
Vj € [1,ns], a hierarchy level H;; is defined in intention
as /Hij = (ID”,{AU]C“C = l,aij},Rij), where IDZJ is the
identifier attribute of Hi;, {A:jrx} is a set of a;; so-called
member attributes of H;;, and R;; is an attribute that ref-
erences a hierarchy level at a higher granularity than that
of H;; (notion of roll up).

Let dom() be a function that associates to any attribute its
definition domain. Let h;; = |Hi;|. VI € [1, hi;], instances
of Hij are tuples Hijl = (O'ijh {Oéijkl‘k =1, aij},pijl), where
gijl € dom(IDij), ikl € dom(Aijk) Vk € [l,aij], and pPijl €

2.1.3 Fact

The set of facts F is defined in intention as F = ({A;|i =
1,d},{M;|j = 1,m}), where {A;} is a set of d attributes
that reference instances of hierarchy levels H;1 of each di-
mension D; € D, and {M;} is a set of m measure (or indi-
cator) attributes that characterize facts.

Let f = |F|. Vk € [1, f], instances of F are tuples Fj, =
({0sk]i = 1,d},{ujxlj = 1,m}), where dir € dom(ID;1)
Vi € [1,d], and pjx € dom(M;) Vi € [1,m].

57

2.2 Complex Hierarchies

We term a dimension hierarchy D; as complex if it is both
non-strict and incomplete. We choose this new, general de-
nomination because dimension hierarchy characterizations
vary wildly in the literature. For example, Beyer et al. name
complex hierarchies ragged hierarchies [3], while Rizzi de-
fines ragged hierarchies as incomplete only [27]. Malinowski
and Zimanyi also use the terms of complex generalized hi-
erarchy [17], but even though they include incomplete hier-
archies, they do not include non-strict hierarchies.

2.2.1 Non-Strict Hierarchy

A hierarchy is non-strict [1, 16, 30] or multiple-arc [27]
when attribute R;; is multivalued. In other terms, from a
conceptual point of view, a hierarchy is non-strict if the re-
lationship between two hierarchical levels is many-to-many
instead of one-to-many. For example, in a dimension de-
scribing products, a product may belong to several cate-
gories instead of just one.

Similarly, a many-to-many relationship between facts and
dimension instances may exist [27]. For instance, in a sale
data warehouse, a fact may be related to a combination
of promotional offers rather than just one. Formally, here,
attributes A; (Vi € [1,d]) may be multivalued.

2.2.2 Incomplete Hierarchy

A hierarchy is incomplete [4, 25], non-covering [1, 16, 30]
or ragged [27] if attribute R;; allows linking a hierarchy level
Hi; to another hierarchy level H;;; by “skipping” one or
more intermediary levels, i.e., R;; refers to ID;; such that
j' > j+ 1. This occurs, for instance, if in a dimension de-
scribing stores, the store-city-state-country hierarchy allows
a store to be located in a given region without being related
to a city (stores in rural areas).

Similarly, facts may be described at heterogeneous gran-
ularity levels. For example, still in our sale data warehouse,
sale volume may be known at the store level in one part of
the world (e.g., Europe), but only at a more aggregate level
(e.g., country) in other geographical areas. This means that
Vi € [1,d], §; € dom(ID;;) with j € [1,n;] (constraint j =1
is forsaken).

A particular case of incomplete hierarchies are called non-
onto [24], heterogeneous [10], unbalanced [9, 17] or asym-
metric [16] hierarchies. A hierarchy is non-onto when all
paths from the root to a leaf in the hierarchy do not have
equal lengths [24], but here, missing elements are always
child nodes, while they may be parent nodes in an incom-
plete hierarchy.

Note that some papers addressing the summarizability
problem differentiate between intradimensional relationships
and fact-to-dimension relationships [20]. By contrast, as
Pedersen et al. [24], we consider that summarizability issues
and solutions are the same in both cases, since facts may be
viewed as the very finer granularity in the dimension set.

2.3 Summarizability in MD Models

The notion of summarizability was introduced by Rafanelli
and Shoshani in the context of statistical databases [26],
where it refers to the correct computation of aggregate val-
ues with a coarser level of detail from aggregate values with
a finer level of detail. Then, Lenz and Shoshani defined three
constraints that guarantee summarizability in the MD con-



text [13]: (1) hierarchies must be strict; (2) hierarchies must
be complete; (3) aggregate data types must be compatible,
i.e., an aggregate function must be applicable to a given
measure for a given set of dimensions. For instance, a max-
imum sale amount is a meaningful aggregation, while a sum
of temperatures would be meaningless. These constraints
also hold for fact-to-dimension relationships [20]. In this
paper, we assume that the type compatibility constraint is
handled by users.

One way to ensure summarizability in a MD model is to
simply disallow complex hierarchies at design time, as in
the Dimensional Fact Model [5]. However, to support differ-
ent kinds of complex real-world situations, most MD models
do allow complex hierarchies. Thence, the summarizability
problem must be addressed. There are two main families
of approaches: schema normalization and data transforma-
tion, which are reviewed below. Both families of approaches
operate at design time.

More recent proposals operate at query time, but they are
very few. Guidelines have been proposed for tolerating and
displaying incorrect aggregation results [8], but they have
not been implemented. The generalized projection XOLAP
operator [22, 23] detects summarizability issues, but does
not solve them and returns an error flag instead.

Finally, the interested reader may find more details about
summarizability issues in the survey by Mazén et al. [21].

2.3.1 Schema Normalization

Two strategies may be used to achieve schema normaliza-
tion. The first strategy is based on the definition of con-
straints and transformation rules. For instance, Hurtado et
al. propose a class of integrity constraints to address in-
completeness, namely dimension constraints and frozen di-
mensions [10]. Frozen dimensions are minimal, complete
dimensions mixed up in incomplete dimensions using di-
mension constraints that help model incomplete hierarchy
schemas. From their part, Lechtenborger and Vossen intro-
duce new MD normal forms (MNFs) [12]. IMNF does not
allow non-strict hierarchies, while 2MNF and 3MNF permit
to model incomplete relationships using context dependen-
cies, i.e., dimension constraints. Specialization constructs
in dimensions can lead to incomplete relationships [13, 26]
and context dependencies enable an implicit representation
of such specializations.

The second strategy adds new structures into the model
in order to ensure summarizability. In relational implemen-
tations, bridge tables are used to capture non-strict fact-
to-dimension relationships via foreign keys that refer to the
dimension and fact tables [11, 29]. Arguing that bridge ta-
bles defined at the logical level make the modeling of com-
plex structures difficult, some authors introduce their equiv-
alent at the conceptual level [16, 20]. Such additional en-
tities/classes help store instances at the origin of incom-
pleteness and/or non-strictness. Finally, Mansmann and
Scholl propose a two-phase modeling approach that trans-
form incomplete hierarchies into a set of well-behaved sub-
hierarchies without summarizability problems [18, 19].

2.3.2  Data Transformation

The reference data transformation approach by Pedersen
et al. transforms dimension and fact instances to enforce
summarizability [24]. To solve incompleteness, all mappings
between hierarchical levels are transformed to be complete

58

with the help of an algorithm named MakeCovering. For
example, suppose that some addresses are missing in an
address-city-country hierarchy. MakeCovering inserts new
values into the missing hierarchical level address to ensure
that mappings to higher hierarchical levels are summariz-
able. MakeCovering exploits metadata and/or expert ad-
vice for this sake. For example, an expert would be required
to recover missing addresses in small streets in the USA
or Australia. The authors also propose a simplified ver-
sion of MakeCovering, MakeOnto, to handle summarizability
in non-onto hierarchies by replacing childless nodes by so-
called placeholder values.

Mappings are made strict with the help of another al-
gorithm named MakeStrict. MakeStrict avoids “double
counting” by “fusing” multiple values in a parent hierarchi-
cal level into one “fused” value, and then linking the child
value to the fused value. Fused values are inserted into a
new hierarchical level in-between the child and the parent.
Reusing this new level for computing higher-level aggregate
values leads to correct aggregation results.

Mansmann and Scholl further modify Pedersen et al.’s
algorithms to eliminate roll up/drill down incomplete and
non-strict hierarchies at the instance level [18, 19]. Finally,
Li et al. demonstrate that MakeCovering does not work
on some real-world cases, i.e., geographical hierarchies in
China [14]. They identify four types of incompleteness that
are specific to China and thence propose several variations
of MakeCovering to handle them.

3. QUERY-BASED COMPLEX HIERARCHY
MANAGEMENT IN XOLAP

3.1 Motivation and Contributions

In XML data warehouses and XOLAP, complex data struc-
tures, and especially complex hierarchies, are likely to be
present, and are likely to evolve with time faster than in
legacy decision-support systems. In such a context, sum-
marizability cannot be enforced through a costly [20] data
normalization process each time schema and data are up-
dated. Thus, as in the most recent existing approaches [8,
22, 23], we advocate for a run-time solution.

However, while existing run-time approaches do detect
summarizability issues and warn the user, they still output
incorrect or absent results. Our first contribution is thus to
complete the process and output correct results. To achieve
this goal, we adapt and automatize well-known solutions
from the literature (Sections 3.2 and 3.4). Since we oper-
ate at query time, we deliberately adopt simple and robust
solutions not to add too much overhead over summarizabil-
ity testing. Such reference approaches are still customarily
reused and adapted by recent approaches [18, 19].

Furthermore, all XOLAP approaches we are aware of pro-
pose operators under the form of ad-hoc programs, and rely
on relational database systems, including Pedersen et al.’s
[22, 23]. By contrast, we aim at contributing to build an XO-
LAP algebra that can later translate into standard XQuery
statements. Thus, our second contribution introduces data
and query models based on the data trees and tree patterns
used in XML processing [6], respectively (Section 3.3).

3.2 Principle of our Approach

To illustrate how our approach operates, let us consider
the example from Figure 1, which represents a complex



“project management” hierarchy at the instance level, adapted
from [18, 19]. This hierarchy is non-strict because teams
may manage several projects (Team 2 manages projects A
and B), while projects may be managed by several teams
(projects A and B are managed by teams 1 and 2, and teams

2 and 3, respectively). The hierarchy is also incomplete,
since Project D is not managed by any particular team; thus
it is complex.

Project A Project B Project C Project D

Team 1 Team 2 Team 3 Team 4

all

Figure 1: Sample complex hierarchy

First, to handle non-strict hierarchies in a given dimen-
sion D;, we must avoid multiplying the aggregation of in-
stance measures of a hierarchy level H;; when rolling up
to level H;j4+1. Thus, when building the set of groups G
with respect to a grouping criterion, we fuse multiple val-
ues in H;j4+1 into one single “fused value”, i.e., we build
G = U piji, where multivariate values of p;;; are con-

1€[1,hiy)

sidered as sets instead of single values. In our example, sup-
pose we are counting projects per teams for projects A and
B. Then Gns = {{Team 1,Team 2},{Team 2,Team 3}}.
The number of projects in {T'eam 1, Team 2} is 1, the num-
ber of projects in {T'eam 2, Team 3} is 1, for a correct total
of 2. If Gng had been {Team 1, Team 2, Team 3}, the total
number of projects would have been wrong (1 + 2+ 1 = 4)
in 7‘[12.

Second, to handle incomplete hierarchies, we must, when
rolling up from a hierarchy level H;; to level H;jy1, still
aggregate measures of instances of H;; that are not present
in Hij41. Thus, when building G, all “missing instances” are
grouped into an artificial “Other” group, i.e., G= U piji

1€[1,hij)
U{Other} such that 3l'/piji = oy41- In our example,
suppose we are again counting projects per teams, but for
projects C and D. Then G; = {T'eam 4, Other}. The num-
ber of projects in G is 2, whereas it would have been wrong,
ie., 1, if G; had been {Team 4} only.

Third, to handle complex hierarchies, we simply apply
both the managements of non-strict and incomplete hier-
archies. Thus, here, G = |J piji U {Other} such that

1€(1,hij]
AL/piji = U oi¢+1)r- Inour example, if we are now count-
l'eL

ing projects per teams for all projects, then Go = GnsUGT,
and the number of projects in G¢ is correct, i.e., 4.

Finally, note that, beyond the expert-based preprocess-
ing vs. our automatic, on-the-fly approach, there is a sub-
stantial difference between our view of incomplete hierarchy
management and Pedersen et al.’s reference solution [24].
While they call to an expert to replace all “missing val-
ues” in G by actual values, we indeed automatically add an
“Other” group for all “missing values” of a given hierarchical
level. “Other” values from different hierarchy levels are of
course distinguished, e.g., Project [Other] is different from
Team[Other].

59

Thus, we presumably loose in semantical finesse, but we
spare the cost of the expert. Moreover, the simplicity of our
approach helps handle all cases of incompleteness identified
by Li et al. [14], while MakeCovering cannot.

3.3 Data and Query Models
3.3.1 Data Model

Since complex hierarchies have been shown to be better
represented in XML at the physical level [3], we choose XML
to model MD data. Thus, at the logical level, we choose
XML data trees to model MD structures. Data trees are in-
deed casually used to represent and manipulate XML doc-
uments, whose hierarchical structure is akin to a labeled
ordered, rooted tree [6]. Moreover, data trees allow model-
ing MD structures. Formally, a data tree t models an XML
document or a document fragment. It can be defined as a
triple t = (r, N, E), where N is the set of nodes, r € N is
the root of ¢, and E is the set of edges stitching together
couples of nodes (n;,n;) € N x N.

Figure 2 shows how we logically model MD data with a
data tree. *-labeled edges indicate a one-to-many relation-
ship. The data tree root, W, models the data warehouse.
Its child nodes F' model facts. Each fact is described by a
set of dimensions D and measures M. For a given fact, we
may have several dimensions (such as client, supplier...) and
several measures (such as account, quantity...). A dimension
hierarchy can have any number of levels H. The * multiplic-
ity on the D-H edge allows facts to roll up to any number
of hierarchy levels, at any granularity (fact-to-dimension re-
lationships). The recursive edge on H allows any hierarchy
level to roll up to several higher levels, possibly skipping
any number of intermediary levels (intradimension relation-
ships). Thus, this representation permits to model complex
hierarchies.

*

Figure 2: Multidimensional data tree model

Figure 3 exemplifies the instantiation of our model by
elaborating on the complex hierarchy from Figure 1. Here,
facts are described by a project and a customer dimension,
and the only measure is cost.

3.3.2  Query Model

Since we use XML data trees as our logical data model, we
use XML tree patterns, which are the most efficient struc-
tures to query data trees [6], as our query model. A tree
pattern (TP) or tree pattern query is a pair (¢, F') where
t is a data tree (r,N,F). An edge in ¢ may either be a



Project_management_WH

T R

Fact Fact

Fact Fact

Project Customer Cost Project Customer Cost
[A] [a] [1000]  [B] [a] [1500]
Team  Team Team  Team
[1] [2] [2] 3]

Branch Branch Branch Branch

U] [m [ [n

Project Customer Cost Project Customer Cost
[C] [B] [500]  [D] [v] [100]
Team
[4]
Branch Branch

[ U}

Figure 3: Sample multidimensional data tree

parent-child (pc for short, simple edge in XPath) node re-
lationship or an ancestor-descendant (ad for short, double
edge in XPath) node relationship. F is a formula that speci-
fies constraints on TP nodes. More explicitly, F' is a boolean
combination of predicates on TP node values. For example,
the TP from Figure 4(a) selects all projects whose cost is
strictly greater than 1000. Matching this TP against the
data tree from Figure 3 outputs a new data tree, also called
witness tree (WT), which is depicted in Figure 4(b).

t F
s1 $1.tag=Fact & Fact
e $2.tag = Project & IR
2 $3 $3.tag = Cost & Project  Cost
$3.value > 1000 [B]  [1500]
(a) (b)

Figure 4: Sample pattern (a) and witness (b) trees

To help query MD data modeled w.r.t. Figure 2’s data
tree model, we propose the TP model depicted in Figure 5.
In this TP model, nodes connected to their parent nodes
with a dotted edge do not appear in the WT, unlike nodes
connected to their parent nodes with a solid edge. Moreover,
for each edge (u, v) where u is a parent (or an ancestor) of
v: a “4” label means that one or many matches of v are
allowed for each match of v in a WT; a “?” label means
that zero to one match of v is allowed for each match of
u in a WT; and a “1” label means that one and only one
match of v is allowed for each match of v in a WT. Nodes
from our TP model are tagged with $i (¢ being a number) or
with . Nodes tagged with % are always connected to their
parent nodes with a pe relationship (/). In XPath 2.0 [2],
a path x/x such that x is a node returns a different result
from the path z//*. x/* returns the hierarchy connected
to z while z//* returns the same result as z/x but with
duplicate nodes. Thus, we choose to respect the XPath 2.0
standard.

Formula F precises how our TP model matches a MD
data tree, as follows. Node $1 matches one fact. Node $3
specifies one to many grouping elements (denoted GE in F).
A grouping element $3 is a hierarchical level. Node $2 mod-
els all nodes that may exist between $1 and $3. Node $4
receives $3’s content in order to match only one node cor-

60

$1.tag = Fact &

$3.value = GE &

$4.tag = $3.value &

$5.tag != $4.tag &

$6 = Measure &

$7.tag = AF &

$7.value = AF($6.value) &

$8.tag = $2.tag |= $3.tag |= $4.tag |= $5.tag
|= $6.tag |= $7.tag

Figure 5: Multidimensional tree pattern model

responding to each grouping element. Node $4’s content
finally receives a group G (Section 3.2). Node $5 matches
all dimension hierarchical levels different from $4. These
matched nodes do not appear in the WT because the cor-
responding dimensions do not belong to grouping elements.
$6 specifies one to several measures required for aggregation
purposes. Node $7 stores the result of applying an aggrega-
tion function (e.g., sum, count, etc.) AF on nodes $6. There
is no guarantee that all the nodes output when matching the
* child nodes of $4 against a MD data tree appear in the
WT due to incomplete hierarchies. Thus, node $8 retains
the matching result of the % child nodes of $1, except mea-
sures not used in any aggregation.

3.4 Grouping and Roll up Algorithms

In this section, we translate the principles from Section 3.2
into a grouping algorithm called Query-Based Summariz-
ability (QBS) that exploits the data and query models from
Section 3.3. Then, we devise a roll up operator based on
QBS.

@BS (Algorithm 1) essentially processes a “group by” query
with respect to any number of grouping criteria, and addi-
tionally handles summarizability issues on the fly. QBS in-
puts: (1) a data tree D modeled w.r.t. Figure 2’s data tree
model and (2) a TP TPQ modeled w.r.t. Figure 5s TP
model. QBS outputs a list of WTs WTlist (i.e., a set of
at least one WT). QBS proceeds into two main steps: (1)
incompleteness and non-strictness management; (2) group
matching to construct correct aggregation results.

More precisely, QBS first initializes WT'list to empty. Then,
for each fact, a variable Group_list, which stores together all
possible groups from different grouping elements, is also ini-
tialized to empty. Such groups are stored in the Group vari-
able, which comprises node values matched by $4 in TPQ



Algorithm 1 QBS grouping algorithm

1: Input:
2: D // Data tree
3: TPQ // Tree pattern
4: WTlist < 0
5: for all $1 do
6:  // Step #1: Summarizability processing
7:  Group.list +
8:  for all $4 do
9: Group + Group U $4.value
10: if 34 ¢ $l.children() and Group.nbElements() <
$1.currentChild () .nbChildren() then
11: Group < Group U “Other”
12: end if
13: Group_list < Group_list U Group
14: end for
15:  // Step #2: Group matching
16: WT <« WTlist.exists(Group_list)
17:  if WT # ( then
18: WT .update (36, $7)
19: else
20: WT.create(D, TPQ)
21: WTlist + WTlist UWT
22: end if
23: end for

24: return product(WTlist)

(Step #1). In case of missing instances from a hierarchical
level of the grouping element (if statement on line 10), the
“Other” value is concatenated to Group. The test on line
10 means that $4 is not a child (i.e., dimension) node of the
current fact and the number of elements in Group is infe-
rior to the number of edges rooted at the current dimension
node (i.e., presence of an incomplete hierarchy). When a
new group list is about to be built, the algorithm tests its
existence in WTlist, i.e., it tests whether there exists a WT
from WTlist where a node tagged with the same grouping
elements has a value equal to the group list’s. If true, the
aggregation node is updated with current measures. Other-
wise, a new WT is added to WTlist w.r.t. TPQ. Finally,
all WTs are regrouped together under a unique root with
the help of the product () function.
The description of all functions called in QBS follows.

e r.children() returns the set of child nodes of node x.

e z.nbChildren() returns the number of children of node
x. If our context, this function returns the number of
edges rooted at x.

e r.currentChild () returns the current child of node x.

e (G.nbElements() computes the number of elements in
group G.

o Tlist.exists(Glist) returns the data tree containing
group Glist from one of the trees of Tlist, and () oth-
erwise.

e T.update(z, y) updates the value of node y from tree
T with the value of node z.

e T.create(D, TPQ) creates a tree T' by matching TP
TPQ against data tree D.

e product (T'list) regroups together all trees from tree
set T'list under one single root.

Eventually, a roll up operation is simply achieved by call-
ing QBS several times, in sequence, with the output tree of
each stage becoming the input tree of the next stage (Fig-
ure 6). For example, let us consider the MD data tree from
Figure 3 and query Q1 = “total cost of projects per team
and per customer”, which translates into a TP whose for-
mula is provided in Figure 7.

$1.tag = Fact &

$3.value = {Team, Customer} &

$4.tag = $3.value &

$5.tag |= $4.tag &

$6 = Cost &

$7.tag = Sum &

$7.value = sum($6.value) &

$8.tag !=$2.tag != $3.tag != $4.tag != $5.tag
I=$6.tag != $7.tag

Figure 7: Q1 TP formula

For fact Project[A], QBS builds Group = 1-2. A first WT
is thus created into WTlist w.r.t. Figure 7’s TP, with di-
mension nodes (grouping element instances) Team[1-2] and
Customer[a], and an aggregation node Sum[1000]. For fact
Project[B], Group = 2-3 is built. Then, the algorithm checks
whether there exists a WT in WT List containing the Group_list
(Team|[2-3], Customer|[c]). As the answer is no, a second
WT is created with dimension nodes Team[2-3] and Customer|a],
and aggregation node Sum[1500]. Similarly, for fact Project[C],
Group = 4 is built and a new WT is created with dimen-
sion nodes Team[4] and Customer|[§], and aggregation node
Sum[500].

For fact Project[D], there is no grouping element. Thus,
we build Group = Other and a new W'T is created with di-
mension nodes Team[Other] and Customer[], and aggrega-
tion node Sum([100]. Here, QBS traverses all elements of the
hierarchy associated to Project[D] before assigning “Other”
to Group. Finally, all created WTs in WTlist are appended
under the same root (Figure 8). Note that the hierarchy of
branches is always saved in WTs. QBS exploits the hierarchy
schema (metadata) to consider Group[Other| as the parent
element of Branch[I] in the corresponding WT.

To complete the roll up operation, i.e., aggregating on
branches from the aggregation already computed on groups,
@BS inputs a new TP corresponding to Q2 = “total cost of
projects per branch and per customer”, whose formula is
given in Figure 9, and the result tree from Figure 8.

$1.tag = Fact &

$3.value = {Branch, Customer} &

$4.tag = $3.value &

$5.tag != $4.tag &

$6 = Cost &

$7.tag = Sum &

$7.value = sum($6.value) &

$8.tag !=$2.tag != $3.tag != $4.tag != $5.tag
1=$6.tag != $7.tag

Figure 9: Q2 TP formula

For fact Team[1-2], Group = I-II is built and a WT is
created with dimension nodes Branch[I-II] and Customer|a],
and aggregation node Sum[1000]. For fact Team[2-3], Group
= I-II is built. Then, QBS checks whether Group_list (Branch

61



Data tree DT, . WTlist WT; —» —> .. WTlist WT,; — WTlist WT,
B QBS QBS
Tree pattern TPQ, Tree pattern TPQ, Tree pattern TPQ,

Figure 6: Roll up process

Project_management_WH

IS b S

Fact Fact Fact Fact

Team Customer  Sum Team Customer  Sum Team Customer Sum  Team Customer  Sum

[1-2] [a] [1000] [2-3] [a] [1500] [4] Bl [500] [Other] [v] [100]
Branch Branch Branch Branch Branch Branch

U] [m 0] [ [ ]

Figure 8: Sample roll up operation — Step #1

[I-1I], Customer|a]) exists in WTlist. Here, the answer is
yes, and the value of the Sum node in the returned WT is up-
dated to 2500. For fact Group[4], Group = Il is built. After
checking the presence of Group_list (Branch[II], Customer[A3])
in WTlist (which is negative), a new WT is created with
dimension nodes Branch[II] and Customer[J], and aggrega-
tion node Sum[500]. For fact Team[Other], a new WT is
created with dimension nodes Branch[l] and Customer|[7],
and aggregation node Sum[100]. Finally, all created WTs
in WT List are again appended under the same root (Fig-
ure 10).

4. VALIDATION

Although we should test our approach against other query-
based [8], and especially XOLAP [22, 23] approaches, these
approaches do detect summarizability issues, but then do
not output actual aggregates. Thus, though Pedersen et
al.’s reference approach [24] and its fairly recent enhance-
ments [18, 19] apply once a priori, we can only compare our
approach with it. Moreover, we particularly focus on the

MakeStrict and MakeCovering algorithms, since MakeCovering

generalizes MakeOnto. For conciseness, we label the combi-
nation of MakeStrict and MakeCovering as Pedersen in the
following.

4.1 Complexity Study

Let us recall Section 2.1’s notations: f is the number of
facts in the data warehouse and d the number of dimensions.
Moreover, let s be number of subdimensions, i.e., branches
in non-strict hierarchies. When processing summarizability
in QBS (Step #1 of the algorithm), for each fact and each
dimension, we need to check missing values in hierarchies
and replace them by “Other”, and then to check whether
the value exists in the current group. Thus, f xdx (1+2+
... + s —1) tests must be performed in the worst case. Thus,
the complexity of summarizability processing is O(fds?).

Furthermore, when performing aggregation, for each fact,
we need to check whether a group exists. Following the
same reasoning, the complexity of group matching (Step #2
of @BS) is thus O(f%ds?). Thus, the global complexity of
QBS is O(f2ds?) + O(fds?) = O(f?*ds®) = O((fds)?).

Since fds represents the input size, if we state that n =

fds, then the worst-case complexity of QBS is O(n?), i.e.,
the same as Pedersen’s [24]. The worst case occurs when
using linear search in the algorithms. Using binary search
instead should bring complexity down to O(n log n) in most
realistic scenarios [24].

4.2 Experimental Validation

4.2.1 Experimental Setup

To compare QBS to Pedersen, we use the XWeB bench-
mark [15], which remodels the TPC-H [31] relational database
as a star XML schema. XWeB initially generates documents
scaling in size from 50,000 to 250,000 facts. The first and
second rows of Table 1 range generated data in number of
facts and kilobytes (mininum size is 13 MB and maximum
size 67 MB).

Then, since XWeB’s data warehouse is not modeled w.r.t.
our data tree model (Section 3.3.1), we must translate it.
Figure 11 depicts the XWeB data tree model, which con-
tains sale facts, four dimensions (part, customer, supplier
and date) and two measures (f_quantity and f_totalamount).
The third row of Table 1 lists the sizes of the correspond-
ing instances (minimum size is 27 MB and maximum size is
135 MB).

sales

sale sale

part  customer supplier date f quantity .. f totalamount
type3 nation nat|ion day

type2 region region month

typel year

Figure 11: XWeB data tree model

Then again, XWeB’s data warehouse does not include
any complex hierarchy. Thus, we create variants of the



Project_management_WH

T

Fact Fact Fact
Branch Customer Sum Branch Customer Sum Branch Customer Sum
(-] [a]  [1500] [ [B]  [s00] [ [y]  [100]

Figure 10: Sample roll up operation — Step #2

Table 1: Dataset size (KB)

No. Facts 50,000 | 100,000 | 150,000 | 200,000 | 250,000
XWeB 13,661 | 27,366 | 41,070 | 54,775 | 68,479
XWeB DT 27,700 | 55,390 | 82,800 | 110,577 | 138,015
Tncomplete 5% | 27,626 | 55,242 | 82,543 | 110,249 | 137,573
Non-strict 5% 28,660 | 57,328 | 85,671 | 114,422 | 142,786
Complex 5% 28,376 | 56,742 | 84,791 | 113,252 | 141,310
Tncomplete 50% | 25,020 | 50,030 | 74,769 | 99,842 | 124,601
Non-strict 50% | 35,412 | 70,826 | 105,014 | 141,397 | 176,627
Complex 50% 32,522 | 65,031 | 97,263 | 129,830 | 162,088

dataset with different configurations of hierarchies: incom-
plete only, non-strict only and complex. Moreover, com-
plexity is distributed by percentage of total number of di-
mensional nodes. For example, in Table 1, which features
the sizes of these datasets (last six rows), “Complex 5%” on
50,000 facts means that among 200,000 dimensional nodes
(50,000 x 4 since each fact refers to four dimensions), 10,000
nodes are made complex. Such nodes are randomly dis-
tributed among every 20 (100/5) dimensional nodes. More-
over, the value of each generated node is randomly selected
w.r.t. its dimensional applicable values, e.g., a month node
must contain numerical values between 1 and 12. Note that
although Table 1 shows data sizes only for the 5% and 50%
configurations, we also exploit intermediate configurations,
i.e., 10% and 20%. In Table 1, also note that data size ex-
pectingly decreases in incomplete configurations, since some
subnodes are deleted, while data size increases in non-strict
configurations, since subnodes are added to some dimen-
sional nodes. Globally, data size increases in complex con-
figurations since increases due to non-strictness are greater
than decreases due to incompleteness.

Among XWeB’s workload of queries, we focus on four
queries with various number of dimensions (labeled 1D to
4D), and select the most detailed hierarchy levels for group-
ing because they form more complex groups. As shown in
Table 2, we roll up to levels day, type3, nation and nation of
dimensions date, part, customer and supplier, respectively.
n represents the number of dimension involved in a given
query. The sum aggregation function is used in our experi-
ments to compute the total sale amount sum( f_totalamount).
Any other aggregation function could be used, though.

Table 2: Group by n-dimensions queries

n part customer | supplier | date
1D day
2D | type3 day
3D | type3 | nation day
4D | type3 | nation nation day

Finally, our experiments run on a Toshiba laptop with
an Intel(R) Core(TM) i7-2670QM CPU @ 2.20 GHz, 4 GB

63

memory and 64-bit Windows 7 Home Premium, Service
Pack 1. The QBS, MakeCovering and MakeStrict algorithms
are implemented in Java JDK 1.7, using the SAX parser to
read XML data. The only difference between our Java code
and Algorithm 1 is that the output tree is built on the fly
instead of applying a product on intermediary trees, to op-
timize performance.

4.3 Experimental Results

The following subsections present the results of our ex-
perimental comparison of QBS and Pedersen. To perform
this comparison, we created metadata so that MakeCovering
replaces incomplete values by “Other” like QBS does. For
Pedersen, we also differentiate between query execution time
and preprocessing overhead, while we cannot for QBS since it
operates at query time and overhead is confused with query
execution time.

4.3.1 Results on Simple Hierarchies

Figure 12 shows that QBS’ time performance increases lin-
early with data size (i.e., the number of facts) and the num-
ber of dimensions in the query, except for query 3D on 50,000
facts, which incidentally bears a lower grouping complexity.

10000 000
,r”’a
1 000 000
z
-1D
% 100000 —
=
10 000 3D
— —-4D
1000
50000 100000 150000 200000 250000
Number of Facts
Figure 12: (QBS’ execution time according to the

numbers of facts and of dimensions

Figure 13 shows that the time performance of both ap-
proaches increases linearly w.r.t. data size and the number
of dimensions used in queries.



2 Bxi

£ &

7 o

P 7 &

- a1 2 ©
B 4

» 1000000 Gl A 2

1 24 i

£ 7 L P #

~— 3 [ s wfl

o 100000 i : ol i

3 ol o 2l il

7% 784 $d 7 7% Sl

iy 10 000 7 g % a Gip i

s il el o i 7 el Sl

3 Bl 08 B A A Al il

A 3 AR il 7 AR

1000 A a1 i bEL B B Bl A 7 #d Gl Byl A

1D 2D 3D 4D|1D 2D 3D 4D 1D 2D 3D 4D 1D 2D 3D 4D 1D 2D 3D 4D
50000 10000 150000 200000 250000

Number of Facts
QBsS Pedersen without Overhead [ Pedersen with Overhead

Figure 13: Comparison of QBS and Pedersen on simple
hierarchies

On average, the execution time of QBS is 2 times lower
than that of Pedersen with overhead, but it is 0.17 times
higher than that of Pedersen without overhead.

However, both QBS and Pedersen consume a lot of time,
especially when running the 4D query (about an hour). To
find out why, we perform two more experiments, dissociat-
ing complex hierarchy processing time (i.e., summarizability
processing time) from group matching time. This is possi-
ble because XWeB’s data are originally summarizable. Fig-
ure 14 shows that enforcing summarizability in QBS does not
affect time performance much, while group matching has a
great impact that increases with the number of dimensions.

5000 000
n
£ 500000
© 50000
E
= 5000
500

1D 2D 3D 4D|1D 2D 3D 4D 1D 2D 3D 4D 1D 2D 3D 4D|1D 2D 3D 4D

50000 10000 150000 200000 250000
Number of Facts
QBS without Summarizability Processing, without Group Matching
£ QBS with Summarizability Processing, without Group Matching
2 QBS with Summarizability Processing, with Group Matching

Figure 14: Comparison of summarizability process-
ing time and group matching time in QBS

Figure 15 confirms that Pedersen also spends most of its
time processing group matching, while overhead consumes
little time. When processing group matching, we indeed
need to check whether the group exists.

Thus, we must check every hierarchy level instance in the
whole group, which contains several instances from all di-
mensions. Doing so is very time consuming comparing to
traditional aggregation, which only checks for the existing
group as a whole. However, no approach dealing with XML
grouping, and a fortiori no XOLAP approach, can avoid
this issue.

4.3.2  Results on Complex Hierarchies

Due to space limitations, we only present here our ex-
periments on 5% and 50% incomplete, non-strict and com-
plex hierarchies (the approximate minimum and maximum
scale), but we did go through the whole range.

5 000 000

w 500000

E

@ 50 000

E

= 5000
500

1D 2D 3D 4D/1D 2D 3D 4D|1D 2D 3D 4D 1D 2D 3D 4D 1D 2D 3D 4D

50000 10000 150000 200000 250000
Number of Facts

Pedersen without Summarizability Processing, without Overhead
Pedersen with Summarizability Processing, without Overhead
£ Pedersen with Summarizability Processing, with Overhead

Figure 15: Comparison of summarizability process-
ing time and group matching (overhead) time in
Pedersen

4.3.2.1 Incomplete Hierarchies.

The results from Figures 16 and 17 reveal two cases. When
the number of dimensions is small (up to query 2D), the ex-
ecution time of QBS is 0.9 times lower than that of Pedersen
with overhead, for both 5% and 50% hierarchies, on aver-
age.

1000 000
@ 100 000 -
= i i
£ 10000 A0 ng
1D 2D 3D 1D 2D 3D 1D 2D 3D 1D 2D 3D 1D 2D 3D

50000 | 100000 | 150000 200000 = 250000

Number of Facts
QBS Pedersen without Overhead B Pedersen with Qverhead

Figure 16: Comparison of QBS and Pedersen on 5%
incomplete hierarchies

When overhead is not included in Pedersen, the execu-
tion time of @BS is 0.04 times lower (i.e., extremely close)
on 5% hierarchies and 0.02 times lower (i.e., extremely close)
on 50% hierarchies, on average. For a larger number of di-
mensions (query 3D), the execution time of QBS is the same
as Pedersen without overhead on 5% hierarchies and 0.06
times lower (i.e., extremely close) than that of Pedersen
without overhead on 50% hierarchies, on average. When
overhead is included in Pedersen, QBS’ execution time is on
average 0.2 and 0.06 times lower (i.e., extremely close), on
5% and 50% hierarchies, respectively. Both approaches ac-
tually have different tradeoffs. QBS takes less time when
reading incomplete data, but more time to solve incom-
pleteness, while the reverse is true for Pedersen where data
are normalized. Thus, when the number of dimensions in-
creases, QBS’ overhead when processing incomplete hierar-
chies at run-time is a handicap that evens global perfor-
mances w.r.t. Pedersen. Still, we can notice that both
approaches are affected by the poor performance of group
matching, which explains why we did not include query 4D
in these experiments.



1000 000

g

100 000

2
reeresess

ze|
el

10 000

e
e

Time (ms)
S
S

STOIHY

e

o

e
rese
2

o

4o

v
s
R
X0
20
s
7

e

2
R R
e e e e
SRS RS URESEERES

S

SOOI IO HhEhhisssy
RN

O

0
ATy

e

.
.

3

7 ¥

;»‘

?

ST
TS
I
oo

SR
ferarerin
X

2

7

1000

2D 3D 1D 2D 3D 1D 2D 3D

50 000 100000 & 150000 & 200000

Number of Facts
QBS E Pedersen without Overhead [ Pedersen with Overhead

250 000

Figure 17: Comparison of QBS and Pedersen on 50%
incomplete hierarchies

4.3.2.2 Non-Strict Hierarchies.

The results from Figures 18 and 19 show similar trends to
those of Figures 16 and 17, because the tradeoffs in QBS and
Pedersen are essentially the same for non-strictness man-
agement.

7 000 000

%)

700 000

TN

|
vios

e

70 000

7

Time (ms)

NSNS

2
r

2

Sy
i

LSOOI
B

IS
Loivoiootintiot0i)

AT

S
R

EEREREEY

oo

1D 2D 3D

7 000

1D 2D 3D 1D 2D 3D|1D 2D 3D 1D 2D 3D

50000 | 100000 & 150000 | 200000
Number of Facts

Pedersen without Overhead & Pedersen with Overhead

250 000
QBS

Figure 18: Comparison of QBS and Pedersen on 5%
non-strict hierarchies

7 000 000
£ 700000 o 7
— o X asll & o
= il 7 i
£ 71 bl 7 o
24l a7 G| 7
il el A a
2 vl 2 sl 73
AR il 2l v s
i 2 s 7 Gr 7 7%
1D 2D 3D|1D 2D 3D 1D 2D 3D 1D 2D 3D 1D 2D 3D
50 000 100000 & 150000 @ 200000 = 250 000

Number of Facts
QBS & Pedersen without Overhead E Pedersen with Overhead

Figure 19: Comparison of QBS and Pedersen on 50%
non-strict hierarchies

However, for QBS, non-strictness processing is 9 times higher
than incompleteness processing, on average (Figure 20). More-
over, non-strictness processing is 37 times higher than in-
completeness processing, on average (Figure 21).

Ultimately, the execution time of QBS is 0.1 times lower
than that of Pedersen with overhead (5% hierarchies) and

65

10 000 000

1000 000

100 000

Time (ms)

10 000

T

o

NN\

1D 2D 3D 1D 2D 3D 1D 2D 3D 1D 2D 3D|1D 2D 3D

50,000 100,000 150,000 200,000 | 250,000
Number of Facts
& Non-strict

ki

1000

Incomplete @ Complex

Figure 20: Evaluation of the three types of 5% hi-
erarchies in QBS

10 000 000

R

1 000 000

—_

7]
£100 000
QO

£
= 10000

1D 2D 3D‘1D 2D 3D 1D 2D 3D 1D 2D

1D 2D 3D

3D

50,000 | 100,000 ‘ 150,000 @ 200,000 @ 250,000
Number of Facts
& Non-strict

Incomplete @ Complex
Figure 21: Evaluation of the three types of 50% hi-
erarchies in QBS

0.03 times lower (i.e., extremely close) than that of Pedersen
with overhead, on average (50% hierarchies). When over-
head is not included in Pedersen, the execution time of QBS
is on average 0.05 times lower (5% hierarchies) and 0.01
times lower (50% hierarchies) (i.e., extremely close).

4.3.2.3 Complex Hierarchies.

The results from Figures 22 and 23 bear similar results to
the non-strict case, again because the cost of non-strictness
processing is much higher than that of incompleteness pro-
cessing (Figures 20 and 21).

Group matching is indeed mainly impacted by non-strict
hierarchies. However, in some cases, such as in the 3D query
on 250,000 facts in Figure 20, @BS performs better in the
complex case than in the non-strict case, because non-strict
processing incidentally produces fewer complex groups, thus
simplifying group matching. For 5% hierarchies, QBS’ exe-
cution time is 1.8 times lower than that of Pedersen with
overhead and 0.01 times lower (i.e., extremely close) than
that of Pedersen without overhead, on average. For 50%
hierarchies, QBS’ execution time is 0.09 times lower (i.e., ex-
tremely close) than that of Pedersen with overhead and

0.05 lower (i.e., extremely close) than that of Pedersen without

overhead, on average.



7000 000

700 000

2

X
3

oo
oTeTeTeeTs

e

Time (ms)

70 000

T

1D 2D 3D 1D 2D 3D|1D 2D 3D 1D 2D 3D

s

Toeers

ve
e

oo

SIS

e
e

2
o

3

ST
ERTOet o)
SIS

brace

2D 3D

50 000 100000 | 150000 | 200000
Number of Facts

B Pedersen without Overhead & Pedersen with Overhead

250 000

QBS

Figure 22: Comparison of QBS and Pedersen on 5%
complex hierarchies

7 000 000

2

2

o

TR

2

700 000

2

THT
=

5

2]

7

3

g

e

s

3
>

YT

T

L

.
e |
o

TR

2

SEan

0

e

e
2
T

e
oL

o

T

70000

7000 %.l

1D 2D

2

2

o5

e
%
o

s
=

|
4
TTITVITY
ek
%
TR
L

A
3

22
K
it
s

2

ravi

e
e,

TS
Y
SOOI E O EOOEEHEHRhES
0 9 O 9 9 9 9 P W9
D P ]
RS

S EUEETEES

i

b
TSy
o

Time (ms)
ST
I
\\\\\\\\w}\\\\\_\\_\\\\\\\‘
\_\\\\\\\\\\\}\\\\\\\\\\\\\*

T
B iR R b Rhons
T —_—

ravars

o0
D000
e

4

2D 3D|1D

o

58

2D 3D 1D 2D

%

2D 3D

3D 1D 3D 1D

50 000 100000 | 150000 & 200000

Number of Facts
Pedersen without Overhead 3 Pedersen with Overhead

250 000

QBS

Figure 23: Comparison of QBS and Pedersen on 50%
complex hierarchies

5. CONCLUSION AND PERSPECTIVES

In this paper, we propose the first truly operational query-
based approach to solve summarizability issues in XML com-
plex hierarchies. With respect to existing approaches, ours
(1) modifies neither schema nor data, and thus has no space
overhead and does not alter schema nor data semantics;
(2) does not require any expertise beyond the user’s, thus
sparing the cost of expert intervention; (3) is dynamic w.r.t.
schema and data evolution, thus favoring scalability.

We indeed experimentally demonstrate that the overhead
induced by managing hierarchy complexity at run-time is
totally acceptable. The performance, in terms of query
response time, of our QBS algorithm is indeed comparable
to that of Pedersen et al.’s reference algorithms. However,
our comparison holds when the dataset is static. If schema
or data updates were made, complex hierarchy processing
would take place at regular intervals of time with Pedersen
(instead of once in our experiments). By contrast, QBS would
not have any further overhead, and should thus become more
efficient.

Finally, our approach is implemented as a free Java pro-
totype that is available online, along with our experimental
datasets and the source code of the QBS and Pedersen algo-
rithms®.

The perspectives of this work are twofold. First, although
XML is the best-suited format to represent complex hier-
archy structures, our experiments show that summarizabil-
ity management approaches are still too costly for realistic
OLAP processing, which is supposed to run online, due to

"http://eric.univ-1lyon2.fr/~mhachicha/X0LAP.zip

66

group matching cost. Thus, it is crucial to optimize the
performance of our approach, e.g., by storing data in a non
XML native fashion and/or using effective sorting, indexing
and parallel processing techniques in group matching.

In a second step, we aim to define other XOLAP operators
(cube, drill down, etc.) over complex hierarchies in order to
complete an algebra, and implement them in our software
prototype to provide a fully operational XOLAP framework.

6.
(1]

REFERENCES

A. Abelld, J. Samos, and F. Saltor. YAMZ2: a
multidimensional conceptual model extending UML.
Information Systems, 31(6):541-567, 2006.

A. Berglund, S. Boag, D. Chamberlin, M. F.
Fernéndez, M. Kay, J. Robie, and J. Siméon. XML
Path Language (XPath) 2.0 (Second Edition).
http://www.w3.org/TR/xpath20/, 2010.

K. S. Beyer, D. D. Chamberlin, L. S. Colby, F. Ozcan,
H. Pirahesh, and Y. Xu. Extending XQuery for
Analytics. In 24th International Conference on
Management of Data (SIGMOD 05), Baltimore, USA,
pages 503-514, 2005.

C. E. Dyreson, T. B. Pedersen, and C. S. Jensen.
Incomplete Information in Multidimensional
Databases. In M. Rafanelli, editor, Multidimensional
Databases: Problems and Solutions, pages 282-309.
Idea Group, 2003.

M. Golfarelli, D. Maio, and S. Rizzi. The Dimensional
Fact Model: A Conceptual Model for Data
Warehouses. International Journal of Cooperative
Information Systems, 7(2-3):215-247, 1998.

M. Hachicha and J. Darmont. A Survey of XML Tree
Patterns. IEFEE Transactions on Knowledge and Data
Engineering, 2012. In preprint.

R. D. Hackathorn. Web farming for the data
warehouse. The Morgan Kaufmann Series in Data
Management Systems. Morgan Kaufmann, San
Francisco, USA, 1999.

J. Horner and I.-Y. Song. A Taxonomy of Inaccurate
Summaries and Their Management in OLAP Systems.
In 24th International Conference on Conceptual
Modeling (ER 05), Klagenfurt, Austria, volume 3716
of LNCS, pages 433-448. Springer, 2005.

W. Hiimmer, W. Lehner, A. Bauer, and L. Schlesinger.
A Decathlon in Multidimensional Modeling: Open
Issues and Some Solutions. In 4th International
Conference on Data Warehousing and Knowledge
Discovery (DaWaK 02), Aix-en-Provence, France,
volume 2454 of LNCS, pages 275—285. Springer, 2002.
C. A. Hurtado, C. Gutiérrez, and A. O. Mendelzon.
Capturing Summarizability with Integrity Constraints
in OLAP. ACM Transactions on Database Systems,
30(3):854-886, 2005.

R. Kimball and M. Ross. The Data Warehouse
Toolkit. John Wiley & Sons, second edition, 2002.

J. Lechtenborger and G. Vossen. Multidimensional
Normal Forms for Data Warehouse Design.
Information Systems, 28(5):415-434, 2003.

H.-J. Lenz and A. Shoshani. Summarizability in
OLAP and Statistical Data Bases. In 9th International
Conference on Scientific and Statistical Database

(4]

[5

(6]

(7l

(8]

[10]

[11]

[12]

[13]



(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

(24]

(25]

(26]

Management (SSDBM 97), Olympia, Washington,
USA, pages 132-143. IEEE Computer Society, 1997.
Z. Li, J. Sun, J. Zhao, and H. Yu. Transforming
Non-covering Dimensions in OLAP. In 7th
Asia-Pacific Conference (APWeb 05), Shanghai,
China, volume 3399 of LNCS, pages 381-393.
Springer, 2005.

H. Mahboubi and J. Darmont. XWeB: the XML
Warehouse Benchmark. In 2nd TPC Technology
Conference on Performance Fvaluation €
Benchmarking (TPCTC 10), Singapore, volume 6417
of LNCS, pages 185-203. Springer, September 2011.
E. Malinowski and E. Ziményi. Hierarchies in a
multidimensional model: from conceptual modeling to
logical representation. Data & Knowledge Engineering,
59(2):348-377, 2006.

E. Malinowski and E. Ziméanyi. Advanced Data
Warehouse Design. Springer, Berlin, Heidelberg,
Germany, 2008.

S. Mansmann and M. H. Scholl. Extending Visual
OLAP for Handling Irregular Dimensional Hierarchies.
In 8th International Conference on Data Warehousing
and Knowledge Discovery (DaWaK 06), Krakow,
Poland, volume 4081 of LNCS, pages 95-105.
Springer, 2006.

S. Mansmann and M. H. Scholl. Empowering the
OLAP Technology to Support Complex Dimension
Hierarchies. International Journal of Data
Warehousing and Mining, 3(4):31-50, 2007.

J.-N. Mazén, J. Lechtenbdrger, and J. Trujillo. Solving
Summarizability Problems in Fact-Dimension
Relationships for Multidimensional Models. In ACM
11th International Workshop on Data Warehousing
and OLAP (DOLAP 08), Napa Valley, USA, pages
57-64, 2008.

J.-N. Mazén, J. Lechtenborger, and J. Trujillo. A
survey on summarizability issues in multidimensional
modeling. Data & Knowledge Engineering,
68(12):1452-1469, 2009.

D. Pedersen, J. Pedersen, and T. B. Pedersen.
Integrating XML Data in the TARGIT OLAP
System. In 20th International Conference on Data
Engineering (ICDE 04), Boston, USA, pages 778-781.
IEEE Computer Society, 2004.

D. Pedersen, K. Riis, and T. B. Pedersen. A Powerful
and SQL-Compatible Data Model and Query
Language for OLAP. In 13th Australasian Database
Conference (ADC 02), Melbourne, Australia, volume 5
of CRPIT. Australian Computer Society, 2002.

T. B. Pedersen, C. S. Jensen, and C. E. Dyreson.
Extending Practical Pre-Aggregation in On-Line
Analytical Processing. In 25th International
Conference on Very Large Data Bases (VLDB 99),
Edinburgh, Scotland, UK, pages 663-674. Morgan
Kaufmann, 1999.

E. Pourabbas and M. Rafanelli. Hierarchies and
Relative Operators in the OLAP Environment.
SIGMOD Record, 29(1):32-37, 2000.

M. Rafanelli and A. Shoshani. STORM: A Statistical
Object Representation Model. In 5th International
Conference on Statistical and Scientific Database
Management (SSDBM 90), Charlotte, NC, USA,

67

[27]

[28]

[29]

[30]

[31]

volume 420 of LNCS. Springer, 1990.

S. Rizzi. Conceptual Modeling Solutions for the Data
Warehouse. In R. Wrembel and E. Christian Koncilia,
editors, Data Warehouses and OLAP: Concepts,
Architectures and Solutions, pages 1-26. IRM Press,
Hershey, USA, 2007.

S. Rizzi, A. Abelld, J. Lechtenborger, and J. Trujillo.
Research in data warehouse modeling and design:
dead or alive? In ACM 9th International Workshop on
Data Warehousing and OLAP (DOLAP 06),
Arlington, Virginia, USA, pages 3—10. ACM, 2006.
1.-Y. Song, W. Rowen, C. Medsker, and E. F. Ewen.
An Analysis of Many-to-Many Relationships Between
Fact and Dimension Tables in Dimensional Modeling.
In 8rd International Workshop on Design and
Management of Data Warehouses (DMDW 01),
Interlaken, Switzerland, volume 39 of CEUR
Workshop Proceedings, page 6. CEUR-WS.org, 2001.
R. Torlone. Conceptual Multidimensional Models. In
E. Maurizio Rafanelli, editor, Multidimensional
Databases: Problems and Solutions, pages 69-90.
IDEA Group Publishing, Hershey, USA, 2003.

TPC. TPC Benchmark H Standard Specification
revision 2.3.0. Transaction Processing Performance
Council, August 2005.



Hybrid HBase: Leveraging Flash SSDs to Improve Cost per
Throughput of HBase

Anurag Awasthi
Dept. of Computer Science
and Engineering,
Indian Institute of Technology,
Kanpur, India

anuraga@cse.iitk.ac.in

Avani Nandini
Dept. of Computer Science
and Engineering,
Indian Institute of Technology,
Kanpur, India

nadini@cse.iitk.ac.in

Arnab Bhattacharya
Dept. of Computer Science
and Engineering,
Indian Institute of Technology,
Kanpur, India

arnabb@iitk.ac.in

Priya Sehgal
NetApp Corporation, India

priya.sehgal@netapp.com

ABSTRACT

Column-oriented data stores, such as BigTable and HBase, have
successfully paved the way for managing large key-value datasets
with random accesses. At the same time, the declining cost of flash
SSDs have enabled their use in several applications including large
databases. In this paper, we explore the feasibility of introduc-
ing flash SSDs for HBase. Since storing the entire user data is
infeasible due to impractically large costs, we perform a qualita-
tive and supporting quantitative assessment of the implications of
storing the system components of HBase in flash SSDs. Our pro-
posed HYBRID HBASE system performs 1.5-2 times better than a
complete disk-based system on the YCSB benchmark workloads.
This increase in performance comes at a relatively low cost over-
head. Consequently, Hybrid HBase exhibits the best performance
in terms of cost per throughput when compared to either a complete
HDD-based or a complete flash SSD-based system.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems—Query Processing and
Optimization

Keywords
HBase, Flash SSD, Big Data, Cost per Throughput

1. INTRODUCTION

Column-oriented databases have been proven to be well-suited
for large database applications including data warehouses and sparse
data [1]. Recently, there is a substantial interest in distributed data
stores for large chunks of data, specially in the NoSQL domain,
such as Google’s BigTable [3], Amazon’s Dynamo [6], Apache
HBase [8] and Apache Cassandra [13]. These are being widely

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

The 18th International Conference on Management of Data (COMAD),
14th-16th Dec, 2012 at Pune, India.

Copyright (€)2012 Computer Society of India (CSI).

68

used by several companies and industrial users to store “big data”
of the order of terabytes and petabytes on a daily basis. These sys-
tems are of key-value store type that utilize the column-oriented
architecture.

Out of these, we choose to work with HBase for multiple rea-
sons: (i) it is an open-source software and, therefore, easy to mod-
ify, (ii) it has been successfully deployed in many enterprises, (iii) it
is capable of efficiently hosting very large data with tables having
billions of rows and millions of columns including sparse data, and
(iv) it has become increasingly popular in recent years and has a
significantly large community following.

Traditionally, the column-oriented database systems have been
designed considering disk (HDD) as the underlying storage media.
This means that generally only random seeks have been attempted
to be minimized. The lower latency involved in random reads in
comparison to HDDs has drawn attention, and coupled with the
reducing cost of flash drives and increasing capacity per drive, sev-
eral successful attempts have been made for improving query per-
formance by introducing flash SSDs (some well known examples
are [7, 16, 20]). The use of flash SSDs as a substitute as well as a
complementary storage media for hard disks is also increasing due
to their lower power consumption, lower cooling cost, lesser noise
and smaller sizes.

However, flash has certain disadvantages as well. While exhibit-
ing good performance for random reads, it suffers in case of random
writes. Flash SSDs do not allow in-place updates and requires sub-
sequent garbage collection which results in write amplification and
erasures overhead, thereby impacting random write performance.
Frequent erase operations also shorten the lifetime of SSDs as flash
devices can typically sustain only 10,000 to 100,000 erase cycles.
This adversely affects the overall reliability of the SSD drive. Fur-
ther, the cost per unit capacity of flash SSDs is approximately 10
times that of HDDs.

With such high costs, low density, and low reliability compared
to hard drives, it is impractical to completely replace HDDs with
flash SSDs in large deployments like databases (100s of terabytes
to petabytes of capacity requirement). Instead, practitioners have
adopted hybrid solutions consisting of a mix of SSD and HDD
with different media serving different purposes — SSDs offering
high throughput (measured in terms of I/O operations per second)
while HDDs offering high storage capacity. Such hybrid solutions
provide good performance at better costs compared to pure HDD
or pure SSD systems [12].



In this work, we leverage this hybrid approach to come up with
a better cost per throughput solution for HBase columnar database
systems. As HBase has a lot of metadata or system components,
we try to figure out the relevant items that should be placed in flash
as opposed to HDD to yield an attractive cost per throughput. We
call this modified HBase as HYBRID HBASE.

Hybrid SSD and HDD solutions come in two forms with SSD
used as either as (i) a read-write cache for HDD [10, 24], or as
(i) a permanent store at the same level as HDD [4, 12, 15]. While
the first case of using SSD as an intermediate tier between DRAM
and HDD seems very simple to use and deploy, it leads to caching
problems like redundancy, cache coherency (in case of shared HDD
infrastructure), etc. Further, as flash is limited in its erase and
program cycles, using it as a cache hurts its lifetime much more,
thereby increasing the overall cost per unit capacity of the hybrid
solution. Hence, we propose to use SSD as a permanent store at the
same memory hierarchy as the HDD for our Hybrid HBase.

Any column-oriented database system has two main components
residing on storage media: (i) user data components that store the
actual data, and (ii) system components needed for user data man-
agement that include catalog tables, logs, temporary storage or other
components storing information about current state of system, etc.
While flash can be used to host both the components, for industrial
strength data stores where data sizes are in the order of terabytes
and petabytes, it may be infeasible to host the user data components
due to impractically large costs. Further, the gain in throughput will
depend heavily on access patterns, etc.

Thus, we focus only on hosting the system components of a large
key-store data store on flash. In addition to being much smaller in
size, system components do not change significantly with different
database sizes and access patterns. For example, since write-ahead
log is designed to have sequential I/O, it will be accessed sequen-
tially irrespective of whether the update operation is a random up-
date or a sequential update. Also, the size of the write-ahead log
remains of the order of gigabytes even under heavy load. Addi-
tionally, system components must reside on a persistent media so
that they can be retrieved after a system crash. This rules out the
possibility of hosting them on main memory.

In this paper, we estimate which system components to host in
the flash to improve the cost per throughput of the system. We iden-
tify the system components for a HBase system and analyze the
effects of migrating them to flash both analytically as well as em-
pirically (by performing a thorough benchmarking using the YCSB
workloads). Since flash is used to host only a small amount of data,
the increase in cost is low, although the improvement in throughput
is quite high. Overall, this improves the cost per throughput of the
system considerably as compared to a complete HDD-based setup
or a complete flash SSD-based setup.

The focus of our proposed system is three-fold: (i) better cost
per throughput, (ii) performance independent of access pattern, hit
ratio, and size of data, (iii) easy to setup, i.e., easy deployment
and migration from standard HBase system. Further, the approach
presented is generic and can be applied to other column store archi-
tectures after similar analyses.

Specifically, the contributions of this paper are:

e We analyze the significance of the storage media in the per-
formance of HBase. We assess disk and flash as storage me-
dia, and compare changes in performance with changes in
system cost.

e We propose Hybrid HBase, which uses a combination of
HDD (for data components) and flash SSD (for system com-
ponents), and analyze its performance gain and system cost.

69

\ Parameter [ Disk [ Flash |
Western Digital | Kingston
Model wdlOEARS | SV100S2
Capacity (GB) 1024 128

Cost/GB $0.15 $2.00
Random Seeks (/s) 151 1460
Reads (MB/s) 161 307.5
Sequential writes (MB/s) 128 182.5
Random re-writes (MB/s) 63.2 81.63

Table 1: Different parameters of the two storage media.

The generic analysis can be extended to other column stores
for improving the cost per unit throughput.

The rest of the paper is organized as follows. Section 2 presents
the required background information needed to understand the id-
iosyncrasies of flash SSD as a storage media and HBase as a data
store. It also briefly describes the related work. Section 3 discusses
the feasibility of using flash SSD for hosting the system compo-
nents of HBase and proposes the Hybrid HBase system. Section 4
describes the experimental setup along with performance compar-
ison of the Hybrid HBase system against a complete HDD-based
setup and a complete flash SSD-based setup. Finally, Section 5
concludes and outlines some possible future work.

2. BACKGROUND AND RELATED WORK
2.1 Flash as Storage Media

Hard disk drives (HDDs) are electromagnetic devices that have
moving heads that read/write data using rotation of spindles. This
enforces a mechanical bottleneck for I/O operations. In contrast,
flash solid state devices (SSDs) does not contain any moving parts
and provide instant reads. Consequently, flash provides good la-
tencies for random reads in comparison to disks (up to 100 times
for enterprise SSDs). Re-writes are slower in comparison to reads
due to the erase-before-write mechanism where re-writing requires
erasing a complete block after persisting all its data to a new lo-
cation, leading to write amplification. This, therefore, results in
asymmetric read and write performance. Further, each block can
be erased only a finite number of times before it turns into a bad
block (non-usable). Due to this erase-before-write mechanism, ef-
ficient wear leveling mechanism and garbage collection need to be
supported on flash, else some blocks become unusable much ear-
lier than others. Flash can, however, offer good performance for
sequential writes. Also, it requires less power consumption. Per-
formance comparison of HDDs versus flash SSDs have been done
in [21, 22]. As illustrated in Table 1, the comparison of actual run-
time parameters between disk and flash for the models used in our
experiments shows the same trends.

2.2 HBase

Apache HBase' is an open-source implementation of Google’s
BigTable [3]. It is a distributed column-based key-value storage
system that leverages existing open-source systems such as Zoo-
keeper” and Hadoop’s Distributed File System (HDFS)?.

HBase cluster has one master server, multiple region servers and
the client API. Zookeeper assists the master server in coordinating
with the region servers.

Tables are generally sparse and contains multiple rows contain-
ing several columns, grouped together into column-families. All

"http://hbase.apache.org/
Zhttp://zookeeper.apache.org/
3http://hadoop.apache.org/



Cluster
System Reqi " -
Component Si?\ll?e? ZZ?"IZ? ________ zeglon
(e.g., Zookeeper) erver
— / l N
System i .
SSD Coeronent Region| :++---- | Region
(e.g., temp. storage) /
—— System
Component c Data
SSD (e.q., WAL) omponent
- [
SSD HDD

Figure 1: Hybrid HBase setup.

columns of a column family are stored together in sorted key-value
(ordered by key) format in store files. Each store file stores key-
value pair corresponding to only one column-family.

Each region server can host several regions. A region is a hor-
izontal division of a table and contains store files corresponding
to all column-families of that division. A region splits horizontally
(based on row key) into two daughter regions if its size grows above
a threshold. Therefore, a table is comprised of multiple regions dis-
tributed over different region servers.

Each region server also has a write-ahead log (WAL) file shared
by all its regions. When a write request from a client reaches a
region server, data is first written persistently to the WAL and then
to the in-memory memstore. The write-ahead log is used to retrieve
the data after a server crash. After each flush, the write-ahead log
can be discarded up to the last persisted modification.

The memstore stores data in a sorted manner, and its size can
grow to the order of gigabytes. Once the size of memstore crosses
a threshold, it is flushed to disk as a store file in a rolling fash-
ion, i.e., HBase stores data residing on disk in a fashion similar to
log-structured merge (LSM) trees [19], more specifically in “log-
structured sort-and-merge-map” form as explained in [8]. Accord-
ing to [8], background compaction of store files in HBase corre-
sponds to the merges in LSM trees and happens on a store file level
instead of the partial tree updates. Therefore, HBase uses a write-
behind mechanism and internally converts multiple random writes
to a sequential write for large chunks of data.

To read a key-value pair, first the region server hosting the cor-
responding region is identified using catalog tables. At the region
server, first the memstore is searched to see if the required value is
present there. If not, then the next level of LSM tree stored persis-
tently needs to be examined. This process continues until either all
the levels of LSM trees have been examined or the key is found.

Write involves inserting the updated or new key-value pair in
memstore and writing it sequentially to a WAL. Compaction, mem-
store flush and other such operations happen in background.

Therefore, in HBase, read latencies are higher than write laten-
cies as a read requires first searching the memstore, followed by
searching on-disk LSM-trees from the top most level to the bottom
level in a merging fashion.

On the administrative side, all the information about regions and
region servers are hosted in two catalog tables called .META. and
-ROOT-. Zookeeper, which stores information about the region
server, hosts the -ROOT- table. The -ROOT- table gives the address

70

of the server hosting the .META. table which, in turn, contains the
list of region servers and regions that they are hosting.

A new client first contacts Zookeeper to retrieve the server name
hosting the -ROOT- table. Afterwards, these catalog tables are
queried by the clients to reach the region server directly.

Only when catalog tables are changed due to system crash, re-
gion splitting, region merging or load balancing, does the client
need to re-establish the connection. It is important to note that
for most workloads such events are not too frequent. Thus, the
catalog tables are mostly read-intensive entities. Further, although
Zookeeper is extremely I/O intensive, it needs only a small amount
of persistent data.

2.3 Related Work

Flash SSDs have been successfully used as storage media in
many embedded systems and are ubiquitous in devices such as cell
phones and digital cameras. Hybrid database systems using both
types of storage media (i.e., HDDs and flash SSDs) have also been
proposed [12, 24]. In [12], capacity planning technique was pro-
posed to minimize the cost of a hybrid storage media. It uses flash
SSDs as a complementary device for HDDs rather than a replace-
ment. Further, in [24], a novel multi-tier compaction algorithm was
designed. An efficient tablet server storage architecture that ex-
tends the Cassandra SAMT structure was proposed. It was shown
to be capable of exploiting any layered mix of storage devices.

In [2], a flash-friendly data layout was proposed that used flash
to boost the performance for DRAM-resident, flash-resident and
HDD-resident data stores. Flash has also been used as part of a
memory hierarchy (in between RAM and HDD) for query process-
ing. In [9, 25], a general pipelined join algorithm was introduced
that used a column-based page layout for flash. In [10] flash was
used as a streaming buffer between DRAM and disk to save energy.

In order for applications to work transparently to the idiosyn-
crasies of the flash SSD media, various flash specific file systems
have been developed. YAFFS [18] and JFES* are among the most
popular ones and are part of the log-structured file system (LFS)
[23] class. LFS file systems has an advantage on flash as they log
the changes made to the data instead of overwriting it, thereby trad-
ing the costly erase operations with increased number of read op-
erations. LGeDBMS [11] used the design principle of LFS further
and introduced log structure to flash-based DBMS.

In OLTP systems, significance of flash becomes evident due to
the work of [15]. An order of magnitude improvement was ob-
served in transaction throughput by shifting the transactional logs
and roll back segments to flash SSD. An improvement by an or-
der of two was also observed in sort-merge algorithms by using
flash SSD for temporary tables storage. Further, in [14], it has been
shown that flash SSDs can help reduce the gap between the increas-
ing processor bandwidth and I/O bandwidth.

The work presented here is different from others due to multiple
reasons. Firstly, there have been attempts to introduce flash in the
memory hierarchy between RAM and disk as in [24], but to the
best of our knowledge there is no work done for benchmarking
the performance of column stores such as HBase with respect to
flash SSD as storage media. Secondly, we focus on and explore the
feasibility of using flash SSDs at the same memory hierarchy as
disk for hosting system components. Thirdly, our approach can be
generalized for any distributed key-value column-oriented storage
system, in particular the NoSQL domain.

*http://sourceware.org/jffs2/jffs2-html/



3. THE HYBRID HBASE SYSTEM

In this section, we describe our Hybrid HBase system. The anal-
yses of flash SSDs and HBase done in Section 2.1 and Section 2.2
respectively suggest that it is beneficial to leverage flash SSDs for
setting up a HBase system. However, when storage requirements
are high, it is not feasible to replace the entire storage capacity of
HDDs by flash SSDs. Hence, we focus only on the system compo-
nents of HBase.

3.1 System Components
The major system components of HBase are:

e Zookeeper data

e Catalog tables (-ROOT- and .META.)

e Write-ahead logs (WAL)

e Temporary storage for compaction and other such operations

In the following sections, for each of the above mentioned sys-
tem components, we discuss analytically whether hosting it on flash
SSD can give any performance boost. Section 4.2 analyzes the em-
pirical effects of putting them on a flash SSD as opposed to a HDD.

3.1.1 Zookeeper

The Zookeeper data component stores information about the mas-
ter server as well as the region server hosting the -ROOT- table, in
addition to a list of alive region servers. The client contacts the
Zookeeper to retrieve the server hosting the -ROOT- table while
the master contacts it to know about the available region servers.
The region servers report to Zookeeper periodically to confirm their
availability. This is similar to a heartbeat keep-alive mechanism
and a region server would be declared unavailable if it fails to re-
port. This, thus, makes the Zookeeper very 1/O intensive.

The storage requirements for Zookeeper is essentially propor-
tional to the number of systems in the HBase cluster. For most
cases, it is very low and is in the order of kilobytes only per system.
Hence, it should be beneficial to host it in a flash SSD. However, it
cannot be hosted on main memory due to persistency requirements.

3.1.2 Catalog Tables

The catalog tables (-ROOT- and .META.) are mostly read inten-
sive and are not updated as frequently as the data tables. While the
-ROOT- table has almost a fixed size, the size of the .META. table
grows with the total number of regions in the cluster. Nevertheless,
their sizes are much less (almost insignificant) in comparison to the
data. Thus, these tables are also good candidates for being hosting
on flash SSDs. Again, although the sizes of these tables can fit into
main memory, they cannot be hosted there as persistency needs to
be maintained across system crashes.

3.1.3 Write-ahead-log (WAL)

The write-ahead-log (WAL) is used to simulate sequential writes.
Any write is first done on the WAL and it is later committed to the
disk in a rolling fashion. The WAL itself is written in a sequential
manner as well.

The size of the WAL, unlike the other system components, is not
small. The size grows proportionately with the following three pa-
rameters: (i) the time after which the WAL is committed to disk,
(ii) the rate at which writes happen, and (iii) the size of each key-
value pair. Thus, depending on the workload, the size can become
as large as gigabytes. This, therefore, rules out the possibility of
using main memory. Also, if the WAL resides on a flash SSD, sys-
tem recovery would be faster after a system crash as data written in

71

WAL could be read faster from SSDs. Hence, it would be produc-
tive to host it on flash SSDs.

3.1.4 Temporary Storage

Temporary storage space is used when a region is split or merged.
The rows are generally written sequentially in the temporary stor-
age and then later read in a sequential manner again. The size is not
expected to be large unless there are many region splits and merges.
Combined with the sequential nature of access, introducing flash
for temporary storage should, thus, improve the performance.

The above analyses thus suggest that shifting all the four sys-
tem components of HBase to flash SSDs can yield a better perfor-
mance at a marginal cost overhead. (Section 4.2 shows the gain in
throughput for each system component individually.) This forms
the basis of our proposed HYBRID HBASE system. The setup is
shown schematically in Figure 1. We next estimate the additional
cost of such a hybrid system.

3.2 Additional Cost of Hybrid HBase

The overhead of catalog tables is directly related to the size of the
database. If the maximum number of keys per region (as configured
by the HBase administrator) is R, then the number of entries in
META. ism = N / R, where N is the total number of records in
the database in a stable major compacted state. The -ROOT- in turn
contains only m /R entries. Thus, we need extra space in the order
of 1/R 4 1/R? times the user data space. For typical values of
R, e.g., when R = 1000, this translates to an overhead of only
~ 0.1%.

The space overheads for the Zookeeper and the temporary direc-
tory are proportional to the number of systems in cluster and are
insignificant in comparison to the total size of the database.

The write-ahead-log (WAL), however, can grow to a significant
size, and a flash SSD needs to be installed on each region server.
To get an upper estimate of the size of WAL, we observe that in
the worst case all the memstores will remain uncommitted and the
WAL will keep on growing. Usually there is an upper limit on
the size of the memstores and is always less than the heap size al-
located to HBase. However, in the extreme case, the entire heap
may be used for this purpose (although not recommended), thereby
starving other processes. This allows us to estimate the upper limit
by the size of the heap allocated for HBase. For our experiments,
we used 4 GB of heap and a maximum of 2 GB of memstores be-
fore flushing is forced. Even in higher end server machines having
32GB RAM, if 16 GB is devoted for WAL (which is a high esti-
mate)’, we only need a flash SSD partition of size 16 GB on each
region server. The user data hosted on these machines can be very
high (say up to 2-4 TB) without increasing the risk of over-running
WAL. Thus, this constitutes the largest system cost requirement.
Assuming a 1 TB database and a 8 GB WAL space, the cost over-
head is 8/1024 =~ 0.8%.

Adding all the system components together, the space overhead
grows to at most 1% of the total database size. At an estimate of
flash SSDs being 10 times more expensive than HDDs, the extra
cost overhead of our proposed Hybrid HBase system for installing
flash SSD drives is 10%. Thus, if the gain in throughput becomes
more than 10%, then the cost per unit throughput of the hybrid
system would be better.

Section 4 extensively discusses the gain in throughput by using
flash SSDs. However, before we present the experimental results
on how the hybrid system fares vis-a-vis a completely HDD based
system or a completely flash SSD based system, we describe our

31t is better to flush WAL when the size is small as then the system
rollback and recovery are faster after a system crash.



WIc\)Irkload Operations Access
ame Pattern
A—Update heavy Uli)?iig:ezsg(l)%‘%; Zipfian
B—Read heavy ggggée?ssg Zipfian
C—Read only Read: 100% Zipfian
D—Read latest 1;5:;;;955 :7? Latest
B Short ranges et 5% | Uniform
F—Read-modify-write Rea d-ME)iiE}(fi}:f-s\SZ)te: 50% Zipfian

Table 2: YCSB workloads, as published in [5].

model of how the systems are compared according to the cost and
the cost per unit throughput measures.

3.3 Metrics for Comparing Systems

We compare the cost of storage media only as this is the sole
component varying across different system setups. In addition to a
fixed installation cost, there is a maintenance cost associated with
each storage media that includes power usage, cooling cost and
other such recurring costs. However, since it is harder to estimate
them and manage them, in this paper, we only consider the instal-
lation cost, information about which is readily available.

To calculate the system cost for a storage media over a given
workload, we first estimate the maximum amount of data stored in
the device while the workload is running. We also set the device
utilization ratio to 80% for HDDs and 50% for flash SSDs as sug-
gested in [12]. The device utilization ratio is important as when the
data size grows above it, the performance of the media decreases
due to various factors including garbage collection.

Assume that a system setup S uses n storage media. The max-
imum capacity and the utilization ratio for each of them are {D»,
Ds,...,Dy} and {R1, Ra, ..., Ry} respectively. Hence, the am-
ount of data that can be stored in a device 7 is only D;/R;. If the
price for unit capacity of each storage media is {P1, Pa, ..., P.},
the system cost C' for the entire setup S is

C =

i

(P;.D;/R;)
=1

However, due to significant differences in latencies and cost of
the three systems (the hybrid one and the two using only one type of
storage media), we use the cost per unit throughput metric for a fair
comparison. If a system having a cost of C' achieves a throughput
of T" IOPS (I/O operations per sec), the cost per unit throughput is
C/T.

4. EXPERIMENTAL EVALUATION

In this section, we present the experimental analysis and bench-
marking of our proposed hybrid system vis-a-vis a complete flash-
based system and a complete disk-based system. We conduct the
experiments on a standalone instance of HBase (similar to [24]) to
completely eliminate the network related latencies. This enables
us to better understand the performance and design implications
of Hybrid HBase. Since the idea is to analyze performance im-
provement with respect to storage media, we can expect gain in
performance in similar proportions for a distributed environment.

The results are reported for experiments on a system running
on an Intel i5-2320 LGA1155 processor (4 cores and 4 threads at
3 GHz) with a total of 8 GB of RAM (4 GB as heap), Western Dig-

72

On Flash
40

WAL
Zookeeper
Temporary Zzzzz1
35 Catalog Tables =<3

HDD-based ez
\

A

30

25

Throughput (in ops/sec)

A4

20

A2 LLDLIDLY
b __
AN
)

B

N

Wi

N

5
w
<t
m B

(a) Raw throughputs

On Flash
13

WAL
Zookeeper
Temporary ZzzzZ1

Catalog Tables =1

125
12
Ul

115
11

1.05 N

1 AN
0.95 % A§

WA wB WE

(b) Throughput as a ratio with HDD
Figure 2: Throughputs when single system components are hosted
on flash SSD.

Throughput Ratio w.r.t. HDD-based

ital 1 TB HDD, Kingston SV100S2 128 GB Flash SSD, with 64-
bit Ubuntu-Server 11.10 as the operating system and ext4 as the
underlying file system. We used HBase version 0.90.5 from the
Apache repository as the base system. For all analysis and perfor-
mance evaluations, we used Yahoo! Cloud Serving Benchmarking
(YCSB) [5] version 0.1.4. Table 2 shows the six standard work-
loads (A to F) as identified in [5].

The workloads are composed of ) number of queries (or op-
erations) on R records, and the key generation pattern is decided
by three models, namely, latest, uniform and Zipfian. For a work-
load following a uniform distribution, all records in the database
are equally likely to be chosen for the next query. For a Zipfian
distribution, some randomly selected keys are hot (more frequently
accessed) while most records are rarely accessed for queries. Lat-
est distribution, as the name implicates, reads or writes the most
recently accessed key-value pairs with a higher probability.

For our analysis, we used Q = 10° queries on a database with
R = 6 x 107 records. Each record is of size 1 KB and the total
number of regions in a compact state was found to be 72 (with a
maximum region size of ~ 1 GB). We next discuss a few important
parameters of the system and the HBase configuration.

4.1 System Tuning

The benchmarking of any given system involves several vari-
ables which must be taken care of appropriately to get the true ef-
fect of the desired variable, which in our case, is the storage media.
By considering a standalone system, we have removed all exter-
nal network related issues. We run HBase on a dedicated partition
which is different from the operating system’s (O/S) partition. The
O/S runs on an ext4 HDD partition. Out of 8 GB RAM available,
4GB had been allocated as heap for HBase and 4 GB had been
used by O/S. We also set the swappiness® parameter to zero to en-
able using the entire available RAM. For the ext4 file system, we

6Swappiness is the tendency to use swap area in place of RAM in
order to reserve some RAM for future processes.



1e+06 | HDD
Hybrid
100000 v & non WP in
2 qo00l M M WM MWW
£
3 1000 |
g
3 100 | v
+ S N
W VARV
IR
Ar Ay Bg By Cg Dr Dy Es B FeFauw
YCSB Workloads
(a) Average Latency®
1200 4
HDD throughput
Hybrid throughput zzzzzz { 3.6
_. 1000 r SSD throughput |30
8 HDD costthroughput -+ : 5
2 Hybrid costthroughput --~-- { 28 &
g 800 SSD costthroughput -~~~ )
g * 1 24 °
S 600} » {2 £
s I P
Q . N
= ¥ 5§ N/ 116 £
[= L N N N =
§ 400 s s , , g {12 3
< N NI “N o
F NN *N {08
200 | Ny s s :
o R\ N
YCSB Workloads
(b) Throughput

Figure 3: Performance over different YCSB workloads.

deactivated the maintenance of file access times done by kernel to
further reduce the administrative overheads not needed by HBase.

On flash SSD, we additionally enable TRIM’ support to reset
all flash SSD wear-leveling tables prior to evaluation and main-
tain a 50% utilization ratio. This minimizes the internal flash SSD
firmware interference due to physical media degradation and caching
and enhances the flash performance. An unused flash performs very
well for the initial read and writes, before reaching a stable lower
performance. Hence, we completely fill and empty the flash several
times to eliminate this effect. Further, before starting the experi-
ments, we fill SSD completely with some random data so that each
query has the same state of flash for garbage collection.

For HBase, automatic major compaction was disabled. We per-
form major compaction manually and also empty the cache before
each experiment to provide the same data locality, i.e., the same
initial state for both cache and the data layout on disk. The MSLAB
[17] feature has been enabled to facilitate garbage collection as well
as to avoid lengthy pauses and memory fragmentation due to write
heavy workloads. We set the maximum regions per server to 200
and extended the session timeout limit (after which a server is de-
clared dead) to avoid possible server crashes due to delay in re-
sponses when the system is subjected to an overload.

"The TRIM command specifies which blocks of data in an SSD are
no longer used and can be erased.

8 Xr = Read operation of workload X; Xy = Update operation
of workload X'; Xs = Scan operation of workload X; X; = Insert
operation of workload X'; X rasw = Read-modify-write operation
of workload X.

73

4.2 Single Component Migration

Before we benchmark the proposed Hybrid HBase system, we
first assess the effect of migrating one system component at a time.
These experiments, thus, measure the effects of hosting each sys-
tem component individually on a flash SSD while the rest three
remain on the HDD.

We ran half a million (5 x 10°) queries on a database having
60 million (6 x 107) records over the workloads WA, WB and WE,
i.e., update-heavy, read-heavy and short-ranges. The characteristics
of the other workloads are similar to these (WC and WD are both
read-heavy and are similar to WB while WF has 50% read and 50%
write, similar to what WA also has).

Figure 2 shows the throughputs of the setups (both raw and as a
ratio with a completely HDD-based system). The gains in through-
put are more pronounced for WAL and temporary storage. Hence,
hosting these components on flash SSD is likely to improve the cost
per throughput ratio. However, since the space (and therefore, cost)
overheads of the catalog tables and Zookeeper are almost insignif-
icant, it is beneficial to host them on flash SSDs as well. These
conclusions, therefore, agree with the analyses done in Section 3.1.

4.3 Performance over the YCSB Workloads

Figure 3 depicts the performance of the Hybrid HBase setup vis-
a-vis the completely HDD-based system and the completely flash
SSD-based system for the different operations on the six YCSB
workloads. (As mentioned earlier, for all subsequent experiments,
the database consists of 6 x 107 keys and results reported are av-
erages over 3 runs, each having 10° queries. Moreover, all the four
system components are hosted on a flash SSD.)

Read latencies of SSD-based setup are significantly lower (ap-
proximately 13 times) than both Hybrid and HDD-based setups.
These read operations are random reads which are significantly
faster for a flash SSD and, hence, the lower latencies. Since the
catalog tables (-ROOT- and .META.) and also the Zookeeper data
is stored on SSD in the hybrid setup, read latencies are lower than
HDD (approximately 1.6 times). The user data remains on the disk,
and therefore, latencies are not as low as SSD.

Average latency for update operation is the lowest for SSD fol-
lowed by Hybrid and is the highest for HDD. The update oper-
ation is similar to a random write, and thus, involves writing to
the write-ahead-log (WAL) persistently and storing the updates in
memstores to be flushed later. Since WAL is on flash SSD in a Hy-
brid setup, average update latencies for Hybrid and SSD should be
similar. However, due to other background processes (e.g., major
compaction and JVM garbage collection) that run faster in SSD,
the update latencies for SSD setup are lower.

SSD outperforms Hybrid and HDD setup in scans (sequential
reads) moderately as the difference between sequential reads for
HDD and flash SSD is not as high as random reads (see Table 1).
Average insert latency for HDD, Hybrid and SSDs are also almost
similar. Insert operation differs from update operation as during
inserts, the size of a region grows and may lead to a region split. A
region split also requires updating the .META. table. Thus, average
insert latency is higher than average update latency over different
workloads.

Overall, therefore, as expected, the throughputs of a completely
SSD-based system is higher than that of the Hybrid one, which in
turn is better than a completely HDD-based setup.

Workload A is an update heavy workload and, hence, the through-
puts are lower in comparison to the other workloads. This high
variance in overall throughput is in accordance with the asymmet-
ric read/write performance of flash SSDs. Throughputs for work-
loads having higher percentage of reads are larger in comparison to



Hybrid/HDD

SSD/HDD zzzzz

Hybrid/HDD

W
wzzz71

Hybrid/HDD

SSD/HDD SSD/HDD

12 m B Y
20 5
10
o 8 2 15 o 4
5 5 5
o 6 o o 3
10
4 2
2 5 1
. m S L R
0 0 0N/ NN 72 NN\ 7 N\ 7 N\ 27 I\ 7% 0
A B C D A B C D E F
YCSB Workloads YCSB Workloads 'YCSB Workloads
(a) Throughput ratio (b) Cost ratio (c) Cost per throughput ratio
Figure 4: Relative comparison for different setups.
2! 4!
30000 5000 o5 5000 55
Hybrid 40000 Hybrid
25000 D
20000 35000
20000 _ 30000
0 s %
< 15000 £ 19000 £ 25000 )
® - <
£ £ 2 20000
E E 10000 £
10000 | - 15000
/ 10000
5000 | 5000
5000
0 o Lz ) . ) )
0 02 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 06 0.8 1
Total Operations (in millions) Total Operations (in millions) Total Operations (in millions)
(a) Workload A (b) Workload B (c) Workload E

Figure 5: Total time taken for YCSB workloads.

workloads having no random reads (WE) or higher percentage of
random writes (WA).

4.4 Performance Ratios with respect to HDD

Figure 4 shows the different performance ratios of the Hybrid
and the completely flash SSD-based systems as compared to the
completely HDD-based setup. The performance metrics are through-
put, cost and cost per throughput. Even if the SSD-based setup
gives the highest throughput for all the workloads, the cost per
throughput is worse as compared to a Hybrid setup. In fact, due
to the high costs of flash SSDs, it is worse than even a fully HDD-
based setup. The y = 1 line is shown in Figure 4 to mark the base
HDD-based setup.

The throughput ratio between Hybrid and HDD setups is around
1.75 for all workloads. This leads to a lower cost per throughput
ratio for the Hybrid setup. The cost per throughput ratio for Hybrid
setup is below 1 (approximately 0.66 for all workloads).

The difference between cost per throughput of HDD-based and
SSD-based setups is even larger for workloads A and E, thereby in-
dicating that flash SSDs are not so suitable for update heavy work-
loads or workloads having no random reads. Our proposed Hybrid
HBase setup exhibits the lowest cost per throughput ratio for all
the workloads and can, therefore, be considered the best on this
criterion.

4.5 Progressive Running Time

Figure 5 shows the progressive running time for the different
workloads as more queries arrive (workloads C, D and F are not
shown as they exhibit similar effects). The SSD setup always per-
forms better than the Hybrid one which in turn outperforms the
HDD setup consistently.

We next measure the effect of introducing flash SSDs for garbage
collection and the CPU performance.

74

4.6 Garbage Collection

Figure 6 shows the behavior of Java garbage collector over the
three different experimental setups. The freed memory per minute
is the highest for SSD setup followed by Hybrid. However, accu-
mulative pauses are also the highest for SSD setup. Accumulative
pauses are significantly larger for workloads involving updates/in-
serts. Thus, memory fragmentation is highest for SSD setup which
further increases if an update heavy workload or an insert heavy
workload is applied. Accumulative pauses due to garbage collector
are higher for HDD setup in comparison to Hybrid setup. This is
due to the fact that system components on flash in a Hybrid setup
requires very less frequent random writes, and hence, there is less
memory fragmentation and less garbage collection time.

4.7 CPU Performance

Figure 7 shows the CPU utilization over the three different se-
tups for the workloads A, B and F (others are similar to WB). CPU
utilization for Hybrid setup is slightly larger than HDD setup. The
CPU utilization is highest for the SSD-based setup as flash SSDs
narrow the gap between I/O bandwidth and processor bandwidth.
Variation of CPU utilization in WA for SSD is high as it is an up-
date heavy workload and requires running garbage collector more
frequently, thereby increasing the CPU utilization significantly.

4.8 Effect of Database Size

The next set of experiments assess the impact of database size
on the storage layer in the standalone system. We vary the number
of records in the database, R, for R = {2,4,6, 8,10} x 10”. Due
to space limitations, we proceed only up to 6 x 107 records for
a completely flash SSD-based setup. Figure 8 to Figure 13 show
average latencies for all operations and overall throughputs for the
six workloads A to F.

For workload A, with the increase in number of records, read la-
tency also increases for all the setups. However, as shown in Figure



5000
4500
4000
3500
3000
2500
2000
1500
1000

500

Freed Memory per Minute (in MB/min)

300

HDD
Hybrid zzzzz
SSD === 250

200

Accumulative Pause (in s)

150 N
7\

100 NN AT
\ VAN

HDD
Hybrid zzzzz1
SSD ===

V2777777777 77777777 77777773 (f)

s

i\

m
-

YCSB Workload

(a) Freed memory per minute
Figure 6: Effect on garbage collector over YCSB workloads.

YCSB Workload
(b) Accumulative pauses

50 50
HDD —— HDD —— HDD ——
Hybrid - Hybrid - Hybrid -
% SSb ;.3, 40 SsD ;.j, 40 SSD
c c c
73 [ o
<3 <3 o
13 2 30 g 80
f=4 = =4
i<l 9 o
E 5w § wf
5 E 5
2 2 ‘ 2 \
] L & 10 puin 5 10 i
. ! il ﬁ%l - " o - 0 Lotlh bt ot sl ot d iold Lol vl
0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 0 10000 20000 30000
Time (in s) Time (in s) Time (in's)
(a) Workload A (b) Workload B (c) Workload F

Figure 7: Effect on CPU utilization over YCSB workloads. (Please see the soft copy version for better visualization of colors.)

8a latency increases faster for HDD setup in comparison to Hybrid
setup. As number of records increase, number of regions increases
as well. This leads to more accesses to -ROOT- and .META. tables
which are hosted on flash SSD in a Hybrid setup. Hence, although
initially with 2 x 107 records, read latencies of Hybrid and HDD
setup are comparable, for larger sizes, there is a significant differ-
ence between them. Read latency of SSD is very small in compar-
ison to other two setups as random reads are much faster on SSDs.
The same behavior is shown for read latencies in workloads B, C,
D and F and scan latencies in workload E.

To compare update latencies, it should be noted that while up-
dates to a single region are sequential, those to multiple regions are
random. Hence, if incoming updates/inserts are distributed across
multiple regions, the random write characteristic aggravates. Up-
date latency for workload A and B increases moderately with in-
creasing number of records as shown in Figure 8b and Figure 9b.
The update latencies for workload B is higher for all the three se-
tups as there are only 5% update operations as compared to 50% in
workload A. Since the update operations are distributed over all the
regions, and the number of regions remain approximately equal for
both workloads, this results in more random writes corresponding
to each region for workload A. Thus, in an update heavy workload
(WA), update latency for all database sizes is comparable owing to
the larger sequential write characteristics.

Throughput decreases as number of records increase in all three
setups for all workloads. However, as shown in Figure 8c, the
change in throughput is maximum for SSD setup for workloads
A, E and F. As number of regions increases, writes get more dis-
tributed. This results in smaller chunks of sequential write (random
writes converted to sequential write for each region when written
to new store files) for each region and larger number of such ran-
dom chunks. Workload E includes insert operations and leads to
many region splits. Consequently, garbage collection requirements

75

become higher as well. Thus, the throughput drops rapidly for SSD
setup for workloads A and E. The drop in throughput for the work-
loads B, C and D are less sharper as they are more read-heavy (Fig-
ure 9c¢, Figure 10b and Figure 11c¢).

For workloads A, E and F, the cost per throughput is the high-
est for SSD. With increase in number of records, it increases faster
than the other two setups as shown by slope of the lines. This hap-
pens since the increase in cost is not proportional to the increase in
throughput. For workloads B, C and D as well, SSD has the highest
cost per throughput, but the difference with SSD is smaller as they
are more read-intensive.

For all database sizes and all workloads, Hybrid HBase has the
lowest cost per throughput. This establishes the benefits of our
proposed system.

4.9 Effect of Access Pattern

We next evaluate effect of access pattern for workloads A to F.
The results are reported in Figure 14 to Figure 19.

Update latencies for the uniform access pattern are higher as
compared to the other access patterns since they are distributed to
a larger number of regions. To understand this better, consider the
scenario where there are 5000 write operations. If these are dis-
tributed over 10 regions, then there are 10 chunks of sequential
writes each containing 500 write operations. However, if these op-
erations are distributed over 100 regions (as is more likely for a
uniform access pattern), then there are 100 chunks of sequential
writes each containing 50 write operations. The first will always be
favorable for both HDDs and flash SSDs.

In a uniform access pattern, insert operations lead to lower num-
ber of region splits as all regions grow equally. However, in a Zip-
fian or latest access pattern, insert operations will happen more fre-
quently on a few regions, thereby resulting in more frequent region
splitting. Thus, in spite of having a more random write effect in



(indyBnoay1)/($ unisod (indyBnoay1)/($ ui) 1500 indyBnouy1/($ ut) 1500
©

© o o % N o © o o @« © o o @«
<+ M M N NN - O O O o — -~ o o o o ~— -~ o o o
aNg BRI I ;
m “?** mm“?** mm“¢‘:ﬁ
CINIZB % T o FINKY T o FINKY) | X
555000 = 2 55500 = = —=e=nnn
£2255% , E = gegss E s £22558
EEER Y £ ob 299%% £ b 299555
gopoeee 3 g 2 gopoees g 2 goocee
EEEGB® vz ° 0 EEEG® ° 0 EECobo mmmmrrZzzzzzyy
FEIBEE. Het S SSsEs g £ feogEg U
o5nazTAO | @ 05027 @ ndybno. ul) 150! o5naBAa
T MW.S 2539 vrzz7777777%7] 5 \TIA/ T MW.S 25 5 ﬁ (indubnoay)/($ u) 1509 T MW.S Q 5 Brzzzrzzzzzzzazzzziery
T 5 2 T 5 2 W @y @z T *
P4 P4
B |
_
g ” S =
S 8 8 8 8 8 8 88 8 555000 = 32 828888888
® ~ ©® b ¥ ® « A ® © ~ B .W.W.WWWW m.mlc d® @ N © L ¥ ® «
DOOL T & £ o
(oas/sdo u1) indybnouy] -m (oas/sdo u1) indybnouy ] ‘m mmm.m.m.m. 2 w ‘M (oas/sdo u1) indybnoay
EEE309 5 [}
° ° aznf°° 8 = =
= = 252326 S ==
. . > = 5 o N
BRA aR A o) £ TSh S~ aR A
N g N g S g S 2 N
gNy ASTRETIRTINTINTY 2N 7 SIS £ m 2 N 7 SIS 8
aso e > A coaBz > S > A 5 b7y aso Z =
S¥:47) = 2 osa = 29 z O 5¥:47)
T30 5 50 T30 s 509 = eSS
AT © 2 %5 > oE 5 ™ SIS o
Oz ® E N o R g Z K
c c o O o o
£ ) = o S & & o
Q Q [}
rzzzzzzZg 8 5 ] @ © &~ © N g
TS o § S N SIS e 5 & .Y o S o
= L = LI (08s/sdo uy) indyBnoay ) z 3
- 2 2 - D 2 17}
rzzzzzzZy o & S o & =
N o @ Ra) o © o o
Sy s £ Y BRI 5 e
A < BNA Z|
2 2 I\ 4o
AILIIIILIII 111 > o > o aNy ST 8 1
N < ) N S < S aoaf T - - s X g
B =S 2 =< 852 &z 2
= 9 = Q I = 5 0
o} o} SIS o & O
= = e KR ccum
o © © < I o =a) o =) o o o o =a) = VL O W O W o W o v o
- .. n < > N — .. A % = 0 + ¥ O ® A & - -
0 <) _ SISy e 5 2 2
(sl ui)Aouaie] erepdn ebeiany o (sl u) Aousye] erepdn ebeiany 0 CZzzzZzZZZzZzZZzZZ| © § nmm ® (sl ui) Aousye Lesu| abeleny
- =
5o & 7 2 o 5
= = ESSSS o 8 60
87 = 7 [ e ¥ £ S L 7
g g g
Nd ASTINIIINN 8 aNyg [ANANNNRNNNNNRNNORNN =Y R/ z g ] SIS §
aon B2 2 o apn Bz 2 o S0 ann B2 2
2§17 = [a¥17] = 1 2§17
2o s 2 2o s 2 = 2o
T ST o £ O T STIITTSS o E O T ATINEETY o
E E p
e e | ©
= 3 = 4 8 $ 8 88 88 & °
2, 8 A 1%} - = = = 7
SN o B R i e BB [ANRRRANNRAWRR P
2 e L] (sw up) houye] peay obesoAy e ©
K s & )
77, ) Z ) 7
SO o 5 on SsSssS o 5 6h S o
) ¥ 2 2 ¥ S © e
S O > O
z > d Zz = v
% 7 7
e < Sy e < NS o
= R = = K ~ == K
< 5
N N

o © © 9 9 9 9 o o o o o o
© ¥ & © © © ¥ « ¥ & © ©®© © ¥ d«

(sw u1) Aousye] peay abelony (sw u1) Aousye] peay abelony (sw u1) Aousye] peay abelony

Number of records (in million)
(c) Throughput

76

Number of records (in million)

(b) Average Insert Latency
Figure 11: Effect of database size on YCSB workload D.

Number of records (in million)
(a) Average Read Latency



indybnouy 1/($ ) 1s0D (08s/sdo)/($ uniso0
I NN
© o ®© <+ © o @ © < © o o < mm“ mm“
o o ad o - - o A ad o - - o o o N w7 CINNZ
833 8 833
‘N/BEE gRp L0 WW IS0
Nt = “Ng = = N z
CINIZR S CINIZR H S c o
e 2 5 = | = =B g 3
323008 E = 323008 ” g & vz e £ &,
£55000 c < £55000 X c < 54 S
<4 £ on [SYS o)== “ £ &b S 50
353000 3533000 N = o
googoos g 2 googos g 2 58 2
ava%°9° 8 = ozn®°o9 x, 8 = < g
oFnaTa LK oOFNaTAO - e K % =
T 3DQ 5§D rrzzzizzzzzzzzz777] 5 T 300 8§ Brrzzzzzzzzzzzzzzzzezzy 5 k7 v
I I>» o o~ I I o ~ @ ~
T X, 5 T 5 ©Q = 0
=z =z
o o o (=] (=] o o
o o o o o o o o o o o o o o o (=] o o o o o o o o o o
o wn o w o w0 . o o o o o o o o © © < o o o o o o o o
@ o o — ~— ~ © w < (3] o — — ~ © wn < ™ N —
(oas/sdo u1) indybnouy] (oas/sdo u1) indybnouy ] (oas/sdo u1) indybnouy (oas/sdo u1) indybnoay
2| 4 ZINNY| BN A BN A
G SSSSSTTNTTTSSSY S g SIS 8 g g
2 2 =2 Bz R o777
852 852 252 SN & 852 MMM
i3
T AT © T AT o T N T =

NANNNNNN
§§ -z ©

f=3

) 7 2z « &

IR o AT o m%

] ZZ 2z ..nle

=

) S5 8

oz A 8

AR o I NNNNNNNNNNNNNNN\N e <
Bz < Bz <

6

Number of records (in million)
6

Number of records (in million)

Latest

= i

(b) Average Insert Latency

(b) Average Update Latency

o 9 © 9 9 9 9 9o
© ¥ 4 © ©®© © ¥ d«
L

o o o o o o
[re] < ® « -

0f
5
of
50

(b) Average Read-Modify-Write Latency
Figure 13: Effect of database size on YCSB workload F.

® O N~ © 1 ¥ ® N+~ O

(sl ui) Aouaye pasu| abelony sw ul) Aouare oM -AHIPON-peay abelony (sl ui) Aouaye erepdn abesany (sl ui) Aouaye erepdn abeiany

Figure 12: Effect of database size on YCSB workload E

Figure 14: Effect of access pattern on operation combination of YCSB workload A.

2N g g g
N2 SIS S G SOSN8 G G
oon B2 2 aon 2] 2 avo - aso
=¥47] < 2 o059 z 2 o059 g 2 Q59
ISo s 2 IS0 s 2 IS0 = 2 IS
z SIS s £ S T SO g £ 8 T N ) T
P I IR Crrrrrrrr2 ® 5 g .
< 9 = g
b a0 82 - mmd N <
: D g8 & 28 & S < . 5
§§§§em& §§em% Mmmm """
— — Q
v ° o 4 ° o £ o
SIS o & &b S o 8 &b =1
e R O ¥ S S . S 7
7
5 © 5 0 g 5}
vd € = b £ = g > %
SIS o < OIiImEIEy e < <
e R KN Ny
) & )
o o o o o O O O O O o o o O O O O O O O O ©o o o O o o o o o o o
wn o wn © T q © © © < o ©® © ¢ N O o © T © T o o © © < o

200

(sw uy) Aouaye] ueos abelany (sw u1) Aousye] peay abelony (sw u1) Aousye] peay abelany (sw u1) Aousye] peay abelony

Zipfian

Uniform
Access Pattern

(c) Throughput

Latest
Figure 15: Effect of access pattern on operation combination of YCSB workload B.

Zipfian

Uniform
Access Pattern

77

Latest
(b) Average Update Latency

Uniform Zipfian

Access Pattern

Latest
(a) Average Read Latency



HDD Sy

Hybrid zzzzz1

SSD

) y
o o o (=] o o o
o o =3 (=] (=] o
© w < @ o -~

(0oas/sdo u1) indybnouy

ZINEY

N2

883

8%

T

o

160

=)
¥ & © ®

(sw uy) Aousye] peay abelony

Zipfian

Uniform
Access Pattern

(b) Throughput

Latest
Figure 16: Effect of access pattern on operation combination of YCSB workload C.

Uniform Zipfian

Access Pattern

Latest

(a) Average Read Latency

~

HDD S
Hybrid zzzzz1
SSD =%

W
Zipfian

Uniform
Access Pattern

Latest

(oas/sdo u1) indybnouy ]

o o o =] =] =] o
S S =] S S =]
© [re] < ® « -

SD SN

zzzzz:z7
A IR

HDD S
Hybrid

/

Zipfian

]

WiZzzzzzz22

Gz,
Ay

7

Latest

"""

"""}

Uniform
Access Pattern

AT

e

Zipfian

Uniform
Access Pattern

Latest

o 9 © 9 9 9 9 o
© ¥ d © ©®© © ¥ «

(sw u1) Aousye] peay abelony

o

(c) Throughput

(b) Average Insert Latency
Figure 17: Effect of access pattern on operation combination of YCSB workload D.

(a) Average Read Latency

HDD iy
Hybrid zzzzz1
SSD ====%

[=3 o Q o (=3 o
rel S 0 =] el
Y « - -

(oas/sdo u1) indybnouy

HDD iy
Hybrid
SSD

200
150
0

50

(sl ur) Aouaye pasu| abelony

HDD fomwmy

Hybrid zzzzza

SSD =%

(sw u1) Aouaye] ueos abelany

Zipfian

Uniform
Access Pattern

(c) Throughput

Latest
Figure 18: Effect of access pattern on operation combination of YCSB workload E.

Uniform Zipfian

Access Pattern

Latest

Zipfian

Uniform
Access Pattern

Latest

(b) Average Insert Latency

(a) Average Scan Latency

HDD iy
Hybrid zzzzz1
SSD =3

600
500
0f

o
S S
®

100

(oas/sdo u1) indybnoay

HDD [y
Hybrid
SSD

HDD Gy

Hybrid zzzzza

SSD ==

(sw u1) Aousye] peay abelony

Zipfian

Uniform
Access Pattern

(c) Throughput

Latest
Figure 19: Effect of access pattern on operation combination of YCSB workload F.

Zipfian

Uniform
Access Pattern

(b) Average Read-Modify-Write Latency

Latest

sw u1) Aouare S -AHIPO-peay abelony

Zipfian

Uniform
Access Pattern

Latest

(a) Average Read Latency

78



update access pattern, insert latencies for all access patterns are al-
most similar, with only slightly higher values for uniform access
pattern for all the three setups. If fewer regions are accessed more
frequently for read operations, then read latency decreases due to
lower cache miss. So, both read (in workloads A, B, C, D and F)
and scan (in workload E) latencies are lower for Zipfian and latest
access patterns in comparison to uniform. Read-modify-write op-
eration in workload F involves a read and an update operation, and
hence, has a higher latency for uniform access pattern.

Hence, throughput of uniform access pattern is the lowest for all
workloads. Also, similar to previous analyses, SSD setup provides
maximum throughput followed by Hybrid setup for all the tested
access patterns and workloads.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we analyzed the feasibility of introducing flash
SSD drives for large column store systems such as HBase. Since
hosting the entire database on flash SSDs is infeasible due to its
large costs, we chose only the system components. We did a thor-
ough qualitative and quantitative assessment (by using the standard
YCSB benchmark workloads) of the effects of hosting the four ma-
jor system components of HBase on flash SSDs.

While a complete SSD-based solution exhibited the best through-
put, and a complete HDD-based setup had the least cost, our pro-
posed Hybrid HBase achieved the best performance in terms of cost
per throughput. It was shown to be better by almost 33% than the
complete HDD setup.

In future, it would be useful to assess the effects of flash specific
file systems, if any. Also, we plan to extend our system to a truly
distributed setup where network latencies can play an important
role. Finally, it needs to be explored whether storing some data
components on the flash SSD instead of the HDD can improve the
cost per throughput ratio even further, and whether such a setup can
be tuned automatically according to the workload.

ACKNOWLEDGMENTS

We thank NetApp Corporation, India for partly supporting this work
through grant number NETAPP/CS/20110061.

6. REFERENCES

[1] D.J. Abadi. Columnstores for wide and sparse data. In
CIDR, pages 292-297, 2007.
M. Athanassoulis, A. Ailamaki, S. Chen, P. B. Gibbons, and
R. Stoica. Flash in a DBMS: Where and how? IEEE Data
Engg. Bull., 33(4):28-34, 2010.
F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E. Grube.
Bigtable: A distributed storage system for structured data. In
OSDI, pages 205-218, 2006.
S. Chen. FlashLogging: Exploiting flash devices for
synchronous logging performance. In SIGMOD, pages
73-86, 2009.
[5] B.F. Cooper, A. Silberstein, E. Tam, R. Ramkrishnan, and
R. Sears. Benchmarking cloud serving systems with YCSB.
In SoCC, pages 143-154, 2010.
[6] G.DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: Amazon’s highly available
key-value store. In SOSP, pages 205-220, 2007.

(2]

(3]

(4]

79

[7]1 M. Du, Y. Zaho, and J. Le. Using flash memory as storage
for read-intensive database. In First Int. Workshop on
Database Technology and Applications, 2009.

[8] L. George, editor. HBase — The Definitive Guide: Random
Access to Your Planet-Size Data. O’Reilly, 2011.

[9] G. Graefe, S. Harizopoulos, H. A. Kuno, M. A. Shah,

D. Tsirogiannis, and J. L. Wiener. Designing database
operators for flash-enabled memory hierarchies. IEEE Data
Engg. Bull., 33(4):21-27, 2010.
[10] M. G. Khatib, B.-J. van der Zwaag, P. H. Hartel, and G. J. M.
Smit. Interposing flash between disk and dram to save energy
for streaming workloads. In ESTImedia, pages 7-12, 2007.
[11] G.J. Kim, S. C. Baek, H. S. Lee, H. D. Lee, , and M. J. Joe.
LGeDBMS: A small DBMS for embedded systems. In
VLDB, pages 1255-1258, 2006.
Y. Kim, A. Gupta, B. Urgaonkar, P. Berman, and
A. Sivasubramaniam. HybridStore: A cost-efficient,
high-performance storage system combining SSDs and
HDDs. In MASCOTS, pages 227-236, 2011.
A. Lakshman and P. Malik. Cassandra: A decentralized
structured storage system. Operating Systems Review,
44(2):35-40, 2010.
S. W. Lee, B. Moon, and C. Park. Advances in flash memory
SSD technology for enterprise database applications. In
SIGMOD, pages 863-870, 2009.
S. W. Lee, B. Moon, C. Park, J. M. Kim, and S. W. Kim. A
case for flash memory SSD in enterprise database
applications. In SIGMOD, pages 1075-1086, 2008.
Y. Li, S. T. On, J. Xu, B. Choi, and H. Hu. DigestJoin:
Exploiting fast random reads for flash-based joins. In Mobile
Data Management, pages 152—-161, 2009.
T. Lipcon. Avoiding full GCs in HBase with memstore-local
allocation buffers. http://www.cloudera.com/blog, February
2011.
A. One. YAFFS: Yet Another Flash File System.
http://www.yaffs.net/.
P. E. O’Neil, E. Cheng, D. Gawlick, and E. J. O’Neil. The
log-structured merge-tree (LSM-tree). Acta Inf.,
33(4):351-385, 1996.
S. Pelley, T. E. Wenisch, and K. LeFevre. Do query
optimizers need to be SSD-aware? In Second Int. Workshop
on Accelerating Data Management Systems using Modern
Processor and Storage Architectures, 2011.
M. Polte, J. Simsa, and G. Gibson. Comparing performance
of solid state devices and mechanical disks. In 3rd Petascale
Data Storage Workshop, Supercomputer, 2008.
M. Polte, J. Simsa, and G. Gibson. Enabling enterprise solid
state disks performance. In Workshop on Integrating
Solid-state Memory into the Storage Hierarchy, March 2009.
M. Rosenblum and J. K. Ousterhout. The design and
implementation of a log structured file system. ACM Trans.
on Comp. Sys., 10(1):26-52, 1992.
R. P. Spillane, P. J. Shetty, E. Zadok, S. Dixit, , and
S. Archak. An eficient multi-tier tablet server storage
architecture. In SoCC, pages 1-14, 2011.
D. Tsirogiannis, S. Harizopoulos, M. A. Shah, J. L. Wiener,
and G. Graefe. Query processing techniques for solid state
drives. In SIGMOD, pages 59-72, 2009.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

(22]

(23]

[24]

[25]



Entity Ranking and Relationship Queries Using an
Extended Graph Model

Ankur Agrawal
IIT Bombay

S. Sudarshan
IIT Bombay

ankuragrawal.iitb@gmail.com sudarsha@cse.iitb.ac.in

Ajitav Sahoo
IIT Bombay

ajitavsahoo@gmail.com

ABSTRACT

There is a large amount of textual data on the Web and
in Wikipedia, where mentions of entities (such as Gandhi)
are annotated with a link to the disambiguated entity (such
as M. K. Gandhi). Such annotation may have been done
manually (as in Wikipedia) or can be done using named
entity recognition/disambiguation techniques. Such an an-
notated corpus allows queries to return entities, instead of
documents. Entity ranking queries retrieve entities that
are related to keywords in the query and belong to a given
type/category specified in the query; entity ranking has been
an active area of research in the past few years. More re-
cently, there have been extensions to allow entity-relationship
queries, which allow specification of multiple sets of entities
as well as relationships between them.

In this paper we address the problem of entity ranking
(“near”) queries and entity-relationship queries on the Wiki-
pedia corpus. We first present an extended graph model
which combines the power of graph models used earlier for
structured /semi-structured data, with information from tex-
tual data. Based on this model, we show how to specify
entity and entity-relationship queries, and defined scoring
methods for ranking answers. Finally, we provide efficient
algorithms for answering such queries, exploiting a space ef-
ficient in-memory graph structure. A performance compari-
son with the ERQ system proposed earlier shows significant
improvement in answer quality for most queries, while also
handling a much larger set of entity types.

1. INTRODUCTION

Over the last decade, there has been a lot of work on key-
word search over structured and semi-structured data. Some
of this body of work focuses on finding a closely connected
set of data items containing specified keywords, for example
[4, 10, 1, 9]. In contrast ObjectRank [2] extended the idea
of PageRank to compute keyword specific ranks for objects

Permisson to make digital or hard copies of al or part of this work for
personal or clasgoom use is granted withou fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bea this natice and the full citation onthe first page. To copy aherwise, to
repullish, to post on servers or to redistribute to lists, requires prior spedfic
permisson andor afee

The 18th Internationd Conference on Management of Data (COMAD),
14th-16th Dec 2012at Pune, Inda

Copyright (©)2012Computer Society of India (CSl).

80

Adil Anis Sandalwala
IIT Bombay

sandalwalaadil@gmail.com

Prashant Jaiswal
IIT Bombay

prash.jai@gmail.com

in a connected graph. A similar idea of near queries was
also mentioned briefly in [11]. All the above work focused
primarily on structured data.

In recent years, search over annotated text data has re-
ceived increasing attention. This work is motivated in part
by the availability of annotated text in Wikipedia, and by
the availability of text annotators for named entity recog-
nition/disambiguation, such as [13, 19], which can work on
web scale data. Such annotations add semantic links to text,
identifying mentions of entities in text, and organizing the
entities into a type or category hierarchy. For example, the
occurrence of the words “Kleinberg” in text may be identi-
fied as a mention of the person entity “Jon Kleinberg”.

Suppose the annotation on a text corpus have identified
occurrences of person entities (amongst other types of enti-
ties). We can then run queries such as “find persons near
Web search”; the basic idea is to find mentions of entities
of type person close to the words Web and search, and ag-
gregate over multiple such occurrences to rank persons in
terms of their proximity to the words web and search. Work
in this area includes [5, 6, 8] and [7]; see Section 6 for more
details.

In general, entity ranking involves finding specific entities
as answers to queries. The user submits the search keywords
and also the target type of the desired answers. (We use the
words type and category interchangeably, since both terms
have been widely used in prior work.) Some examples of such
queries as obtained from the INEX 2008 track are: “Find a
list of musicians who appeared in at least one of the Blues
Brothers movies”, and “Find a list of the state capitals of
the United States of America”.

Wikipedia is often used as the source of entities, and the
YAGO category hierarchy [18] (which provides a cleaned up
version of Wikipedia categories combined with the Word-
Net ontology) is used to associate entities with a hierarchy
of categories. Several systems, such as Yago, also extract
relationships from unstructured information and represent
them, for example, using RDF or even relational schemas.
Structured queries are then run on the structured data, by
systems such as Naga [12], [3] and [17]. However, the num-
ber of extracted relationships are limited, and the integra-
tion of unstructured and structured information is limited.
See Section 6 for more details.

The ERQ system [14, 15] has worked on more complex
queries called entity-relationship queries, that can look for
relationships between entities. Queries can specify entities



in a manner similar to entity ranking queries, but addi-
tionally specify desired relationships through keywords. As
an example from [15], a query can ask for “persons related
to Stanford who have founded companies in silicon valley”;
more formally the query asks for “person entities near Stan-
ford that are related to company entities near silicon valley
by the term founded”.

The systems mentioned above exploit entity annotations,
but do not exploit the graph structure of the underlying
data. For example, they cannot answer a query of the form
“find universities near Nobel prize” unless there are men-
tions of the term Nobel prize near the university name. If
person entities related to Nobel prize, are also related to
a university entity, we would consider the university to be
related to Nobel prize. Such transfer of prestige does oc-
cur in graph based systems such as Object Rank [2] and
BANKS [11], but those systems do not support nodes con-
taining annotated text. Our goal is to have a unified model
that handles both graph information and annotated textual
data.

As a first attempt to address the issue, we treated the
Wikipedia corpus as a graph, with documents as nodes and
inter-page links as edges, and ran the near query implemen-
tation of [11] on the graph. However, the results were very
disappointing; the main reasons were (a) the graph is very
densely connected and (b) it makes no sense to consider a
link at the end of a long Wikipedia page to be related to a
word that occurs early in the page.

To address the above problem, we introduce the notion
of a graph where nodes contain words and edges, occurring
at specified offsets. When we traverse the graph to answer
a query, we take the offsets into account, in a way that we
describe later in the paper. This extended graph model is
well suited to Wikipedia data, to annotated Web pages, as
well as to traditional structured data, and can be used in
systems that integrate different types of data.

We then show how to use the extended graph model to de-
fine scoring models for entity and entity-relationship queries,
and to derive efficient algorithms for answering such queries.

The contributions of this paper are as follows:

1. We present (in Section 2) a new graph model that al-
lows nodes to contain terms as well as links at specified
offsets. This model combines the best features of the
graph model, and the document models, both of which
have been widely used in the past.

2. We present (in Section 3) new methods for scoring an-
swers to near queries taking the new graph model into
account.

Unlike earlier work on entity ranking and entity-rela-
tionship queries, our model does not require the user to
provide a precise specification of the desired type of the
results; instead, we allow type-keywords to describe
the desired type. Answers are scored based on how
well the type matches the given type-keywords, and
the entity matches the remaining keywords.

3. We then present (in Section 4) a scoring model for
entity-relationship queries, again based on the extended
graph model.

We also present efficient algorithms for answering entity-
relationship queries in the above graph model.

81

4. We present (in Section 5) several optimizations im-
prove result quality.

5. We present a performance study (in Section 7) which
shows that our techniques give good result quality, out-
performing [15] on most queries.

2. DATA MODEL

We now describe our extended graph model, and then
outline how semi-structured datasets from Wikipedia and
YAGO [18] can be represented in the extended graph model.

2.1 Extended Graph Model

The basic data model we use is a labelled directed multi-
graph G = (V,E), where V is a set of vertices and E a
multiset of edges. Our multigraph model has two further
extensions to better handle documents.

1. Vertices can have an associated text description, mod-
eled as a document; such vertices have an associated
set of (term, offset) pairs. The offset denotes the rel-
ative position of the term from the start of the docu-
ment. Vertices that do not represent documents can
still have text descriptions, with all terms assumed to
be at offset 0.

Vertices can have associated labels; for example, when
modeling Wikipedia, these labels can be used to distin-
guish regular entity nodes from category nodes. Ver-
tices can also store other information, for example a
node prestige may be associated with each node.

2. Edges are directed. Edges can represent a hyperlink
from one document to another; each such edge e =
vl — v2 has an associated offset e.offset which is an
offset within the document represented by vl where
the hyperlink occurs. There can be multiple edges
from one vertex to another, at different offsets, which
is why we use a multigraph model. Edges that do not
represent hyperlinks are assumed to have an offset of
0.

Edges can also have associated labels; for example,
when modeling Wikipedia data, edge labels can be
used to distinguish edges linking a node to its cat-
egory, from edges linking a node to a non-category
node. Edges can also have an associated edge weight.

We call the above graph model as the extended graph model.
The extended graph model only stores nodes and edges
with offset information. The mapping from terms to nodes
(including offset information for term occurrences) is stored
separately, in a full text Lucene index. The term frequency
(TF) of each term in a document can also be stored in
Lucene; for example, terms in a document title can be given
a higher TF. The node prestige of a node can also be used to
boost the score of the corresponding document in Lucene.

2.2 Representing Wikipedia Data

In Wikipedia, every entity is stored as a separate docu-
ment (a Wikipedia page) also called articles. Wikipedia ar-
ticles are all linked or cross-referenced. These articles are
categorized according to the type of entity it represents.
Wikipedia provides us with category types, into which an
author could categorize the pages.



In our model, each Wikipedia page/document represents
an entity, which is the basic unit of our search and thus, it
is represented by a node in the graph. There are two types
of nodes in our model:

e category nodes (representing Wikipedia categories)

e entity nodes (representing all other Wikipedia pages)

Each vertex has a label identifying whether it is a category
vertex or a entity vertex. In addition, each vertex has a sepa-
rate label denoting its page-rank, pre-computed as described
later. If we integrate other Web pages into our graph, we
could use a new node type, web-page node, to represent such
Web pages,

Labels are also associated with the edges to identify the
edge type; the different types of edges in the graph are as
follows.

1. Document to entity edges, which link from a document
to entities referenced in the document. Each entity
has an associated document in Wikipedia. The offset
associated with such an edge is the token offset of the
start of the link in the document.

2. Edges denoting the ’belongs to’ relation from an entity
to a category The offset of such edges is 0.

3. Edges denoting category to category hierarchy; the off-
set of such edges in 0.

Since, a single data graph is built for both entities and cat-
egories different parts of the graph can be traversed based
on the edge type.

Edges linking entities to categories that denote the “be-
longs to” relationship are treated specially for the purpose
of ranking.

As in [4, 11], the node prestige of a node is a measure of its
importance disregarding query keywords, and is computed
using a biased PageRank computation with edge weights,
as described in [11], with teleport probability of 0.3. Offset
information is ignored, and all edges in the original graph
are treated as being of unit weight.

As in [11], for each directed edge u — v in the original
graph, we introduce a reverse edge v — w, if such an edge is
not already present. Each reverse edge is assumed to be at
offset 0, and its weight is defined as the indegree of v.

The Wikipedia category hierarchy has a number of prob-
lems, such as cycles, and improper nesting of categories. For
example, Jerry Yang, the founder of Yahoo! is in the cate-
gory Yahoo!, and thus indirectly (after a few more levels in
the hierarchy) under the category Companies. Based on the
hierarchy, we expect each entity to belong to higher level cat-
egories also. However, we would certainly not expect Jerry
Yang to be categorized as a company.

To avoid these problems we used the category hierarchy of
the YAGO ontology [18]. YAGO includes all Wikipedia en-
tities, as well as conceptual categories from Wikipedia, but
replaces the Wikipedia category hierarchy by the WordNet
hierarchy, suitably integrated with the Wikipedia categories
(which now form the leaf level of the category hierarchy).
This not only improved the quality of results, linking entities
only to relevant categories in most cases, but also reduced
the execution time significantly.

82

3. NEAR QUERIES

In this section, we first describe our model for near queries,
and then describe how answers are scored using our extended
graph model.

3.1 Near Query Model

A near query q can be specified as
find C near (K)

Where C is one or more keywords specifying the target en-
tity type for the answer, and K is a set of keywords; phrases
enclosed in double quotes can also be used in place of key-
words to ensure that the keywords appear together in the
order specified.

Example. Consider a user searching for the list of movies
in which actor Robert De Niro has played a part and is di-
rected by famous Hollywood director Martin Scorsese. The
near query formulation of this query will be:

find films near (directed “martin scorsese” “robert de
niro”)

Here the keyword films gives the type information C, and
the set K is equal to {directed, martin scorsese, robert de
niro}.

Near queries using the above syntax were supported in
the BANKS system [11]. However, as mentioned earlier,
when we attempted to use the BANKS near query model
on the Wikipedia corpus, with Wikipedia pages modeled as
nodes, the performance was very poor; the reason is that
nodes have many keywords and many links, and a keyword
occurring early in a page often has little connection to a link
occurring late in the page. In Section 3.2 we describe how
to score answers based on proximity of keywords to links or
entity mentions.

We use the following terminology in the rest of the paper:

e categoryKeywordList: Keyword (or set of keywords) C
before the meta-word near which specifies the target
categories (entity types).

e nearKeywordList: The set of keywords following the
meta-word near. Each keyword is separated by space
within the parenthesis. Keywords within quotes are
considered as phrases and as a result, single keywords.

e nearKeywordOriginSet: The document pages that con-
tain the keywords in the nearKeywordList.

e relevantCategorySet: The set of categories relevant to
categoryKeywordList.

We could use either of the following alternatives to decide
which documents form the nearKeywordOriginSet:

e AND semantics: Every document in the nearKeywor-
dOriginSet must contain all the keywords in nearKey-
wordList.

e OR semantics: Every document in the nearKeywordO-
riginSet must contain at least one keyword from the
nearKeywordList.

In our implementation we use the default scoring mechanism
of Lucene, which corresponds to the OR semantics.



3.2 Scoring model

We now see how to score answers to near queries, using
the idea of activation spreading, as well as the relevance
of a category to the category keywords in the query. Our
technique extends the spreading activation technique used
for near queries in [11], by taking the proximity between
keywords and links (calculated using offset values) into ac-
count. Our scoring models have a number of parameters;
default values are specified for some of the parameters when
they are introduced, but the values used in our experiments
are given later, in Section 7.3.

3.21 Activation Speading

As described in [11], activation spreading is initiated from
the nodes containing keywords, and spreads activation to
neighboring nodes. The following are the key features: (a)
The initial activation from a given keyword is spread to
nodes containing that keyword, in proportion to the node
prestige (PageRank) of each such node. Nodes that receive
the maximum activation form the results of the near query.
(b) Each node retains part of its incoming activation, and
spreads the remaining to its neighbors; the fraction spread
to each neighbor is inversely proportional the weight of the
directed edge from the node to its neighbor. (¢) Activation
received from multiple neighbors is combined using a com-
bining function. Activation spreading continues until the
amount spread falls below a specified threshold.

We now describe how the above scheme is modified in our
context.

3.21.1 |Initial Activation.

In our context, activation spreading starts from nodes
representing the documents which contain the keywords.
The initial hit set for query keywords is obtained using the
searcher available in Lucene. Lucene also returns the score
of the documents that are obtained as hits during the search.

The initial activation of a node is a combination of of the
relevance of the node to the keywords, given by the Lucene
score for the node, and the node prestige of the node. The
initial Activation value for each node is calculated from these
two scores by combining them either additively:

NodePrestige x o + LuceneScore * (1 — «) (1)
or multiplicatively:
[LuceneScore®]  [NodePrestige'' =] (2)

Here a is a distribution factor that can be tuned to give more
weight to the desired score. By default we use multiplicative
combination with o = 0.5.

Note that the above model is a little different from the
near query model of [11]; that model allowed each near key-
word to appear in a different tuple, and spread activation
separately for each near keyword. The activation scores were
combined across multiple keywords either multiplicatively
(for the AND semantics) or additively (for the OR seman-
tics). In the context of search on Wikipedia and other docu-
ment collections, it makes more sense to compute the initial
activation across all keywords, and then spread activation
only once.

3.2.1.2 Proximity and Speading of Activation.
When spreading activation from a node, an attenuation
factor p is used. Every node spreads a fraction 1 — p of its

83

activation to its neighbors and retains the remaining p frac-
tion for itself. By default, we set u = 0.75. As in BANKS,
the fraction of activation spread to each neighbor depends
on the edge weights. However, the spreading of initial acti-
vation is special cased. The fraction of the initial activation
spread to each outlink depends on the proximity of the out-
links to the near keywords. Intuitively, if a keyword and a
link to an entity occur in proximity in a document, we be-
lieve that the entity is related to the keyword; the closer the
occurrences, the higher is the estimate of relevance of the en-
tity to the keyword. We use this idea to define the amount
of activation transferred to each of the entities linked with
the document.

The position offset of each term of a document is stored
with the index. And the offset information for every link
in a document is stored in the graph during pre-processing
phase. This offset is calculated with respect to the start
of the document. The amount of activation spread to the
entity pointed to by the link is proportional to the distance
between the link and the query keyword in the document.

The function to calculate the proximity of a link with
respect to a keyword must be such that its value degrades
as the distance between the link and the keyword increases.

Formally, if a word w occurs at position i, and a link
to an entity at position j, then if the position j is closer
to 4, the propagated activation for word w at that position
would be larger than the propagated activation at a position
farther away. The issue of how the activation should decay
with distance is studied in [16]. We use the Gaussian kernel
function to calculate the proximity score.

.. —(i—7)2
k(i,5) = exp[=44]

The initial activation associated with a node in nearKey-
wordOriginSet is spread to the outlinks of the node in pro-
portion to proximity (using the formula defined above) based
on the distance between the outlink and the nearest occur-
rence of the near keyword; with multiple keywords, we take
the distance as the minimum, across all keywords, of the
distance as above.

3.2.2 Category Relevance

The answers to a keyword query must satisfy the target
type information specified in the query. In the near query
model, a user specifies the target type for the answers by
providing relevant keywords. In the context of near queries,
this target type specifies one or more categories, and the
result entity must belong to one of these categories. Each
category has a category relevance score, which is used in
entity ranking.

The categories are indexed separately, as documents, and
the categoryKeywordList specified in the query is used to
retrieve relevant categories; we call the set of categories re-
turned as the relevantCategorySet. We use the relevance
score that Lucene returns for each category as the relevance
of that category.

To calculate relevance score of an entity, the set of cat-
egories to which this entity belongs is retrieved. It is then
checked if any of these categories belongs to relevantCat-
egorySet and the maximum of the Lucene scores of such
categories is taken as the category relevance of that entity.



3.2.3 CombiningActivation andCategory-Relevance
Scores

After spreading of activation, the result of activation spread-

ing is stored in a priority heap ResultHeap. To get the final
score score of each entity, the activation score actScore and
the the category relevance score relScore of each node in
ResultHeap are combined additively as follows:

score(e) = actScore(e) x n + relScore(e) * (1 —n) (3)

The parameter 77 denotes the weight given to the score. En-
tities in the result are sorted by their scores score(e), and
output in descending order.

3.3 Discusson

Our scoring model for near queries spreads activation from
entities to other entities that are referenced in the Wikipedia
page of the entity (only links in or before the infobox are
considered, since Wikipedia pages often have less relevant
links later in the document).

For example, if we search for Universities near “web search”,
we may find many references to a person working on web
search techniques near keywords “web search”. Spreading
activation from such person entities can then give us a uni-
versity as an answer.

Earlier systems such as [5, 8, 7] and [15] (described in more
detail in Section 6) cannot do this, since they only look for
co-occurrences of entities and keywords to determine their
association.

4. PROCESINGENTITY-RELATIONSHIP
QUERIES

In this section, we focus on issues involved in answering
entity-relationship queries. The query model we use is ba-
sically the same as that described in [14, 15], but we use a
different scoring system, as well as a different system design
and implementation to solve such queries.

In our formulation of the entity-relationship queries, as in
[15], we have a list of entity variables. Unlike in [15], each
entity variable is associated with a list of keywords specify-
ing the category of the desired entities called categoryKey-
wordList, and these category keywords are used to identify
one or more categories to be considered for the entity vari-
able.

Each entity variable can be associated with zero or more
predicates. There are two kinds of predicates in an entity-
relationship query :

e Selection Predicate : A selection predicate consists
of an entity variable and a list of keywords specifying
the criterion on the selection of entities. We call the
list of keywords as the NearKeywordList.

¢ Relation Predicate : A relation predicate consists
of two or more entity variables and a list of keywords

specifying the relationship between the entities described

by these variables.

As an example consider the following query from [15]:
“Find companies and their founders, where the companies
are in Silicon Valley and founders are Stanford graduates”.
Simple entity ranking systems are not adequate for such
complex information needs. Li et al. [15] provide a solu-
tion to this problem, by designing an entity-centric struc-
tured query mechanism called entity-relationship queries.

The above query expressed in the language of [15] is as fol-
lows:
select X, Y
from person X, companies Y
where X:[Stanford graduate]
and Y:[“Silicon Valley”]
and X,Y: [founder]
In the above query, X and Y are entity variables, bound to
specific entity types, while the keywords act as predicates.
The above query can be expressed in our syntax as follows:
find person(x) near (Stanford graduate) and
company(y) near (”Silicon Valley”)
such that x,y near (founder)

In this query, there are two entity variables named z and
y. The categoryKeywordList for variable z contains the word
“person” and for variable y, it contains the word “company”.
Variable z has a selection predicate consisting of keywords
“Stanford” and “graduate” while variable y has a selection
predicate consisting of keyword “Silicon Valley”. The query
also has a relation predicate on variables x and y consisting
of keyword “founder”.

As in ERQ [15], an entity variable can have more than
one selection predicates. For example

find person (x) near (“Turing Award”)
and near (IBM)

If we had instead used near (“Turing award”, IBM), we
would only get entities mentioned near co-occurrences of
Turing Award and IBM. In contrast, by using separate se-
lection predicates, the set of documents that establish that
a person is associated with “Turing Award” can be different
from the set of documents that establish that the person is
associated with IBM.

4.1 Scoring ERQ Answers

Scoring and ranking of the results is an important task.
The important concepts involved in ranking the entity search
results are:

e Proximity: Entities and keywords should be placed
close to each other in the text. Intuitively, the closer
they are to each other, the more likely is their associ-
ation with each other.

e Relevance to category: As the category itself is
specified in the form of keywords, there is uncertainty
involved regarding the relevance of an entity to the
specified category keywords.

e Number of Evidences: The more number of times
a set of entities appears with the keywords in the text,
the more likely is their association.

First, we score each answer entity tuple for each predicate
separately. Finally while merging the single predicate re-
sults, we calculate the aggregate score for each answer tuple
by taking the product of the single predicate scores for the
entities involved.

411 SHdedionPredicate Scoring

A selection predicate in an entity-relationship query is ba-
sically a near query, which we saw in Section 3. To compute
score of an answer entity e on a selection predicate p, we use
the scoring model for near queries described in Section 3.
We combine the activation score actScore and the category
relevance score relScore using the additive combination:



scorep(€) = actScore(e) x n + relScore(e) x (1 — n)

The combined score is a normalized score and the value is
always between 0 and 1.

If there is more than one selection predicates over the same
variable, we use the following formula, where p1,p2,...pn
denote the selection predicates on a single entity variable.

Scorep, ps,...pn (€) = (ILic1...nactScorep, (€)) *n
+relScore(e) * (1 —n)

4.1.2 RelationPredicate Scoring

Consider a relation predicate answer tuple < e1, ea, ..., e, >,
and the set of occurrences O of the entities in the answer
tuple and the keywords corresponding to the predicate ap-
pearing together in the text. We calculate the score for the
relation predicate p as:

TokenSpan(o0))? ]
202

scorep(< e1,€2,...,en >) = Z emp[i(
o€0O

where TokenSpan(o) is the number of tokens present in
the minimal scope in o covering all the entities and keywords.
A is an input parameter specifying the threshold for the
maximum allowed value of T'okenSpan and all occurrences
beyond this threshold are ignored.

4.1.3 Aggregating Sngle Predicate Scores

After computing single predicate scores for each predicate
result, we finally merge the results and calculate the aggre-
gate score for the final answer tuples. The aggregate score
aggScore is calculated as :

aggScore = H

pEselPreds

scorep * H

pErelPreds

v
SCOTE€)

where selPreds and relPreds denote the selection and rela-
tion predicates, and -y is an input parameter controlling the
weightage given to the relation predicate scores.

4.2 Query Evaluation Algorithm

Given an entity-relationship query, our approach is to first
evaluate all the selection predicates individually to find the
list of entities for each entity variable involved in the query.
We then use these entity lists to evaluate the relation predi-
cates to find tuples of related entities. Finally we take a join
of the individual predicate result list on entities for same
entity variable. In the process, we also collect offset infor-
mation to finally score the answer tuples and rank them
accordingly. We look at the steps involved in evaluating an
entity-relationship query in the following sections.

4.3 Evaluating Seledion Predicates

A selection predicate in Entity-Relationship Query is ex-
actly a near query. So we directly use the near query evalua-
tion algorithm described in Section 3 to get the list of answer
entities for each entity variable, along with their scores.

After this step, we will have a list of <entity, score> pairs
for each variable. For our example query, the lists would be:
variable x : <Scott_McNealy, 1.0>, <Ken_Kesey, 0.9973>,

<John_Steinbeck, 0.9946>, ...
variable y : <Microsoft, 1.0>, <Hewlett-Packard, 0.9944>,
<Metro_Newspapers, 0.9942>, ...

85

4.4 Evaluating Relation Predicates

Relation predicates specify a relationship between two or
more entities in terms of keywords. There are two alterna-
tive approaches to solve a relation predicate.

Approach 1

e Use the Lucene index to find documents containing
the relation keywords, along with their offsets in the
documents.

e For each Lucene hit page :

— Find entity references near those keyword occur-
rences, using the outlinks from the entity pages
(outlink information along with offsets is avail-
able in the extended graph representation, stored
in-memory).

— Check whether these entities belong to the selec-
tion predicate answer entity list for any of the
variables involved in this relation predicate and
put them in a list for the corresponding entity
variable.

— Perform a cross product of the lists for the entity
variables, to get the answer tuples.

— Note the offsets of the keywords and the entity
links for score calculation.

The problem in this approach is that in most cases, the
keywords specifying the relationship are very general (e.g.
“join”, “found” etc.) and generate a very large number of
hits. However only a small fraction of these pages contain
links to at least one entity from the selection predicate an-
swer list for each entity variable involved in this relation
predicate. Thus processing each document as above causes
a lot of useless processing.

We solve this problem using Approach 2 described below.

Approach 2. The result of a single relation predicate, tak-
ing into account selection predicates on all the associated
entity variables, can be computed as follows.

e Find lists of pages containing reference to at least one
of the entities in the selection predicate answer list for
each entity variable; this can be done using the inlinks
of the corresponding entity nodes, fetched from the
in-memory graph representation.

e Intersect these lists to find list of pages containing links
to at least one entity from the selection predicate an-
swer list for each entity variable.

e Intersect this list with the hit list for the relation key-
words to find all such pages also containing the relation
keywords.

e For each page in this list:

— Perform a cross product of the entity lists for each
entity variable present in this page to get the an-
swer tuples.

— Note the offsets of the keywords and the entity
links for score calculation.



1: Inputs: List of entity variables: eVars,
List of Keywords: nKeywords,
Mapping of variable to Entity list: varToEntityMap
2: Define: VarToPageMap: a mapping from entity
variables to list of pages
3: Define: VarPageToEntityMap: a mapping from
<entity-variable, page> pairs to a list of entities
4: for all v € eVars do
5. for all entity € varToEntityMap[v] do
6: pageSet < Find all pages pointing to entity
T for all page € pageSet do
8: VarToPageMap[v].Add(page)
9: VarPageToEntityMap[v, page].Add(entity)

10: end for
11: end for
12: end for

13: allLinkPageList < Nyecevars VarToPageMap[v]
/* Computes intersection of lists*/
14: LuceneHitArray < Find all pages which contain the
the keywords nKeywords using the Lucene Index.
15: for all luceneHitPage € LuceneHitArray do
16:  if luceneHitPage € allLinkPageList then

17: Define varToEntitiesMap: a map from entity
variables to a list of entities

18: for all v € eVars do

19: entityList < VarPageToEntityMap[v, Nodeld]

20: varToEntitiesMap[v].Add(entityList)

21: end for

22: answerTuples <= Xy,cevarsvarToEntitiesMap[v)

/* Compute cross product (x) of entity lists;
optimization using band join described in text*/

23: ResultHeap.addAll( answerTuples)
24:  end if
25: end for

Algorithm 1: Evaluating a relation predicate

An optimization of the this step is to perform a band
merge of lists sorted on their offsets, to only match en-
tity and relation keyword occurrences that are present
close to each other (in terms of their offsets), instead
of performing a cross product of the entity lists. This
can reduce costs greatly for pages with many entity
references and relation keyword occurrences.

The above intuition is formalized in Algorithm 1.

After this step, we have the list of entity-tuples with their
relation predicate scores. For our example query, we will
have a list like:

7,y : <(Bill_Gates, Microsoft), 0.9896>,
< (David_Filo, Yahoo!), 0.9745>,
<(Vinod_Khosla, Sun_Microsystems), 0.9257>, ...

4.5 Handling Complete Queries

If a query does not involve any relation predicate, process-
ing is straightforward. If the entity variable in such a query
has more than one selection predicate, we need to combine
the results of each selection predicate; we use a simple merge
join of the results.

If the query involves only one relation predicate, Algo-
rithm 1 gives the desired final answers. In case the query
has more than one relation predicate, we process each re-
lation predicate as above, and then do an equijoin on the

86

results of each selection predicate. Currently we do not op-
timize the join order, since none of our benchmark queries
has more than 2 relation predicates, but this could be a topic
of future work.

As an optimization, if a query has an entity variable with
more than one selection predicate, as well as a relation predi-
cate involving the same entity variable, we can avoid the join
of the selection predicate results; instead, when we process
the relation keyword we get a list of neighboring entities for
each keyword occurrence, and look up such entities in the
result entity lists for each of the selection predicates on that
entity variable.

5. HEURISTIC OPTIMIZATIONS

We now describe a few heuristics aimed at improving the
scoring of results. The effect of these optimizations is stud-
ied empirically in Section 7.

Using Wikipedia Infoboxes. In our initial implemen-
tation, every term in a Wikipedia article was assumed to
be relevant to the entity. However, our initial experiments
showed that most Wikipedia articles have a lot of terms
that are not very relevant. However, the terms early in the
article, in particular those that occur in the Wikipedia in-
foboxes, are highly relevant. We could have chosen to tailor
the ranking scheme of Lucene, but instead chose to use our
extended graph model to exploit this information, as follows.
When we build the graph, we assume that a self-link to
the same Wikipedia entity is present near each term in the
infobox, at a small offset (with default value as 5). Thus,
if we find some keyword in the infobox, we add some initial
activation to the entity itself. Similarly, we create self links
to the Wikipedia page from terms in the first few sentences
of each article; for concreteness, we use all sentences that
appear before the infobox in the article, since these generally
constitute a highly relevant summary of the entity.

Exploiting Wikipedia category specificity by match-
ing near keywords. Another area of performance improve-
ment is the specificity of Wikipedia categories. Wikipedia
provides a large collection of categories, many of which are
associated with very specific entities. For example, Nov-
els_by_Jane_Austen, Films_directed_by_Steven_Speilberg, Uni-
versities_in_Catalunya are all Wikipedia categories.

Users are generally not aware of the presence of such cat-
egories, and would query on a higher level category, for ex-
ample novels, even if they are specifically looking for novels
by Jane Austen.

Thus, we look for the near keywords in the category ti-
tles also. If we find any category whose title contains all
the near keywords, we judge entities belonging (directly) to
the category as being more relevant to the near keywords.
If such a category is a subcategory of the original query
categories, the resulting entities are directly answers to the
original query. But even otherwise, we wish to give extra
weight to such entities for the purpose of spreading activa-
tion through entities that occur close to occurrences of the
near keywords.

To handle both the above goals, we add a constant value
(0.2) to the initial activation to entities directly belonging
to the above category; if an entity belongs to more than one
such category, its initial activation gets increased only once.



We demonstrate the effect of this feature in Section 7.

Spreading activation from articles with title contain-
ing the near keywords. Intuitively, if the title of an ar-
ticle contains all the near keywords, all the content in the
article can be assumed to be related to the keywords with
high probability. We exploit this intuition by spreading ac-
tivation from such articles to its out-neighbors.

In our spreading activation mechanism, the activation de-
cays for links farther away from the keyword occurrence. In
the special case of keywords in the article title, we treat all
outlinks early in the article (up to and including the infobox
for the article) as closely related to the keyword, even if they
are somewhat further off in terms of token offset.

We demonstrate the effect of this feature in Section 7.

6. RELATED WORK

Several systems such as ObjectRank [2], the system of [5]
and Entity Search [7] have been developed which return a
ranked list of entities as answers to keyword queries.

ObjectRank works on a graph model of data, with enti-
ties as nodes, and is based on a biased random walk model
which is an extension of the random walk model of PageR-
ank. Nodes also contain descriptive text, with the starting
nodes of the walk being determined by which nodes contain
the given keywords. The biased random walk determines
the score of each entity. The near query model of BANKS,
briefly mentioned in [11] uses a similar model, and has sim-
ilar goals, although details vary.

Chakrabarti et al. [5] describe an entity querying system
based on a model where documents have terms as well as
entity mentions. Queries can specify the type of the desired
entities, and keywords that they should be associated with.
For example, a query may ask for “cities near Eiffel tower”.
The occurrence of an entity mention near the given key-
words provides support for the relevance of that entity. The
support for an entity is aggregated across multiple occur-
rences of mentions of that entity near the given keywords.
Chakrabarti et al. [5] also describe a query language which
allows more complex queries to be created, allowing for ex-
ample entities that occur near entities retrieved by a sub-
query. The implementation in [5] worked on a Web scale
corpus, but was limited to a small number of entity types;
that limitation was subsequently removed [6].

EntityRank [8] has a similar goal, and also works on Web
scale data, but allows recognition of multiple entities co-
occurring with given keywords. Specifically, it allows the
query to specify multiple target entity types, such as #pro-
fessor, #university, along with keywords such as “database”.
All entities and keywords should co-occur near each other
in the same document. Entity Search [7] has goals similar
to that of [5], but focuses on efficient evaluation of queries
by creating appropriate indices.

Users are however often interested in relationships be-
tween entities, where the keywords that select entities may
occur separately from keywords that specify the desired re-
lationships; we give an example shortly. If the relationships
have been extracted already, it is possible to represent the
information using a graph model such as RDF, and then
a query language such as NAGA [12] can be used to exe-
cute such queries on the graph. The NAGA query language
allows complex connections to be specified, and allows ag-
gregation of evidence from multiple parts of the graph. How-

87

ever, a problem with this approach is that relationships have
to be extracted ahead of time, and at Web scale the number
of potential relationships is enormous. The YAGO dataset
[18] used in the NAGA system only extracted a few tens
of relationships. Other related work which considers inte-
gration of structured information and textual data includes
the ESTER system [3] and Pound et al. [17]. Both these
systems focus on relationships that have already been ex-
tracted, using the YAGO dataset, and thus support only a
limited number of relationships. However, both these sys-
tem allow queries to combine some form of textual search
with the queries on structured data.

The ERQ system [14, 15] presents an alternative approach
where the corpus is stored uninterpreted except for identifi-
cation of entities. Relationships are specified by keywords,
and found by keyword search on the corpus, in effect per-
forming a simplified on-the-fly extraction of relationships.

ERQ uses three position-based features for ranking an-
swers tuples. The first is proximity which emphasizes the
fact that if the entities and keywords are close to each other
in an evidence, then it is more likely to form a valid evi-
dence. The second feature is the ordering pattern of en-
tities and phrases in an evidence. The ordering patterns
which appear more often are better indicators of valid ev-
idences. The third feature is the mutual exclusion rule
which dictates that when evidences of different entities co-
occur in the same sentence, at most one colliding pattern
is effective. ~ Our scoring model takes proximity into ac-
count, but does not currently implement ordering patterns
and mutual exclusion.

Although the ERQ system does not limit the number of
relationships, the evaluation algorithm used in ERQ requires
separate indices per entity type, and the implementation of
[15] indexed only 10 selected entity types. Thus the num-
ber of queries that can be expressed is limited. In contrast,
in our system, we handle all possible categories specified
in Wikipedia/YAGO. To our knowledge, all the earlier sys-
tems require the answer types to be precisely specified in the
query. In the real world, such specification is not easy, since
users are not aware of what types are available. Our system
allows type specification to be done based on keywords that
match types, and all matching types are answer candidates;
a match score for each answer type is taken into account
along with entity scores, to get the overall answer ranking.

We use Lucene as a document-centric indexing system,
and exploit our extended graph model to efficiently find en-
tity mentions in proximity to keyword occurrences. The
in-memory graph also provides a mapping between entities
and their categories.

7. EXPERIMENTAL EVALUATION

In this section, we present a detailed analysis of the ef-
fectiveness our approach for solving near queries and entity-
relationship queries. We look at the contribution of different
factors involved in the approach. We also show a compari-
son of the quality of our results with those generated by the
ERQ system of Li et al. [15].

7.1 Experimental Setup

We have implemented our algorithms in Java using servlets;
we call our system WikiBANKS. Our system is available for
access over the Web at the URL www.cse.iitb.ac.in/banks.
The machine we used has 12 GB of RAM and an Intel Xeon



E5504, 2 GHz processor, with 1 TB Hard disk with SATA
interface, running Ubuntu 10.04 LTS with a Linux 2.6.32-34
kernel. The database system used is PostgreSQL 8.3.7.

The Wikipedia graph was created out of a Wikipedia
dump as of January 2009, and has following characteristics:
number of nodes: 16.28 million, number of edges: 179.5 mil-
lion, average indegree: 5.4303, maximum indegree: 374882.
The graph takes about 4 GB space and takes about 85 sec-
onds to load.

We index Wikipedia data using Lucene. For each docu-
ment in Wikipedia, a virtual document is created, containing
three fields: (a) Nodeid: the Wikipedia article ID, (b) Title:
the title of the article, and (c) Content: the textual content
of the article. The title and content field are indexed using
Lucene, while Nodeid is stored but not indexed. The index
stores term offsets for each occurrence of a term in each doc-
ument that it occurs in. The index building is done after
assigning prestige scores to the nodes of the graph. These
node prestige scores are also included in indexing to boost
the hits of the relevant nodes. We use Lucene Collectors to
collect the Lucene scores for documents and SpanQuery to
get the offsets of the search terms.

7.2 Query Set

Unlike the ERQ system of Li et al. [15], which supports
only a limited number of categories, our system supports
all the Yago categories, numbering nearly 150,000. Thus
our system can answer a vastly larger number of queries
than ERQ. However, to compare the two systems, we chose
a set of 27 queries from the “Own28” set of Li et al. [15],
available online at http://idir.uta.edu/erq/, as a performance
benchmark. The query set includes:

e Q1 - Q16 : Single selection predicate queries, i.e. Near
queries with only one selection predicate.

e Q17 - Q21 : Multiple selection predicate queries, i.e.
Near queries with multiple selection predicates on the
same entity variable.

e Q22 - Q27 : Entity-relationship queries, also known as
multi-predicate queries with join.

For each query, we have a manually collected a set of
correct answers, which we believe is fairly complete. We
consider these sets as the ground truth when evaluating the
performance. While [15] has only a limited number of entity
categories available for use in queries, when we expressed the
queries in our system for a few of the queries we made use
of the richer set of categories available to us; the specific
set of changes were: actor instead of person, football player
instead of player, and football club instead of club, in queries
where such substitutions are appropriate.

7.3 Parameter Settings

There are a number of input parameters involved in our
query processing and scoring model. We have executed a
large number of queries with different parameter settings,
and manually chose the optimum values for these parame-
ters, i.e. the values that gave the best precision. For se-
lection predicates, we set the token span A = 12, and the
value o = 6 for proximity scoring using the Gaussian kernel.
For near queries with a single selection predicate we use the
weightage for activation n = 0.1, while for near queries with

88

multiple selection predicates we use n = 0.6. For entity-
relationship queries, we set n = 0.8 for selection predicates;
for relation predicates we set A = 16, 0 = 8, and the multi-
plicative weighting factor for relations predicates v = 0.6.

7.4 Measures of Performance
We have used the following precision measures to compare
the performance:

e Precision at k : Also referred to as PQk, it is the
precision at a given cut-off rank. It is calculated as:

|relDocs () topKDocs|
k

where relDocs is the set of all relevant documents (here,
entities) and topKDocs is the set containing the top-
K documents (here, entities) that are retrieved. Our
precision at K graphs stop at K = 10.

pPak =

e Recall : Recall is the fraction of the documents that
are relevant to the query that are successfully retrieved:

|relDocs () retrieved Docs|

recall = |relDocs|

where retrievedDocs is the set of all documents (here,
entities) that are retrieved. To compare precision and
recall, we have plotted precision at specific values of
recall. To calculate this, we find the precision at the
point when we have retrieved just enough answers to
achieve a particular recall value (i.e. particular frac-
tion of the set of all correct answers). When the sys-
tem is unable to retrieve enough answers to achieve a
particular recall value, we define the precision at that
recall value as zero.

7.5 Experimental Results

Figure 1 compares the performance of the basic system
(without the optimizations described in Section 5) with and
without using offsets information. The comparison is for
near queries Q1 through Q16. For the case where offsets
are not used, we explore all nodes linked from the nodes
containing near keywords, without regards to the token dis-
tance between the near keyword and the links. This causes
a large number of irrelevant nodes to be explored, and in-
creases query execution time as well as memory utilization.
Figure 1 (a) shows that the average precision at k is much
lower without using offset information, for k up to 10.

However, Figure 1 (b) indicates that the average preci-
sion is lower for “with offsets” than “without offsets” at
80% recall. This is because, in case of “without offsets”,
a large number of nodes are explored and hence it gener-
ates higher fraction of correct answers. The “with offsets”
version spreads activation only to nodes that are within a
limited offset (span), which is set to 12 by default. As a
result this version explores fewer nodes, and fails to gener-
ate several answers which the “without offsets” technique is
able to generate; as per our definitions, the precision is 0 at
this point for these queries, reducing the average precision
significantly. Since users are likely to only view the top-k
results for some small value of k, the version with offsets is
definitely preferable.

Next, we compare the performance of our system with
ERQ [15]. We have experimented with 5 different versions
of our system to isolate the effect of various optimizations
described in Section 5. The different versions are as follows:



= With Offsets
== Without Offsets

Precision
o

o o

> &

(a) Precision at k

Figure
Near Near
k | Basic | Titles | Infobox | Categories | All 3 | ERQ
1 | 0.704 | 0.666 0.814 0.851 0.851 | 0.741
2 | 0741 | 0.777 0.759 0.833 0.814 | 0.833
3 | 0.703 | 0.728 0.753 0.79 0.814 | 0.796
4 10731 | 0.75 0.741 0.796 0.833 | 0.75
5 | 0.733 | 0.748 0.733 0.807 0.822 | 0.76
6 | 0.703 | 0.715 0.703 0.802 0.814 | 0.716
7 10693 | 0.714 0.692 0.793 0.804 | 0.72
8 | 0.675 | 0.694 0.689 0.777 0.81 | 0.734
9 | 0.678 | 0.691 0.695 0.765 0.802 | 0.71
10 | 0.681 | 0.685 0.696 0.751 0.785 | 0.698
Table 1: Precision at k for All Queries
e Basic: In this version, we use the basic model with-

out any of the optimizations.

e Near Titles: In this version, along with the ba-
sic features, we also spread activation from articles
whose titles contain the near keywords to all its out-
neighbors.

e Infobox: In this version, we use the infobox informa-
tion and add some initial activation to the node whose
infobox contains the near keywords.

e Near Categories: In this version, we exploit the
Wikipedia category specificity as explained earlier.

e All Features: This version uses all the above opti-
mizations along with the basic version.

The precision and precision versus recall numbers for ERQ
are obtained by running the queries on their system, avail-
able online at http://idir.uta.edu/erq/.

Table 1 gives the precision at k values for our complete
set of test queries. The table data clearly shows that each
of the additional features improves the precision. Specially,
the NearCategories feature improves the performance by a
large margin. Using all the features together gives us the
best performance.

Figure 2 shows the plot for the precision at k values across
all queries, with different system features turned on. Fig-
ure 3 shows the same information, but separately for differ-
ent types of queries. The graphs indicates that our system

89

Precision

0.9
0.8
0.7
0.6
0.5
= With Offsets
0.4 == Without Offsets
0.3
0.2

0.1

Recall (percentage)

(b) Precision vs. recall

1: Effect of offsets on near queries with single selection predicate (no optimization)

0.9

= Basic

== Near Titles

¥ Infobox

o Near Categories
»=All Features

< ERQ

Precision

Figure 2: Precision at k for all queries

clearly outperforms ERQ for near queries, with single selec-
tion predicate as well as with multiple selection predicates.

For entity-relationship queries, the ERQ system provided
better precision. One reason for the lower precision is that
our system allows flexible specification of categories. On
Q28 from the OWN28 set (not included in the performance
results) most of the films returned were in fact academy
award winning movies adapted from novels, but in place of
novels, the query returned other movies. This is because
these movies are in categories such as “movies adapted from
novels”, and since such a category is treated as a valid cat-
egory for the category keyword “novel”, the query treats
the movie itself as a novel. Requiring exact match for cate-
gories improved the result quality drastically, with 9 out the
top 10 answers being correct. Our scoring system needs to
be improved to avoid problems due to non-exact category
matches.

However, the ERQ system requires categories to be pre-
cisely specified, which is not an easy task for a casual user,
whereas we can handle queries where the categories are not
precisely specified. (In addition our implementation can
handle a very large number of categories in contrast to the
limited number of categories handled by the current ERQ
implementation.)

We also found anecdotally that the mutual exclusion and
ordering pattern heuristics used in [15] would have been use-
ful in improving precision, had we implemented them. Im-
plementing these heuristics is an area of future work.

Table 2 shows average query execution time for various
types of queries. Execution time is the response time mea-
sured when the query is input to the servlet. Table 3 shows
average memory utilization for the queries in terms of num-



Precision
o
&
I
<A
<
K
Precision

(a) near queries with single selection

(b) near queries with multiple selections

& Basic

==Near Titles

V- Infobox

«# Near Categories
»=All Features

< ERQ

Precision

(c) entity-relationship queries

Figure 3: Precision at k by query type

Query Near | Info- | Near
Set Basic | Titles | box | Cate- | Al 3 | ERQ
gories

Query Set COLD CACHE | WARM CACHE
Single Selection 4.546 1.694
Multiple Selection 12.112 5.837
Entity-Relationship 14.44 9.317
All 8.233 4.284

Single 0.639 | 0.662 | 0.645 | 0.77 | 0.783 | 0.635
selection

Table 2: Average Query Execution Time (in sec-
onds)

Query Nodes Size of
Set Explored | Target Queue
Single selection 7474 210
Multiple selection 48132 4074
Entity relationship 84003 9635
All 32010 3020

Table 3: Average Memory Utilization

ber of nodes explored during activation spreading and size
of the target queue. Target queue size determines the collec-
tion of nodes which are processed during ranking to produce
final set of answers i.e. it is set of probable answers before
ranking. Table 4 gives the average recall i.e. average of frac-
tion of correct answers reported by the system for various
types of queries.

Figure 4 shows the plots of precision versus recall across all
queries, while Figure 5 shows the same information for each
query type. Since some queries do not have 100% recall up
to the number of answers retrieved, we show the precision
as 0 at recall percentages that are higher. Figure 4 show
that WikiBANKS outperforms ERQ overall, while Figure 5
shows that WikiBANKS outperforms ERQ in case of near
queries with single and multiple selection predicates, but
ERQ achieves better performance for relationship queries.

We also tested our system on a number of other queries,
many of which we could not run on the ERQ system since
they used types such as medicines, airports, languages, ani-
mals, currencies, and so on which are among the many types
not currently supported in the ERQ implementation. The
precision at k and execution time for these queries were sim-
ilar to the results we saw earlier for queries from the ERQ
system. We omit details for lack of space.

90

Multiple | 0.448 | 0.488 | 0.448 | 0.565 | 0.598 | 0.414
selection

Entity-
relation- | 0.511 | 0.537 | 0.500 | 0.511 | 0.533 | 0.672
ship

All 0.575 | 0.602 | 0.577 | 0.674 | 0.696 | 0.602

Table 4: Average Recall

= Basic
== Near Titles
¥ Infobox

Precision

= Near Categories
*=All Features
< ERQ

10 20 30 40 50 60 70 80 kY 100
Recall (percentage)

Figure 4: Precision vs. Recall for all queries

We also ran some queries to test the impact of spread-
ing activation through the graph, a feature we support,
but other entity ranking techniques do not support. How-
ever, we did not find much difference since in most cases
the Wikipedia corpus has direct links to the desired enti-
ties from pages containing the near keywords, and adding
indirect activation did not help. For example, for the query
“University near Nobel prize”, the infoboxes of Nobel prize
winners pages mentioned the Nobel prize and had a link to
their institutions. We expect these results will be different
if we include Web pages instead of just Wikipedia pages, an
area of ongoing work.

8. CONCLUSIONSAND FUTURE WORK

We have proposed a novel extended graph representation,



1
09
oa& <
0.7
06

05

Precision
Precision

04

0.3

0.2

0.1

10 20 30 40 50 60 70 80 0 100 10 20 30 40 50
Recall (percentage)

(a) near queries with single selection

Recall (percentage)

0 D U G

80

(b) near queries with multiple selections

& Basic
==Near Titles
¥ Infobox

Precision

== Near Categories
»=All Features
< ERQ

90 100 10 20 30 40 50 6 70 8 9 100
Recall (percentage)

(c) entity-relationship queries

Figure 5: Precision vs. recall by query type

and showed how to exploit it to answer entity ranking (near)
queries and entity-relationship queries on the Wikipedia cor-
pus. Unlike earlier systems we allow type specification throu-
gh keywords, and develop novel scoring mechanisms based
on spreading activation. Our performance study shows good
result quality, beating earlier work on entity queries. Im-
proving performance on entity-relationship queries is an area
of current work.

The Wikipedia corpus has a limited number of explicit
entity mentions, limiting the effect of spreading activation
from keywords to nearby entities. We are currently extend-
ing our system to work on the annotated Web corpus of [6],
which would provide a much richer set of keyword-entity as-
sociations. With such a system, we cannot keep the entire
Web graph in memory; however, the number of entities is
still relatively small (since we use Wikipedia as the source
for entities), and we can keep these entities, along with their
category hierarchy, in memory. We have developed versions
of our algorithms tailored for such an environment, with
data partitioned across multiple machines. Initial results
demonstrate the feasibility of such a system, both in terms
of answer quality, and interactive response times. We are
currently working on improving the answer quality of the
system. Extending our implementation to add the mutual
exclusion and ordering pattern heuristics of [15] is another
direction for future work.

Acknowledgment: This work was partially supported
by IMPECS (Indo-German Max Planck Center for Com-
puter Science).

9. REFERENCES

[1] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A
system for keyword-based search over relational
databases. In ICDE, 2002.

[2] A. Balmin, V. Hristidis, and Y. Papakonstantinou.
ObjectRank: authority-based keyword search in
databases. In VLDB, 2004.

[3] H. Bast, A. Chitea, F. M. Suchanek, and I. Weber.
Ester: efficient search on text, entities, and relations.
In SIGIR, pages 671-678, 2007.

[4] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti,
and S. Sudarshan. Keyword searching and browsing in
databases using BANKS. In ICDE, 2002.

[5] S. Chakrabarti, K. Puniyani, and S. Das. Optimizing
scoring functions and indexes for proximity search in

91

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

type-annotated corpora. In WWW, pages 717-726,
2006.

S. Chakrabarti, D. Sane, and G. Ramakrishnan.
Web-scale entity-relation search architecture. In
WWW (Companion Volume), pages 21-22, 2011.

T. Cheng and K. C.-C. Chang. Beyond pages:
Supporting efficient, scalable entity search with
dual-inversion index. In SIGMOD, 2010.

T. Cheng, X. Yan, and K. C.-C. Chang. EntityRank:
Searching entities directly and holistically. In VLDB,
2007.

H. He, H. Wang, J. Yang, and P. S. Yu. BLINKS:
Ranked keyword searches on graphs. In SIGMOD,
pages 305-316, 2007.

V. Hristidis and Y. Papakonstantinou. DISCOVER:
Keyword search in relational databases. In VLDB,
2002.

V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan,
R. Desai, and H. Karambelkar. Bidirectional
expansion for keyword search on graph databases. In
VLDB, 2005.

G. Kasneci, F. M. Suchanek, G. Ifrim, M. Ramanath,
and G. Weikum. NAGA: Searching and ranking
knowledge. In ICDE, pages 953-962, 2008.

S. Kulkarni, A. Singh, G. Ramakrishnan, and

S. Chakrabarti. Collective annotation of wikipedia
entities in web text. In KDD, pages 457-466, 2009.
X. Li, C. Li, and C. Yu. Entityengine: answering
Entity-Relationship queries using shallow semantics.
In CIKM, pages 1925-1926, 2010.

X. Li, C. Li, and C. Yu. Entity-relationship queries
over wikipedia. ACM Trans. on Intelligent Systems
and Technology, 3(4), Sept. 2012.

Y. Lv and C. Zhai. Positional language models for
information retrieval. In SIGIR, pages 299-306, 2009.
J. Pound, I. F. Ilyas, and G. E. Weddell. Expressive
and flexible access to web-extracted data: a
keyword-based structured query language. In
SIGMOD Conf., pages 423-434, 2010.

F. M. Suchanek, G. Kasneci, and G. Weikum. Yago -
a core of semantic knowledge. In WWW, 2007.

M. A. Yosef, J. Hoffart, I. Bordino, M. Spaniol, and
G. Weikum. AIDA: An online tool for accurate
disambiguation of named entities in text and tables.
PVLDB, 4(12):1450-1453, 2011.



Towards Efficient Discovery of Frequent Patterns with
Relative Support

R. Uday Kiran and Masaru Kitsuregawa
Institute of Industrial Science,
University of Tokyo, Japan.
Email: uday_rage@tkl.iis.u-tokyo.ac.jp and kitsure@tkl.iis.u-tokyo.ac.jp.

ABSTRACT

Frequent patterns are an important class of regularities that exist
in a database. Although there exists no universally acceptable best
measure to assess the interestingness of a pattern, relative support
is emerging as a popular measure to discover frequent patterns in-
volving both frequent and rare items. An Apriori-like algorithm
known as Relative Support Apriori (RSA) has been discussed in the
literature to discover the patterns. It has been observed that mining
frequent patterns with RSA is a computationally expensive process
because the discovered patterns do not satisfy the anti-monotonic
property. Moreover, RSA also suffers from the performance prob-
lems involving generation of the huge number of candidate patterns
and multiple scans on the database. This paper makes an effort
to discover frequent patterns effectively with the relative support
measure. To reduce the computational cost, we theoretically show
that the patterns discovered with the relative support measure sat-
isfy the convertible anti-monotonic property. Using this property,
a pattern-growth algorithm known as Relative Support Frequent
Pattern-growth (RSFP-growth) has been proposed to discover the
patterns. Experimental results on both synthetic and real-world
datasets show that the proposed RSFP-growth algorithm is signifi-
cantly better than the RSA algorithm.

1. INTRODUCTION

Frequent pattern mining is an important knowledge discovery
technique in data mining. In the basic model of frequent patterns
[3], a pattern (or an itemset) is considered frequent if it satisfies the
user-defined minimum support (minsup) constraint. The minsup
constraint controls the minimum number of transactions a pattern
must cover in a database. Since only a single minsup constraint
is used for the entire dataset, the model implicitly assumes that all
items in a database have uniform frequencies. However, this is of-
ten not the case in many real-world databases. In many real-world
applications, some items appear very frequently in the data, while
others rarely appear. It has to be noted that considering an item
in a database as either frequent or rare is a subjective issue which
depends on the user and/or application requirements. If the items’
frequencies in a database vary widely, we encounter the following

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

The 18th International Conference on Management of Data (COMAD),
14th-16th Dec, 2012 at Pune, India.

Copyright (©)2012 Computer Society of India (CSI).

92

issues:

i. If minsup is set too high, we will miss those patterns that
involve rare items.

ii. In order to find the frequent patterns that involve both fre-
quent and rare items, we have to set low minsup. However,
this may cause combinatorial explosion, producing too many
frequent patterns, because those frequent items will combine
with one another in all possible ways and many of them can
be meaningless depending upon the user and/or application
requirements.

This dilemma is called the rare item problem [19]. One cannot
ignore the knowledge pertaining to rare items. It is because such
knowledge has been found useful in many real-world applications,
such as detecting oil spills in satellite images [11] and improving
the performance of recommender systems [5].

To confront the rare item problem in applications, numerous al-
ternative measures have been discussed in the literature [4, 13, 18,
20, 21]. Unlike the support measure, these measures assess the in-
terestingness of a pattern with respect to the frequencies of items
within it. Each measure has a selection bias that justifies the signif-
icance of a knowledge pattern. As a result, there exists no univer-
sally acceptable best measure to judge the interestingness of a pat-
tern for any given dataset or application. Researchers are making
efforts to suggest a right measure depending upon the user and/or
application requirements [17, 18, 20].

Yun et al. [21] have introduced the relative support measure and
showed that it can discover the frequent patterns involving signif-
icant rare items effectively. A significant rare item represents an
item that appears less frequently in the database (or having sup-
port less than the user-defined minsup threshold) but appears as-
sociated with the frequently occurring items in high proportion to
its frequency. An Apriori-like algorithm known as Relative Sup-
port Apriori (RSA) algorithm has also been introduced to discover
the patterns. We have observed that RSA is a computationally ex-
pensive algorithm because the patterns discovered with the relative
support measure do not satisfy the anti-monotonic property. More-
over, RSA also suffers from the performance problems involving
generation of the huge number of candidate patterns and multiple
scans on the database.

This paper makes an effort to discover frequent patterns effi-
ciently using the relative support and support measures. The con-
tributions are as follows.

o The paper theoretically investigates the relative support mea-
sure and shows that the discovered patterns satisfy a property
known as the convertible anti-monotonic property [15].



e Using the convertible anti-monotonic property and prior knowl-

edge regarding the FP-growth construction and mining tech-
nique, we redefine the frequent pattern with a novel concept
known as the conditional minimum support.

e Using the conditional minimum support, an FP-growth-like
algorithm known as Relative Support Frequent Pattern-growth
(RSFP-growth) has been proposed in this paper. Pei et al.

[15] have theoretically shown that the search space for a pattern-

growth algorithm discovering interesting patterns satisfying
the convertible anti-monotonic property is same as the search
space of a pattern-growth algorithm discovering interesting
patterns satisfying the anti-monotonic property. Therefore,
it can be said that the RSFP-growth algorithm reduces the
computational cost of mining the patterns effectively.

e Experimental results on various datasets show that the RSFP-
growth algorithm is runtime efficient and scalable than the
RSA algorithm.

The rest of this paper is organized as follows. Section 2 dis-
cusses previous works on mining frequent patterns. Section 3 in-
troduces the model of frequent patterns using the relative support
and support measures. Section 4 discusses the performance issues
of RSA algorithm, describes the basic idea and introduces the pro-
posed RSFP-growth algorithm. Experimental evaluations of RSA
and RSFP-growth algorithms are presented in Section 5. Finally,
Section 6 concludes with future research directions.

2. RELATED WORK

Since the usage of single minimum support (minsup) framework
to discover frequent patterns involving both frequent and rare items

suffers from the dilemma known as the rare item problem, researchers
have made efforts to discover frequent patterns with multiple minsups

framework [7, 8, 9, 10, 12, 16], or other interestingness measures
[4, 13, 18, 20, 21], or constraints [14].

In the multiple minsups framework, the user specifies a minsup-
like constraint, called minimum item support, for every item in the
database. Next, the minsup for a pattern is represented with the
minimum item supports of the items within it. An open research
problem of this framework is the methodology to determine the
minimum item supports of all the items in a database.

Researchers have also introduced numerous alternative measures
to discover frequent patterns. Examples includes all-confidence,
any-confidence, bond [13], lift and x2 [4]. Each measure has its
own selection bias that justifies the significance of knowledge pat-
tern. Thus, there exists no universally acceptable best measure to
judge the interestingness of a pattern for any given application. In
other words, selecting a right measure to discover frequent patterns
involving both frequent and rare items is an important research is-
sue. Researchers are making efforts to suggest a right algorithm
depending upon the user and/or application requirements [17, 18,
20].

Yun et al. [21] have introduced the relative support measure to
discover the frequent patterns involving significant rare items. An
Apriori-like algorithm known as RSA has also been proposed to
discover the complete set of patterns with the relative support and
support measures [21]. The pattern model used in RSA requires
three user-specified thresholds: first support (s1), second support
(s2) such that s; > s and minimum relative support (minRsup).
The s; and s, thresholds are used to classify the items into either
frequent or rare items. That is, items having support no less than
sy are classified as frequent items and the items having support
in between s; and s, are classified as significant rare items. If a

93

pattern contains only frequent items, its support has to satisfy s to
be a frequent pattern. If an pattern contains rare items, its support
must satisfy s, and its relative support must satisfy minRsup to be
a frequent pattern. In many real-world applications, it is often dif-
ficult for the user to classify the items into either frequent or rare
items. Therefore, a simplified approach is discover frequent item-
sets using only s, and minRsup thresholds. In this paper, we use
this approach to discover the frequent patterns. The performance
issues of RSA algorithm and our efforts to address them are dis-
cussed in later parts of this paper.

3. THEFREQUENT PATTERN MODEL US-
ING RELATIVE SUPPORT

The frequent pattern model using the relative support measure is
as follows [21]:

Let!={iy,ip, - ,in} be aset of items, and DB be a database that
consists of a set of transactions. Each transaction T contains a set of
items such that 7 C /. Each transaction is associated with an iden-
tifier, called TID. Let X C I be a set of items, referred as an itemset
or a pattern. A pattern that contains k items is a k-pattern. A trans-
action T is said to contain X if and only if X C T'. The frequency (or
support count) of a pattern X in DB, denoted as f(X), is the number
of transactions in DB containing X. The support of X, denoted as
_fX
~ |DBJ
The relative support of a pattern X, denoted as Rsup(X), is the ra-
tio of its support to the minimum support of an item (or 1-pattern)

S(X)
min(S(i_,-) ‘Vij S X)
X is frequent if its support and relative support are no less than
the user-defined minimum support (minsup) and minimum relative
support (minRsup) thresholds. That is, X is said to be frequent if

S(X), is the ratio of its frequency to the DB size, i.e., S(X)

within it. That is, Rsup(X) = . The pattern

S(X) > minsup
and D
Rsup(X) >  minRsup.

We call the frequent pattern containing only one item as frequent
item. We now illustrate the frequent pattern model using the trans-
actional database shown in Table 1.

Table 1: Transactional database.

TID | Items TID | Items
1 a, b 11 a, b

2 a, b, e 12 acf
3 c, d 13 a, b, e
4 ef 14 befg
5 c, d 15 c, d

6 a, ¢ 16 a b

7 a, b 17 ¢, d

8 ef 18 a, c

9 cd g 19 a b
10 a, b 20 ¢df

EXAMPLE 1. The transactional database shown in Table 1 has
20 transactions. The set of items I = {a,b,c,d,e, f,g}. The set of
items ‘a’ and ‘b’, i.e., {a7 b} is a pattern. It is a 2-pattern. For sim-
plicity, we write this pattern as “ab”. It occurs in 8 transactions
(tids of 1,2,7,10,11,13,16 and 19). Therefore, the support count

of “ab,” i.e., f(ab) = 8. The support of ab, i.e., S(ab) = 0.4 (: %)



The relative support of ab, i.e., Rsup(ab) = 0.88 (:

If the user-specified minsup = 0.3 and minRsup = 0.65, then ab
is a frequent pattern because S(ab) > minsup and Rsup(ab) >
minRsup.

It can be observed that the relative support measure assess the
interestingness of a pattern with respect to the minimal support of
an item within it. Thus, it can effectively discover all those frequent
patterns that contain rare items occurring together with other items
in high proportions of their frequencies.

The problem definition is as follows. Given the transactional
database (DB), and the user-defined minimum support (minsup)
and minimum relative support (minRsup) thresholds, discover the
complete set of frequent patterns in a database that satisfy both
minsup and minRsup thresholds.

4. PROPOSED APPROACH

In this section, we first discuss the performance problems of RSA
algorithm. Subsequently, we introduce the basic idea and proposed
RSFP-growth algorithm.

4.1 Performance problems of RSA algorithm

The relative support measure can effectively confront the rare
item problem while mining frequent patterns involving both fre-
quent and rare items. However, the RSA algorithm has the follow-
ing issues.

e The RSA is a computationally expensive algorithm because
the frequent patterns discovered with the relative support
measure do not satisfy the anti-monotic property. That is,
although a pattern satisfies the user-defined minRsup thresh-

old, all its non-empty subsets may not have satisfied the minRsup

threshold.

e [t also suffers from the same performance problems as the
Apriori algorithm, which includes generating huge number
of candidate patterns and multiple scans on the database.

4.2 Basic Idea

The space of items in a database gives rise to a subset lattice. The
itemset lattice is a conceptualization of the search space when min-
ing frequent (or user-interest based) patterns. Reducing this search
space is an important research issue in pattern mining. The popular
techniques to reduce the search space involve the usage of anti-
monotonic property, monotonic property, or succinct property (see
Definition 1). If a constraint does not satisfy any of these proper-
ties, then it is said that mining patterns with it is a computationally
expensive process as the mining algorithm has to search the entire
lattice space, i.e., 2! jtemsets.

DEFINITION 1. (Anti-monotone, Monotone and Succinct Con-
straints.) A constraint C, is anti-monotone if and only if whenever
a pattern S violates C,, so does any superset of S. A constraint Cy,
is monotone if and only if whenever a pattern S satisfies Cp,, so does
any superset of S. Succinctness is defined in steps, as follows

e A pattern X C I is a succinct set, if it can be expressed as
G, (I) for some selection predicate p, where G is the selection
operator.

o SP C 2! is a succinct powerset, if there is a fixed number of
succinct sets 11,1, --- I C I, such that SP can be expressed
in terms of the strict powersets of I, - - , I using union and
minus.

94

0.4
min(0.6,0.45) /°

e Finally, a constraint Cy is succinct provided SATc,(I) is a
succinct powerset.

Pei et al. [15] have investigated the concept of convertible con-
straints, and showed that some of the constraints which do not sat-
isfy any of these properties when items in a database are consid-
ered as an unordered set can satisfy these properties if items in a
database are considered as an ordered set. These properties are
known as the convertible anti-monotonic and convertible mono-
tonic properties. All the constraints or measures discussed in the
literature do not satisfy either of these two properties. Therefore,

identifying whether a constraint satisfies the convertible anti-monotonic

property, convertible monotonic property, or neither of these two
properties is a research problem in pattern mining.

To reduce the computational cost, we have investigated the na-
ture of relative support measure and found that it satisfies the con-
vertible anti-monotonic property if items are arranged in support
order. The correctness is based on Property 1 and Lemma 1 and is
shown in Theorem 1. Unlike the anti-monotonic property, the def-
inition of convertible anti-monotonic property varies with respect
to the measure(s) and the order in which items are to be arranged
to satisfy this property. Definition 2 defines the convertible anti-
monotonic property for the patterns discovered using the relative
support and support measures.

DEFINITION 2. (The convertible anti-monotonic property of
a frequent pattern.) If a sorted k-pattern, {i1,ip,---,ix}, k > 2
and S(iy) > S(ip) > -+ > S(iy), is frequent, then all its non-empty
subsets containing the item having lowest support within it (i.e., i)
will also be frequent. That is, if Rsup(X) > minRsup and S(X) >
minsup, thenVY C X and iy € Y, Rsup(Y) > minRsup and S(Y') >
minsup.

EXAMPLE 2. In a transactional database, let xyz be a sorted
frequent 3-pattern such that S(x) > S(y) > S(z). Since xz C xyz, it
turns out that xz is a frequent pattern as Rsup(xz) > Rsup(xyz) >
minRsup and S(xz) > S(xyz) > minsup. Similarly, yz is also a
frequent pattern because Rsup(yz) > Rsup(xyz) > minRsup and
S(yz) > S(xyz) > minsup). The 1-pattern z is also a frequent pat-
tern because S(z) > S(xyz) > minsup. Thus, in a sorted frequent
3-pattern xyz, all its non-empty subsets containing the item with
lowest frequency within it (i.e., z, xz and yz) are also frequent.
Please note that although xy C xyz, we cannot say Rsup(xyz) will
be less than or equal to Rsup(xy) because there exists a case where
S(xyz) y S(xy)

S@z) © S0

Pei et al. [15] have also theoretically shown that the convertible
anti-monotonic property is same as the anti-monotonic property for
a pattern-growth algorithm. Therefore, initially, we have extended
the existing FP-growth [6] (or the CFG algorithm in [15]) to dis-
cover the complete set of frequent patterns using both support and
relative support measures. It involved the following two steps:

i. Compress the database into the FP-tree, which retains the
itemset association information.

ii. Using each interesting item in the FP-tree as an initial suffix
item (or suffix pattern), construct its conditional pattern base
consisting of the set of complete prefix paths in the FP-tree
co-occurring with the suffix item, then construct its condi-
tional FP-tree with all those items that have support and rela-
tive support no less than the respective minsup and minRsup
thresholds, and perform mining recursively on such a FP-
tree. The pattern-growth is achieved by the concatenation of



the suffix pattern with the interesting patterns generated from
the conditional FP-tree. The correctness of the algorithm is
shown in Lemma 3.

We have observed that such approach is not an effective way to
discover the complete set of frequent patterns as the every item in
the conditional pattern base of a suffix pattern has to go through two
checks, namely minsup and minRsup, to derive the corresponding
conditional FP-tree. To reduce these number of checks, we rede-
fine the frequent pattern using the notion of sorted set of items in
a pattern. Definition 3 provides the alternative definition of a fre-
quent pattern using the support and relative support measures. The
correctness is shown in Lemma 2.

DEFINITION 3. Given the user-specified minsup and minRsup
constraints, a sorted k-pattern X, S(iy) > S(ip) > -+ > S(ix), is
said to be frequent if

S(X) > max(S(ix) x minRsup, minsup). 2)
EXAMPLE 3. Continuing with Example 1, the pattern ab is fre-
quent because

S(ab) > minsup
and 3)

Sab) > minRsup

§(b) (= min(S(a),$(b)))  —

From Equation 3, it turns out that for the frequent pattern ab its
S(ab) > max(minRsup x S(b), minsup).

Using Definition 3 and the prior knowledge regarding the FP-tree
construction and mining technique, we introduce a novel concept
known as the conditional minimum support (Cminsup). It is defined
in Definition 4, and correctness is shown in Lemma 4.

DEFINITION 4. (The conditional minimum support of a suffix
pattern). Let i; be the initial suffix item (or I-pattern) having sup-
port S(i;). Let minsup and minRsup be the user-defined minimum
support and minimum relative support thresholds. The conditional
minimum support of a suffix pattern o > i j, denoted as Cminsup (o),
is max(minRsup x S(i;), minsup).

Using the concept of conditional minimum support, we propose
a pattern-growth algorithm known as Relative Support Frequent
Pattern-growth (RSFP-growth), which is discussed in subsequent
subsection.

PROPERTY 1. (Apriori property.) If X and Y are the patterns
such thatY C X, then S(Y) > S(X).

LEMMA 1. Let X ={iy,ip, - ,ix}, 1 <k <n, be a pattern such
that S(iy) > S(ip) > -+ ,S(i). IfY C X and iy, €Y, then Rsup(Y) >
Rsup(X).

PROOF. The relative support of X, i.e.,

Rsup(X) = ) (:mi((}égij)wijex)' The relative support of Y, i.e.,

Rsup(Y) = S (*msli}.;zi‘)lvi'EX)' Since Y C X, it turns out that
- J J

S(Y) > S(X) (Property 1). Thus, Rsup(Y) > Rsup(X) as % >

S(X)

S@- H

THEOREM 1. Ifthe relative support of pattern satisfies the user-
defined minRsup threshold, then all its non-subsets containing an
item having the lowest support within it also satisfy the minRsup
threshold.

95

PROOF. LetX = {iy,i, - ,ix}, 1 <k <n,be a pattern such that
S(i1) > S(ip) > -+ > S(i). If Rsup(X) > minRsup, then

S(X) > inR 4)

minRsup.

S(ix) (= min(S(ij) Vi € X) = P
If Y is a pattern such that Y C X and i, € Y, then based on Lemma
1 it turns out that Rsup(Y) > Rsup(X) > minRsup. Therefore, if
the relative support of a pattern satisfies the user-defined minRsup
threshold, then all its subsets containing an item with lowest sup-

port within it will also satisfy the minRsup threshold. [J

LEMMA 2. LetX = {iy,ip, - ,ix}, 1 <k <n, be a pattern such
that S(iy) > S(iz) > -+ ,S(ix). For the user-defined minsup and
minRsup constraints, the pattern X can be said frequent if and only
if S(X) > max(S(iy) X minRsup,minsup).

PROOF. From the definition of frequent pattern given in Equa-
tion 1, the pattern X can be said frequent if

S(X) > minsup
and (®)]
S(X
(X) > minRsup.

min(S(i1),S(@i2), - ,S(ix))

Since min(S(i1),S(i2), -+ ,S(ix)) = S(ix), Equation 5 can be ex-
pressed as follows:

S(X) > minsup
and (6)
S(X
(. ) > minRsup.

Thus, X can be a frequent patten if and only if S(X) > max(S(iy) x
minRsup,minsup). [

LEMMA 3. Let o be a suffix pattern in FP-tree. Let min_item_sup(ct.)

be the minimum support of an item in 0, i.e., min_item_sup(Q) =
min(S(i;)|Vi; € &). Let B be o, conditional pattern base, and B be
an item in B. Let S(B) be the support of B in the transactional
database. Let Sp(B) be the conditional support of B, i.e., sup-
port of B in B, respectively. If . is frequent, Sg(B) > minsup and
Sz(B)

min_item_sup(Q.)
frequent pattern.

> minRsup, then the pattern < .3 > is also a

PROOF. According to the definition of conditional pattern base
and FP-tree, each subset in B occurs under the condition of the
occurrence of o in the transactional database. If an item 3 ap-
pears in B for n times, it appearers with o in n times. Further,
min_item_sup () = min_item_sup(o.UP) as FP-tree is constructed
in support descending order of items. Thus, from the definition
of frequent pattern used in this model, if the Sp(B) > minsup and

S(B)
min_item_sup(Q.)
frequent pattern. [

> minRsup, the pattern < o, 3 > is therefore a

LEMMA 4. Let o be a suffix pattern in FP-tree that has resulted
from the initial suffix item i;. Let the Cminsup(o.) be the Cminsup
of o Let B be o. conditional pattern base, and 3 be an item in B. Let
S(B) and Sp(B) be the support of B in the transactional database
and in B, respectively. If . is frequent and Sg(P) > Cminsup, the
pattern < o, > is therefore also frequent.

PROOF. From the mining procedure of FP-tree, the
min_item_sup(a,) = S(i;). From Lemma 3, it turns out that if the



Sz(B)
S(i)
frequent pattern. In other words, < o, > is a frequent pattern
if Sg(B) > max(minsup,- minRsup x S(i;)). From the definition
of conditional minimum support, it can be said that < o, > is
a frequent if Sg(B) > Cminsup(a) (= max(minsup, minRsup X
s(i;). O

4.3 Relative Support Frequent Pattern-growth

The RSFP-growth algorithm uses pattern-growth technique and
the concept of conditional minimum support to discover frequent
patterns effectively using the relative support and support mea-
sures. Briefly, the RSFP-growth involves the following two steps:

Sg(B) > minsup and > minRsup, the pattern < o, > is a

i. Compress the database into the FP-tree, which retains the
itemset association information.

ii. Using each interesting item in the FP-tree as an initial suffix
item (or suffix pattern), measure the conditional minimum
support (Cminsup) and construct its conditional pattern base
consisting of the set of complete prefix paths in the FP-tree
co-occurring with the suffix item. Next, construct the con-
ditional FP-tree with all those items that have support no
less than the Cminsup threshold in the conditional pattern
base, and perform mining recursively on such a FP-tree us-
ing Cminsup. The pattern-growth is achieved by the con-
catenation of the suffix pattern with the interesting patterns
generated from the conditional FP-tree.

The working of RSFP-growth is shown in Algorithm 1 and de-
scribed as follows. The RSFP-growth algorithm accepts transac-
tional database, minsup and minRsup as its input parameters. An
FP-tree [6] is created using minsup threshold (line 1 in Algorithm
1). Next, the procedure RSFP-mine_1 is called to discovered fre-
quent patterns from FP-tree. The RSFP-mine_1 procedure selects
each item in the FP-tree as an initial suffix item (or pattern) and
calculates its Cminsup (line 2 in Procedure 2). Next, the condi-
tional pattern base and conditional FP-tree are generated for the
suffix item using Cminsup (lines 3 to 11 in Procedure 2)). Next,
the RSFP-mine_k procedure is called to recursively mine frequent
patterns from the conditional FP-tree of suffix item.

We now explain the working of RSFP-growth algorithm using
the database shown in Table 1. Let the user-defined minsup and
minRsup thresholds be 3 and 0.65, respectively. Scan the database
and measure the support of items in a database. Prune the infre-
quent items (i.e., items having support less than minsup) and sort
the remaining items in the order of descending support. This re-
sulting set or /ist is denoted L. Thus, we have L = {{a: 11},{b:
9}, {c:9}.{d: 6}, fe: Sh{f:5}}.

An FP-tree is constructed as follows. First, create the root of the
tree, labeled with “null.” Scan database DB a second time. The
scan of the first transaction, “1:a,b,” which contains two items (a
and b in L order), leads to the construction of the first branch of the
tree with two nodes, (a: 1) and (b : 1), where a is linked as a child
of the root and b is linked to a. The second transaction, “2:a,b,e,’
would result in a branch where a is linked to root, b is linked to a
and e is linked to 5. However, this branch would share a common
prefix, a and b, with the existing path for “1”. Therefore, we instead
increment the count of @ and b by 1, and create a new node, (e: 1),
which is linked as the child of (b : 2). Similar process is repeated
for other transactions in the database. To facilitate tree traversal, an
item header table is built so that each item points to its occurrences
in the tree via a chain of node-links. The FP-tree obtained after
scanning all transactions of Table 1 is shown in Figure 1 with the
associated node-links.

96

D || T o
[Sal [Sa ) [ep) (o] ({a)
,
4
=
(o)
~

Figure 1: FP-tree. The terms ‘I’, ‘S’ and ‘NL’ respectively denote
item, support and node-link.

Table 2: Mining frequent patterns.

SI | Cmin- | Conditional | Conditional | Frequent
sup Pattern Base | FP-tree patterns
f 13 {{a,c: 1}, (e:3) {e,f: 3}
{c,d: 1},
{e:2},
{b,e:1}}
e |3 {a,b:2} - -
d |3 {c:6} (c:6) {c,d: 6}
c |3 {a:3} - -
b |3 {ea: 8} (a:8) {a,b: 8}

Mining frequent patterns using FP-tree of Figure 1 is shown in
Table 2 and detailed as follows. Consider the item f, which is the
last item in L, as a suffix item. The item f occurs in four branches
of the FP-tree of Figure 1. The Cminsup of ‘f” is 3 (~ max(3,5 X
0.65). The paths containing f in FP-tree are (a,c, f: 1), (c,d,f: 1)
(e,f :2) and (b,e, f : 1). Therefore, considering f as a suffix, its
corresponding four prefix paths are (a,c: 1), (c,d : 1), (e:2) and
(b,e : 1), which form its conditional pattern base. Its conditional
FP-tree contains only a single path, (e : 3). The items a, b, ¢ and d
are not included in conditional FP-tree because their support of 1
is less than Cminsup. The concatenation of suffix pattern with the
item in conditional FP-tree generates the frequent pattern {e, f : 3}.
Similar process is repeated for the remaining other items in the FP-
tree to discover the complete set of frequent patterns.

S. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of FP-growth, RSA
and RSFP-growth algorithms. We show that RSFP-growth is a bet-
ter algorithm to mine frequent patterns in different types of datasets.

The algorithms are written in GNU C++ and run with the Ubuntu
10.04 operating system on a 2.66 GHz machine with 1GB memory.
The runtime specifies the total execution time, i.e., CPU and I/Os.
The runtime is expressed in seconds. We pursued experiments on
synthetic (T10I4D100K) and real-world (BMS-WebView-1, Mush-
room and Kosarak) datasets. The datasets are available at Frequent
Itemset Mining repository [1]. The details of these datasets are
shown in Table 3.

5.1 Generation of Frequent Patterns

Figure 2(a), (b) and (c) respectively show the number of frequent
patterns generated in 7'10/4D100k, BMS-WebView-1 and Mush-
room datasets with the basic model (denoted as BM) [2] and the



Table 3: Dataset Characteristics. The terms “Max.”, “Avg.” and “Tran.” are respectively used as the acronyms for “maximum”, “average”
and “transaction.*

Dataset Transa- | Distinct | Max. | Avg. Type
ctions Items Trans. | Trans.
Size Size
T10I/4D100k 100000 | 870 29 10.1 sparse
BMS-WebView-1 | 59602 4971 267 2.5 sparse
Mushroom 8124 119 23 23.0 dense
Kosarak 990002 | 41270 2498 | 8.1 sparse
30004 4500 600009
g B00¢ e g 4 9 50000
2 2 3500 D
@ T a s
& 20000 - 2 3000 B GE) 40000 g
€ £ 2500 £
© 15000 K e = 30000 ,
3 ;. 3 2000 S, = ;
g [ BM — {8 1500 P
L o h o0 BM o ; BM —
5000} B It S
N 500 .- PM ’,' PM
RV T R B U - R VI T T R R N T B T R -
o a a
(a) T1014D100K dataset (b) BMS-WehView-1 dataset (c) Mushroom dataset

Figure 2: Frequent patterns generated in different databases at different minRsup values.

12 s 10 7 " 7

of sl Y 7
O D oo _ (OF1) R -
o f — b o v s o~
g 60 ,/'/ g /,/ * g 8 /' ./’/
| /7 Fegouh — | Eq FP-growth ~ — Sef FPgowh —
i e RSA ¥ L/ RSA - |2y, / RSA

p /
0 RSFP-growth—-- 2 RSFP-growth = | 2f-~ RSFP-growth—--
SV TR N R B B S R v TR T S W TR B T B R R Y
a a a
(a) T1014D100K dataset (b) BMS-WebView-1 dataset (c) Mushroom dataset

Figure 3: Runtime consumed by different algorithms in different databases at different minRsup values.

97



Algorithm 1 RSFP-growthAlgorithm (DB: database, minsup:
minimum support, minRsup: minimum relative support)

Procedure 2 RSFP-mine_1(Tree, 0); Constructing the conditional
pattern base for frequent item or length-1 suffix pattern.

1: The FP-tree is constructed in the following steps:

i. Scan the transactional database D once. Collect F, the
set of frequent items, and their support counts. Sort F' in
support descending order as L, the list of frequent items.

ii. Create the root of an FP-tree, and label it as “null.” For
each transaction ¢ in D do the following. Select and sort
the frequent items in ¢ according to the order of L. Let
the sorted frequent item list in # be [p|P], where p is
the first element and P is the remaining list. Call in-
sert_tree([p|P], T), which is performed as follows. If
T has a child N such that N.item-name = p.item-name,
then increment N’s count by 1; else create a new node
N, and let its count be 1, its parent link be linked to 7',
and its node-link to the nodes with the same item-name
via the node-link structure. If P is non-empty, call in-
sert_tree(P, N) recursively.

2: The FP-tree is mined by calling RSFP-mine_1(Tree,null).

proposed model (denoted as PM) of frequent patterns. The minsup
thresholds set in 7'10/4D 100k, BMS-WebView-1 and Mushroom are
0.1%, 0.1% and 25%, respectively. The minRsup threshold in each
database is set as é and varied o from 1 to 20. The thick lines
shows the number of frequent patterns discovered by FP-growth
(or basic model). It can be observed that increase in o value has
increased the number of frequent patterns in the proposed model.
The reason is due to the decrease in minRsup threshold with the in-
crease in o value. If minRsup = 0 (or o is set too large), then both
the models will generate same number of frequent patterns.

5.2 Runtime Comparison of FP-growth, RSA
and RSFP-growth Algorithms

Figure 3(a), (b) and (c) respectively show the runtime taken by
FP-growth, RSA and FP-growth algorithms in 710/4D100k, BMS-
WebView-1 and Mushroom datasets. The minsup thresholds set in
T10I4D100k, BMS-WebView-1 and Mushroom are 0.1%, 0.1% and
25%, respectively. The minRsup threshold in each database is set
as é and varied o from 1 to 20. To compare RSA and RFP-growth
algorithms, the 51 and s thresholds of RSA algorithm are respec-
tively set to 100% and minsup of the database. The following ob-
servations can be drawn from these figures.

e Since the number of frequent patterns getting generated with
FP-growth remained constant, the runtime of FP-growth has
resulted in a straight line.

e Increase in o value has increased the runtime of both RSA
and RSFP-growth algorithms. The reason is due to the in-

crease of number of frequent patterns with increase in o value.

e The RSFP-growth algorithm has taken relatively less run-
time than the FP-growth algorithm at lower o (i.e., higher
minRsup values). It is because of the less number of frequent
patterns discovered by RSFP-growth.

e Athigher a (i.e., at low minRsup), the FP-growth and RSFP-
growth algorithms have discovered almost same the number
of frequent patterns. However, the runtime of RSFP-growth
is slightly more than the FP-growth. It is because of the addi-
tional runtime was spent by RSFP-growth algorithm in calcu-
lating the conditional minimum support for each suffix item.

98

1: for each g; in the header of Tree do

2:  Calculate Cminsup = max(minsup,S(a;) X minRsup).

3:  Generate pattern B = aUa; with support = a;.support.
{The term support represent support count.} {S(B) = S(a;)
in a-projected database}

4:  Getaset [z of items to be included in B-projected database.

5:  for each item in I3, compute its support in B-projected

database;
6: foreachb; e lgdo
7: if S(Bb;) < Cminsup then
8: delete b; from Ig; {pruning based on conditional mini-
mum support }
9: end if
10:  end for

11:  construct B-conditional FP-tree with items in Ig Treeg.
12:  if Treeg # O then

13: RSFP-mine k(Treeg, Cminsup, B);
14:  endif
15: end for

Procedure 3 RSFP-mine k(7ree, Cminsup,a); Constructing the
conditional pattern base for length-k, k > 1, suffix pattern.

1: for each g; in the header of Tree do

2:  Generate pattern f = aUa; with support = a;.support.

3: Getaset Ig of items to be included in B-projected database.
4:  for each item in Ig, compute its support in B-projected

database;
5 foreachb; € Iz do
6: if S(Bb;) < Cminsup then
7: delete b; from Ig; {pruning based on minimum sup-
port}
8: end if
9:  end for

10:  construct B-conditional FP-tree with items in Ig Treeg.
11:  if Treeg # 0 then

12: RSFP-mine k(T'reeg, Cminsup, B);
13:  endif
14: end for

Please note that the runtime of RSFP-growth can be much
higher than FP-growth if conditional minimum support is not
used.

e Atany o value (i.e., irrespective of minRsup threshold), RSFP-
growth is better than the RSA algorithm. It is because of two
reasons: first, the search space of RSA was more than the
search space of RSFP-growth algorithm; second, RSA suf-
fered from the same performance problems as the Apriori
algorithm.

5.3 Scalability Test on RSA and RSFP-growth
Algorithms

In this experiment, we evaluate the scalability performance of
RSA and RSFP-growth algorithms on runtime requirements by vary-
ing the number of transactions in a database. We use real-world
kosarak dataset for the scalability experiment, since it is a huge
sparse dataset. We divided the dataset into five portions of 0.2
million transactions in each part. Then we investigated the per-
formance of RSA and RSFP-growth algorithms after accumulating



RSA —--
RSFP-growth ——

Runtime (s
P
3

—
—

3 6 8 9.
Dataset size (100K)

Figure 4: Scalability of RSA and RSFP-growth algorithms.

each portion with previous parts while performing correlated pat-
tern mining each time. We fixed minsup = 0.1% and minRsup =
0.5 (i.e., o = 2) for each experiment. The experimental results are
shown in Figure 4. The runtime in y-axes of Figure 4 specify the
total runtime consumed by RSA and RSFP-growth algorithms with
the increase of database size. It is clear from the graphs that as the
database size increases, overall runtime increases for both RSA and
RSFP-growth algorithms. However, the RSFP-growth algorithm
requires relatively less runtime than RSA algorithm. Therefore, it
can be observed from the scalability test that RSFP-growth can effi-
ciently mine frequent patterns over large datasets and distinct items
with considerable amount of runtime.

Overall, the RSFP-growth algorithm is runtime efficient and scal-
able than the RSA algorithm.

6. CONCLUSIONS AND FUTURE WORK

This paper has proposed an efficient and effective pattern-growth
algorithm to discover the complete set of frequent patterns using
relative support and support measures. The paper has also shown
that it is not computationally expensive to mine the patterns as the
relative support measure satisfies the convertible anti-monotonic
property if items within a pattern are arranged in support order. A
novel concept known as conditional minimum support has been in-
troduced and extended to FP-growth algorithm to discover frequent
patterns. By conducting experiments on various datasets, we have
shown that RSFP-growth outperforms RSA algorithm with respect
to both runtime and scalability.

The future works of the paper are as follows: first, data min-
ing techniques, such as classification and clustering, employ fre-
quent patterns discovered with single minsup constraint to improve
their performance. As a result, these techniques also suffer from
the rare item problem. It is interesting to investigate the usage of
frequent patterns discovered with the relative support measure to
address the problem. Second, the interestingness of frequent pat-
terns discovered using various measures, such as relative support
and all-confidence, needs to be investigated.

7. REFERENCES

[1] Frequent itemset mining repository.
http://fimi.cs.helsinki.fi/data/

[2] R. Agrawal, T. Imieliriski, and A. Swami. Mining association
rules between sets of items in large databases. In SIGMOD
’93: Proceedings of the 1993 ACM SIGMOD international
conference on Management of data, pages 207-216, New
York, NY, USA, 1993. ACM.

[3] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules in large databases. In Proceedings of the
20th International Conference on Very Large Data Bases,
VLDB *94, pages 487-499, 1994.

[4] S. Brin, R. Motwani, and C. Silverstein. Beyond market
baskets: generalizing association rules to correlations.
SIGMOD Rec., 26(2):265-276, 1997.

99

(5]

(6]

(7]

(8]

(9]

[10]

(11]

(12]

[13]

(14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]

F. Gedikli and D. Jannach. Neighborhood-restricted mining
and weighted application of association rules for
recommenders. In Proceedings of the 11th international
conference on Web information systems engineering,
WISE’10, pages 157-165, Berlin, Heidelberg, 2010.
Springer-Verlag.

J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent patterns
without candidate generation: A frequent-pattern tree
approach. Data Min. Knowl. Discov., 8(1):53-87, 2004.

R. U. Kiran and P. K. Reddy. An improved frequent
pattern-growth approach to discover rare association rules. In
KDIR, pages 43-52, 2009.

R. U. Kiran and P. K. Reddy. Improved approaches to mine
rare association rules in transactional databases. In IDAR
’10: Proceedings of the Fourth SIGMOD PhD Workshop on
Innovative Database Research, pages 19-24, New York, NY,
USA, 2010. ACM.

R. U. Kiran and P. K. Reddy. Mining rare association rules in
the datasets with widely varying items’ frequencies. In
DASFAA (1), pages 49-62, 2010.

R. U. Kiran and P. K. Reddy. Novel techniques to reduce
search space in multiple minimum supports-based frequent
pattern mining algorithms. In EDBT, pages 11-20, 2011.

M. Kubat, R. C. Holte, and S. Matwin. Machine learning for
the detection of oil spills in satellite radar images. Mach.
Learn., 30(2-3):195-215, Feb. 1998.

B. Liu, W. Hsu, and Y. Ma. Mining association rules with
multiple minimum supports. In KDD ’99: Proceedings of the

fifth ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 337-341, New York, NY,
USA, 1999. ACM.

E. R. Omiecinski. Alternative interest measures for mining
associations in databases. IEEE Trans. on Knowl. and Data
Eng., 15(1):57-69, 2003.

J. Pei and J. Han. Constrained frequent pattern mining: a
pattern-growth view. SIGKDD Explor. Newsl., 4(1):31-39,
2002.

J. Pei, J. Han, and L. V. Lakshmanan. Pushing convertible
constraints in frequent itemset mining. Data Mining and
Knowledge Discovery, 8:227-252, 2004.
10.1023/B:DAMI.0000023674.74932.4c.

C. S. K. Selvi and A. Tamilarasi. Mining association rules
with dynamic and collective support thresholds.
International Journal on Open Problems Computational
Mathematics, 2(3):427-438, 2009.

A. Surana, R. U. Kiran, and P. K. Reddy. Selecting a right
interestingness measure for rare association rules. In
COMAD, page 115, 2010.

P.-N. Tan, V. Kumar, and J. Srivastava. Selecting the right
interestingness measure for association patterns. In
Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining, KDD
’02, pages 32—-41, New York, NY, USA, 2002. ACM.

G. M. Weiss. Mining with rarity: a unifying framework.
SIGKDD Explor. Newsl., 6(1):7-19, 2004.

T. Wu, Y. Chen, and J. Han. Re-examination of
interestingness measures in pattern mining: a unified
framework. Data Min. Knowl. Discov., 21(3):371-397, 2010.
H. Yun, D. Ha, B. Hwang, and K. H. Ryu. Mining
association rules on significant rare data using relative
support. J. Syst. Softw., 67:181-191, September 2003.






DEMONSTRATION






Excel Solvers for the Traveling Salesman Problem

Mangesh Gharote, Dilys Thomas, Sachin Lodha
mangesh.g @tcs.com dilys@cs.stanfo;_"d.edu sachin. lodha_@tcs. com
Tata Consultancy Services, Pune, India

ABSTRACT

Ordering queries within a workload and ordering joins in a query
are important problems in databases [1]. We give algorithms for the
query sequencing problem that scale (small space) and are efficient
(low runtime) as compared to earlier work [4]. The errors are small
in practice and we are able to further reduce them using geometric
repair. We provide a computational comparison of TSP solvers and
show extensive testing on benchmark datasets [25] observing its
connection to these ordering problems.

1. PROBLEM STATEMENT

Database systems are facing an ever increasing demand for high
performance. Either as standalone Oracle, SQLServer or DB2 in-
stallations or as a backend to Peoplesoft, SAP or Siebel workloads
they are required to execute a batch of queries that contain sev-
eral common subexpressions. Traditionally, query optimizers like
[37], [36] optimize queries one at a time and do not identify any
commonalities in queries, resulting in repeated computations. As
observed in [3, 39] exploiting common results, multi-query opti-
mization (MQO), can lead to significant performance gains — this
requires the queries to be ordered in the workload for memory reuse
and reduced disk need. Motivated by the importance for ordering
problems, we study the combinatorial ordering problem of the trav-
elling salesman problem (TSP) and provide extensive testing on
benchmark datasets [25].

1.1 Applications

The traveling salesman problem has wide applicability in many
different industrial and scientific scenarios. Some notable ones are:
vehicle routing, bus scheduling, development of flight schedules,
crew scheduling, order-picking problem in warehouses, printing
press scheduling problem, network cabling in a country, computer
wiring, query workload ordering for optimization, VLSI chip de-
sign connectivity layout, drilling of printed circuit boards, genome
sequencing, hot rolling scheduling problem in iron & steel industry,
overhauling gas turbine engines , X-Ray crystallography (order-
ing positions for measurement), global navigation satellite system,
ordering test cases in regression suite to re-use components etc.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

The 18th International Conference on Management of Data (COMAD),
14th-16th Dec, 2012 at Pune, India.

Copyright (©)2012 Computer Society of India (CSI).

103

See [6] for a description of some applications of TSP. Intractabil-
ity [12] [11] and restricted tractability results [9] [10] for TSP have
won top awards. We develop our own algorithms on top of reason-
able in-practice TSP algorithms. We obtain near optimal tours in
practice. Our aim is to reduce run time and be scalable in mem-
ory for medium to large instances of TSP. Ease of using the tool,
ability to handle different distance metrics including longitude and
latitude, and ease of visualizing the tours produced are the aims of
our project of improving state of the art TSP solvers available in
Excel [4].

2. NEARESTNEIGHBORAND GREEDY AL-
GORITHMS

2.1 Nearest Neighbor

Algorithm 1 implemented in our Excel solver is the Nearest Neigh-
bor(NN) algorithm. Since it grows a single segment, it is similar to
left deep plans used in query optimizers. Different start points can
give different tours, see Figure 1.

Algorithm 1 Nearest Neighbor

Select an arbitrary vertex as current vertex.

while not all the vertices in domain are visited do
Find shortest edge connecting current vertex and an unvisited
vertex V.
Set current vertex to V. Mark V visited.

end while

2.2  Greedy

Instead of starting from one vertex in NN, Algorithm 2 the greedy
algorithm grows multiple segments and stitches them together to
get a tour, similar to bushy optimizer plans.

Algorithm 2 Greedy

Sort all edges.

while less than n edges in tour do
Select the shortest edge and add it to tour if
[1] not yet on tour and not creating a degree-3 vertex.
[2] not creating a cycle of size less than n.

end while

3. TOUR REPAIR

NN cannot approximate TSP to better than a factor of log(n) [40]
and may produce the worst possible tour [13]. In practice NN and



Figure 1: Different start points in 16 NN(32% from opt),(5%
from opt), 51 NN, Greedy(intersection removal, section 3.1)(8 %
from opt),(11% from opt)

LY
d A Nt
a - a 1
o
b b
< . - 7
{ e N ,/'

Figure 2: Intersection Unrolling

greedy gives within 25% away from optimal for moderately large
sized instances. See Figures 6, 7, 8.  The solutions obtained can
be further repaired with our intersection removal, hinge-crest opti-
mization, and tested techniques like geometric constructions, k-opt,
etc.

3.1 Intersection Unrolling

From Figure 2 (i) Triangle Inequality ao + co > ac. (ii) Again
do+ ob > db. (iii) Adding (i) & (ii) ao + co + do+ bo > ac + db.
(iv) Rearranging terms ao + ob + co 4+ do > ac + db. (v) Intersec-
tion Unrolling ab + c¢d > ac + db. We solve for the intersection
point using Cramers Rule. Intersection unrolling is applied when
intersection point lies on both segments, as shown in Algorithm 3.
For every i, j intersection, the tour between vertices Tour[i+1] and
Tour[j] has been reversed by the inner while. See Figure 3 for

Algorithm 3 Unroll Intersection

while (Tour[i],Tour[i+1]) (Tour[j], Tour[j+1]) intersect do
L=i+1.R=j.
while L < R do
Swap = Tour[L]. Tour[L] = Tour[R]. Tour[R] = Swap.
L=L+1.R=R-1.
end while
end while

examples.

3.2 Hinge and Crest Optimization

The hinge and crest optimization (transfer tour repair) from Fig-
ure 4 is given in Algorithm 4 and applied in Figure 5.

4. RELATED WORK AND EXPERIMENTS

Being the most important geometric combinatorial problem, the
TSP has multiple popular algorithms.

4.1 Lin-Kernighan

Lin-Kernighan heuristic tries removing k edges and adding k
other edges aiming to retain a tour but to reduce the cost taking at
most O(n*) time.

4.2 Linear Programming Formulation, Cut-
ting Plane

104

——

\

\
\

\ /
v

3

(
)
/

Figure 3: Intersection Removal on 16 NN(5% from opt),(3%
from opt) and 16 Greedy(17 % from opt),(1% from opt)

8|
= =) Crest
/ 2
h1 ha
Hinge
o

Hinge greater than crest.
(h1th2)- (14 c2) +g>0

T ""'”’-\.‘\

Figure 4: Hinge and Crest Transfer

Figure 6: 48 US mainland capitals(our 7%),6 continents 535
airports(10%)

Figure 7: India 67 cities(our 1%), Africa and Islands(our 12%)

Figure 8: 2103 points PCB drilling(6%), Converting Pictures
to Tours using Voronoi diagrams [33](2)



Algorithm 4 Transfer tour repair

Algorithm 7 Christofides

while there exists nearby points on different segments do
if hinge distance > crest distance i.e. h1 + ha + g1 — g2 —
c1 — c2 > 0then
Transfer points to nearer segment and decrease cost.
end if
end while

Algorithm 5 Computing Dij from longitude and latitude [25]
PI =3.141592. R=6378.388. /* Radius of earth*/
degree = (int) X[i]. minute = X[i] - degree.
radian = PI * (degree + 5 *minute/3)/180.
v1 = cos(Ing[i] -Ing[j]).
v2 = cos(lat[i] - lat[j]). v3 = cos(lat[i] + lat[j]).
Dij = (int) (R * acos(1/2 *((1 + v1)*v2 - (1 - vI)*v3))+1).

Miller-Tucker-Zemlin were among the first to provide formula-
tions for TSP [14].
min Y-,y D ey~ CigYis (minimize tour cost), Subject to,
YjeviysiYii T 2 jev<i Yii = 2 Vi € V (vertex degree two),
Doies 2ojes.jwiYis < S| —1Vé # S CV (no subtours),
0<y;; <1,Vi,jeV,j>1i,y;;integerVi,j € V,j > i.

‘We use the bounds obtained from the Held Karp lower bound [17,
18, 28], an LP relaxation, in Table 1 (see [25]). [4] uses in its
backend linear programming solvers like CPLEX, Gurobi, Xpress
solvers for solving the TSP problem.

Concorde solver developed by Robert Bixby, Vasek Chvatal, William

Cook and David Applegate [7, 8], uses the cutting plane technique.

4.3 Held Karp Dynamic Programming
Algorithm 6, Held-Karp [15] dynamic programming is a (n?2™)
time complexity algorithm for TSP. This memoizes the solutions to
2™ subsets of locations. Take some starting vertex s for the tour.
For set of vertices R, s € R, vertex w € R, let B(R, w) = min-
imum length of a path, starting in s visiting only all vertices in R
and ending in w. Remembering the optimal subsolution (dynamic

Algorithm 6 Held Karp
B({s},5) = 0.
for all S and w and |S| > 1 do
B(S,w) = min,es—{w) B(S — {w},v) + weight(v, w).
end for

programming) for subsets reduces exponential term of the running
time from n! ((n/e)™) to 2™. It is a 50 year open problem if there
is an exact algorithm for TSP with time (c™) for ¢ < 2 [27] (some
recent progress has been made for cubic graphs [21, 20] and hamil-
tonian paths [19]). Memoization is popular in modern query
optimizers including map reduce contexts [38].

4.4 Christofides

Algorithm 7, Christofides’s algorithm [16] is a 1.5 approxima-
tion to metric TSP. The MST (minimum spanning tree) is atmost
the cost of 1 x T'SP as a TSP tour without a single edge is a span-
ning tree. A min weight matching is atmost 0.5 x TSP as odd /
even edges in a TSP tour give a matching. In practice 10-20% away
from optimal solutions have been obtained [26]. Itis a 35 year open
problem if there is an approximation algorithm with factor < 1.5
(some recent progress has been made at Stanford for shortest path
graph metrics [22, 23]). For the asymmetric case a similar algo-
rithm recently developed by our colleagues at Stanford University

105

Get a MST T using Prim’s or Kruskal’s algorithm.

Set O = {v | v has odd degree in tree T}.

Compute a minimum weight matching M in the graph G[O].
Compute Euler tour C in graph T union M.

Add shortcuts to C to get a TSP-tour.

size nn | nn-int | greedy | greedy-int
14 156 | 13.6 17 16.6
16 5.4 2.8 17.6 1.0
48 13 7.1 19.7 11.7
51 192 | 85 13 11
52 8.5 35 32.0 24.1
67 7.2 1.2 18.2 1
96 184 | 12.1 20.6 16.5
101 17 11.1 26.3 24.2
280 | 214 | 125 14.8 8.1
535 120.7 | 193 154 10.1
783 25 16.4 19.6 12.6
1002 | 214 | 13.6 19.2 144

2103 | 94 6.5

14051 | 21.3 | 13.8

33180 | 19.1 | 12.6

85900 | 15.2 | 10.1

Table 1: Performance of Excel Solver- %age away from opti-
mal

achieves O(log n / loglog n) approximation [5].

4.5 Tours and Rectifications

Starting from size 33 instance in 1950s, the largest instance solved
optimally till date is 85,900 locations taking 136 CPU years. Our
results from Table 1 (for datasets from [25] except 67 in Figure 7)
gives the percentage difference from optimal (obtained from Held
Karp lower bound and [25]) of the solutions obtained from NN
and greedy algorithms and with the intersection removal algorithm
applied to the solutions. Greedy performs better on larger datasets
but is more time expensive.

4.6 Metaheuristics

We also experimentally implemented heuristics like Simulated
Annealing (SA)[31], Ant Colony Optimization (ACO)[30] and Elec-
troMagnetism(EM) like algorithm [32] for the TSP Problem whose
results are shown in Table 2. Their complicated expensive noncom-
binatorial iteration rules lead to poor performance in CPU, RAM
and approximation ratio especially as instance sizes increase.

size | EM | SA | ACO
14 | 150 | 184 | 15.0
52 85 | 172 | 6.5

96 | 182 | 359 | 14.2
159 | 154 | 295 | 143
226 | 159 | 17.6 | 13.1
299 | 20.2 | 279 | 20.8
654 | 242 | 28.3 | 24.0

Table 2: Performance of Metaheuristics- %age away from op-
timal



4.7 SQL Workload

In the first experiment, we generated 5 workloads with 100 queries
each, each query a join of a random subset of 20 tables. Distance
between two queries (with sets of tables R; and #2) is the car-
dinality of the symmetric difference of the sets of tables in each
queries join (|31 ARz|). This allows shared pipelined table scans
and LRU RAM reuse. On an average across workloads, we ob-
served the schedule developed by NN to be 3.7%, and greedy to
be 2.9% away from optimal. In the second experiment we gen-
erated 5 workloads with 1000 queries each, each query selecting
each table from totally 100 tables with probability 0.2 to be in the
query’s join (each approximately a 20 table join). On average 9.7
tables were shared between adjacent queries in the optimal order-
ing. The schedule developed by NN was 3.6% and greedy 2.3%
away from optimal on average with 8.8 tables shared between adja-
cent queries compared to a random ordering that could achieve only
four tables shared between adjacent queries. Considering columnar
storages and cache policies, in a third experiment we considered a
real world SAP workload containing 924 queries which reference
on average 7.4 columns per query. The reordering increased the
number of columns shared between adjacent queries from 0.42 to
4.9 on average. In a fourth experiment, a real world SAP workload
of 16000 queries with on average 13.8 columns per query had orig-
inally 1.8 columns shared between adjacent queries already show-
ing affinity, and after reordering shared 13.1 columns between ad-
jacent queries, most being with same prepared statement template
groupings. Template groupings make, batch execution techniques
like JDBC rewrite [2], and cache reuse techniques [34, 35] that use
LRU algorithm and time based aging across foreign keys, possible.

4.8 Critique of work

The most recent excel TSP solver [4] could solve upto 180 cities
without running out of memory or time. We present a solver that
can solve instances of upto 85,900 cities the largest instance solved
optimally to date, approximately. With no extra software installa-
tion and a click of a button we are able to solve multiple different
large sized TSP problems and provide tour rectifications for order-
ing problems. We provide an understanding of TSP solvers and
show extensive testing on benchmark ordering problem datasets [25].
NEOS solver requires expensive dedicated servers [29].

Acknowledgements: Metaheuristics were developed with help
from Prem Nathan, Prashant Kumar and Sani Kumbhar. Dr. Maitreya
Natu provided the SAP workload. Dr. Rajiv Raman provided a few
recent references.

S. REFERENCES

[1] S. Sudarshan, A. A. Diwan, Dilys Thomas, Scheduling and
caching in multiquery optimization, COMAD 2006,
150-153.

[2] M. Chavan, R. Guravannavar, K. Ramachandra, S.
Sudarshan, DBridge: A program rewrite tool for set-oriented
query execution, ICDE 2011.

[3] P.Roy, S. Seshadri, S. Sudarshan, and S. Bhobhe. Efficient
and extensible algorithms for multi-query optimization,
SIGMOD 2000, 249-260.

[4] Rasmus Rasmussen, TSP in spreadsheets: A fast and flexible
tool, Elsevier, Omega 39, 1, 51-63, January 2011.

[5] Arash Asadpour, Michel Goemans, Aleksander Madry,
Shayan Oveis Gharan, Amin Saberi, An O(log n / log log
n)-approximation algorithm for the asymmetric travelling
salesman problem, SODA 2010.

[6] Donald Davendra, Traveling Salesman Problem, Theory and

106

Applications, URL: http://www.intechopen.com, December
2010.

[7] Vasek Chvatal, Robert Bixby, William Cook, David
Applegate, Traveling salesman problem: A computational
study, PUP, 2006.

[8] D. Applegate, R. Bixby, V. Chvatal, and W. Cook, Concorde,
TSP Solver, URL: http://www.tsp.gatech.edu/concorde/,
2006.

[9] Sanjeev Arora, Polynomial time approximation schemes for
euclidean traveling salesman and other geometric problems,
JACM, 1998, 45, 5.

[10] Mitchell, J. S. B., Guillotine subdivisions approximate
polygonal subdivisions: A simple polynomial-time
approximation scheme for geometric TSP, k-MST, and
related problems, SIAM Journal on Computing, 1999.

[11] Stephen Cook, The complexity of theorem proving
procedures, STOC 1971, 151-158.

[12] Richard Karp, Reducibility among combinatorial problems,
Complexity of Computer Computations, 1972, 85-103.

[13] J. Bang-Jensen, G. Gutin, A.Yeo, When the greedy algorithm
fails, Discrete Optimization 1, 2004, 121-127.

[14] C.E. Miller, A.W. Tucker, R.A. Zemlin, Integer
programming formulations and traveling salesman problems,
JACM, 7, 1960, 326-329.

[15] M. Held, R. Karp. A dynamic programming approach to
sequencing problems, Journal of SIAM, 1962, 10, 196-210.

[16] Nicos Christofides, Worst-case analysis of a new heuristic
for the traveling salesman problem, Report 388, GSIA,
CMU, 1976.

[17] M. Held, R. M. Karp, The traveling-salesman problem and
minimum spanning trees, Operations Res. 18, 1970,
1138-1162.

[18] M. Held, R. M. Karp, The traveling-salesman problem and
minimum spanning trees: Part II, Math. Programming 1,
1971, 6-25.

[19] Andreas Bjorklund, Determinant Sums for Undirected
Hamiltonicity, FOCS 2010.

[20] Kazuo Iwama, Takuya Nakashima, An Improved Exact
Algorithm for Cubic Graph TSP, COCOON 2007.

[21] David Eppstein, The Traveling Salesman Problem for Cubic
Graphs, Journal of Graph Algorithms and Applications,
2007, 11(1) 61-81 .

[22] Shayan Oveis Gharan, Amin Saberi, Mohit Singh, A
Randomized Rounding Approach to the Traveling Salesman
Problem, FOCS 2011.

[23] Tobias Momke, Ola Svensson, Approximating Graphic TSP
by Matchings, FOCS 2011.

[24] S. Lin, B. Kernighan. An effective heuristic algorithm for the
traveling-salesman problem. Operations Research, 1973,
21(2), 498-516.

[25] G. Reinelt. TSPLIB. Universitit Heidelberg, Institiit fiir
Informatik, Im Neuenheimer Feld 368,D-69120 Heidelberg,
Germany, 2004. URL http://www.iwr.uni-
heidelberg.de/groups/comopt/software/TSPLIB95/

[26] M. Jiinger, G. Reinelt, G. Rinaldi, The travelling salesman
problem, Handbooks in Operations Res. & Management Sc.,
Elsevier, 1995.

[27] Gerhard Woeginger, Exact algorithms for NP-Hard
problems, A survey, Combinatorial Optimization 2001,
185-208.

[28] D. S. Johnson, L. A. McGeoch, E. E. Rothberg, Asymptotic
experimental analysis for the Held-Karp traveling salesman



bound, SODA, 1996.

[29] NEOS Server for Optimization, http://neos-server.org/neos/

[30] Marco Dorigo, Luca Maria Gambardella, Ant colonies for
the traveling salesman problem, BioSystems 1997.

[31] S. Kirkpatrick, C. D. Gelatt, Jr., M. P. Vecchi, Optimization
by simulated annealing, Science, May 1983.

[32] S. Ilker Birbil, Shu-Cherng Fang, Electromagnetism-like
mechanism for global optimization, Journal of Global
Optimization, 2003, 25, 263-282.

[33] Robert Bosch, Opt Art, Math Horizons, February 2006,
14(3), 6-9.

[34] Times-Ten Team: Mid-tier caching: the TimesTen approach,
(Now Oracle cache and in memory database), SIGMOD
2002, 588-593.

[35] SAP HANA, Realtime in memory technology,
http://www.sap.com/hana/demos/index.epx

107

[36] G. Graefe and W. J. McKenna, Extensibility and search
efficiency in the Volcano optimizer generator, ICDE, 1993,
209-218.

P. G. Selinger, M.M. Astrahan, D. D. Chamberlin, R. A.
Lorie, and T. Price, Access path selection in relational
database management system, In ACM SIGMOD Intl. Conf.
Management of Data, 1979, 23-34.

Foto N. Afrati, Jeffrey D. Ullman, Optimizing Multiway
Joins in a Map-Reduce Environment, IEEE TKDE 2011,
23(9): 1282-1298

M. Hong, M. Riedewald, C. Koch, J. Gehrke, and A.
Demers, Rule-Based Multi-Query Optimization, EDBT,
120-131, 2009

D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis, An
analysis of several heuristics for the traveling salesman
problem, SICOMP 563-581, 1977.

(37]

(38]

(39]

(40]






WORK 1IN PROGRESS






A lightweight distributed order and dup lication insensitive
algorithm for approximate top-k queries using order
statistics

Vinay Deolalikar
Hewlett Packard Labs
1501 Page Mill Road
Palo Alto, CA 94304

vinayd@hpl.hp.com

1. APPROXIMATE TOP-K

Let {e1,e2,...,e:} be aset of distinct records in a database,
with unique IDs {id1, ida, ... ,id;}. Let A1, Aa,..., A, be aset
of distinct attributes for ead record. For every record e;, the &-
tribute A; is zero or some positive value. We denote the value of
the dtribute A; of reaord e; by A; (e;). The sum of the atributes of
e; isdenoted by N; = >~ Aj(e;). Wewould liketo obtain the list
of top % records, ordered %y N;. We present a highly configurable,
lightweight, distributed algorithm to solve the éowve problem ap-
proximately, based on ader statistics.

2. THEALGORITHM

2.1 Phase One: Generating alist of random
variables

A ticket is atriple < ID,r b > where id is arecord, r is the
value of arandam variable, and b is a binary flag which can be set
to either 1 or 0, respedively.

Eac pee first generates an exporential randam variable for the
reaord e; with rate given by A; (e;). At the end o this phase, eat
pee will have alist of randam variables that is aslong as the num-
ber of records. The list has two columns: the first column has the
record |D and the seacond column has the randam variable value.

2.2 Phase Two: Pruningthelist

Eac pee threshalds thelist of random variables they have gen-
erated. Rows in the list whose seand column (randam variable
value) is below athreshold T" are discarded.

2.3 Phase Three: Exchanginglists

In the third phese of the dgorithm, eat pee sends their pruned
list of (record ID, randam variable value) to their neighbars. This
is the information passng phese of the dgorithm.

24 PhaseFour: Merging lists by maximum
Each pee now has lists from other pea's. Each pee how merges

Permisgon to make digital or hard copies of al or part of this work for
persond or clasgoom use is granted withou fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bea this notice and the full citation onthefirst page. To copy atherwise, to
repubish, to post on servers or to redistribute to lists, requires prior spedfic
permisson and/or afee

The 18th Internationd Conference on Management of Data (COMAD),
14th-16th Dec 2012at Pune, India.

Copyright (©2012Computer Society of India (CSl).

Kave Eshghi
Hewlett Packard Labs
1501 Page Mill Road
Palo Alto, CA 94304

kave@hpl.hp.com

111

Hernan Laffitte
Hewlett Packard Labs
1501 Page Mill Road
Palo Alto, CA 94304

hernan@hpl.hp.com

these lists by kegoing only the maximum of the values of the ran-
dom variables for eat record.

2.5 PhaseFive: Cropping merged lists

Each pee now sorts his merged list in descending order of ran-
dom variable value, and cropsit to have only L topmost records.

Now the dgorithm proceals by looping through plases Two
throughFive for afixed number of iterations. Experimental results
indicate that 5 iterations aufficefor a stabiliz ation of lists.

2.6 Phase Six: Running agorithm multiple
times and merging results

Phases One through Six are run a 'run count’ of times. At the
end o ead run, alist emerges. Now, a final list is obtained as
follows. If arecord ocaursin at least 'merge court’ out of the total
‘runcount’” number of lists, then it is included in the final output of
the dgorithm asatop & record.

As with any approximate algorithm, we may merge results of
multiple runs of the basic algorithm outlined abowe, in order to in-
crease acaragy.

3. EXPERIMENTAL RESULTS

Unique entries=15K, Zipfian skewness parameter=1.5 Unique entries=15K

S553IIFR
DOOMTHKX+

Recall (%)
Precision (%)

o P
(43) (7.5) (105) (42) (7.3) (10.3) (7.2) (10,2)
(run count, merge threshold)

Figure 1. Tradeoff between (run count, merge threshold) and
precision vs. recall on Zipfian distribution over 15K distincts.
Item id indicates frequency of item: Item O is most frequent,
and so on.

We have validated our algorithm extensively on a wide aray of
multi- parameter Zipfian datasets, varying the skewnessof the dis-
tribution of records (only one parameter choice shown in Fig. 1).
We report strong performance of the dgorithm over a wide range
of parameter values, and study the trade-off sinvolved in setting the
tunable parameters of the dgorithm in order to obtain the predsion
andrecdl that is desired.



Who’s Who:
Linking User’s Multiple Identities on Online Social Media

Paridhi Jain
[1IT-Delhi, India
paridhij@iiitd.ac.in

1. ABSTRACT

On online social media, users join new online social net-
works (OSNs) to exploit variety of services while maintain-
ing their old identities on other OSNs. A user maintains
an identity on each OSN mentioning metadata (e.g. profile
information) about her. Heterogeneity of metadata shared
by user across OSNs leads to a problem of finding if two
online identities on multiple OSNs belong to the same user
or different users. In this work, we attempt to understand
that to what extent can we link multiple online identities of
a user or disambiguate identities of different users, using an
easily accessible and public attribute — username. The so-
lution to the problem has multiple applications. In privacy
domain, the problem finds its application in understanding
the quantity and quality of the user’s information leakages
via either aggregation of user’s information from OSNs or
differences in privacy policies of multiple social networks.
In system building domain, the solution can help in build-
ing recommendation feature for social aggregation sites. In
security domain, the solution can help in linking malicious
user accounts present on multiple OSNs.

1.1 Methodology

We collected usernames of 1,193 users on different social
networks and created two datasets by different methods. In
dataset 1, no two users shared the same name and hence
their usernames were distinct and easily separable. How-
ever in real world, disambiguation of two users with similar
names was a challenge. Therefore in dataset 2, there ex-
ists users who shared the same first name and had similar
usernames. The existence of similar usernames belonging to
different users challenged the techniques we proposed to link
identities of a user and disambiguate identities of different
users.

We proposed a set of string based features to capture the
possible similarities a user’s two usernames had, in order to
predict if two usernames belong to the same user. Some of
the strong features were — n-gram coefficient, Jaccard coef-
ficient, Affine gap and Smith-Waterman distance.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

The 18th International Conference on Management of Data (COMAD),
14th-16th Dec, 2012 at Pune, India.

Copyright (©)2012 Computer Society of India (CSI).

Ponnurangam Kumaraguru
[1IT-Delhi, India
pk@iiitd.ac.in

112

Anupam Joshi
UMBC, United States
joshi@cs.umbc.edu

1.2 Analysis and Results

We analyzed 1,193 users and found that 359 users (30%)
used same username, and 327 (27.4%) users had twisted
versions of the user’s most used username on every OSN.
Rest of the users had atleast one different username on at
least one OSN. We observed that a more than half the users
(30% + 27.4%) had same or similar users, with possible
reasons as — the username they wished was already taken or
they modified their username on the basis of social network
nature. This motivated the string based feature set and the
techniques we discuss to link users.

1.2.1 Classification

We extracted a set of string based features for a username
pair (437,836 pairs for dataset 1 and 4,384 pairs for dataset
2) either belonging to same user or different users. We per-
formed random sub-sampling validation 10 times with 50%
training and 50% testing dataset. We used SVM with RBF
kernel to classify the username pair if it belonged to the same
user or two different users. SVM with the training accuracy
of 93.7% for dataset 1 and 85% for dataset 2, yielded a clas-
sification accuracy of 99.85% on dataset 1 while 75.37% on
dataset 2.

The classification accuracy (99.85%) is higher than the state-
of-the-art accuracy (71%) by Perito et. al [1] which experi-
ments with 10,000 username pairs of the users where no two
users have same names (similar to dataset 1). The higher
accuracy shows that string based features are efficient in
predicting similarities of two usernames of a user. However,
the classifier makes errors when different users with similar
usernames are marked as the usernames belong to the same
user (accuracy - 75.37%). To distinguish between users with
similar name, we need to incorporate other attributes e.g.
profile and network attributes.

1.3 Conclusion

In conclusion, we observe that majority (57.4%) of users use
same or similar usernames across multiple online networks.
Therefore we argue that username can be used as a unique
identifier to link user identities across OSNs. With string
based features of a username pair, accuracy of correct pre-
diction can be improved from 71% to 99.85%.

2. REFERENCES

[1] D. Perito, C. Castelluccia, M. A. Kaafar, and
P. Manils, “How unique and traceable are usernames?”
in PETS, 2011.



MODETL: A complete MODeling and ETL method for
designing Data Warehou ses from Semantic Databases

Selma Khouri
LIAS/ISAE-ENSMA
France

selma.khouri@ensma.fr

ABSTRACT

In last decades, Semantic DataBases (SDB) have emerged
and the major DBMS editors provide semantic support in
their products. This is mainly due to the spectacular devel-
opment of ontologies in several important domains like E-
commerce, Engineering, Medicine, etc. Note that ontologies
can be seen as a natural continuity of conceptual models.
Contrary to traditional databases, where their instances are
stored in a relational layout, SDB store ontological data
according to one of three main storage layouts (horizon-
tal, vertical, binary). Actually, SDB are serious candidates
for business intelligence applications built around the Data
Warehouse (DW) technology. The important steps of the
life-cycle warehouse design (user requirement analysis, con-
ceptual design, logical design, ETL process, physical design)
are usually managed in isolation way. This treatment is
mainly due to the complexity of each phase. Actually, DW
technology is quite mature for traditional data sources. As a
consequence, leveraging its steps to deal with SDB becomes
a necessity. In this paper, we propose a method that covers
the most important steps of life-cycle of semantic DW. To
fitful our needs, four main objectives have been defined:

O;: leveraging the integration framework by con-
sidering ontologies: a D)V can be seen as a materialized
data integration system, where data are viewed in a multi-
dimensional way. Data integration systems are formally de-
fined by a triple: <G, S, M>, where G is the global schema,
S is a set of local schemas that describes the structure of
each source participating in the integration process, and M
is a set of assertions relating elements of the global schema
G with elements of local schemas §. We defined an integra-
tion framework <G,S, M> adapted to SDB specificities,
where schema G is represented by a domain ontology, the
set of sources S considered are SDB, and M represents the
set of mapping assertions. A mathematical formalization of
ontologies, SDB and semantic DWW is given, based on the
description logic formalism.

Permisson to make digital or hard copies of al or part of this work for
personal or clasgoom use is granted withou fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bea thisnatice and the full citation onthe first page. To copy aherwise, to
repubish, to post on servers or to redistribute to li sts, requires prior spedfic
permisgon andor afee

The 18th Internationd Conference on Management of Data (COMAD),
14th-16th Dec 2012at Pure, India

Copyright (©)2012Computer Society of India (CSI).

113

Ladjel Bellatreche
LIAS/ISAE-ENSMA
France

bellatreche@ensma.fr

Nabila Berkani
National High School for
Computer Science, Algeria

n_berkani@esi.dz

O3: User requirements have to be expressed at the
ontological level: the requirements model we proposed fol-
lows the goal oriented paradigm. After analyzing the major
studies related to this paradigm, we proposed a goal model
viewed as a pivot model, since it combines three widespread
goal-oriented approaches: KAOS, Tropos and iStar. The
goal model is then connected to the ontology meta-model in
order to specify requirements at the ontological level. Re-
quirements analysis allows the designer to construct the dic-
tionary identifying the set of relevant concepts and proper-
ties used by the target application. The conceptual, logical
and then physical model are defined based on that dictio-
nary. The availability of the ontology allows exploiting its
reasoning capabilities to correct the inconsistencies of the
conceptual model, and to infer new facts.

O3: The ETL process has to be defined at the
ontological level and not at physical or conceptual
levels: different ETL works proposed in the literature con-
sider logical schemas of sources as inputs of the DV system,
and make an implicit assumption that the DWW model will be
deployed using the same representation (usually using a re-
lational representation). The third objective of our method
ensures the definition of the ETL process at the ontological
level independently of any implementation constraint. We
defined a generic ETL algorithm, based on ten generic oper-
ators defined in the literature, that aims at populating the
target DWW schema, by data from SDB.

O4: the deployment process needs to consider the
different storage layouts of semantic DW: different
deployment solutions are proposed and implemented using
data access object design patterns. A prototype validating
our proposal using the Lehigh University Benchmark ontol-
ogy and Oracle SDB has been developed.

Categoriesand Subjed Descriptors

H.2.7 [Database management|: [Data warehouse and repos-
itory]; D.2.10 [Software engineering]: Design—Method-
ologies

Keywords

Data warehouse design, Ontology, Semantic databases, ETL
process



Web Personalization and Recommender Systems: An
Overview

*
R. B. Wagh
Research Scholar, Dept.of Computer
Engineering, RCPIT
Shirpur, Maharashtra, India

rajnikantw@gmail.com

ABSTRACT

Information overload is the major problem of today’s Inter-
net use. User frequently gets much more information than
needed. Also much of the information which the user gets
is less relevant and very few links, items, or contents are
really useful. To get rid of this problem, Web Personaliza-
tion or Recommender System is widely used now. It aims
at fulfilling the user needs more appropriately. By analyz-
ing and mining Web content data, structure data, usage
data and user profile data, system achieves the goal of user
satisfaction. In this paper, we focus on existing methods,
their mechanism, limitations and possible extensions which
may improve the capabilities. In our proposed work, we will
improve the accuracy of recommender system. For this pur-
pose, we will make use of various classification and clustering
methods. Presently we are concentrating on density based,
hierarchical and message passing algorithms to achieve the
desired goal of accuracy. More specifically, our aim is to
show that graph based message passing algorithms may out-
perform than K-means algorithm which makes use of par-
tition method. The methodology used for recommendation
purpose will be based on collaborative filtering approach.
Presently we are working on log file of our engineering col-
leges’ web site namely www.rcpit.ac.in. Our aim is to an-
alyze user behaviour in terms of navigational paths and to
recommend them the future navigations to help achieve the
necessary data in less time. Since the present log file is not
much larger and also the navigational patterns are also less
or alike, we are trying to get the dataset of North Maharash-
tra University, Jalgaon web site, namely www.nmu.ac.in.
Also, we will make use of some standard datasets like CTT,
MSNBC, Grouplens or Netflix for our experiment and eval-
uation purpose. We will use above mentioned clustering and
classification techniques to improve browsing experience of
user.

*R. B. Wagh
TProf. Dr. J. B. Patil

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

The 18th International Conference on Management of Data (COMAD),
14th-16th Dec, 2012 at Pune, India.

Copyright (©)2012 Computer Society of India (CSI).

114

Prof. Dr. J. B. Patil’
Principal & Professor, Dept.of Computer
Engineering, RCPIT
Shirpur, Maharashtra, India

jopatil@hotmail.com

Keywords- Web personalization; Recommender system; Web
content data; Web structure data, Web usage data.

1. REFERENCES

[1] G. Adomavicius and A. Tuzhilin. Toward the next
generation of recommender systems: A survey of the
state-of-the-art and possible extensions. IEEE Trans.
on Knowl. and Data Eng., 17(6):734-749, June 2005.
M. Eirinaki and M. Vazirgiannis. Web mining for web
personalization. ACM Trans. Internet Technol.,
3(1):1-27, Feb. 2003.

B. K. F.Ricci, L.Rokac. Recommender Systems
Handbook. 2011.

M. Jalali, N. Mustapha, M. N. Sulaiman, and

A. Mamat. Webpum: A web-based recommendation
system to predict user future movements. Ezxpert Syst.
Appl., 37(9):6201-6212, sep 2010.

X. Su and T. M. Khoshgoftaar. A survey of
collaborative filtering techniques. Adv. Artificial
Intellegence, 2009.

N. M. Yahya AlMurtadha, Md. Nasir Bin Sulaiman and
N. I. Udzir. Ipact: Improved web page recommendation
system using profile aggregation based on clustering of
transactions. American Journal of Applied Sciences,
8(3):277-283, 2011.



Efficient Approximate Dictionary Matching

Saurabh Kishore Ashish V. Tendulkar
skishore@gmail.com ashishvt@gmail.com

ABSTRACT

Named entity recognition (NER) systems are important for extract-
ing useful information from unstructured data sources. It is known
that large domain dictionaries help in improving extraction perfor-
mance of NER. Unstructured text usually contains entity mentions
that are different from their standard dictionary form. Approxi-
mate matching is important to identify the correct dictionary entity
for such variants. This is a challenging problem, as every entity in
the dictionary is a candidate match for the variant. In this paper,
we propose a novel approach for efficient approximate dictionary
matching. The key idea is to compare a given query only against
a set of most likely candidate matches from the dictionary so as to
achieve substantial reduction in the number of matching operations.
In order to enable this, the proposed approach first performs cluster-
ing of similar entities and then represents each cluster with a profile
matrix, which stores the probability of an occurrence of a particular
character at a specific location in the entity string. Thus, the dictio-
nary is represented with a set of profile matrices, which are much
smaller than the actual number of entities. A given query entity
is first matched against the profiles and the clusters corresponding
to top-K best scoring profiles are selected to obtain a list of most
likely matching candidates. The query is then compared with each
candidate match entity and the approximate match is declared if
both the query and the candidate entity are within acceptable edit
distance threshold. We have performed rigorous evaluation of our
approach on several publicly available datasets. The proposed al-
gorithm outperforms alternative approaches in detecting approxi-
mately matching entities for a given query using far lesser number
of comparison operations.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

The 18th International Conference on Management of Data (COMAD),
14th-16th Dec, 2012 at Pune, India.

Copyright (€)2012 Computer Society of India (CSI).

115






