
��������	�

��
��������������
	��������������������������
����

������������������

��
������	��	� ���	�

!�� ������

�������

�����������	

�	�
������
��
�������	���
��	��
��������
���

���
��
�����
���
���������
�	���

������������������
�	���	
�	�������
��
����	������
��	 ���
�	���

��������������
���������	
�������

��������	�

��
������
������������

�����
��
����

������
��
��� ���
���
��
���

����������

v

PREFACE

For close to two decades, the International Conference on Management of Data (COMAD), modeled
along the lines of ACM SIGMOD, has been the premier international database conference hosted in
India. The first COMAD was held in Hyderabad in 1989, and the most recent version was hosted in
Bangalore in December 2011. The 18th edition in the COMAD series is held at the campus of Persistent
Systems in Pune, Maharashtra from December 14-16, 2012. Named Queen of the Deccan, Oxford of the
East, and cultural capital of Maharashtra, Pune is known for its educational faciliti es.

COMAD seeks to provide the community of researchers, practitioners, developers and users of data
management technologies, a forum to present and discuss problems, solutions, innovations, experiences
and emerging trends. During the past few years, the scope of COMAD has expanded to include, in
addition to traditional database areas, topics in web technologies, information retrieval, and data
mining.

This year's call for papers attracted 29 research submissions from across the world. Each research paper
was rigorously reviewed by three members of the program committee, which featured 26 data
management experts from academia and industry from 8 different countries. After in-depth discussions,
we selected 7 high-quality papers for presentation at the conference. The authors of accepted research
papers come from France, India, Japan, Switzerland, and the US, show-casing COMAD's international
appeal. In addition to regular research papers we also accepted 5 work-in-progress presentations to give
young researchers a chance to receive feedback from experts in their field.

COMAD 2012 features three keynote talks by Dr. Rakesh Agrawal (Head of Search Labs, Microsoft
Research, USA), Sihem Amer-Yahia (Principal Research Scientist, CNRS, Laboratoire d'Informatique
de Grenoble, France), and Rajeev Rastogi (Director of Machine Learning, Amazon, India). The
keynotes span topics from advanced technology for education and social media analytics to web-scale
information extraction. The program also hosts 4 tutorials from leading international experts covering
big data technologies, Markov logic networks, spatio-temporal indexing, and data fusion. Finally, to
round out the academic program we invited 10 posters and demos from the academic community in
India. We also continued the tradition started by COMAD in 2010 to invite Indian authors of papers
published in premier international conferences to present their work at COMAD. This year features
three papers from VLDB 2012 and one paper from SIGMOD 2012.

In addition to academic talks, presentations, and tutorials COMAD 2012 also features two invited
industry talks and two sponsor talks, giving participants a chance to interact with leading industry
experts. To ensure visibility of COMAD beyond this conference, these proceedings will also be
available through ACM SIGMOD and DBLP.

We would like to thank all the members of the COMAD Organizing Committee and the COMAD
Program Committee for their generous support, enabling us to put together such a high-quality
program. We are also grateful for the support and generosity of our sponsors. Without our gold
sponsors SAP and Yahoo as well as our silver sponsor IBM this conference would not be possible. We
also thank Persistent Systems for providing a campus for the conference and Infosys for providing free
accommodation at their guest house. Finally, we acknowledge the sustained cooperation and assistance

vi

extended by the Computer Society of India in organizing this event.

In closing, we welcome you to the COMAD 2012 conference in Pune and hope you will have a fruitful
and stimulating experience.

Chandrashekhar Sahasrabudhe
Persistent Systems, Pune, India

(General Chair)

Amr El Abbadi
University of California, Santa Barbara, USA

Kar in Mur thy
IBM Research - India
(Program Co-Chairs)

Arnab Bhattacharya
Indian Institute of Technology, Kanpur, India

(Proceedings Chair)

vii

�����������	�

�����

General Chair
� Chandrashekhar Sahasrabudhe, Persistent

Systems, Pune

Demo Chair
� Sriram Raghavan, IBM Research - Bangalore

Program Chairs
� Amr El Abbadi, University of California, Santa

Barbara
� Karin Murthy, IBM Research - Bangalore

Panel Chair
� Sharma Chakravarthy, The University of Texas

at Arlington

CSI Div II Chair
� T. V. Gopal, Anna University, Chennai

Publication Chair
� Arnab Bhattacharya, IIT Kanpur

Work in Progress Chair
� Srikanta Bedathur, III T Delhi

Organizing Committee Chair
� Arun Kadekodi, Soft Corner, Pune

Industry Chair
� Sudarshan Murthy, The Else Institute, Portland,

Oregon

Web Chair
� Anand Joglekar, Ameya Software, Pune

Tutorial Chair
� Maya Ramanath, III T Delhi

Host Chapter Chair
� Amit Danglé, National School of Leadership,

Pune

�����
�	�

�����
� Alfredo Cuzzocrea, ������������	����
����
���
�	������������

� Sameep Mehta, ����
����
�����������������

� Anirban Mondal, ���������������������������� � Sanjay Chawla, ���������
�����	��������� �
����
����

� Arvind Arasu, ���
	�	���
����
������������ �
 �����!�	�

� Shridhara Aithal, ����"������������������!��	
�� �
�����

� Balaraman Ravindran, �������
������������ �
�����

� Sharma Chakravarthy, ���������
�����	����#�� �
����
���!�	�����#��

� Chetan Gupta, $%�&�'���%��	����	�������	
��� � Sitaram Asur, $%�&�'���%��	����	�������	
���

� Fan Wang, ���
	�	����	
(
���	������������ �
 �����!�	�

� Sourav S. Bhowmick, ������!������	�	!���� �
�����
���������!�(
�

� Hoda Mokhtar, ���
	������
������"!�(� � Sudipto Das, ���
	�	���
����
�������

� Maitreya Natu, ������	������������
������ �
%����������

� Sumit Negi, ����
����
�����������������

� Mohamed Mokbel, �����
�����	��������	��� �
������(���

� Sunil Prabhakar, %�
���������
������ ��� �
&�����������������

� P. Sreenivasa Kumar, �������
������������ �
�����

� Qiong Luo, $	�!�)	�!������
�����	��������� �
���������	�	!���$	�!�)	�!

� Rajiv Ranjan, ���������
�����	�������	��� �
 ������������������
����

� Vaishali P. Sadaphal, ������	��������� �
��
�������%����������

� Ralf Schenkel, ��#�%����*����������� �
���
'
���*����+�
,���

� Vivek Narasayya, ���
	�	���
����
������������ �
 �����!�	�

� Ramanujam Halasipuram, ����
����
���� �
���!��	
��������

� Walid Aref, %�
���������
�������������

viii

CONTENTS

Preface v
Organizing Committee vii

Keynotes

� Reimagining Textbooks Through the Data Lens

� Rakesh Agrawal

3

� User Activity Analytics on the Social Web of News

� Sihem Amer-Yahia

4

� Building Knowledge Bases from the Web

� Rajeev Rastogi

5

Tutorials

� Spatio-Temporal Indexing: Current Scenario, Challenges and Approaches

� Aditya Telang, Deepak Padmanabhan, Prasad Deshpande

9

� Big Data Technologies circa 2012

� Vinayak Borkar, Michael J. Carey

12

� Markov Logic Networks: Theory, Algorithms and Applications

� Parag Singla

15

� Reliability Aware Data Fusion

� Sameep Mehta, L. Venkata Subramaniam

16

Research Track

� Connectivity-Tolerant Query Optimization over Distributed Mobile Repositories

� Sharma Chakravarthy, Aditya Telang, Mohan Kumar, Mark Linderman, Sanjay Madria,
Waseem Naqvi

21

� Context Aware Ontology based Information Extraction

� Sapan Shah, Sreedhar Reddy

32

� REBOM: Recovery of Blocks of Missing Values in Time Series

� Mourad Khayati, Michael H. Bohlen

44

� A Novel Query-Based Approach for Addressing Summarizability Issues in XOLAP

� Marouane Hachicha, Chantola Kit, Jerome Darmont

56

� Hybrid HBase: Leveraging Flash SSDs to Improve Cost per Throughput of HBase

� Anurag Awasthi, Avani Nandini, Arnab Bhattacharya, Priya Sehgal

68

� Entity Ranking and Relationship Queries using an Extended Graph Model

� Ankur Agrawal, S. Sudarshan, Ajitav Sahoo, Adil Anis Sandalwala, Prashant Jaiswal

80

� Towards Eff icient Discovery of Frequent Patterns with Relative Support

� R. Uday Kiran, Masaru Kitsuregawa

92

Demonstrat ion Track

� Excel Solvers for the Traveling Salesman Problem
� Mangesh Gharote, Dilys Thomas, Sachin Lodha

103

ix

Work in Progress

� A Lightweight Distributed Order and Duplication Insensitive Algorithm for Approximate Top-k
Queries using Order Statistics

� Vinay Deolalikar, Kave Eshghi, Hernan Laffitte

111

� Who's Who: Linking User's Multiple Identities on Online Social Media

� Paridhi Jain, Ponnurangam Kumaraguru, Anupam Joshi

112

� MODETL: A Complete MODeling and ETL Method for Designing Data Warehouses from
Semantic Databases

� Selma Khouri, Ladjel Bellatreche, Nabila Berkani

113

� Web Personalization and Recommender Systems: An Overview

� R. B. Wagh, J. B. Patil

114

� Eff icient Approximate Dictionary Matching

� Saurabh Kishore, Ashish V. Tendulkar

115

K E Y N O T E S

3

������������	�
��

���	��
�����������������

��������	
����

��
������������
�����������
��

��������

�����������
�������
���
�������������
�������
��	���� �����������	�����������������������
����������������������������� �

���
�����������������������
���	!�"�����������
	�������������������������������� �

����� � ��������	� � ��� � �����
���� �
�����	 � �������� � ��������� � �
� � ������ � ��
 � �
�����
������ � ����	��! � #����
�� � �� � ����

���
	�����������������
��������������
�$�
�����	%�����$����
������	%����������������
��������
���
��������
����������� �

���������	�������������	����������
�������
���������	�����&���������������
��������������!�
������������������
�������
������

���	��������������
������
�������������
�������	�
���!�"���������������������&��� �

��
���	�
�������������	������	������
��
�������"��!

'�
��������
����	�����	��!�����
�����	��
���������������������
���
������������������ �

��������	��
���
��������	�������������(�)*+������(�,�����������������������������������)-+����	
(�.�
����
��������������
��

��������&���)/+���
���	����	
(�0���������
�������������������&�������������������

�����������������������������
��
��������

�����������������������
�����
��������������!�.�
���
������������
��
����������� �

�
���������� �������� � �������������
������ � �������� � �� ��
���� � �� � ����
 ��� � ��� ���
� � ��	�������� ��� � ��� � ���! ���� � ��
���

�����������
���
���
������
�����������������������������&������������� �

����
���
����
�����������1��&���������
�����������������������2*3!����������� �

������������������������������������
�������
����������������������������
�����
���
�����������!�"���
���������
����������� �

�����������������
��������
���
����	����������������������������
��������

��������������������������������������2/3!

.�
���	������	�������������������������������
�������������������������������������
���������������������������!�4���	�������

��
�������������������
������������
��
��������������
�������������
�� �

�����253! �"������ �����
��� � ������&��� � ��
 � ������	 � ���	�� � ���� ��
� ����� �
������� � �� �� � ������� ��� � ��� � ��������� ������ �

��������	����������
����������������������	���������
����������������
�������������������������������
!�"�������������
����� �

����������	����	�����������������������������������
�������������6�������
�����������
���������������������	�
�������
 �

������	����2-3!

"�����������
����������
��������� ��������	������
�������������&�����������
�������������1��������	�������������������

�����������������7��������0����������,����������������
��������
�����	��#����!�"���������
��������
���	
�����#8118##� �

����
��	����
��
������� �����
�������������
���������
������
���������0����
�������������������!������
�������
��
������ �

�
�������
�	��	����������������������������	���������	��������
���������������������	�����������������������
������	�

��
���������
�
����
��!

����������
2*3��!��	
������
!�0���
���
����
!�9�����������!�:�����������:!�:���������!�,�����
��	������
��������	���������
�����������
�������
���������!�#��:;;��-<*-!

2-3��!��	
������
!�9�����������!�:�����������:!�:���������!�,�
�����	�������������������	��!�#��0#:���-<**!
2/3��!��	
������
!�9�����������!�:�����������:!�:���������!�#���������	���
�������������������������������!�#��"""��-<**!

253��!��	
������
!�9����������:!�:�����������7!�

���������������!�=���!�,�
�����	�������������
��	������������	!�#���0��;,=��-<*<!

��
������

;
!���������	
�������������
����������������.�������������	�����
��
��������������
�����������
������
�������=�����!�>� �

����������
��������7�������������������,�	����
��	����.����������0���������.���������#,,,!�>���������
��������������� �

�0�1
#9:;;�.�
���#�������������
����0�1
#9�';�#��������������
���##�1���
����;�����	�����������������
���

�0�1
#9�';����� ��� ���������
�� �=�;?�*<1@
����� � #���������� �A���
����
�� �����#0;,����� � #���������� �A���
 �

���
�!�
�������������
������������������������������B<����������������������������	��������-<</!�;
!��	
������������� �

	
��������
�������C<�����������������������������
�������*B<�
����
�������
�!�>�������
������������
����������������	���� �

����������
���	!�?���
�����
������������
����������#?��.���������#?��������� �

�������?��������
���
�������

���>���!�>��
������������A�!;!���	
������0������
�
��������
�������4����
��������"��������1

�������!
���

����*D���#���
���������0����
������������	���������;����)0'��;+�

*5��1*C���;����-<*-����A�����#����!

0���
�	���E�-<*-�0������
�
����������#�����)0
#+

4

��������	
	�����
���	�������������	
�������������

����������	
����

��
��������
����������������
��

�����
��

�������������
�����������������������������
��������������
��
��������

�����������������������������
��������
������������������
�����������������
����
�� ���
������� ������������
�������

!�����������������
�
���"�����������������
���������
���������� ��
�
����
����������������
������"�����
���� �������
�� �

��
�
���#�
�����#���
����������
���
���$������������
�%����#������
�������������������
�������������%�������� ������� �

��
����
� � �
����	���
��� � ��������� �
��
 � �������&�� � ������ � ��
� �
� � ������ � ���� � ��
������ � ��� � ��������� � ���
���� � ���

����
�
���������
�
�������#�������������������������
�#�������������������
����
����
�����
�������������������������
� �

���
��
�������������������
��������������������%�������������
����"�����
�� �

�������
�����"���������

�	���
���

����������	
��������'�����������������������
��
��
���
��������
����������������
���(���$)�����*�+��!����
�,$-��� �

-��������������.����
����
�������
�
�����
�����
������������	��������
�����������
����������
���#���������������
��
��
������� �

/�
���%���01++#���������������������
��
��
�
����2��������������3��������������4�������� ���
�������� ��������������� �

��	4������������������
���������
���
�������*��������#�
����2� �'�������������5���4���6������
��
#���������
�7��������
�

��8��,�������!9#����4�������:%,�;�������
���&�
��������:%,�����	
�"
���������������������
������
���<=��:%,�����	

�"
��
���������������������������
���>,*6���������
�����
�����%��$-%?*��"���
� �������

�������������
���4������ �

�
�'>,*6������$-$��
����������������� ������
������
������������������%��?*�#�
���>,*6�9�����������
���$������
��� �

���
����9������������������� �������'��*����������
����������������/�� ��'����	?���������$!�$�����+@@@#���������

*��������.$��������������$!$#������������+@@A�

���

����+B
��$�
����
��������������������%��������
����*�
��(�?%�*)#

+A
�	+C
��*��#�01+0��
�'���#�$�����

��������
�D�01+0������
��������
�����$�����(��$)

5

���������	�
��������
������
���������

�����������	
�

��
������������
������	�

�����
��

���������������������	���	���	����������	����
� �!"���
���
�����
�������������	��������
���
���������������
���	������� �

	������	����	����
������������	�����	����������
�������������
�	������
��������� �#�������������#���������
�������	����	����

�	��"���
����
	������	����
�����������
��� ����������������������������
��	�������������������������$�	$�����"���
��	������� �

��	��
��������
�������
����	��������
�%&�����"���
��	���������	����������
������������������
���
� �������������������� �

����	���������	��
��	���������'��		(��	��"���
���	��������)**������	����
	������	��+,**���������� �������
	������	�� �

�"��	������
������������
��	������	����	����
������"���
����
	��������	������������������	� �-��
���
�����������������	��

�	
�
�.���	����/��.�0��	�
�������
	��������������
�����������������������
�����������������	����������������������
����$

����������	�
���	����.��������
�

��
��
���

�����������	
���������1���
�	��	����
������������
��������	� �&����	�����������������2�
��&���������	��'��		(����� �

3��
��	����������3���������4���	�����3�������������������5�����.6 ������������
�������������������	�����������������������
� �

��������	����
�����������������	��������	
����
	���������	����������
	������
����������������� �5��
����������������	����� �

����	������	����	������7�7����������������������	
���������	���	��#!!!�������
��	���	��8�	����
������1����!�
�������
�

����������� �5����������������	����9,)��������������	����	����)*�������� ����������
����������3 ���
����
������	��##��

3	������������&�1���
�������7	�������-
���
����	������:����������	����"����������

���

����9;���#��������	����7	������
��	������
������	��1����/7<��10�

9=��$9>���1�
��,*9,����&�����#����

7	����
���?�,*9,�7	�������-	
�����	��#�����/7-#0

T U T O R I A L S

9

Spatio­Temporal Indexing ­
Current Scenario, Challenges and Approaches

Aditya Telang, Deepak Padmanabhan, Prasad Deshpande

IBM Research – India
Bangalore, INDIA

{adtelang, deepak.s.p, prasdesh}@in.ibm.com

1. MOTIVATION
With rapid advancements in computing hardware, tracking de-

vices such as GPS receivers and sensors have become pervasive,

generating a large amount of spatio-temporal data, such as mea-

surements of temperature, pressure, air quality, traffic, etc. using

sensors, GPS data from mobile phones and data from radars that

capture location information about people and other moving ob-

jects such as cars and aeroplanes. This has enabled a wide variety

of spatio-temporal applications, resulting in a renewed interest in

techniques for handling spatio-temporal data. Over the past two

decades or so, a large number of indexes for supporting spatial,

temporal and spatio-temporal data have been independently pro-

posed in the database and data mining communities. However,

there exists no clear-cut guidelines or a prescriptive formula for

pointing out which index should be chosen when specific needs of

the underlying application are known. In addition, since spatio-

temporal indexes have been proposed under various domains, it is

hard for researchers and practitioners to determine whether some

specified indexes are indeed available to address the problem at

hand. For instance, an index like PO-Tree [7] is suitable for mon-

itoring static spatio-temporal objects (such as sensors, cell-phone

towers, etc.) but it is completely undesirable for handling mov-

ing object data (e.g., location tracking of cell-phone users, GPS

tracking of vehicles and so on). Likewise, if the semantics of the

application require indexing trajectories of moving objects, only

a specific set of indexes (such as PA-Tree [6]) are useful whereas

others such as (APR-Tree [3]) are undesirable.

We design this tutorial to expose the audience to the vast reser-

voir of spatio-temporal indexing techniques that are available in

literature. In addition, apart from introducing the various indexes,

our aim is to analyze the pros and cons of different indexing mech-

anisms when applied to various diverse scenarios. Given the large

recent interest in spatio-temporal data analytics among corporates

and academia, we hope that this tutorial is well-positioned in time

to enhance and enrich the understanding of spatio-temporal data

processing. Further, we think that the subject matter of this tutorial

is a perfect fit for the COMAD conference that has a focused track

for data management and its disciplines.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
The 18th International Conference on Management of Data (COMAD),

14th­16th Dec, 2012 at Pune, India.
Copyright c©2012 Computer Society of India (CSI).

2. TUTORIAL ORGRANIZATION
We propose to organize this tutorial for a duration of 3 hours. A

brief outline of the organization of the tutorial is as follows:

1. Motivation: (10 minutes)

2. Spatial Indexing: (30 minutes)

• Spatial Data Types

• Spatial Query Categories

• Classification of Spatial Indexes

– Grid-based technique

– Tree-based technique

• Analysis of Different Spatial Indexes (such as Geodesic

Grid, R Tree, KD-Tree and so on)

– Semantics of each index

– Typical Usage

– Applicability for real-time applications

∗ Pros & Cons

3. Temporal Indexing: (20 minutes)

• Need for temporal indexing

• Types of Temporal Indexes

– Semantics of each index

– Typical Usage

– Applicability for real-time applications

∗ Pros & Cons

4. Spatio-temporal Indexing: (75 minutes)

• Motivation & Basic Techniques

– Native Space Indexing

– Parametric Space Indexing

• Types of Spatio-Temporal Indexes

– Semantics of each index

– Typical Usage

– Applicability for real-time applications

∗ Pros & Cons

5. Comparative Analysis: (35 minutes)

• Different Spatio-Temporal Application Scenarios

– Application of Different Indexes

– Implications

– Pros & Cons

10

6. Conclusion & Discussion (10 minutes)

• Summary of the Tutorial

• Pointers to Exciting New Problems

A set of transparencies(in PDF format) and a recommendation

of papers will be made available to the participants.

3. TUTORIAL CONTENT
Here we present a detailed description of the material presented

in this tutorial.

3.1 Motivation
In this segment, we introduce the problem of managing and han-

dling spatio-temporal data. We present the different types of query

scenarios that are typically posed on such data and illustrate the

need for indexing mechanisms for organizing this data for effective

retrieval of results. We provide a brief overview of the different

contexts in which spatio-temporal data management has been ad-

dressed i.e., organizing historical data for analysis, warehousing

data for mining, maintaining real-time data for frequent updates

and queries, isolating and organizing trajectory data as well as in-

dividual data points for moving objects, and so on.

3.2 Spatial Indexing
In this part of the tutorial, we dig deeper into different types of

spatial indexes (such as Geodesic Grid, R-tree [4], R+Tree [12],

R*Tree [11], KD-Tree [8] along with its derivatives such as the

Quad-Tree [9] and Oct-Tree [5]) that have been purely proposed

for organizing different kinds of spatial data such as – surface of

the earth (e.g., volcanic zones, earthquake regions, etc.), natural

entities (e.g., forests, rivers, etc.), man-made entities (e.g., univer-

sities, castles, etc.) and moving spatial entities (e.g., cars on roads,

ships in oceans, etc.). We discuss the semantics associated with

each index . Specifically, we demonstrate how each of this index

behaves when subjected to standard paradigms of spatial querying

i.e., range queries and k-nearest neighbour queries. Further, we also

provide insights as to which index to select (i.e., either a grid-based

or a tree-based) depending on the needs of the problem setting.

3.3 Temporal Indexing
Similar to spatial indexing, temporal indexing has received a lot

of attention for organizing database tuples based on their time-

stamps. We briefly touch base with Allen’s Algebra [2] in or-

der to understand the type of temporal queries typically issued on

databases. Accordingly, we survey the different temporal index-

ing techniques and their performance aspects when handling such

queries.

3.4 Spatio­Temporal Indexing & Comparative
Analysis

This section forms the core component of this tutorial. We elabo-

rate of the different types of indexing techniques for different kinds

of spatio-temporal needs i.e., indexing data for statistical analysis,

organizing trajectory-related data, managing data with respect to

constantly moving and frequently updating objects, and so on. We

discuss the semantics of each of these techniques, and provide a

comparative analysis of different spatio-temporal indexing mecha-

nisms (such as the TPR-Tree [10], the TPR*-Tree [13], the COLR-

Tree [1], the Q+R-Tree [14] and others such as RT-Tree, 3DR-Tree,

MV3R-Tree, HR-Tree, etc [3]) with respect to their performance,

their ability to support range and kNN queries, and their overall

applicability to different kinds of real-time monitoring of moving

objects in the context of a spatio-temporal setting.

3.5 Analysis and Conclusions
Here, we summarize the contents of the tutorial and present a

various pointers for future work.

4. TARGETED AUDIENCE &

EXPECTATIONS
This tutorial is mainly targeted at several kinds of audience such

as researchers, graduate students and industry professionals work-

ing in and/or interested in the area of handling, maintaining and

working with spatio-temporal data in the context of real-time ap-

plications. The tutorial is organized in a self-contained way and

does not assume any particular expertise from the audience. At the

end of the tutorial, we hope that the attendees will be equipped with

insights into different aspects involved in indexing spatio-temporal

data, and would have a clear picture in terms of what indexing tech-

niques to select for specific needs of applications using such data.

We attempt our best to maintain a striking balance between the-

oretical concepts and practical importance of the problems in the

tutorial. Thus, we hope that practitioners also get benefited from

this tutorial.

5. BRIEF BIOGRAPHY
Aditya Telang: Aditya is a researcher at IBM Research India since

2011. Prior to joining IBM, he finished his PhD from University of

Texas at Arlington. His current research interests include Spatio-

Temporal Data Analytics, Information Management, and Business

Analytics.

Deepak Padmanabhan: Deepak works with the Information Man-

agement Group at IBM Research India at Bangalore. He obtained

his masters degree from IIT Madras prior to joining IBM.

Prasad Deshpande: Prasad M Deshpande is a Senior Researcher

at IBM Research - India and Manager of the Information Analytics

group. His areas of expertise lie in data management, specifically

data integration and warehousing, OLAP, data mining and text ana-

lytics. He received a B. Tech in Computer Science and Engineering

from IIT, Bombay and a M.S. and Ph.D. in Database systems from

the University of Wisconsin, Madison. He has worked at several

companies, including startups, IBM Almaden Research Center and

currently at IBM Research - India. He has more than 35 publica-

tions in reputed conferences and journals and has several patents

to his name. He has served on the Program Committee of many

conferences, most recently being the PC Chair for COMAD 2011

and ACM Compute 2010.

6. REFERENCES

[1] Y. Ahmad and S. Nath. Colr-tree: Communication-efficient

spatio-temporal indexing for a sensor data web portal. In

ICDE, pages 784–793, 2008.

[2] J. F. Allen. Maintaining knowledge about temporal intervals.

Commun. ACM, 26(11):832–843, 1983.

[3] H.-J. Cho, J.-K. Min, and C.-W. Chung. An adaptive

indexing technique using spatio-temporal query workloads.

Information & Software Technology, 46(4):229–241, 2004.

[4] A. Guttman. R-trees: A dynamic index structure for spatial

searching. In SIGMOD Conference, pages 47–57, 1984.

[5] C. L. Jackins and S. L. Tanimoto. Quad-trees, oct-trees, and

k-trees: A generalized approach to recursive decomposition

11

of euclidean space. IEEE Trans. Pattern Anal. Mach. Intell.,

5(5):533–539, 1983.

[6] J. Ni and C. V. Ravishankar. Pa-tree: A parametric indexing

scheme for spatio-temporal trajectories. In SSTD, pages

254–272, 2005.

[7] G. Nol, S. Servigne, and R. Laurini. The po-tree: a real-time

spatiotemporal data indexing structure. In 11th International

Symposium on Spatial Data Handling, pages 259–270, 2005.

[8] B. C. Ooi. Spatial kd-tree: A data structure for geographic

database. In BTW, pages 247–258, 1987.

[9] M. H. Overmars and J. van Leeuwen. Dynamic

multi-dimensional data structures based on quad- and k - d

trees. Acta Inf., 17:267–285, 1982.

[10] S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A.

Lopez. Indexing the positions of continuously moving

objects. In SIGMOD Conference, pages 331–342, 2000.

[11] T. K. Sellis. Review - the r*-tree: An efficient and robust

access method for points and rectangles. ACM SIGMOD

Digital Review, 2, 2000.

[12] T. K. Sellis, N. Roussopoulos, and C. Faloutsos. The r+-tree:

A dynamic index for multi-dimensional objects. In VLDB,

pages 507–518, 1987.

[13] Y. Tao, D. Papadias, and J. Sun. The tpr*-tree: an optimized

spatio-temporal access method for predictive queries. In

Proceedings of the 29th international conference on Very

large data bases - Volume 29, VLDB ’03, pages 790–801.

VLDB Endowment, 2003.

[14] Y. Xia and S. Prabhakar. Q+rtree: Efficient indexing for

moving object database. In DASFAA, pages 175–182, 2003.

12

Big Data Technologies circa 2012

Vinayak Borkar∗
University of California, Irvine

vborkar@ics.uci.edu

Michael J. Carey†

University of California, Irvine

mjcarey@ics.uci.edu

1. INTRODUCTION

The growth of the World Wide Web has led to an as-
tronomical amount of data being generated. More recently,
the amount of user-generated content has seen tremendous
expansion thanks to social media like Facebook and Twit-
ter. Enterprises, researchers, and even governments consider
this data to be an invaluable source of insight into people’s
behavior, creating a race to analyze as much data as possi-
ble. This race has driven virtually everyone, ranging from
Web companies to brick and mortar businesses, into a “Big
Data” frenzy. On the systems side, traditional relational
databases have proven to be un-scalable, too expensive, too
rigid, and/or too heavy-weight for dealing with current Big
Data problems. As a result, there has been an explosion in
the number of systems being developed, both within indus-
try as well as in academia, to manage massive amounts of
data.

Traditionally, data management systems were classified
broadly into Online Transaction Processing (OLTP) systems
and Decision Support Systems (DSS). Key-Value stores [13]
have become the system of choice in the Big Data universe to
perform short, single-record “transactions” at scale, playing
the role of OLTP systems, albeit with limited functionality
and weaker transaction guarantees. On the analytics side,
MapReduce [17] and Hadoop [5] have dominated the space
for scalable data analyses. There has also been an emergence
of specialized systems for Big Data problems that are not
naturally solved by MapReduce (those involving iterations,
for example).

2. BIG DATA BACKGROUND

Google, being at the forefront of the Big Data “revolu-
tion”, was forced to take matters into its own hands to stay
competitive in the search engine space. Falling costs of com-
modity hardware made it evident that the only way to reign

∗Presenter
†Co-author of tutorial content, but not presenting at the
conference

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
The 18th International Conference on Management of Data (COMAD),

14th­16th Dec, 2012 at Pune, India.
Copyright c©2012 Computer Society of India (CSI).

in the growing data was to use many computers in paral-
lel. In 2004, Google proposed the MapReduce [17] system
in conjunction with the Google File System [22] as a way
to perform computation at massive scale using commod-
ity computers. The MapReduce framework greatly simpli-
fied parallel computation for programmers by letting them
avoid parallel programming. Programmers simply had to
implement simple single-threaded code in the form of “Map”
and “Reduce” functions which was invoked by the MapRe-
duce infrastructure in parallel on different instances of data
spread across Google’s distributed file system. In addition
to being able to index the entire web in reasonable amounts
of time, the MapReduce system allowed programmers at
Google to perform massive data processing tasks quickly us-
ing a simple programming model. Yahoo!, motivated by the
MapReduce system from Google, implemented Hadoop [5]
(and the Hadoop Distributed File system) and released it as
open-source software.

The MapReduce paper marked the beginning of a new era
of Big Data technologies. High-level layers were soon de-
veloped on top of MapReduce, further increasing program-
mer productivity for domain-specific tasks. Sawzall [29] and
(much later) Tenzing [25] were two systems built by Google
using the MapReduce layer as a runtime and parallelizing
framework for text-processing and SQL execution, respec-
tively. Outside of Google, Hadoop has become the de-facto
standard for scaling data-processing and Yahoo! created
the PigLatin [27] language and the Pig [28] system to run
on top of Hadoop. Facebook released Apache Hive [6], a
SQL-like language that also uses Hadoop as the runtime
layer. Besides the Hadoop/MapReduce family of systems,
alternate large-scale data-processing frameworks were pro-
posed by various companies as well as research groups at
universities. Some examples of alternative technologies in-
clude Dryad [24], DryadLINQ [32], and SCOPE [14] from
Microsoft, Nephele/PACTs [7] from TU Berlin, Hyracks [10]
and ASTERIX [8] from the UC Irvine, and Spark [33] from
UC Berkeley.
While the MapReduce approach has been successful at

analyzing large datasets that are rarely modified, there was
also a need for systems to store large amounts of data and
perform quick inserts, updates, and deletes of records iden-
tified by a key. This requirement led to the introduction of
Key-Value stores into the Big Data ecosystem. Google de-
veloped BigTable [15], Amazon created Dynamo [18], Face-
book created the Dynamo clone, Cassandra [1], and Yahoo!
created the BigTable clone, HBase [2] as well as a new sys-
tem, PNUTS [16] to satisfy this growing need.

13

Today’s Big Data systems also include specialized plat-
forms for solving niche problems. Pregel [26] and its open-
source clones (Giraph [4] and GoldenOrb [23]) are used for
parallel computation over large graphs. Similar in spirit to
the MapReduce programming model, Pregel provides a sim-
ple API for programmers to express complicated graph algo-
rithms using single-threaded code (the logic for a single ver-
tex) which is then parallelized by the Pregel infrastructure.
Machine-Learning has been another domain that has seen
the emergence of specialized systems based on the Iterative-
Map-Reduce-Update model [12]. Vowpal Wabbit [3] is a
system custom built at Yahoo! for solving Machine Learn-
ing problems involving aggregation trees.

No list of Big Data Technologies can be considered com-
plete without the mention of Parallel Databases, a heavily
researched [20, 9, 21] area in the period from the early 1980s
to the mid 1990s. Commercially, Teradata [30] and NonStop
SQL [31] were tremendous successes in the parallel database
space. DeWitt and Gray [19] describe important princi-
ples surrounding partitioned-parallel data computation us-
ing shared-nothing computers; the very same principles gov-
ern the operation of all the “modern” Big Data systems
mentioned earlier in this section. A longer discussion of Big
Data technologies can be found in [11].

3. TUTORIAL OUTLINE

The outline for the tutorial is as follows:

1. Background: Parallel Database Systems

• Shared Everything vs. Shared Disk vs. Shared
Nothing Systems

• Three Forms of Parallelism in Parallel Database
Systems: Pipelined Parallelism, Partitioned Par-
allelism, and Independent Parallelism

• Parallelization Metrics: Speedup and Scaleup

• A Case Study: Gamma

2. MapReduce and Hadoop

• The MapReduce Programming Model

• The Hadoop Platform

– Hadoop Distributed File System (HDFS)

– Fault-Tolerance in MapReduce

• Examples

– Word Count

– Join and Aggregate Processing

3. High-Level Languages for Big Data

• PigLatin

• HiveQL

• ASTERIX Query Language (AQL)

4. Alternative Data-Parallel Platforms

• Overview of the Space of Big Data Platforms

• Case Studies

– Hyracks

– Stratosphere (Nephele/PACTs)

5. Key-Value Stores

• Key Value API

• Consistency in Key-Value Stores

• Case Studies

– Cassandra

– HBase

– PNUTS

6. Specialized Systems

• Pregel

• Iterative-Map-Reduce-Update

4. PRESENTER BIO

Vinayak Borkar is a PhD. candidate and a Research Scien-
tist at the University of California, Irvine in the Computer
Science department. His research focuses on the efficient
use of large clusters in solving Big Data problems. He was
the primary developer of the Hyracks data-parallel platform.
Prior to his affiliation with UCI, he developed various data-
management products for close to ten years at Informatica
Inc., BEA Systems Inc., and several startups. He received
his Masters in Computer Science and Engineering from the
Indian Institute of Technology, Bombay in 2001.

5. REFERENCES

[1] Apache Cassandra website.
http://cassandra.apache.org.

[2] Apache HBase website. http://hbase.apache.org.

[3] Vowpal wabbit. http://hunch.net/ vw/.

[4] Giraph: Open-source implementation of Pregel.
http://incubator.apache.org/giraph/.

[5] Hadoop: Open-source implementation of MapReduce.
http://hadoop.apache.org.

[6] The Hive Project. http://hive.apache.org/.

[7] Dominic Battré, Stephan Ewen, Fabian Hueske, Odej
Kao, Volker Markl, and Daniel Warneke.
Nephele/PACTs: a Programming Model and
Execution Framework for Web-Scale Analytical
Processing. In SoCC, pages 119–130, New York, NY,
USA, 2010. ACM.

[8] Alexander Behm, Vinayak R. Borkar, Michael J.
Carey, Raman Grover, Chen Li, Nicola Onose, Rares
Vernica, Alin Deutsch, Yannis Papakonstantinou, and
Vassilis J. Tsotras. Asterix: towards a scalable,
semistructured data platform for evolving-world
models. Distrib. Parallel Databases, 29:185–216, June
2011.

[9] H. Boral, W. Alexander, L. Clay, G. Copeland,
S. Danforth, M. Franklin, B. Hart, M. Smith, and
P. Valduriez. Prototyping Bubba, A Highly Parallel
Database System. IEEE Trans. on Knowl. and Data

Eng., 2(1):4–24, March 1990.

[10] Vinayak R. Borkar, Michael J. Carey, Raman Grover,
Nicola Onose, and Rares Vernica. Hyracks: A Flexible
and Extensible Foundation for Data-Intensive
Computing. In ICDE, pages 1151–1162, 2011.

[11] Vinayak R. Borkar, Michael J. Carey, and Chen Li.
Inside “Big Data Management”: Ogres, Onions, or
Parfaits? In EDBT, 2012.

14

[12] Yingyi Bu, Vinayak Borkar, Michael J. Carey, Joshua
Rosen, Neoklis Polyzotis, Tyson Condie, Markus
Weimer, and Raghu Ramakrishnan. Scaling datalog
for machine learning on big data. Technical report,
CoRR. URL: http://arxiv.org/submit/427482 or
http://isg.ics.uci.edu/techreport/TR2012-03.pdf,
2012.

[13] Rick Cattell. Scalable SQL and NoSQL data stores.
SIGMOD Rec., 39:12–27, May 2011.

[14] Ronnie Chaiken, Bob Jenkins, Per A. Larson, Bill
Ramsey, Darren Shakib, Simon Weaver, and Jingren
Zhou. SCOPE: Easy and Efficient Parallel Processing
of Massive Data Sets. Proc. VLDB Endow.,
1(2):1265–1276, 2008.

[15] Fay Chang, Jeffrey Dean, Sanjay Ghemawat,
Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows,
Tushar Chandra, Andrew Fikes, and Robert E.
Gruber. Bigtable: A distributed storage system for
structured data. ACM Trans. Comput. Syst.,
26(2):4:1–4:26, June 2008.

[16] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh
Srivastava, Adam Silberstein, Philip Bohannon,
Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and
Ramana Yerneni. Pnuts: Yahoo!’s hosted data serving
platform. Proc. VLDB Endow., 1(2):1277–1288,
August 2008.

[17] Jeffrey Dean and Sanjay Ghemawat. MapReduce:
Simplified data processing on large clusters. In OSDI

’04, pages 137–150, December 2004.

[18] Giuseppe DeCandia, Deniz Hastorun, Madan
Jampani, Gunavardhan Kakulapati, Avinash
Lakshman, Alex Pilchin, Swaminathan
Sivasubramanian, Peter Vosshall, and Werner Vogels.
Dynamo: amazon’s highly available key-value store.
SIGOPS Oper. Syst. Rev., 41(6):205–220, October
2007.

[19] David DeWitt and Jim Gray. Parallel Database
Systems: The Future of High Performance Database
Systems. Commun. ACM, 35:85–98, June 1992.

[20] David J. DeWitt, Robert H. Gerber, Goetz Graefe,
Michael L. Heytens, Krishna B. Kumar, and
M. Muralikrishna. GAMMA - a high performance
dataflow database machine. In VLDB, pages 228–237,
1986.

[21] Shinya Fushimi, Masaru Kitsuregawa, and Hidehiko
Tanaka. An Overview of The System Software of a
Parallel Relational Database Machine GRACE. In
Proceedings of the 12th International Conference on

Very Large Data Bases, VLDB ’86, pages 209–219,
San Francisco, CA, USA, 1986. Morgan Kaufmann

Publishers Inc.

[22] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak
Leung. The Google File System. In Proc. 19th ACM

Symp. on Operating Systems Principles, SOSP ’03,
New York, NY, USA, 2003. ACM.

[23] GoldenOrb: Open-source implementation of Pregel.
http://www.raveldata.com/goldenorb/.

[24] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell,
and Dennis Fetterly. Dryad: Distributed Data-Parallel
Programs from Sequential Building Blocks. In
EuroSys, pages 59–72, 2007.

[25] Liang Lin, Vera Lychagina, and Michael Wong.
Tenzing A SQL Implementation on the MapReduce
Framework. Proceedings of the VLDB Endowment,
4(12):1318–1327, 2011.

[26] Grzegorz Malewicz, Matthew H. Austern, Aart J.C
Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and
Grzegorz Czajkowski. Pregel: a system for large-scale
graph processing. In Proceedings of the 2010

international conference on Management of data,
SIGMOD ’10, pages 135–146, New York, NY, USA,
2010. ACM.

[27] Christopher Olston, Benjamin Reed, Utkarsh
Srivastava, Ravi Kumar, and Andrew Tomkins. Pig
Latin: A Not-so-Foreign Language for Data
Processing. In SIGMOD Conference, pages 1099–1110,
2008.

[28] Pig Website. http://hadoop.apache.org/pig.

[29] Rob Pike, Sean Dorward, Robert Griesemer, and Sean
Quinlan. Interpreting the Data: Parallel Analysis with
Sawzall. Scientific Programming, 13(4):277–298, 2005.

[30] J. Shemer and P. Neches. The Genesis of a Database
Computer. Computer, 17(11):42 –56, Nov. 1984.

[31] The Tandem Database Group. Nonstop SQL: A
distributed, high-performance, high-availability
implementation of SQL. Second International

Workshop on High Performance Transaction Systems,
September 1987.

[32] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai

Budiu, Úlfar Erlingsson, Pradeep Kumar Gunda, and
Jon Currey. DryadLINQ: A System for
General-Purpose Distributed Data-Parallel
Computing Using a High-Level Language. In Richard
Draves and Robbert van Renesse, editors, OSDI,
pages 1–14. USENIX Association, 2008.

[33] Matei Zaharia, Mosharaf Chowdhury, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Spark:
cluster computing with working sets. HotCloud’10,
page 10, Berkeley, CA, USA, 2010.

15

Markov Log ic Networks: Theory, Algorithms and
Applications

Parag Singla
Indian Institute of Technology Delhi

Hauz Khas, New Delhi

parags@cse.iitd.ac.in

ABSTRACT
Most real world problems are characterized by relational
structure i.e. entities and relationships between them. Fur-
ther, they are inherently uncertain in nature. Theory of logic
gives the framework to represent relations. Statistics pro-
vides the tools to handle uncertainty. Combining the power
of two becomes important for accurate modeling of many
real world domains. Last decade has seen the emergence
of a new research area popularly known as Statistical Rela-
tional Learning (SRL) which aims at achieving this merger.
Markov logic is one of the most well-known SRL models
which combines the power of first-order logic with Markov
networks. The underlying domain is represented as a set of
weighted first-order logic formulas. The associated weight
of a formula represents the strength of the corresponding
constraint. Higher the weight, stronger the constraint is.
Markov logic theory can be seen as defining a template for
constructing ground Markov networks, and hence, the name
Markov logic networks.
Inference problem in Markov logic corresponds to finding

the state of a subset of nodes (query) given the state of
another subset of nodes (evidence) in the network. Learn-
ing corresponds to finding the optimal set of weights for
the formulas as well as discovering the formulas themselves.
Many of the standard algorithms for inference and learning
in ground Markov networks do not scale well to the size of
the networks that can be represented using Markov logic.
Further, there is a rich template structure across ground
formulas which can be exploited to devise efficient infer-
ence and learning algorithms. Due to their representational
strength, availability of inference and learning algorithms,
ease of use and the availability of an open source imple-
mentation, Markov logic has been effectively applied to a
variety of application domains including entity resolution,
web-mining, link prediction, social network analysis, im-
age analysis, robotics, natural language processing and plan
recognition, to cite a few.
This tutorial will cover in detail the theory behind Markov

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without feeprovided that copies are
not made or distributed for profit or commercial advantage and that copies
bear thisnotice and the full citation onthefirst page. To copy otherwise, to
republish, to post onserversor to redistribute to lists, requiresprior specific
permissionand/or a fee.
The 18th International Conference on Management of Data (COMAD),
14th-16th Dec, 2012at Pune, India.
Copyright c©2012Computer Society of India (CSI).

logic starting from the basics of first-order logic and Markov
networks. We will also look at various inference and learning
algorithms for Markov logic. Second half of the tutorial will
focus on some of the applications to which Markov logic has
been applied. We will look at the modeling aspect of the
problem as well as actually writing up the theory using the
open source software, Alchemy, which implements Markov
logic framework.

Bio-Sketch
Parag is an undergraduate from IIT Bombay batch 2002.
He studied at the University of Washington Seattle to get
his Masters and PhD degrees. His PhD work focused on
Markov logic, a formalism to combine the power of logic
and probability. He has done some pioneering work in de-
veloping lifted inference techniques for Markov logic. He has
also worked extensively in applying Markov logic to a variety
of real world problems including entity resolution, link pre-
diction, abductive plan recognition and vision related prob-
lems. His paper on a new technique for entity resolution
using attribute-mediated dependences won the best paper
award at PKDD 2005. After finishing his PhD in 2009, he
spent a couple of years at UT Austin for a post-doc. He has
been working as an Assistant Professor at IIT Delhi since
December 2011. His current research work continues to fo-
cus on developing efficient inference and learning algorithms
for SRL (statistical relational learning) models. He is also
looking at their application to social network analysis and
video activity recognition. Parag has over a dozen publi-
cations in top tier peer-reviewed international conferences
and workshops, one best paper award and two patents to
his name. He has been a reviewer for many reputed inter-
national journals and served on the program committee for
several premiere international conferences including senior
program committee for IJCAI-11 and program committees
for AAAI-12 and ECAI-12.

16

Reliability Aware Data Fusion

Sameep Mehta
IBM Research India

New Delhi,India

sameepmehta@in.ibm.com

L.VenkataSubramaniam
IBM Research India

New Delhi,India

lvsubram@in.ibm.com

1. OVERVIEW

Due to ubiquitous sensors (GPS, Accelerometer), easy of
use apps (Facebook, Twitter etc), presence of audio & video
recording devices and higher internet connectivity, the key
characteristics of raw data is changing. This new data can
be characterized by 4Vs Volume, Velocity, Variety and Ve-
racity. Moreover, due to popular trend of crowd sourcing or
citizen sensors, it is reasonable to assume that people will
provide multiple evidence of same event using different data
types. For example during a Football match, some people
will Tweet about Goals, Penalties etc while others will take
a picture and upload it. Although the underlying modali-
ties are different (text and image), the data describes the
same event. Such multi modal evidences should be used
to strengthen the belief in underlying physical event. Fi-
nally, each of the data point will have inherent uncertainty.
The uncertainty can arise from inconsistent, incomplete, and
ambiguous data as well as the trust worthiness of the user.
Similarly, some sources are more reliable than others which
will also play a part in overall reliability. The volume, veloc-
ity and variety are measurable/observable, however, there is
no measure of truthfulness.

Traditionally, CS research has focused on Volume and Ve-
locity. However, multimodal data fusion and reliability are
less explored. Through this tutorial will wish to draw the at-
tention of researchers towards these dimensions by present-
ing some real life use cases, highlighting the key technical
challenges, existing techniques and need for new .

2. TOPICS

We intend to over the following topics during the tutorial

• Data Characteristics with 4V dimensions and use cases
from Public Safety Domain.

• Key Technical Challenges (non exhaustive list)

– Entity Resolution

– Data Cleaning

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
The 18th International Conference on Management of Data (COMAD),

14th­16th Dec, 2012 at Pune, India.
Copyright c©2012 Computer Society of India (CSI).

– Performance

– Indexing and Storage

– Updating of Data

– Use Case: Generating Single View of Entity

• Data Fusion Methods

– Probabilistic Data Fusion using Bayes Theorem,

– Information Measures like Entropy, Mutual Infor-
mation, Fisher Information

– Interval Calculus, Fuzzy Logic and Evidential Rea-
soning

– Kalman Filters & variants, Nearest Neighbor Fil-
ters and Probabilistic Data Association Filter

• Reliability

– Bayesian Methods

– Dempster Shafer Theory

– Transferable Belief Theory

• Recent Work in Data/Information Fusion

• Overview of Public Safety using Crowd Sensors Initia-
tives (National Technical Challenge by IRL)

3. TARGET AUDIENCE

This tutorial is designed for students and researchers in
Computer Science. Elementary knowledge of text mining is
assumed. This topic is expected to be of wide interest given
its overlap with data mining, text mining, NLP, Streaming
Data and BigData. We plan to give a 3 hour tutorial.

4. SPEAKERS

L Venkata Subramaniam manages the information pro-
cessing and analytics group at IBM Research India. He
received his PhD from IIT Delhi in 1999. His research fo-
cuses on unstructured information management, statistical
natural language processing, noisy text analytics, text and
data mining, information theory, speech and image process-
ing. He often teaches and guides student thesis at IIT
Delhi on these topics. He co founded the AND (Analyt-
ics for Noisy Unstructured Text Data) workshop series and
also co-chaired the first four workshops, 2007-2010. He was
guest co-editor of two special issues on Noisy Text Analyt-
ics in the International Journal of Document Analysis and

17

Recognition in 2007 and 2009. He can be reached at lvsub-
ram@in.ibm.com.

Sameep Mehta is researcher in Information Management
Group at IBM Research India. He received his MS and Ph.D
from The Ohio State University, USA in 2006. He also holds
an Adjunct Faculty position at International Institute of In-
formation Technology, New Delhi. Sameep regularly ad-

vises MS and PhD students at University of Delhi and IIT
Delhi. He regularly delivers Tutorials at COMAD (2009,
2010 and 2011). His current research interest includes Data
Mining, Business Analytics, Service Science, Text Mining,
and Workforce Optimization. He can be reached at sameep-
mehta@in.ibm.com.

R E S E A R C H T R A C K

21

Connectivity­Tolerant Query Optimization Over Distributed
Mobile Repositories∗

Sharma Chakravarthy, Aditya Telang†, Mohan Kumar

Mark Linderman‡, Sanjay Madria§, Waseem Naqvi¶

Department of Computer Science and Engineering
University of Texas at Arlington

Arlington, TX, USA

sharma@cse.uta.edu, adtelang@in.ibm.com, kumar@cse.uta.edu,
Mark.Linderman@rl.af.mil, madrias@mst.edu, Waseem Naqvi@raytheon.com

ABSTRACT

Query processing and optimization in centralized and dis-
tributed environments is well-researched. Centralized query
optimization focused on minimizing the number of input/output
(or I/O) from disk. Distributed query processing focused
mainly on maximizing local computation and minimizing
data transfer between nodes. Here the distribution of data
was pre-determined and both connectivity and bandwidth
were pre-defined and guaranteed. Work on sensor data ac-
quisition deal with non-join queries without taking mobility
and connectivity interruptions into consideration. However,
these assumptions are no longer true when queries are exe-
cuted over repositories stored in mobile aerial vehicles which
collect, process, and store data in real-time, and connectiv-
ity changes significantly over the duration of interest. Cur-
rently, only data in one vehicle can be queried by the ground
control.
This paper explores query processing and optimization

issues along with concomitant metadata needed for process-
ing/optimizing queries over distributed, mobile, connectivity-
challenged environments. Since response-time and fault-
tolerance are the main focus, we propose plans using join,
semi-join, and replication-based approaches. We propose
and evaluate several heuristics for this environment rang-
ing from greedy to cumulative approaches along with the
use of replicated copies of data. We have performed elabo-
rate experimental analysis to validate heuristics that work

∗AFRL has approved this work for public release; distribu-
tion unlimited. Case No. 88ABW-2012-5499
†IBM Research, Bangalore, India
‡Air Force Research Labs, Rome, NY
§Missouri University of Science and Technology
¶Raytheon Corporation, MA

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
The 18th International Conference on Management of Data (COMAD),

14th­16th Dec, 2012 at Pune, India.
Copyright c©2012 Computer Society of India (CSI).

well for this environment. As maintaining replication is a
challenge in this environment, we summarize our initial ap-
proach. This work on connectivity-tolerant query optimiza-
tion is part of a larger middleware-based, service-oriented
architecture.

1. INTRODUCTION
As part of a larger effort on distributed middleware-based

architecture for fault-tolerant computing over distributed
repositories, we address query processing and optimization
in this paper. A brief description of the larger problem is
provided for understanding the context for this work.

Figure 1: Example of Nodes and Connectivity

The general problem can be stated as follows: Consider
a number (2 to 15) of nodes (unmanned aerial or other ve-
hicles termed UAVs in this paper, and ground operators)
whose connectivity is dynamically changing, and whose data
bandwidth can vary from low to high. In this setting, how
do we accomplish a specific task (query, search, subscrip-
tion notification) that uses data and services from multiple
nodes (for computation or collaboration) that are subject
to QoS (Quality of Service) requirements (e.g., time to first
result, response time). In other words, each node is inde-
pendently acquiring multiple/different data types (e.g., lo-
cation, telemetry, and images) and storing them locally. The
data is stored in the form of Managed Information Objects

22

(or MIOs) and can be sent on-demand to ground operators,
and others nodes based on connectivity. There is also a need
for combining (or joining) data from multiple nodes to get
a better understanding of the overall situation. Data stored
in a node is defined using type, metadata, and the payload.
The communication between the nodes is through RF or sat-
com or other types of links (e.g., Link 16). It is also assumed
that the nodes can be of different types based on processing
capacity, storage, types of data it can collect, up/down link
bandwidths, and latencies of data transfer. Nodes can also
play different roles (depending upon the resources available
onboard): i) collect data and forward it, ii) collect data, pro-
cesses it, and forward both collected and processed data, and
iii) collect, process, store/hold, and forward data. A single
node can play different/multiple roles for different types of
data. Their roles may change over time.
A typical scenario consists of a number of Airborne plat-

forms (UAVs, Helos, Fighters, AWACs, etc.) which are trav-
eling at various speeds (100, 200, 500 knots etc.), some in
formation and some on independent tracks. Each has an as-
sociated ground platform that are either stationary or mov-
ing. Stationary platforms have semi permanent positions
whereas Mobile ones may be on vehicle or foot. The con-
nectivity among all airborne platforms is intermittent based
on distance, line-of-sight, obstacles, cloud coverage etc. The
transmission bandwidth is different for receiving and send-
ing and depends on a number of factors such as distance,
orientation, obstacles along the path etc. Each node (an
airborne platform) has storage that is meaningful for the
node type. Although computing power varies from node
to node, we can assume that it is sufficient to run a local
database management system (DBMS). Relational DBMS
is assumed. Power is assumed to be a non-issue in this work
because these platforms, we were told, have enough juice for
the duration of the mission. This general scenario arises in
various contexts:

• Disaster management, such as flooding, hurricanes,
and evacuation. Information needed: evacuation routes,
extent of damage, view of the area affected.

• Cooperative Combat Air Patrol. Mixture of UAVs,
manned fighters, and AWACs cooperatively defending
a region. Information needed: Signals, Lines of Bear-
ing, contact positions, tracks

The scenario described above is illustrated in Figure 1.
It is assumed that ground controllers are always in contact
with their respective UAVs. Connectivity of other nodes (or
UAVs) depends on dynamic factors. The connectivity (or
disruption) of the nodes changes dynamically in this scenario
as illustrated by solid lines and broken lines. Each line type
(solid or broken) represents a different configuration of the
network – one partitioning the nodes into two graphs and
the other maintaining reachability for all nodes. The figure
also shows new nodes coming into and existing nodes going
out of the network.
Currently, it is only possible to process queries on data

stored in a single airborne platform. Current state-of-the-art
in distributed query processing assumes fixed, hard-wired
connectivity among participating nodes. Replication is con-
sidered from an availability (of data) viewpoint and not
from connectivity viewpoint. Latest work in sensor query
processing [17] does not deal with mobile platforms with

Figure 2: Pluggable Middleware Architecture

resident relational DBMS and intermittent connectivity. It
is also possible to download data into ground nodes (from
all nodes) and then process queries over those nodes. This
results in delays that is not acceptable. Also, the data col-
lected by multiple vehicles for a situation provides a holistic
view and hence it is important to have the capability to is-
sue queries in real-time that can be processed over all the
relevant data available in one or more airborne platforms.
Based on the requirements of the situations listed earlier
(especially response time), it is important to have the capa-
bility to process queries over data in multiple nodes as they
are being acquired.

The following are examples of queries that need to be
executed on networked, distributed information sources.

1. Get all images taken within last 5 minutes of the area
bounded by 〈latitude1, longitude1〉
and 〈latitude2, longitude2〉.

2. Get all SAM (surface to air missile) locations within 12
NM (nautical miles) of the area bounded by 〈latitude1,
longitude1〉 and 〈latitude2, longitude2〉.

Since each node is autonomous and may belong to a group
that needs to solve problems collaboratively, there is a need
for two fundamental components that form the core of our
overall approach:

• a common middleware component that is common to
and present in all the nodes and a context (as a knowl-
edge base or KB) that holds the capabilities, network
configuration, and

• current state of the network at each node which is
managed and used by the middleware.

The KB will also include the global requirements as capa-
bilities of connected nodes are dynamically gathered. The
context information can be customized/tailored either to a
node, a task or for a set of tasks. The middleware heav-
ily relies on the context to perform operations, knows the
capabilities of self and other nodes, and to perform tasks
collaboratively. A service oriented architecture (SOA) for
the middleware is used to build larger systems in which this
fits as a component seamlessly.

23

Figure 2 shows the service-oriented architecture (SOA)
for the middleware for supporting query processing (and
other services) over distributed repositories and accommo-
date fault tolerance. The overall architecture includes a mid-
dleware in each node that has a number of services (based on
SOA) for collecting, managing, replicating data and meta-
data for the purposes of routing and query processing. Each
node will have the SOA middleware and as many plugin
components as needed. As a node collects data, it is stored
in the repository on that node. Connectivity and replication
information is periodically exchanged between nodes and
stored in the context/kowledge base. For details on other
services, please refer to [7] which contains an accessible url.
Contributions: Some of the key contributions of this paper
are as follows:

1. Formulation of the distributed query optimization prob-
lems for ad-hoc connectivity in the presence of connec-
tivity interruptions,

2. A cost metric that is different from traditional dis-
tributed cost metrics,

3. A query processing strategy with partial independent
computations in different nodes, and

4. Replication of data for dealing with availability and
incorporating it into query optimization

Overall, the novelty is in generalizing distributed query
optimization to ad-hoc networks with mobile platforms, in-
termittent connectivity, and replication.
The remainder of the paper is organized as follows. Sec-

tion 2 defines the problem being addressed in this paper.
Section 3 discusses related work on query processing and
metadata management. Section 4 discusses meta data used
for query processing and its management. Section 5 briefly
summarizes our replication strategy. In Section 6, we dis-
cuss our approach for processing queries, plan generation
alternatives, and introduce heuristics appropriate for this
environment. Section 7 has elaborate experimental analysis
and their interpretation. Section 9 has conclusions.

2. PROBLEM STATEMENT
The focus of this paper is on processing SQL queries over

distributed repositories collected/stored on each vehicle with
the specified constraints on connectivity and reachability.
This will allow for holistic queries without even having to
know which repository contains what information. Although
we are using SQL queries referring to relations in a node in
this paper, a GUI can easily generate these queries from
an interactive interface. It is meaningful to assume that
each node has secondary storage of reasonable size. It is
also assumed that each node has enough computing power
to support a database management system (DBMS) that
can process queries from its local (secondary) storage. A
relational DBMS is assumed at each node.
The problem at hand is somewhat different from the tradi-

tional query processing that has been developed for central-
ized, distributed, and federated architectures. Although the
computations/operators (e.g., join, semijoin) are the same
as that of traditional query processing systems, the environ-
ment and the goals of these computations are quite differ-
ent. Instead of knowing the schema, the data is published

using a managed information object (or MIO) that needs to
be used efficiently. An MIO (used to represent/encapsulate
data) consists of: data type, metadata, and the payload.
The metadata could be as simple as schema information or
it can consist of additional information, such as range val-
ues, organization of data, number and types of objects in a
picture etc.

Another difference is the need for replication of data – not
from the viewpoint of local processing, but from the view-
point of accessibility or reachability. Compared with earlier
approaches where the nodes at which data was stored (or
even replicated) were pre-determined, in the current sce-
nario it is an important decision that has to be made dy-
namically by the system. As connectivity is not complete,
multiple hops may be needed to reach a copy of the data.
Furthermore, nodes can even store data that may not be di-
rectly useful to that node but is in close proximity for others
that need it. When a node moves away (i.e., is not a neigh-
bor anymore), there is a need to decide whether to keep the
copy in that node or not. The utility of data and its copies
need to be optimized using some metric (or a combination)
such as cost of storage, cost of communication, time for data
transfer, and longevity of storage.

In this paper, we address the problems of: query plan
generation for this environment, relevant heuristics that are
meaningful for this architecture, and use of replication for
improving query processing. A prototype implementation
developed in Java is used for extensive experimental results
that validate our approaches and inferences.

3. RELATED WORK
Traditional relational database management systems

(DBMSs), consisting of a set of persistent relations, a set
of well-defined operations, and highly optimized query pro-
cessing and transaction management components, have been
researched for over several decades and are used for a wide
range of applications. Typically, data processed by a DBMS
is less frequently updated, and a snapshot of the database is
used for processing queries. Abstractions derived from the
applications for which a DBMS [5, 1, 15, 12, 18] is intended,
such as consistency, concurrency, recovery, and optimization
have received a lot of attention.

Query processing is a key consideration in database man-
agement systems. For this reason, query optimization has
been one of the most active research areas since the advent
of relational DBMSs. The acceptance and success of rela-
tional systems can be attributed largely to advances in query
optimization over several decades [19, 11]. A major advan-
tage of relational systems over earlier technologies is that
the users of a relational DBMS are relieved of the need to
describe their queries procedurally. More important, users
are not required to understand the details of physical repre-
sentation and its impact on queries posed to the DBMS.

In a distributed (or even a multi-database) environment,
queries are decomposed, and query fragments are directed
to particular sites (or databases) for processing [3, 2, 16].
Distribution of the database reduces the size of the data
stored at each node, increases the locality of reference for
the queries processed at a given node. Replicated databases
provide an additional opportunity – that of choosing the site
(at which a subquery is sent for processing) to increase the
probability of overlap with other subqueries. Hence, queries
processed at a site may have a lot of overlap of the data they

24

access.
Other forms of query optimization, such as semantic query

optimization [9], multiple query optimization [8, 20], and
more recently, continuous query processing [6] have focused
on modeling, scheduling, and load shedding strategies. The
work presented in this paper is related, but is distinctly dif-
ferent from them. In this work, queries are not transformed
using semantics, multiple queries are not batched and op-
timized, and continuous query processing techniques deal
with a different set of metrics and their optimization is very
different from what is required for this scenario.
Several middleware architectures have been developed in

the recent past to support mobile ad hoc networks (MANETs),
sensor networks, and pervasive systems. Boulkenafed and Is-
sarny develop a comprehensive middleware for data sharing
in MANETs [4]. The focus of the work however is min-
imizing energy consumption. Kalasapur et al. developed
an elegant middleware for service provisioning in pervasive
systems with mobile nodes [13]. Tamhane and Kumar have
developed a resource management mechanism for pervasive
systems with underlying ad hoc networks [21]. None of these
works consider dynamic networks such as that of UAVs,
where node mobility is a regular feature rather than a rarity.
Christman and Johnson discuss a customized self configur-
ing architecture designed for UAVs [10]. However, they
do not deal with on content sharing and query processing.
The middleware architecture proposed in [14] attempts to
address this important issue in UAV based networks.

4. METADATA AND ITS MANAGEMENT
In order to process queries, minimal information about

the schema, connectivity of the nodes, replication informa-
tion (if any) as well as available cardinality and other statis-
tics need to be available in each node. Furthermore, some
of the above need to be kept current in this dynamic envi-
ronment. At the core of our middleware is the use of graph
theoretic and sub-graph matching techniques to ensure net-
work status awareness and data access. A graph structure
is created to capture the essence of data objects/services,
corresponding computing nodes and the relationship among
the data objects as well as the nodes. The associated mid-
dleware tools facilitate the response to queries in dynamic
heterogeneous environment comprising mobile nodes. The
proposed service provisioning framework is flexible in rep-
resenting metadata and services, and adaptive to changing
environments by incorporating the replicated copies. We
assume the following information in the form of tables ac-
cessible to the local database.
Data at each node is assumed to be a relation with the

schema shown in Table 1. Rij corresponds to relation Ri at
node j. Rii (i = j) will be used to represent the primary

copy of a relation at node i. Rij (i <> j) will be used to
indicate the replica of Ri in node j. A field ‘TimeOfUpdate’
is maintained for each update that happens over the Meta
Data to estimate the accuracy of data and keep a track of
how recently the update has been done.
A number of additional information about the character-

istics of each Rii is maintained in a node i (and periodically
propagated to all other nodes) for the purpose of query plan
generation and cost estimation. If a relation Ri is replicated
at this node (j), then for each replicated relation Rij , we
need to maintain the same information as in Table 1. The
difference is that this information may not be current. Every

node maintains a copy of its original relation that is stored
at some other node. Currently, replication is assumed to be
a single copy and complete for each relation. Network Man-
aged data is maintained and updated by the middle-ware,
and accessed for processing by the local query processor for
executing intermediate steps of a query plan.

Selectivity for simple and composite conditions are calcu-
lated using standard formulas [19, 16] based on the informa-
tion in Table 2.

A Relation-to-Node mapping table, as shown in the Ta-
ble 3, is maintained by the message management system at
each node which indicates the location of the original and
the replica of a Relation. A value of 0 in the replica node
column indicates that the replica is not complete at this
point in time and hence is not considered for generating a
query plan.

Name Original Node Replica Node
R1 1 4
R2 2 1
...
Rn N k

Table 3: Relation and Replica Locations

Finally, a Connectivity map is maintained at each node
which checks for the existence of a connection between any
two nodes and the corresponding bandwidth between them.
If the Received Signal Strength (RSS) is zero or below a
threshold, then the connection is considered to be 0 and 1
(or present) otherwise. RSS value lies on a scale of 1 to 10.
The actual RSS value is used in cost estimation. LSF (Link
stability Factor) is a function of rate of change of RSS value
over a period of time. LSF, to some extent, measures the
stability of the link over a period of time. This is important
as the plan is generated once and the execution of steps take
some time. A pair is considered for the plan generation if the
RSS value at the instant is 1. A sample connectivity map
is shown in Table 4. Note that bi-directional connectivity is

maintained as the bandwidth is different between uplink and

downlink. See [14] for network related issues.

5. REPLICATION STRATEGY
In order to ensure accessibility and fault-tolerance, each

data object is replicated on other nodes. Currently, there
exists only one replica of a given data item. Ns represents
the source node, where the original copy of data item Di

was acquired. Nc is the candidate node that will contain
a replica of data object Di. When Ns decides to replicate
its contents on another node Nc, a node from the set of the
nodes that are immediate neighbors of the source node is se-
lected as candidate nodes for replication. Immediate neigh-
bors are those nodes which are directly connected to the
source node. The source node tries to replicate all its tuples
on the chosen candidate node. For each of the above se-
lected candidate nodes, a cost function C(s, c) is computed.
The node with the lowest cost is selected as a candidate for
replication. The cost function to determine the candidate
node for replication is dependent on the following factors:
Bandwidth defines the closeness of Nc from Ns in terms of
bandwidth. Greater bandwidth is desirable; Linkstability is
a measure of stability of the link between nodes Ns and Nc.
Greater stability of the link between the two nodes implies
better longevity; and greater DegreeofthenodeNc indicates

25

better accessibility of replicated data. Additional details can
be found in [14].

6. QUERY PROCESSING AND PLAN GEN­

ERATION
Although it is tempting to try to optimize a query from

scratch as is done traditionally, we need to take the envi-
ronment and constraints into account for proposing an ap-
propriate solution. The focus here is to generate a query
plan that can complete the execution of a query with mini-
mal data transmission cost and good response time. Hence,
a plan generator that tries minimize I/O in each node is
not the best way as the local DBMS is likely to do a better
job; and we need to leverage that. Hence, we decided to
delegate local optimization to the DBMS at each node and
concentrate on a plan that minimizes data transfer (or data
movement) for processing a query. As a result, a query plan
for this scenario is envisioned as numbered sequence of plan
steps that can be easily interpreted and executed at any
node1. Table 5 gives a description of a plan format. Each
step includes the operation to be applied, the data items in-
volved, the node where it is applied, the name of the result
and the node where it is created.
Unlike traditional query processing, the plan needs to be

sent from node to node2 (or partial plans generated at each
node which is not considered in this paper) for the purposes
of query processing. A counter, as part of each plan, indi-
cates the next step to be executed and is initialized to 1. An
example of a query plan is shown in Table 6.
The plan format described above is sufficient to describe

any arbitrary relational query plan involving selects, projects,
and joins (also known as an SPJ query). The above format
can also accommodate SQL aggregate operators, such as a
SUM, COUNT, AVERAGE, MINIMUM, and MAXIMUM.
A query is executed as follows. A complete plan is generated
at the node where the query is received using the metadata
stored in that node. The plan is then sent to the node in
which the first operation takes place (if it is different from
the node where the query plan is generated) along with the
plan step counter. The interpreter in that node uses the
plan step counter to execute as many steps as possible in
that node. When a move or copy is encountered, it sends
the data as well as the plan (actually the remaining portion
of the plan to reduce the amount of data transferred) to the
next node. This process continues until the last step of the
plan is executed. The result of the query will always be sent
to the node at which the query was received.
Currently, a complete query plan is generated as follows.

Each node in the architecture has the same query plan gener-
ator and uses only the Metadata in that node. Note that the
metadata is updated by the underlying mechanism briefly
indicated in Section 4. The query plan is constructed one
join/semijoin at a time. Costs of partial plans are com-

1In fact, we assume that at each node, plan steps are com-
bined to generate an SQL query to be processed locally ac-
cessing only local data.
2As an alternative, it is possible to simultaneously send the
entire plan or preferably portions of the relevant plan steps
to each node. If this alternative is used, a synchronization
mechanism is needed to execute plan steps in the correct
sequence without any need to transfer plans. It is also pos-
sible to dynamically generate plan steps at each node when
needed rather than generating the entire plan to start with.

puted using well-defined statistics and formulae for comput-
ing selectivities for conditions and join. The lowest total
cost query plan is used as the final plan after the plan space
is explored either exhaustively or using heuristics. This will
result in a good plan (or an optimal plan). Several heuristics
are explored as part of this project to reduce the total com-
putation required for generating a plan and still generate a
good plan3. These heuristics are compared experimentally
with respect to replication and connectivity scenarios.

The complexity of the optimal plan generation is kn where
n is the number of joins and k is the number of alternatives
for each join. Currently, k being used is 18 (three alterna-
tives for join, semijoin, & hybrid alternatives, and the same
using replica as well). Note that this is at the logical level.
For each logical join alternative, there will be many phys-
ical alternatives making the plan space significantly larger.
Assuming three joins, we need to explore 5000+ alternative
query plans and compute cost for each one of them. For
plans with more than three joins, this exhaustive approach
is not viable. Hence, we have incorporated some heuristics
to limit the number of plans generated by pruning plans
carried forward after each join. A query optimizer has been
implemented to validate the heuristics and their effective-
ness on synthetic data and multi-join queries that simulate
actual data sets.

Cost for our plans is mainly data transfer cost which in
turn depends on the width of the tuple and cardinality of
the relation (intermediate or otherwise). Hence it is impor-
tant to estimate the number of tuples as well as their width.
Statistics in the form of cardinality and domain characteris-
tics are used for this purpose. Join and condition selectivity
are inferred from the statistics maintained. Intermediate
result sizes are also estimated as its accuracy is important
as the choice of the best query plan is primarily based on
the cost of data transfer based on availability of connectiv-
ity. The statistics used for evaluating the cost of a (partial)
query plan is the same as the ones used in traditional and
distributed query processing [19, 16]. All of these are well-
established for the relational model. We do not include the
processing cost for the operation/plan, but only the data
transfer cost. Processing cost depends upon the availabil-
ity of index and other structures and mainly influences the
order of join (which we take into account in our plan gener-
ation process). As future work, it will be useful to explore
what access structures are meaningful and take the process-
ing cost into account as well. In each node, the plan can
be executed by converting it into an SQL statement if a
relational database is used for storing data in that node.

To improve the accuracy of selectivity, for each attribute
of Rii on which a condition has been applied, selectivity
information is maintained as follows. Table 7 reflects the
actual selectivity values for conditions on that relation and
will be used when the same or similar condition is encoun-
tered in a later query. Otherwise, selectivity formulas are
used for calculating the resulting relation cardinality. The
conditions are maintained at the component level using a
hash table which can be associatively searched using the re-
lation and condition. The intermediate relation cardinality
and width are also maintained.

3Note that, in general, the objective of query optimization
is not as much as generating an optimal plan by spending a
lot of resources, but to certainly avoid bad plans and do it
fast.

26

Relation C1 C2 C3
R1 0.2 0.5
R2 0.6 0.67
R1 0.9 0.1 0.7

Table 7: Selectivity Table

6.1 Plan Generation Implementation
The query plan generator is implemented in Java. A re-

lational database is used for storing metadata (as will be
done in each node). A constants Java file is used for con-
ducting experiments and to setup parameters for varying
connectivity and replica information (as shown in Figure 3).
An interactive option is also available to input query, load
metadata from a file, and analyze individually best, worst,
or any plan generated. For details of implementation refer
to [7].
The generator begins by generating all distinct partial

plans (from an initial empty set) for each join. As an ex-
haustive algorithm, it generates 18n plans for a query con-
taining n joins. It is evident that this approach is not viable
beyond a few joins. This is being done so that we can com-
pare heuristics-based plans with the optimal ones to analyze
the effectiveness of heuristics we come up with (e.g., top-k
in each iteration, top-k cumulatively, top-k for each type
of plan.) for queries with fewer joins. The generator then
iterates through the relation list and creates the necessary
plan steps. Then all of the attributes required are projected
on the output and join condition attributes to minimize the
data transfer across nodes which form the bulk of the cost
of query processing in this environment. Since most of the
plans will use these initial select or project statements (to
reduce the width and cardinality of the relation), these same
statements are attached to every plan. For plan alternatives
using joins the generator moves the required relations to
the location of the join and then performs the join. Even
for this, projections are applied to reduce the overall width
and cardinality of relations moved. The plan class takes
care of updating intermediary name, location, and condi-
tion information. Then the generator moves on to the next
plan.
For plan alternatives using semijoins, the relation that will

be semijoined to is copied and projected on the attributes
used in the specific join condition to minimize data transfer.
Then it is moved to the location of the semijoin. The semi-
join is performed. When the semijoin step is added to a plan
the plan updates name, location, and condition information
and in the case of semijoins the output relation and the rela-
tion that still needs to be semijoined to finish the operation
is added to a stack to keep track of the remaining semijoins
(to generate chained semi join plans). Note that a join can
be processed as a sequence of two semijoins. However, when
multiple semijoins are performed in a sequence, the second
semijoin needs to be performed in reverse order (hence a
stack). The next plan is then processed. For multiple joins,
after all of the plans have been processed with the first join,
all of the joined relations will be projected on the remain-
ing join attributes required and then algorithm will iterate
through all the plans again performing the remaining joins
and semijoins. After a relation has been joined, its current
location is considered to be that of the result of the join even
if it currently has a replica, which may cause some of the
plans to be the same. After all cases have been exhausted,

the algorithm goes through and finishes each case by iter-
ating through the stack of remaining semijoins completing
the remaining semijoins in reverse order and then moves the
final relation to its output node. During each step of the
plan generation, the cost associated with a move or a copy
is calculated, if there is no direct connection between nodes
the cost is considered prohibitively high and value is auto-
matically forced to a very high level by using a very low
bandwidth for the calculation. After calculation the plans
can be viewed in sorted form. The plan generator generates
a summary of: number of plans generated, lowest and high-
est cost plan numbers. It is possible to view any of the plans
in detail. The same process is used for generating plans us-
ing heuristics except that a subset of plans are used in each
iteration which are selected based on the specific heuristic.

The plan generator also includes a network component
that generates the connectivity matrix using the seed pro-
vided. Each element in the matrix represents the cost of
the link from node x to node y. Number of connections is
also specified as part of the configuration. The connectivity
matrix generated is consistent with the bandwidth assump-
tions for this scenario. The connectivity matrix is updated
to simulate movements of the nodes.

6.1.1 Sample Best and Worst Plans
Consider a multi-join query that is sent to node 1 and the

results expected back in node 1.

Node TARGET 1
SELECT *
FROM U_1_D,U_2_D,U_5_D
WHERE ((U_5_D.OBJTYPE=1))

AND ((U_1_D.LAT>U_2_D.LAT))
AND ((U_2_D.LONG>U_5_D.LONG));

Plan Total Cost Remarks
Number (in milli secs)

253 493.873 alternatives 15 (first join)
and 2 (second join)

263 585.942 alternatives 15
and 11 (only semijoins)

3 175117.8 alternatives 1 and 3

Table 8: Sample Plan Costs

Below, we present Lowest cost, semijoin only cost, and
highest cost plans for the above query in Table 8 and addi-
tional information about how they were generated in terms
of plan combinations for a network configuration. In the
above the best plan seems to be a combination of join and
semijoin. The worst plan seems to be made of only joins. As
can be seen, the difference between the best and the worst
plan is significantly large. Hence, it is important to choose
plans closer to the best plan (i.e., a good plan).

6.2 Heuristics­Based plan generation
The purpose of generating an exhaustive plan space as in-

dicated above is to demonstrate the cost differences between
the best and the worst plans. The above algorithm is still
not exhaustive in that it does not consider all possible join
combinations. As can be seen clearly, there is a significant
difference between the best and the worst plan. The goal of
query optimization is not necessarily to choose the optimal

plan, but to avoid bad plans and choose a good (closer to
the optimal and far from the worst) plan.

27

During testing, we also realized that the connectivity plays
a critical role in that if only one way connection is available
between nodes, it impairs good plan generation as semijoin-
based plans need to finish the second half of join by bringing
the results back to that node. In order to generate a plan
without exhaustive search of the plan space, we have pro-
posed a number of heuristics to the above algorithm to com-
pare their performance with the optimal plan. We use this
prototype implementation to analyze various aspects such
as connectivity, bandwidth, as well as selectivity to under-
stand the types of plans generated and the effect of these
parameters on total plan cost. We have identified the fol-
lowing heuristics to be useful and have implemented them
so that we can compare them to the optimal ones to deter-
mine when and which heuristics to use for queries with more
joins.

1. Top-k Iteration: Plan generation is iterative with
respect to joins. For this heuristic, we choose top k
(where k can be specified as a parameter) lowest cost
partial plans in each round of expansion or iteration.
Note that each iteration in our approach corresponds
to processing a join. The number of iterations is equal
to the number of joins. The intuition behind this ap-
proach is to use a greedy local selection and hope that
it will turn out to be good globally as well. This sig-
nificantly reduces the size of the explored plan space.

2. Top-k Cumulative: For this heuristic, we choose
top k lowest cumulative cost (up to that point) plans
in each round/iteration of expansion. Again, the in-
tuition is that the cumulative cost up to this point is
more meaningful (than Top-k-iteration, for example)
and this would lead toward a good overall plan. Note
that this and the above heuristic will be identical up to
two joins. We expect this heuristic to do better than
the previous one as the number of joins increase.

3. Top-k Join-type: For this heuristic, we categorize
plans into join-based, semijoin-based, and hybrid (a
combination of join and semijoin). we choose top k
lowest cost plan from each category for expansion in
each round. The Top-k join-type is a different type
of heuristic as we have different types of partial plans
and their costs are likely to be different. Here, k lowest
cost plans from each type is chosen for the next round.
In order to compare them in a fair manner, the k value
need to be lower (1/3 as we have 3 join types) so that
the same number of plans are carried forward in each
round. Otherwise, this approach is likely to explore
a larger plan space and do better than the other two
heuristics.

In addition to the above, a number of other possibilities
for plan generation exist: i) incremental plan generation,
ii) looking ahead at connectivity and pruning plan alterna-
tives, iii) getting dynamic cost information and then gener-
ating partial plans
Note that connectivity, in this context, is likely to play

a significant role not only in the generation of a complete
plan, but also its cost. If sufficient connectivity does not
exist among the nodes that participate in the query (includ-
ing the nodes that have a replica), a complete query plan
may not even be feasible. The presence of replica increases

the probability of generating a complete plan and if several
exist, heuristics hopefully will choose a good one without
having to generate all plans. A heuristic that incorporates
connectivity would be very useful for this environment.

The above three heuristics have been implemented in our
prototype. The software has two modes: interactive and ex-
perimental to make it easy to test and use. In the interactive
mode, a query can be given at the prompt (or in a file) and a
heuristic specified for its plan generation. The generator will
indicate the number of plans generated as well as the lowest
and highest cost plans (along with plan number). One can
output (or look at) any plan in details by typing the plan
number. It is also possible to provide a file input to process
multiple queries in this mode. The selectivity and cardinal-
ity information is statically initialized. The connectivity is
also initialized at the start of the system. This can be easily
changed by loading a new or different relations and connec-
tivity information before executing the plan generator.

In the experimental mode, the configuration is set using
a Java Constants class (a sample is shown in Figure 3. The
input consists of: number of queries to be generated, seed
for query generation, number of connectivity configurations
to be used in the experiment, seed for configuration genera-
tion, and connectivity factor. The generator has a random
query generator on the schema stored in the system and
generates the desired number of queries for which minimum
and maximum number of joins can be specified. The seed
is to ensure repeatability of experiments as well as gener-
ate a new sequence of pseudo-random queries. The same is
true for network configurations and its seed. The connectiv-
ity factor is use to control the sparseness of the connectivity
matrix. If there are n nodes, the connectivity factor can vary
from 0 to (n-1), 0 indicating no connectivity at all and (n-1)
indicating complete connectivity. The connectivity itself is
generated randomly to satisfy the parameters specified.

The above setup allows one to perform different types of
experiments. For each query, connectivity can be changed
to determine how the plan cost changes and can also com-
pare the optimal cost with heuristics-based plan costs. It
is possible that due to the connectivity, a number of plans
cannot be completed resulting in a high cost. Queries or
connectivity sequences can be changed, independently, by
varying the corresponding seed.

7. EXPERIMENTAL ANALYSIS
In order to test the effectiveness of the heuristics pro-

posed for the query plan generator, we performed several
experiments using these heuristics across different connec-
tivity matrices and several different queries. The following
Java interface (see Figure 3) was typically used for setting
up parameters for all experiments.

A sample set of queries used for experimentation is shown
in Figure 4. Two and three join queries with different se-
lection and join conditions have been purposely chosen so
that they can be compared with optimal results. This will
force the execution of plan in multiple nodes and also brings
in the use of replicated relations based on the connectivity.
These queries were generated by domain experts who have
experience in these scenarios. Finally, the cardinality for all
relations ranges from 100000 tuples to 505000 tuples. This
cardinality also represents the amount of data acquired dur-
ing a mission. We have presented tables instead of plots as

the range of values from our experiments is quite large and

28

hence is not conducive to plotting.

7.1 Comparison of Heuristics
In this experiment, we tested the five queries (shown in

Figure 4) and tested the three heuristics along with the opti-
mal algorithm on the same configuration of the connectivity
matrix. Table 9, shows the cost (in milliseconds) incurred
by the various approaches towards generating the top-3 best
plans (average) for 5 different queries on the same connec-
tivity matrix configuration. Based on the results, it can be
observed that the plan generation process depends hugely on
the connectivity between the nodes. Among optimal plans,
the semijoin ones seem to perform better as expected since
data transfer is reduced significantly. Further, amongst the
different heuristic approaches, the semijoin approaches (ei-
ther top-k-iterative or top-k-cumulative) appear to perform
better for the current set of connectivity configurations.

7.2 Plans costs with and without replication
In this experiment, we compare the costs of generated

plans with and without replication to establish the need for
replication and its importance for this environment. In or-
der to test in the absence of replication, we selected each
query independently and altered the settings of Table 3 such
that for the nodes involved in the corresponding query no
replica existed. For instance, considering Query 2, we mod-
ified Table 3 such that replicas for nodes 5 and 10 did not
exist in any other node. We then evaluated the optimal
as well as heuristic-based plans for each query in the ab-
sence of replication, by averaging the costs obtained from
the corresponding top-3 plans. We then enabled replication
by creating replicas of the nodes, as shown in Table 3, and
evaluated the costs in the presence of replication.
Table 11 shows for a specific query (Query 3) the costs

obtained by each plan in the presence and absence of replica-
tion. It is clear that the processing cost without replication
is significantly higher (as high as 6 times). We also wanted
to understand the behavior of averages. Table 12 displays
the average costs obtained across all five queries, when repli-
cation was present and absent. We observed that, in the ab-
sence of replication, it was difficult to obtain a low cost plan
(due to the nature of the connectivity between the different
nodes); as a result, a relatively high-cost plan has to be se-
lected. In contrast, replication provides a distinct advantage
as a low cost plan, involving the replica nodes can be ob-
tained even though the connectivity between actual nodes
involved in the query may not exist. Consequently, the pres-
ence of replication yields comparatively low-cost plans, and
hence proves to be fruitful in such scenarios where the con-
nectivity between nodes is dynamic and susceptible to fre-
quent changes. This is for a single copy replication. It would
be interesting to study the tarde-offs between number of
copies and plan costs.

7.3 Impact of Connectivity on Plan Cost
In this experiment, we present a single query (shown be-

low) and computed the top-3 plan cost using the heuristics
proposed along with the optimal plan cost on six different
configurations of the connectivity matrix. We had to keep
the connectivity large; otherwise, no (or not many) plans
were generated. Since the connectivity matrix is large in
size, we do not show it here. Instead, we have displayed a
sample configuration file earlier. We have done this experi-

Method Replication No
Replication

Optimal Join 63.76 175.73
Optimal semijoin 135.33 326.28

Top-K Cumulative Join 85.57 195.14
Top-K Cumulative semijoin 78.46 179.07

Top-K Iterative Join 70.76 379.54
Top-K Iterative semijoin 129.39 894.21
Top-K Join-type Join 80.76 391.72

Top-K Join-type semijoin 129.39 666.67

Table 11: Replication Vs. No Replication: Effect on
costs for Query 3

Method Replication NO
Replication

Optimal Join 8.91 29.41
Optimal semijoin 29.33 126.81

Top-K Cumulative Join 527.21 143.73
Top-K Cumulative semijoin 279.21 795.41

Top-K Iterative Join 33.11 177.14
Top-K Iterative semijoin 318.25 828.21
Top-K Join-type Join 801.49 935.72

Top-K Join-type semijoin 304.71 899.67

Table 12: Replication Vs. No Replication: Effect on
costs across all queries

ment on several queries with similar results.

Query 1 target 2

SELECT * FROM UAV_2_DATA, UAV_4_DATA, UAV_6_DATA

WHERE ((UAV_2_DATA.NODEID=76)) AND ((UAV_2_DATA.LONG>=804))

AND ((UAV_6_DATA.LONG<=540) AND

((UAV_2_DATA.LAT=UAV_4_DATA.LAT)) AND (UAV_4_DATA.LONG=UAV_6_DATA.LONG));

Table 10 shows the cost (in milliseconds) incurred by the
various approaches towards generating the top-3 best plans
for the given query. Based on the results, it can be ob-
served that the plan generation process depends heavily on
the connectivity between nodes. For many network con-
figurations, no plan is generated even in optimal join case.
However, amongst the different heuristics, the semijoin ap-
proaches (both iterative and cumulative) appear to do better
and very close to optimal for the current set of connectivity
configurations. However, determining the exact relationship
between the type of join and the corresponding costs of plan
generation will require further analysis and is beyond the
scope of this paper.

7.4 Desiderata
It is very clear from the experiments that the proposed

heuristics are meaningful and generate good plans that are
not too far from the optimal without exploring the entire
plan space. The presence and absence of replication makes
a significant difference both for the number of plans available
and the cost of the plan. This is only for directly connected
replica. If multiple hops are included, reachability will be
even better (at the cost of transmission cost). Connectiv-
ity of the network certainly plays a central role and more
attention needs to be placed on heuristics and optimization
to include predicted stability of network and its leveraging.
Alternate plan precessing strategies will also be beneficial
for this environment. As an example, parallel execution of

29

plan steps in different nodes is likely to reduce response time
substantially.

8. ACKNOWLEDGEMENTS
Authors would like to acknowledge the support from Air

Force Research Laboratory (AFRL) for this work. The work
presented in this paper is partially supported by Air Force
Research Laboratory (AFRL) grant. Authors would also
like to acknowledge the contributions of Danny Hua, Nick
Steffen, and Chance Eary on the implementation of the
query optimizer prototype used for experimental analysis
and all students who worked on this project from all partic-
ipating institutions.

9. CONCLUSIONS AND FUTURE WORK
In this paper, we have explored SQL query processing

and optimization in distributed environments where connec-
tivity is changing rapidly. Instead of optimizing the query
from scratch, we have relied on local optimization and have
used an incremental plan generation approach with several
heuristics for processing a query at the granularity of joins
and semijoins and concomitant data transfers. Replicated
copies are assumed and taken into account in order to al-
leviate availability of data due to connectivity issues and
increase the probability of an available copy during query
processing.
A number of extensions are currently being investigated:

i) optimum number of replicated copies instead of a single
copy, ii) generating the query plan incrementally and dy-
namically (due to connectivity issues), iii) use of parallel
plan evaluation with concomitant complexity to plan gener-
ation and evaluation, and iv) various QoS issues pertaining
to query results.

10. REFERENCES
[1] Abraham Silberschatz and Henry F. Korth and S.

Sudarshan, Database System Concepts, 3rd Edition.
McGraw-Hill Book Company, 1997.

[2] P. A. Bernstein and N. Goodman, “The theory of
semi-joins,” Computer Corporation of America, Tech.
Rep. Tech Report CCA-79-27, 1979.

[3] P. A. Bernstein, N. Goodman, E. Wong, C. L. Reeve,
and J. B. Rothnie, “Query processing in systems for
distributed databases (SDD-1),” ACM TODS, vol. 6,
no. 4, pp. 602–625, Dec 1981.

[4] M. Boulkenafed and V. Issarny, “Middleware service
for mobile ad hoc data sharing, enhancing and data
availability,” in ACM Middleware, vol. 2672, no. 1.
LNCS, 2003, pp. 6–25.

[5] C. J. Date, An Introduction to Database Systems,

Volume 2, Sixth Edition. Addison-Wesley, Reading,
1995.

[6] S. Chakravarthy and Q. Jiang, Principles of Stream

Data Management. Springer, 2008.

[7] S. Chakravarthy, M. Kumar, S. madria, and
W. Naqvi, “A Distributed Middleware-Based
Architecture for Fault-Tolerant Computing Over
Distributed Repositories,” TR CSE-2011-8, UT

Arlington, Dec 2011, http://www.cse.uta.edu/
research/publications/Downloads/CSE-2011-8.pdf.

[8] S. Chakravarthy, “Divide and Conquer: A Basis for
Augmenting a Conventional Query Optimizer with
Multiple Query Proceesing Capabilities,” in ICDE,
1991, pp. 482–490.

[9] U. S. Chakravarthy, J. Grant, and J. Minker,
“Logic-Based Approach to Semantic Query
Optimization,” ACM Trans. Database Syst., vol. 15,
no. 2, pp. 162–207, 1990.

[10] H. C. Christmann and E. N. Johnson, “Design and
implementation of a self-configuring ad-hoc network
for unmanned aerial systems,” in AIAA, 2007.

[11] G. Graefe, “Query evaluation techniques for large
databases,” Computing Surveys, vol. 25, no. 2, pp.
73–170, Jun. 1993, (Survey Article).

[12] J. D. Ullman, Principles of Database and

Knowledge-Base Systems, Vol. II. Computer Science
Press International, Inc., MD 20850, 1989.

[13] S. Kalasapur, M. Kumar, and B. Shirazi, “Dynamic
service composition in pervasive computing systems,”
IEEE Transactions on Parallel and Distributed

Systems, vol. 18, no. 7, pp. 907–918, July 2007.

[14] M. Kumar, M. L. Sharma Chakravarthy,
Sanjay Madria, and W. Naqvi, “Middleware for
Supporting Content Sharing in Dynamic Networks,”
in MilCom2011, The Military Communication

Conference, November 2011.

[15] M. Stonebraker, Ed., Readings in Database Systems.
Morgan Kaufman Inc., 1988.

[16] M. T. Ozsu and P. Valduriez, Principles of Distributed

Database Systems. Prentice Hall, Englewood Cliffs,
New Jersey, 1991.

[17] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong, “Tinydb: an acquisitional query processing
system for sensor networks,” ACM Trans. Database

Syst., vol. 30, no. 1, pp. 122–173, Mar. 2005. [Online].
Available:
http://doi.acm.org/10.1145/1061318.1061322

[18] R. Ramakrishnan, Database Management Systems.
WCB/McGraw-Hill, 1998.

[19] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin,
R. A. Lorie, and T. G. Price, “Access path selection in
a relational database management system,” Proc. of

ACM SIGMOD Conference, pp. 23–34, Jun. 1979.

[20] T. K. Sellis, “Multiple -query optimization,” ACM

TODS, vol. 13, no. 1, 1988.

[21] S. Tamhane and M. Kumar, “Middleware for
decentralised fault tolerant service execution using
replication in pervasive systems,” in IEEE PerCom,

Sixth International Workshop on Middleware Support

for Pervasive Computing, March 2010.

30

Timestamp Nodeid Lat Long Obj type Obj desc Object ptr
8 bytes 4 bytes 4 bytes 4 bytes 8 chars Varchar (64) Pointer (8 bytes)

Table 1: Relation Format

Attr Name Type Cardinality Position Width Min Value Max Value Unique values in the range
Timestamp number 1200 1 100 50 140 90

Lat number 1200 2 4 10 100 90
ObjType varchar 4000 3 64 20 350 330
ObjPtr categorical 2000 3 8 Null Null 10

Table 2: Relation Metadata

Nodei Nodej RSS LSF Bandwidth Start-up Cost
1 3 1 5 100 10

Table 4: Connectivity map

Operation n Parameter Operand-1 Operand-1 Loc Operand-2 Operand-2 Loc Result Name Result Loc

Table 5: Plan Format

Operation Param Operand1 Operand1 Loc Operand2 Operand 2 Loc Result Name Result Loc
Select A > 100 R1 1 Null Null R1’ 1
Project A1, A3, A4 R1’ 1 Null Null R1” 1

Move or copy Null R1” 1 Null Null R” 2
Semi Join A > C R” 2 R2 2 SR1 2

Join B = D R12 2 R2” 2 JR1 2

Table 6: Example Query Plan

Configuration File:
package afrl;
public interface afrlConstants {

int NUMBER_OF_QUERIES = 1; //queries generated
String FILE_NAME = "outputFiles/apr13_queries_exp1.txt"; // file name
String NETWORK_FILE_NAME = "outputFiles/network/apr13_network_exp1"; //conn matrix file
int SEED = 4406235; //for query generator
int NETWORK_DEGREE = 11; //# of connected nodes
int NUM_NETWORKS = 6; //# of connectivity matric to be generated
int NETWORK_SEED = 33152035; //seed for connection matrix generator
int NUM_NODES = 13; //# of nodes in connection matrix
int TopKOptimal = 3; // optimal plans to display; 0 (all)
int TopKCumulativeCost = 3; //carry K plans, 0 (not use this heuristic)
int TopKIterationCost = 3; //carry K plans, 0 (not use this heuristic)
int TopKJoinType = 9; //carry k number of join type heuristic applying

//cumulative heuristic to k/3 of each type
boolean displayNonConnective = false; //true to display non connective plans
boolean heuristicDebug = false; //true to dump heuristic execution data to files}

Figure 3: A Sample Configuration Specification

Method Query 1 Query 2 Query 3 Query 4 Query 5
Optimal Join 8.19 55.34 63.76 2.89 2.52

Optimal semijoin 3.29 8.61 135.33 4.74 2.17
Top-K Cumulative Join 20.54 68.07 85.57 62.78 4.70

Top-K Cumulative semijoin 9.91 39.31 78.46 12.21 4.29
Top-K Iterative Join 8.19 59.54 70.76 5.34 5.62

Top-K Iterative semijoin 4.19 9.31 129.39 162.62 4.95
Top-K Join-type Join 174.20 485.37 80.76 7.12 7.70

Top-K Join-type semijoin 11.91 390.31 129.39 3.21 3.29

Table 9: Heuristics Vs. Optimal: Costs incurred across top-3 plans

31

Query 1: target 2
SELECT *
FROM UAV_2_DATA, UAV_4_DATA, UAV_5_DATA
WHERE ((UAV_2_DATA.NODEID=66)) AND((UAV_2_DATA.LONG>=614)) AND ((UAV_5_DATA.NODEID=77))

AND ((UAV_2_DATA.LAT=UAV_4_DATA.LAT)) AND ((UAV_4_DATA.NODEID=UAV_5_DATA.NODEID));

Query 2: target 5
SELECT *
FROM UAV_5_DATA, UAV_10_DATA
WHERE ((UAV_10_DATA.LAT=609)) AND ((UAV_10_DATA.OBJPTR<=246)) AND ((UAV_5_DATA.OBJPTR=UAV_10_DATA.OBJPTR));

Query 3: target 9
SELECT *
FROM UAV_9_DATA, UAV_10_DATA, UAV_5_DATA
WHERE ((UAV_9_DATA.LONG>351)) AND ((UAV_9_DATA.LAT>=40)) AND ((UAV_5_DATA.LONG<=804))

AND ((UAV_9_DATA.OBJPTR=UAV_10_DATA.OBJPTR)) AND ((UAV_10_DATA.LAT= UAV_5_DATA.LAT));

Query 4: target 6
SELECT *
FROM UAV_6_DATA, UAV_10_DATA, UAV_4_DATA
WHERE ((UAV_6_DATA.LAT<55)) AND ((UAV_6_DATA.NODEID<=260)) AND ((UAV_4_DATA.NODEID=22))

AND (((UAV_6_DATA.TIMESTAMP=UAV_10_DATA.TIMESTAMP)) AND (UAV_10_DATA.OBJPTR= UAV_4_DATA.OBJPTR));

Query 5: target 9
SELECT *
FROM UAV_9_DATA, UAV_3_DATA, UAV_2_DATA, UAV_4_DATA WHERE ((UAV_9_DATA.TIMESTAMP<=764))

AND ((UAV_9_DATA.LONG<102)) AND ((UAV_2_DATA.NODEID=66)) AND ((UAV_2_DATA.LONG>=614))
AND ((UAV_9_DATA.LAT=UAV_3_DATA.LAT)) AND ((UAV_3_DATA.LAT=UAV_2_DATA.LAT))
AND ((UAV_2_DATA.OBJPTR=UAV_4_DATA.OBJPTR));

Figure 4: Sample Queries Used

Method Network 1 Network 2 Network 3 Network 4 Network 5 Network 6
Optimal Join 8.07

Optimal semijoin 4.53 4.79 3.67 3.18 3.17 4.01
Top-K Cumulative Join 44.01 20.44 20.44 17.78 13.52 16.05

Top-K Cumulative semijoin 4.51 272.38 272.38 4.61 4.31 272.38
Top-K Iterative Join

Top-K Iterative semijoin 5.18 5.55 14.48 3.15 4.17 4.47
Top-K Join-type Join 33.31 20.44 16.73 17.78 16.23 14.55

Top-K Join-type semijoin 6.81 4.55 4.47 4.81 4.17 6.06

Table 10: Heuristics V/S Optimal: Costs incurred across different connectivity configurations

32

Context Aware Ontology based Information Extract ion

Sapan Shah and Sreedhar Reddy

Tata Research Development and Design Center,
Tata Consultancy Services Limited,

Pune 411013
India

{sapan.hs, sreedhar.reddy} @tcs.com

Abstract

We have developed an ontology based
information extraction system where property
and relation name occurrences are used to
identify domain entities using patterns written in
terms of dependency relations. Our key intuition
is that, with respect to a given ontology,
properties and relations are much easier to
identify than entities, as the former generally
occur in a limited number of terminological
variations. Once identif ied, properties and
relations provide cues to identify related entities.
To achieve this, we have developed a pattern
language which uses the grammatical relations of
dependency parsing as well as linguistic features
over text fragments. Ontology constructs such as
classes, properties and relations are integral to
pattern specif ication and provide a means for
extracting entities and property values. The
pattern matcher uses the patterns to construct an
object graph from a text document. The object
graph comprises entity, property and relation
nodes. We have developed a global context
aware algorithm to determine the ontological
types of these nodes. Type of one node can help
determine the types of other related nodes. We
use the concept of entropy to measure the
uncertainty associated with the type of a node.
The type information is then propagated through
the graph from low entropy nodes to high
entropy nodes in an iterative fashion. We show
how the global propagation algorithm does better

than a local algorithm in determining the types of
nodes. The main contributions of this paper are:
an ontology aware pattern language; a global
context aware type identification algorithm.

1. In tr oduction

We live in a networked world where information is
growing at an explosive rate. The abilit y to draw useful
insights from this information is going to be a key
competitive advantage for enterprises. New business
models are emerging that require highly dynamic
configurations of supply chains. Effective management of
such supply chains requires constant monitoring and
analysis of information on suppliers, consumers,
competitors, their operating environments and so on. This
calls for a highly flexible and dynamic information
architecture that allows us to collect and integrate
information not only from within the enterprise but also
from outside the enterprise such as online sources, social
media sites and so on. The abilit y to dynamically discover
and integrate relevant information sources is a key feature
of this architecture.

With this in mind, we have developed an information
integration architecture (see fig. 1) where ontologies and
ontology driven information extraction play a key role.
We have an enterprise level ontology that provides a
unified view of information at the enterprise level. This
ontology is mapped to source level ontologies. A source
level ontology provides a conceptual view of information
available at the source.

Integration of a new source into the framework
involves specifying the relevant ontology and building an
adaptor. The adaptor is responsible for extracting
information and presenting it as an instance of the source
ontology. Integration of structured sources is relatively
easier and we wil l not discuss that in this paper.
Integration of unstructured sources is more complex. First
we have to identify the relevant ontology fragment (using
ontology discovery techniques) and then we have to build
a suitable information extraction component. Building an

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to li sts,
requires prior specific permission and/or a fee.
The 18th International Conference on Management of Data (COMAD),
14th-16th Dec, 2012 at Pune, India.
Copyright ©2012 Computer Society of India (CSI).

33

information extraction component using traditional IE
techniques is a fairly involved job as they require
extensive customizations (training, mark-up, tweaking
rules, and so on). This is not a viable approach in a
dynamic discovery and integration scenario. We need a
more nimble approach. We discuss one such approach
where information extraction can be driven entirely by the
ontology, without any domain specific customizations.
This obviously has its trade-offs. The approach places a
higher premium on precision than on recall, as reliabilit y
of information is much more critical in a dynamic
integration scenario where there is minimal expert
intervention.

1.1. Ontology based Information Extraction

Information Extraction (IE) is the task of extracting
structured information from unstructured or semi-
structured sources. IE systems are supplied with the
information of what is to be extracted in the form of
output templates. Ontology based information extraction
(OBIE) has recently emerged as a sub-field of IE where
ontologies are used in the information extraction process.
Output of the extraction process may also be represented
in terms of an ontology. Ontology is defined as a formal
and explicit specif ication of a shared conceptualization
[11]. An ontology models a domain terminology in terms
of concepts, properties and relations which can be used to
specify information extraction targets. OBIE systems are
broadly classif ied as ontology learning systems and
ontology population systems. The task of an ontology
learning OBIE system is to construct domain specif ic
concepts and properties from unstructured text. Whereas,
an ontology population OBIE system extracts instances of
domain specific concepts and their property values for a
given ontology. In this paper, our focus is on an ontology
population system.

1.2. Our Approach

The key idea behind our approach is that it is much easier
to identify property (and relation) name occurrences than
entity name occurrences. The reason for this is that while
an entity name may occur without an associated concept

name reference, a property value rarely ever occurs
without the associated property name reference. To
illustrate, suppose we have an ontology fragment having
one concept i.e. Country and two properties i.e.
Country.population and Country.capital. Sentences such
as the following are quite common:
India has a population of 1.2 billion.

Its capital is Delhi.

While references to India frequently occur without the
associated concept name reference (i.e. Country), it is
GLIILFXOW� WR� LPDJLQH� SURSHUW\� YDOXHV� µ���� ELOOLRQ¶� DQG�

µ'HOKL¶� ZLWKout the associated property name references
(population and capital). Similarly it is dif ficult to
imagine relation values without the associated relation
name references. Also, while there can potentially be an
infinite number of entity name occurrences, property
(relation) names typicall y only occur in a limited number
of terminological variations (e.g. population, populace).
Thus in our approach we start by identifying occurrences
of property and relation names and use them to identify
entities. To achieve this, we have developed a pattern
language which uses the grammatical relations (such as
subject, verb, object, etc.) of dependency parsing to locate
entities once the properties and relations are identified.
The language also provides constructs to refer to ontology
elements. These constructs serve two purposes: one, to
specify constraints over ontology elements, and two to
provide semantics for extracting information.

The pattern matcher uses the patterns written in the
pattern language to construct an object graph from the
input text document. The nodes of the object graph
represent entities, properties and relations found in the
document. The next step is to determine their ontological
types for which we have developed a global context aware
algorithm. We use the concept of entropy to measure the
uncertainty associated with the type of a node. The type
information is then propagated through the graph from
low entropy nodes to high entropy nodes in an iterative
fashion. The intuition behind this approach is that a node
with a higher degree of certainty about its type can help
determine the types of related nodes that have a lower
degree of certainty about their types. For example,
consider an ontology with classes such as City, State and
Country and object property1 located_in between: City
DQG�6WDWH�� 6WDWH� DQG�&RXQWU\��/HW¶V� VD\� D� WH[W� GRFXPHQW�

contains a sentence: Gujarat is located in

India. Here the relation occurrence located in is not
enough to decide the type of Gujarat which can
potentially be City or State. Similarly, the type of India
can be State or Country�� /HW¶V� VD\� WKH� VDPH� GRFXPHQW�
contains another sentence: India is a country in
South Asia. This sentence provides the information
that the type of India is Country. Now, if the information

1 We wil l use the terms relation and object property

interchangeably (similarly, property and data type property).

Figure 1: Enterpr ise Information Integration Framework

34

35

36

dependency tree. This data structure contains nodes for
words as well as grammatical relations as shown in figure
2b. The grammatical relation nodes are internal nodes:
used only for patterns, not for extraction. We will refer to
this data structure as induced tree in the rest of the paper.
It should be noted that Stanford provides a util ity for
pattern matching over dependency trees called Semgrex.
However, it does not provide any means of integrating
ontology information.

Node description in a TRegex pattern is specif ied
using literal or regular expression (specified between /).
During pattern matching, it matches with node labels of
the tree. Relations are specif ied between the node
descriptions. All relations in a pattern are relative to the
first node. Parenthesis can be used to group related nodes.
For example, A < B < C mean A is the parent of B and C;
A < (B < C) means A is a parent of B and B is a parent of
C. Named nodes are used to bind a variable with the value
matching the specified regex. For example, /NN.*/=Var is
a named node and variable Var can be used to refer to the
actual node label that matches with regex NN.*.

4.3. Tree Transformations

A set of tree transformations are applied to the
induced tree before the actual pattern matching starts.
Stanford provides TSurgeon - a tree transformation
language. TSurgeon pattern consists of a single TRegex
pattern P and a number of TSurgeon operations that are
executed when P matches on the tree. These operations
refer to the named nodes in the TRegex pattern for tree
manipulations. Suppose we want to perform IE for
GeoPoliti cal Entities domain having a Country class and
borders_with relation. Figure 2b shows an induced tree
for a sentence from this domain. A TRegex pattern to
extract this relation is

Where, Verb, Source and Target are TRegex variables.

When this pattern is applied to the induced tree, it returns
a match where the variable bindings for Verb, Source and
Target are borders, India and Pakistan respectively. As
Verb matches with the relation name, we can extract an

RDF triple viz. (India, borders_with, Pakistan). If we
observe the example sentence closely, we missed
extracting one more RDF triple viz. (India, borders_with,
China). To solve this problem, the induced tree needs to
be transformed such that China-Node becomes the child
of pobj-Node. Stanford dependencies handle and
conjunctions the following way: one of the conjuncts is
selected as head (Pakistan here); the rest of the conjuncts
become children of the head conjunct with conjunction
(conj) relation. Let's denote the parent of the head
conjunct as H (pobj here). First we need to apply a
TRegex pattern to find and conjunction and then apply
TSurgeon operations such that all the conjuncts become
children of H. Figure 2c shows the induced tree after the
application of this tree transformation (see table 1:
ConjunctionAndTransformation). As we can see, the
missed RDF triple can be extracted now, as it matches
with the TRegex pattern in 1. Table 1 lists a set of tree
transformations we have used.

5. Pattern Language

We have developed a pattern language for processing
the induced tree and extracting information. Due to space
constraints, we present only a subset of the grammar of
this language (see text box 1 below).

A pattern consists of a premise and a sequence of

Table 1: Tr ee Tr ansformation Patterns
TreeTransformation TRegex Pattern - condition TSurgeon Operations Remarks
ConjunctionAnd /.*/=head < (cc=vCC <

and=vAnd) < (conj=vConj <
/.*/=brother)

move brother $- head;
delete vConj

All the conjuncts in and conjunction becomes
siblings; children of Parent of head conjunct.
(India borders with Pakistan and China)

CompoundNoun /.*/=head < (nn=vNN <
/.*/=compound)

accumulate compound head
compound;
excise vNN compound

Words in a compound noun are considered as
single unit e.g. India borders with Sri Lanka; Sri
Lanka is stored as a single induced tree node.

Modif ierList /.*/=head < (/.*mod.*/=vMod
< /.*/=modif ier)

accumulate modif ier head
modif ier; excise vMod modif ier

All modif iers are stored along with an induced
tree node of word that they modify.

CompoundNumber /.*/=head < (number=vNumber
< /.*/=compound)

prune vNumber All the words in compound number are treated as
a single node e.g. I lost $ 3.2 billi on. Here, $ 3.2
billi on is treated as a single node of number type.

patterns:- pattern* <EOF>

pattern:- patternID "{" premise "}"

 "->" "{" actions "}"

patternID:- (DIGIT)+

premise:- (treePath ";")+

 (ontologyConstraint ";")+

 ("{" boolean_expression

 "}" ";")?

treePath:-element| element"--" treePath

ontologyConstraint:-

 ontologyElement = variable

actions:- ("{" action + "}")+

action :- LHS = RHS ";"

LHS:- ontologyActionElement | variable

RHS:-variable |identifier

 |action_function

1. Grammar for Pattern Language

37

38

39

The types for the property and relation nodes are
found by matching them with ontological data and object
properties respectively (step 2). Here, the edit-distance
based similarity scores are calculated between the words
of a property (relation) node and an ontology data (object)
property. The synonyms of a data (object) property are
also taken into account. The data (object) property with
the highest similarity score is then chosen as the correct
type for the property (relation) node (formula 2). To
determine the type of an entity node, the scores found for

the neighboring property and relation nodes as well as
their identification weights are used (formula 3). This
algorithm uses only the local context to find the correct
type of an entity node.

More informed decision for the type of an entity node
can be made if the global context is also taken into
account. Let us first motivate the need of such a global
context aware algorithm. Consider the ontology in figure
3. It contains an object property located_in between State
and Country; City and State; District and City. Whenever
this relation occurs in the text document, there is an
ambiguity about the types of the source and target entity
nodes as the same name is used to refer to three dif ferent
object properties in the ontology. Consider a text fragment
from this domain,
Surat is located in Gujarat. It is

recognized for its textile and diamond

businesses. Vadodara is also located in

Gujarat. It is the third most populated

city with a population of almost 1.6

million.
The underlined phrases in this fragment are the instances
of domain entities and their properties (relations). As we
can see in the first sentence, the relation located in cannot
provide correct type information for the related entities
i.e. Surat and Gujarat, as they may refer to any of the four
classes viz. District, City, State or Country. However from
the last sentence, we can easil y infer that the type of the
entity Vadodara is City. If we use the type information of
Vadodara along with the located in relation in the third
sentence, we can infer that the type of Gujarat is State.
Now, if we use the type information of Gujarat in
sentence 1, we can infer that the type of Surat is City. The
local algorithm we described in table 3 neither takes
global context into account nor performs this kind of
information propagation.

6.1. Entr opy - Information Theory

We use the concept of entropy from information theory
[18] to quantify the uncertainty associated with the type of
a node. Entropy is a measure of uncertainty associated
with a random variable and defined in terms of its
probabilit y distribution�� /HW¶V� GHQRWH� as a discrete
random variable having a set of possible values

 and a probabilit y mass function (such
that). The entropy of

 is then defined as,

 (5)

For example, consider two experiments: tossing a fair
coin (); tossing a two-
headed coin (). The
outcome of the former experiment is most uncertain and
thus has highest entropy, while the later has a definite

Table 3: An Algor ithm for IE using Local Context
LocalIE ± An Algorithm for IE using local context
1. Apply class-identification patterns (e.g. Table 2-

Pattern 3) to get the type information for the entity
nodes in object graph.

2. Use formula 2 to find the types of property nodes
(Similarly find the types of relation nodes).

3. For each entity node (whose type is not determined
in step 1):
a. Find the score for each ontology class using

formula 3. As shown, this formula uses the local
context (related property and relation nodes) along
with their identification weights.
b. Assign class with the highest score as the

correct type for the entity node (formula 4).
4. Convert the object graph to RDF triples.

where,
= ith data property in the ontology;

 = words in the data property (including its
synonyms);

 = words occurring in the property node .

(2)

where,
 is an entity node in focus having a property node and a relation

node .
 = identification weight of property for class ;
 = identification weight of relation for class ;

;
= ith class in the ontology; = j th property in the ontology;
= kth relation in the ontology.

 = score for an ontological type given node .

(3)

 (4)

40

outcome and the entropy is 0. The entropy of a random
variable is proportional to the uncertainty of the outcome.

In our context, we use the concept of entropy to
measure the uncertainty associated with the type of a
node. For example, for an entity node the possible types
are the classes in the ontology. Let
denote the classes. If we do not have any information
about the type of an entity node E (highest uncertainty
and entropy), we assign uniform score for the classes i.e.

. In our algorithm, we use the
local formula in 2 to assign initial scores for the class
types of the entity nodes.

6.2. An Entropy based Greedy Algorit hm

To find the correct type of an entity node, the LocalIE
algorithm just uses the neighbouring property and relation
nodes. If the information about the correct type of some
entity node in the object graph is available, it should be
used for classification of other related entity nodes in the
graph. Table 4 describes a global context aware algorithm
which uses related entity nodes in addition to the property
and relation nodes for classification. We will refer to this
algorithm as GlobalIE in the rest of the paper.

GlobalIE uses edit-distance based similarity score for
classifying property and relation nodes (same as LocalIE).
The main difference is the use of related entity nodes to
classify current entity in focus. The entity nodes in the
object graph are ordered according to their entropy values.
The rationale behind this ordering is: the nodes with high
information about their correct type can help determine
the types of other related nodes having low information
about their types.

In GlobalIE, once the types for the property and
relation nodes are determined, the entity nodes are added
to a min-priority queue (step 3). The nodes in this queue
are ordered in the increasing order of their entropy values.
To calculate the entropy value correctly, the scores for the
class types of an entity node must satisfy two
conditions: and

. To achieve the same, we
normalize these scores in the following way

During each pass of the while loop in step 4, an entity
node with the least entropy value is removed from the
queue and assigned its correct type using formula 4. The
information contained in this node is then propagated to
other nodes through the graph structure. In particular, the
type information is propagated through the graph from
low entropy nodes to high entropy nodes (see function:
propogate_score). As we do not want to update the score
of a node which is already assigned its type, we maintain
a list of visited nodes (visited_nodes list in step 3). The
time complexity of GlobalIE is in the order of the size of
the object graph. /HW¶V� QRZ� JR� WKURXJK� DQ� H[DPSOH� WR�
demonstrate how the information is propagated between
the nodes and how the entropy based ordering is
beneficial for entity classification.

6.3. An Example demonstrating Global I E

Consider again the GeoPoliti cal entities domain (fig. 3)
and the example text fragment mentioned earlier in this
section. We used a set of generic patterns as described in
section 5 for information extraction and applied the
pattern matcher over this fragment. Figure 4 shows the

Table 4: An Entr opy based Greedy Algor ithm for IE

GlobalIE ± An Entropy based Greedy Algorithm for IE

1. Execute step 1 to step 3a of the LocalIE algorithm to
determine the types of property and relation nodes, and to
get initial scores for entity nodes.

2. Normalize the class-score for each entity node such
that,

Calculate entropy values of all entity nodes.
3. Create a min-priority queue ; add all entity nodes in .

visited_nodes =

4. While(!= empty) {

 = remove a node from with the least entropy value;
Assign correct type for node E using formula 4.
Add E to visited_nodes;
propagate_score(visited_nodes, E);
}

5. Convert the object graph to RDF triples.
propagate_score(visited_nodes, entity _node E) {
 For(each relation where is the source entity) {
 = target entity for relation ;
 propagetIfLow(E, X);
 }
 For(each relation where is the target entity) {
 = source entity for relation ;
 propagateIfLow(E, Y);
 }
}
propagateIfL ow(entity _node E, entity _node A) {
 If

) {
 For each class ,
 Update using formula 6.
 Normalize the class-score for node ;
 Re-calculate the entropy of node ;
 propagate_score(visited_nodes, A);
 }

}

where, D and E are source and target of relation node B

(6)

41

generated object graph�� /HW¶V� QRZ� JR� WKURXJK� WKH�
execution of GlobalIE. Table 5 shows the scores of class
types of the entity nodes and their entropy values at
various points in time during the execution of the
algorithm. Initially, the scores are equal for all entity
nodes (except Vadodara, as it is directly assigned its
correct type by the class-identif ication pattern) as shown
in row 1. The scores of the property and relation nodes
(along with their identification weights) are then used to
update the scores of the entity nodes (step 1). Row 2
shows these scores after normalization (step 2). During
the first pass of the while loop in step 4, Vadodara is
selected and removed from the priority queue, as it has the
least entropy value. The scores of the class types of
Vadodara are then propagated through the graph
structure. The object graph has a relation node located_in
for which Vadodara is a source entity and Gujarat is a
target entity. Hence, the scores for the class types of
Gujarat are updated using the scores of Vadodara (row
4). In the second pass, Gujarat is selected and removed
from the priority queue as it has the least entropy value
now. The class type of this node is then determined using
formula 4. Now, this node is connected to two entity
nodes in the object graph i.e. Vadodara and Surat. As the
entity node Vadodara is already visited earlier, it is
ignored and the scores for the class types of Surat are
updated using the scores of Gujarat (row 5). In the third
pass, we are left with only one entity node i.e. Surat.
Hence, it is selected and removed from the priority queue
(row 6) and its class type is determined using formula 4.
The priority queue is empty now and the algorithm
terminates. The class types assigned by this algorithm for
the entity nodes are City, State and City for Vadodara,
Gujarat and Surat respectively. As we can see, the

algorithm finds the correct values for the class types of
the entity nodes. When we executed LocalIE algorithm on
the same text fragment, it incorrectly assigned class types
District and Country for the entity nodes Surat and
Gujarat respectively (The class type having highest score
in table 5 - row 2 is selected as the correct type of the
entity node in LocalIE).

7. Experiments

7.1. Digital Camera Reviews domain

Yild iz et al. [19] have developed an ontology driven IEs ±
OntoX. It focuses mainly on identifying property
mentions and their values. The ontology contains one
class i.e. camera having five data properties. It is
enhanced with a set of keywords for each data type
property. The system uses regular expressions to find the
instances of pre-defined XML data types in the text
document and looks for keywords in their vicinity. The
property whose keyword is closest to the data type
instance and having the same XML data type is selected.
For example, consider a sentence: Powershot A95 is a 5.0
megapixel camera. Here, 5.0 is XSD:float and megapixel
is a property having keyword megapixel and data type
XSD:float. Hence, 5.0 is a value of megapixel property.
The dataset consists of 138 digital camera reviews. The
focus of this experiment is to show how the patterns based
on grammatical relations are useful for relating entities
with their property values.

It should be noted here that the task performed by
OntoX system is to just find property values. In our case,
we also find entities and associate them with their
property values. We have used the set of generic patterns
described in section 5.1 for IE over camera reviews
dataset. Table 6 shows the precision and recall values for
some of the camera properties. The precision of our
system is better than the OntoX system while the recall
values are very low. The reason is in our approach we
only identify those properties for which entities are
identified. Thus, we miss some of the properties. Whereas
OntoX focuses only on property values, so its recall is
higher. It is interesting to note that we get very high
precision values which suggest that our approach is
conservative. The system may not be able to extract all
the entities and property values but whatever is extracted

Figure 4: Object graph for text fragment

Table 5: The scores of class types of the entity nodes in the example text fragment. The first column specifies
the algorit hm step; the rest of the columns specify the scores of class types of the entity nodes using the
format: (Territ ory , State, District , Country , City)

Step Gujarat Vadodara Surat
Init. (0.2, 0.2, 0.2, 0.2, 0.2) ± 1.61 (0, 0, 0, 0, 1) - 0 (0.2, 0.2, 0.2, 0.2, 0.2) ± 1.61

2 (0.05, 0.25, 0.05, 0.41, 0.25) ± 1.35 (0, 0, 0, 0, 1) - 0 (0.08, 0.24, 0.37, 0.08, 0.24) ± 1.44
While loop of step 4

pass 1 (0.03, 0.48, 0.03, 0.28, 0.17) ± 1. 24 (0,0,0,0,1) - 0 (0.08, 0.24, 0.37, 0.08, 0.24) ± 1.44
pass 2 (0.03, 0.48, 0.03, 0.28, 0.17) ± 1. 24 (0,0,0,0,1) - 0 (0.05, 0.17, 0.26, 0.05, 0.47) ± 1.31
pass 3 (0.03, 0.48, 0.03, 0.28, 0.17) ± 1. 24 (0,0,0,0,1) - 0 (0.05, 0.17, 0.26, 0.05, 0.47) ± 1.31

42

is extracted with high accuracy. If we look at the recall
values closely, the recall for the property model_name is
high. It then decreases for megapixel and very low for
display_size. If we observe any file from the corpus, the
model_name property is same as the name of an extracted
entity. The megapixel property occurs very near to the
entity occurrence (mostly in the same sentence). The
display_size property is mentioned very far from the
entity (mostly in the next paragraph), thus decreasing the
probabilit y of associating the property with the entity. The
induced tree paths used in our patterns do not consider
word relations across sentences. We rely on co-reference
resolution when the entity and property mentions are in
dif ferent sentences. We have also provided a language
construct called previous_entity using which a pattern can
refer to the entities found in earlier sentences. Despite
this, it is not easy to relate an entity with its property if
they are widely separated in the text.

7.2. GeoPolitic al Entit ies domain

We have downloaded 36 Wikipedia pages of country
profile, converted them to text and manually tagged them
for correct entity and property values. As part of this
experiment, we have considered the data and object
properties of only the country class (see fig. 3). We used
the generic patterns described in section 5.1 for IE. Our
experiments helped us identify these patterns and during
the course of the experiments our initial set went through
several additions and modif ications. We randomly
selected 10% of corpora (4 pages) to analyze whether the
generic patterns we have are good enough for extraction,
especially we looked at the entity, property and relation
occurrences and how they are related by the dependency
relations. At the end of this exercise, we had to add 3 new
patterns and modify 4 existing patterns. In total we used
14 patterns and performed the experiments. Table 7 lists
the precision and recall values for classes, properties and
relations. The overall precision is 0.82 and recall is 0.54

which again strengthens our argument that the system is
conservative and makes fewer mistakes (high precision).
The reason for higher precision is that unli ke in traditional
approaches where identification is primaril y text pattern
based (which can throw up spurious matches), we also
FRQVLGHU� DQ� HQWLW\¶V� SURSHUW\� DQG� UHODWLRQVKLS� FRQWH[W�

which reduces spurious matches. However, this can have
an adverse impact on recall as some of the valid matches
might also be turned down on account of not having
matching property and relation contexts. As explained
earlier, this behaviour of higher precision and lower recall
is fine, as reliabili ty is a key concern in our enterprise
information integration framework.

We would li ke to point out here that the extra patterns
that we had to add were due to the peculiar ways in which
some properties were written in the text corpora. The
generic patterns we have collected wil l work best when
the sentences in the text document are property formed
and follow the English grammar, such as in published
articles. The text documents in dif ferent genres may have
dif ferent styles of writing English sentences (publications
YV�� EORJ� SRVWV�� DQG� LW¶V� LPSRUWDQW� WR� FDSWXUH� WKHP� LQ� WKH�

form of dependency relations. For this reason, we may
have to analyze different genres of text documents and
augment the list of generic patterns.

7.3. Analysis of our OBIE system

The key constituents of our system are: a pattern language
and a global type identification algorithm. A relevant
question in this context is what varieties of patterns can be
expressed in our pattern language. The constituents of the
language (dependency relations, boolean functions,
ontology constraints) provide the necessary power to
write various kinds of patterns mentioned in the IE
literature. A lot of systems in the li terature have used
Hearst pattern [12] and lexico-syntactic patterns [2] for
extraction. We could successfull y convert these patterns
into equivalent patterns in our pattern language.

Once the object graph is generated by the pattern
matcher, the type of the object graph nodes has to be
identified. The accuracy of type identif ication can
improve if we go beyond the local context and make use
of all the relevant information available in the document.
7KDW¶V� ZKDW� RXU� JOREDO� SURSDJDWLRQ� DOJorithm aims to
achieve. The direction of propagation is determined by
entropy ordering where information flows from nodes of
high certainty to nodes of low certainty. In many cases
mere presence of properties and relations is suff icient to
XQLTXHO\� LGHQWLI\� DQ� HQWLW\¶V� W\SH��7KLV� LV� SRVVLEOH�ZKHQ�

the names of these properties and relations are unique in
the ontology. However duplicate names are quite common
in real-li fe ontologies. For example, the located_in object
property given in section 6 relates three dif ferent class
pairs. Similarly, reports_to structure in an organization
ontology; part_of structure in a product ontology, and so

Table 6: Compar ision of Our System with OntoX on
Camera Review domain

Property
Our System OntoX

Prec. Rec. Prec. Rec.
Megapixel 0.93 0.39 0.52 0.51

Display Size 0.88 0.2 0.80 0.82
Model Name 0.76 0.64 0.79 0.79

Table 7: Results on GeoPoli tical Entiti es Domain
Concept/Property
/Relation

Precision Recall

Country 0.85 0.69
borders_with 0.72 0.39
located_in 0.86 0.78
off icial_name 1.0 0.74
population 0.92 0.57
coastline 0.57 0.80
area 1.0 0.60
Total 0.82 0.54

43

on. A global propagation algorithm can make a big
dif ference in such cases.

8. Conclusion and Future Work

We presented an information extraction approach where
we first identify property and relation name occurrences
in the text and then use patterns written in terms of
dependency relations to identify related entities. To
achieve the same, we have developed an ontology aware
pattern matcher which uses these patterns to generate an
object graph from a text document. We have also
developed a global context aware algorithm to identify the
ontological types of the object graph nodes. The algorithm
is greedy and it uses the entropy ordering to decide
information propagation between the nodes where type
information is passed from low entropy nodes to high
entropy nodes. The main contributions of this paper are:
an ontology aware pattern language; a global context
aware type identification algorithm.

We have experimented with GeoPoliti cal entities
domain with a small set of text documents from
Wikipedia. The result looks promising. An immediate
(also important) task at hand is to test our approach on
larger and varied set of corpora to check its applicabilit y
in general. We also want to integrate our system into the
larger enterprise information integration framework to
check its utilit y.

References
[1] Douglas E. Appelt, Jerry R. Hobbs, John Bear, David

J. Israel, and Mabry Tyson, "FASTUS: A Finite-state
Processor for Information Extraction from Real-
world Text," in IJCAI, Chambéry, France, 1993, pp.
1172-1178.

[2] Michele Banko, Oren Etzioni, Stephen Soderland,
and Daniel Weld, "Open information extraction from
the web," Communication of ACM, vol. 51, no. 12,
pp. 68-74, 2008.

[3] Adrian Benjamin, Hees Jorn, van Elst Ludger, and
Dengel Andreas, "iDocument: Using Ontologies for
Extracting and Annotating Information from
Unstructured text," in KI, 2009, pp. 249-256.

[4] Philipp Cimiano, Siegfried Handschuh, and Steffen
Staab, "Towards the self-annotating web," in
Proceedings of the 13th international conference on
World Wide Web, NY, USA, 2004, pp. 462-471.

[5] Philipp Cimiano, Gunter Ladwig, and Steffen Staab,
"Gimme' the context: context-driven automatic
semantic annotation with C-PANKOW," in
Proceedings of the 14th international conference on
World Wide Web, Chiba, Japan, 2005, pp. 332-341.

[6] Marie-Catherine de Marneffe and Christopher D.
Manning, "Stanford typed dependencies manual,"

Stanford University, 2008.

[7] Marie-Catherine de Marneffe and Christopher D.
Manning, "The Stanford typed dependencies
representation," in 22nd International Conference on
Computational Linguistics, Manchester, United
Kingdom, 2008, pp. 1-8.

[8] David W. Embley, "Towards Semantic
Understanding -- An Approach Based on Information
Extraction Ontologies," in Proceedings of the
Fifteenth Australasian Database Conference,
Dunedin, New Zealand, 2004, pp. 18-22.

[9] Oren Etzioni et al., "Web-scale information
extraction in knowitall: (preliminary results)," in
Proceedings of the 13th international conference on
World Wide Web, New York, NY, USA, 2004, pp.
100-110.

[10] Katrin Fundel, Robert Kuffner, and Ralf Zimmer,
"RelEx - Relation extraction using dependency parse
trees," Bioinformatics, vol. 23, pp. 365-371, 2007.

[11] Thomas R. Gruber, "A translation approach to
portable ontology specif ications," Knowledge
Acquisition, vol. 5, no. 2, pp. 199-220, July 1993.

[12] Marti A. Hearst, "Automatic acquisition of
hyponyms from large text corpora," in 14th
Internation Conference on Computational
Linguistics, Nantes, France, 1992, pp. 539-545.

[13] Luke K. McDowell and Michael Cafarella,
"Ontology-driven information extraction with
ontosyphon," in ISWC, Athens, GA, 2006, pp. 428-
444.

[14] Joakim Nivre, "Dependency Grammar and
Dependency Parsing," Vaxjo University: School of
Mathematics and Systems Engineering, 2005.

[15] Borislav Popov, Atanas Kiryakov, Damyan
Ognyanoff , Dimitar Manov, and Angel Kirilov,
"KIM ± a semantic platform for information
extraction and retrieval," Natural Language
Engineering, vol. 10, no. 3, pp. 375-92, 2004.

[16] Horacio Saggion, Adam Funk, Diana Maynard, and
Kalina Bontcheva, "Ontology-Based Information
Extraction for Business Intelligence," in ISWC, 2007,
pp. 843-856.

[17] Alexander Schutz and Paul Buitelaar, "RelExt: A
Tool for Relation Extraction from Text in Ontology
Extension," in ISWC 2005, 2005.

[18] E. Claude Shannon, "A mathematical theory of
communication," Bell System technical journal, vol.
27, pp. 379-423, 1948.

[19] Burcu Yild iz and Silvia Miksch, "ontoX - a method
for ontology-driven information extraction," in
ICCSA'07, vol. 3, Kuala Lumpur, Malaysia, 2007,
pp. 660-673.

44

REBOM: Recovery of Blocks of Missing Values in Time
Series

Mourad Khayati
Department of Informatics

University of Zürich
Binzmühlestrasse 14, CH­8050

Zürich, Switzerland

mkhayati@ifi.uzh.ch

Michael H. Böhlen
Department of Informatics

University of Zürich
Binzmühlestrasse 14, CH­8050

Zürich, Switzerland

boehlen@ifi.uzh.ch

ABSTRACT

The recovery of blocks of missing values in regular time se-
ries has been addressed by model-based techniques. Such
techniques are not suitable to recover blocks of missing val-
ues in irregular time series and restore peaks and valley.
We propose REBOM (REcovery of BlOcks of Missing val-
ues): a new technique that reconstructs shapes, amplitudes
and width of missing peaks and valleys in irregular time se-
ries. REBOM successfully reconstructs peaks and valleys by
iteratively considering the time series itself and its correla-
tion to multiple other time series. We provide an iterative
algorithm to recover blocks of missing values and analyti-
cally investigate its monotonicity and termination. Our ex-
periments with synthetic and real world hydrological data
confirm that for the recovery of blocks of missing values in
irregular time series REBOM is more accurate than existing
methods.

Keywords

Missing blocks recovery, irregular time series, Singular Value
Decomposition, ranking matrix.

1. INTRODUCTION
Time series data arise in a variety of domains, such as

environmental, telecommunication, financial, and medical
data. For example, in the field of hydrology, sensors are
used to capture environmental phenomena including tem-
perature, air pressure, and humidity at different points in
time. For such data, it is not uncommon that more than
20% of the data is missing as blocks, i.e., multiple consecu-
tive measurements are missing.

Existing techniques effectively recover blocks of missing
values in regular time series, i.e., time series series contain-
ing peaks and valleys with a possibly varying frequency or
amplitude that follow one or more periodic models, e.g., the
sinus model where the frequency varies over time. The re-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
The 18th International Conference on Management of Data (COMAD),

14th­16th Dec, 2012 at Pune, India.
Copyright c©2012 Computer Society of India (CSI).

covery accuracy of these techniques decreases for irregular
time series, i.e., time series containing peaks and valleys
that do not follow any model. In this work, we address the
problem of finding the optimal recovery of blocks of miss-
ing values in irregular time series. We propose REBOM
(REcovery of BlOcks of Missing values), a new data driven
recovery technique for blocks of missing values that is able
to restore missing peaks and valleys. We use the correlation
[1] between time series to recover blocks of missing values.
Intuitively, time series that tend to change their peaks and
valleys simultaneously are correlated and we use the Pearson
coefficient to quantify this correlation.
REBOM is an iterated low rank Singular Value Decom-

position (SVD) [2]. We decompose a matrix V of corre-
lated time series, where missing values have been initialized
through linear interpolation combined with nearest neighbor
imputation, into the product L × Σ × RT of three matri-
ces. By nullifying the smallest singular value of Σ we give
higher priority to the correlation between the time series.
The subsequent matrix multiplication yields an approxima-
tion of V that better approximates the missing values. After
each iteration, the ranking of the most correlated time series
with respect to the time series to recover, is updated. The
iterative recovery terminates if the total ranking, which is
determined by considering all observations of the time se-
ries, is identical to the partial ranking, which is determined
by considering only observations with timestamps of missing
values. If the total and the partial ranking are equal, the
correlation can no longer be used to improve the recovery of
missing values.
Problem definition: Assume a set of n irregular

correlated time series X0 = {X0
1 , X

0
2 , . . . , X

0
n} where

X0
1 , X

0
2 , . . . , X

0
n contain blocks of missing values. We pro-

pose a recovery method that determines, in j iterations, a

set of time series X̃j = {X̃j
1 , X̃

j
2 , . . . , X̃

j
n} where the missing

blocks of X0
1 , X

0
2 , . . . , X

0
n have been restored.

The result of REBOM for the recovery of peaks and val-
leys for two correlated time series is illustrated in Figure 1.
Each time series is displayed as a 2d plot where the x-axis
shows the timestamp t and the y-axis the value v for a given
t. X0

1 represents an air pressure time series and contains
a missing block for the time range]90, 130[. X0

2 represents
a temperature time series that contains a missing block for
the time range]60, 90[. REBOM can be used to restore the
missing blocks of X0

1 and X0
2 .

Figure 1 illustrates that REBOM accurately recovers
shape, amplitude and width of the missing blocks. REBOM

45

-1

-0.5

 0

 0.5

 1

 1.5

 0 20 40 60 80 100 120 140

v
a
lu

e

time

X
0

1

X
0

2

(a) Original Time Series

-1

-0.5

 0

 0.5

 1

 1.5

 0 20 40 60 80 100 120 140

v
a
lu

e

time

X
0
1

X
0
2

Recovered peak

(b) Restoration of Missing Blocks of X0
1 and X0

2

Figure 1: Recovery Performed by REBOM

detects that the peaks and valleys of X0
1 and X0

2 are cor-
related (high pressure corresponds to low temperature and
vice versa). The shape and the width of the missing block
are recovered from the position of the local extrema of X0

1

with respect to the local extrema of the correlated time series
X0

2 . The amplitude of the missing block of X0
1 is recovered

based on the two preceding peaks of X0
1 .

At the technical level, we show how to iterate the low rank
SVD and we analytically investigate the main properties of
the method. The main contributions of this paper are:

• We propose REBOM: an iterated low rank SVD that
iteratively refines the initial recovery of missing values.

• We propose a greedy algorithm that repeatedly selects
a time series with missing values that have been ini-
tialized and uses the k most correlated time series to
iteratively refine the recovery of the missing values.

• We prove that our greedy algorithm is stepwise mono-
tonic, i.e., the accuracy of the recovery increases by
choosing, at each step, the most correlated time se-
ries. The algorithm terminates when the set of the
most correlated time series does not change anymore.

• We empirically show that the recovery accuracy of RE-
BOM is invariant to the initial recovery. Different ini-
tialization methods lead to the same recovery accuracy
but with different number of iterations.

• We present an experimental evaluation of the accuracy
of our technique that compares REBOM to state-of-
the-art techniques for the recovery of blocks of missing
values. The results show the superiority of our algo-
rithm for the restoration of peaks and valleys.

The rest of the paper is organized as follows. Section 2 re-
views related work on reduction methods and existing tech-
niques for imputing missing values. Section 3 defines the
initialization method and describes the basics of the low
rank SVD. Section 4 introduces and discusses REBOM and
its properties. Section 5 empirically compares the results of
REBOM to other techniques proposed in the literature for
the recovery of blocks of missing values.

2. RELATED WORK
Prediction models such as Maximum Likelihood Estima-

tion (MLE) [3], Bayesian Networks (BN) [4, 5] and Expec-
tation Maximization (EM) [6] were used to estimate single
missing values or small blocks of missing values in time se-
ries. These techniques are parametric and require a specific
type of data distribution, e.g, Gaussian distribution. There-
fore, they only perform well for the recovery of blocks of
missing values in regular time series where peaks and val-
leys follow a periodic model of constant frequency and am-
plitude.
Li et al. [7] presented an approach called DynaMMo that is

based on Expectation Maximization (EM) and Kalman Fil-
ter [8]. This technique is intended to recover missing blocks
in non linear time series that contain peaks and valleys. Dy-
naMMo allows to use one reference time series in addition to
the time series that contains the missing block. The Kalman
Filter uses the data of the time series that contains missing
blocks together with a reference time series, to estimate the
current state of the missing blocks. This estimation is per-
formed as a multi step process that uses two different esti-
mators. The first estimator represents the current state and
the second estimator represents the initial state and the er-
ror of the estimation. For every step of the process, an EM
method predicts the value of the current state and then the
two estimators are used to refine the predicted values of the
current state and to maximize their likelihood. DynaMMo
does not allow to use more than one reference time series for
the block recovery. DynaMMO performs an accurate block
recovery for any type of regular time series. The accuracy
of the block recovery decreases for irregular time series (cf.
Section 5).
Techniques that rely on basic statistical methods such as

mean imputation, piecewise approximation (linear spline,
cubic spline, . . .) [9, 10], regression [11, 12] and k Nearest
Neighbors [13, 14] have been proposed for the recovery of
blocks of missing values. Figures 2(a) and 2(b) illustrate
the block recovery performed respectively by linear spline
and k nearest neighbor using values at t=60 and t=90. Fig-
ure 2(c) shows that the regression method replaces missing
values by points lying on the line that minimizes the regres-
sion error of all existing points. These techniques are not
able to accurately recover any of the two missing blocks in
X0

1 and X0
2 . The cubic spline technique finds a third order

polynomial that connects three successive values. Figure
2(d) shows that the cubic spline replaces the missing block
by a block opposite to the one that precedes the missing
block. Cubic spline is able to perform a good recovery only
for the missing block of X0

1 . All basic methods are not
suitable techniques for block recovery in regular time series
where peaks and valleys follow a periodic model of varying
amplitude or frequency, or in irregular time series.
Kurucz et al. [15] proposed a technique based on EM and

Singular Value Decomposition (SVD) [16, 17, 18, 19] for

46

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 20 40 60 80 100 120 140

v
a

lu
e

(v
)

time(t)

X
0
1

X
0
2

Recovered peak

(a) Linear Spline Recovery

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 20 40 60 80 100 120 140

v
a

lu
e

(v
)

time(t)

X
0
1

X
0
2

Recovered peak

(b) k Nearest Neighbor Recovery

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 20 40 60 80 100 120 140

v
a

lu
e

(v
)

time(t)

X
0
1

X
0
2

Recovered peak

(c) Regression Recovery

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 20 40 60 80 100 120 140

v
a

lu
e

(v
)

time(t)

X
0
1

X
0
2

Recovered peak

(d) Cubic Spline Recovery

Figure 2: Recovery using Different Techniques

comparing recommender systems where one of them con-
tains missing values. A recovery of the missing values is per-
formed before the comparison process. Each recommender
system is represented by one column of values in a rating
matrix which is decomposed using SVD. The result of the
decomposition is modified using a method called gradient
boosting [20]. The EM algorithm is then applied to refine
the result of gradient boosting. The proposed solution dy-
namically discovers data dependencies from coordinate axes
that represent the recommender systems and is applicable
for more than one reference recommender system. How-
ever, the application of gradient boosting on different recom-
mender systems looses the dependencies among the original
values of recommender systems. Therefore, this technique
yields bad results for block recovery in case where more than
one recommender system contains missing blocks.

Tree-based methods were proposed to impute missing val-
ues. He [21] and Ding and Simonoff [22] present an overview
of tree classification methods that are able to replace miss-
ing values in time series. These trees find the optimal way to
classify missing values using a regression approach and are
called Classification and Regression Trees (CART). These
techniques are designed to create a classification of the miss-
ing values. Missing values that belong to the same class will
be recovered with the same value. Therefore, these methods
are not able to effectively restore missing peaks and valleys
in regular and irregular time series.

3. PRELIMINARIES AND BACKGROUND

3.1 Notation
We use the following notation: sets and vectors are upper-

case, matrices are upper-case bold, and elements of sets and
matrices are lower-case. A time series X1 = {x1, x2, . . . , xn}
is a set of n observations. Each observation xj from X1 is a
pair (tj , vj) where tj and vj are respectively the timestamp
and the value of the observation. T1 = {t |(t,) ∈ X1)}
denotes the set of all timestamps from X1; V1 = {v |(, v) ∈
X1)} denotes the vector of all values from the time series
X1. A time series X1 with missing values that have not
been recovered yet, is denoted as X0

1 .

3.2 Preprocessing of Time Series
The first preprocessing step uses basic statistical methods

to initialize all missing values. After the initialization the
timestamps of all time series are aligned.

Definition 1 (Missing timestamps). Given a set of
n time series {X0

1 , . . . , X
0
n}, the set of missing timestamps

of time series X0
i with respect to the timestamps of the other

time series is T 0
i = {t | ((t,) ∈ X0

1 ∨ . . . ∨ (t,) ∈ X0
n) ∧

(t,) 6∈ X0
i }.

Note that missing timestamps of one time series have to be
present in at least another time series. Timestamps missing
in all time series are not considered. An additional pre-
processing step can be added if such timestamps shall be
recovered as well.
X1

1 = {(t1, v1), ..., (tn, vn)} is the initial recovery of X0
1 iff

∀i ∈ {1, . . . , n}

(ti, vi) =





(ti, vi) if (ti, vi) ∈ X0
1

Else





(ti, v) if (s(ti),) 6∈ X0
1 ,

(p(ti), v) ∈ X0
1

(ti, v) if (p(ti),) 6∈ X0
1 ,

(s(ti), v) ∈ X0
1

(ti,
(ti−p(ti))(s(vi)−p(vi))

s(ti)−p(ti)
+ s(vi))

otherwise

p(ti) = max{tj | (tj ,) ∈ X0
1 ∧ tj < ti} is the predecessor

of timestamp ti in X0
1 and s(ti) = min{tj | (tj ,) ∈ X0

1 ∧
tj > ti} is the successor timestamp of ti in X0

1 . Similarly,
p(vi) = {vj | (tj ,) ∈ X0

1 ∧ tj = p(ti)} is the predecessor of
value vi in X0

1 and s(vi) = {tj | (tj ,) ∈ X0
1 ∧ tj = s(ti)} is

the successor value of vi in X0
1 . Thus, the initial recovery

of the missing values is a linear interpolation. If the missing
values occur as the first or the last elements of X0

1 , we use
the nearest neighbor imputation.
Two time series X1

1 and X1
2 with initialized missing values

define a set of multidimensional points: {(v, v′) | (t, v) ∈
X1∧(t, v′) ∈ X2}. The second preprocessing step constructs
a matrix with n m-dimensional points from m time series
with n observation each.

Example 1. Figure 3 shows two time series X0
1 and X0

2

with missing values, the initialized time series X1
1 and X1

2 ,
and the set of multidimensional points V. The initialized
missing values are highlighted in gray.
From Definition 1 we get T 0

1 = {100, 110, 120} and T 0
2 =

{70, 80}.

3.3 Low Rank Matrix Decomposition

3.3.1 Singular Value Decomposition

The Singular Value Decomposition (SVD) is a matrix de-
composition method that decomposes a matrix V into three
matrices L, Σ and RT . The product of the three matrices
is equal to V.

47

X
0
1

t v

0 0
10 1
20 0
30 -1
40 0
50 -1
60 0
70 1
80 -1
90 -1
130 -1
140 0
150 1

X
0
2

t v

0 0
10 -0.25
20 0
30 0.25
40 0
50 0.25
60 0
90 0.25
100 0
110 -0.25
120 0
130 0.25
140 0
150 -0.25

⇒

X
1
1

t v

0 0
10 1
20 0
30 -1
40 0
50 -1
60 0
70 1
80 -1
90 -1
100 -1
110 -1
120 -1
130 -1
140 0
150 1

X
1
2

t v

0 0
10 -0.25
20 0
30 0.25
40 0
50 0.25
60 0
70 0.08
80 0.16
90 0.25
100 0
110 -0.25
120 0
130 0.25
140 0
150 -0.25

⇒

V

V1 V2

0 0
1 -0.25
0 0
-1 0.25
0 0
-1 0.25
0 0
1 0.08
-1 0.16
-1 0.25
-1 0
-1 -0.25
-1 0
-1 0.25
0 0
1 -0.25

Figure 3: Original Time Series X0
1 , X0

2 ; Initialized

Time Series X1
1 , X

1
2 ; Multidimensional Points V

Definition 2 (SVD). A matrix V = [V1|V2|. . . |Vn] ∈
Rm×n can be decomposed into a product of three matrices:

SV D(V) = L×Σ×R
T

=

[
L1

∣∣∣. . .
∣∣∣Ln

]

︸ ︷︷ ︸
L(m×n)

×




σ1 . . . 0
...

. . .
...

0 . . . σn




︸ ︷︷ ︸
Σ(n×n)

×




RT
1

...

RT
n




︸ ︷︷ ︸
RT (n×n)

Where:

1. Σ: is a n × n square diagonal matrix that contains
strictly positive singular values of V. The diagonal
entries σi of Σ are the square roots of the eigen values
of VTV and are ranked in decreasing order such that
σ1 > σ2 > . . . > σn.

2. L: is an m × n orthogonal matrix whose columns are
the orthonormal eigen vectors of VVT (LTL = I,
where I is the identity matrix). The eigen vectors of
L are computed by solving Det(σI−VVT) = 0 where
Det(X) is the determinant of matrix X.

3. R: is an n × n orthogonal matrix having as columns
orthonormal eigen vectors of VTV (RTR = I). The
eigen vectors of R are computed by solving Det(σI −
VTV) = 0.

4. A singular value σi defines the variance of vector Li

along dimension RT
i . Each dimension represents an

axis of projection: var(Li) = σi.

Example 2. Consider time series X1
1 and X1

2 from Fig-
ure 3. Figure 4 illustrates the SVD of V.

3.3.2 Dimensionality Reduction

SVD allows to perform a dimensionality reduction from a
dimension n to a lower dimension r. The dimensionality re-
duction is performed by nullifying the n−r smallest singular
values from matrix Σ, where 0 < σr < σn. Figure 5 illus-
trates the dimensionality reduction for r = n − 1, i.e., the
smallest singular value of Σ is nullified. We write SV Dr(V)
for the result of a low rank SVD of a matrix V. REBOM
uses the low rank SVD for improving the initial imputation
of the missing values as described in the next section.

SV D(V) =




0 0
0.31 −0.22

0 0
−0.31 0.22

0 0
−0.31 0.22

0 0
−0.30 −0.11
−0.30 0.04
−0.31 0.22
−0.30 −0.27
−0.30 −0.75
−0.30 −0.27
−0.31 0.22
0.00 0.00
0.31 −0.22




︸ ︷︷ ︸
L

×

[
3.35 0

0 0.51

]

︸ ︷︷ ︸
Σ

×

[
0.99 −0.14
0.14 0.99

]

︸ ︷︷ ︸
RT

Figure 4: Example of Singular Value Decomposition

SV Dr(V) =

[
L1

∣∣∣. . .
∣∣∣Lm

]

︸ ︷︷ ︸
L(m×n)

×




σ1 . . . 0 0
...

. . .
... 0

0 . . . σr 0
0 0 0 0




︸ ︷︷ ︸
Σr(n×n)

×




RT
1

...

RT
n




︸ ︷︷ ︸
RT (n×n)

Figure 5: Illustration of Dimensionality Reduction

4. REBOM
REBOM combines the characteristics of a time series with

missing values with the characteristics of its most correlated
time series to recover blocks of missing values in irregular
time series.

4.1 Correlation Ranking Matrix
We define the top-k ranking matrix to capture the cor-

relation between different time series. The correlation is
defined over all values of the first vector of the matrix with
respect to all values of another vector. The Pearson coef-
ficient is used as a correlation metric. Given two vectors
Vi = [vi1 , vi2 , . . . , vin] and Vj = [vj1 , vj2 , . . . , vjn] of the
same length n, the Pearson correlation coefficient ρ of Vi

with respect to Vj is defined as follows:

ρ(Vi, Vj) =
cov(Vi, Vj)√
var(Vi)var(Vj)

=

n∑

p=1

(vip − v̄i)(vjp − v̄j)

√√√√
n∑

p=1

(vip − v̄i)
2

n∑

p=1

(vjp − v̄j)
2

with v̄i =
1

n

n∑

p=1

vip , v̄j =
1

n

n∑

p=1

vjp

ρ(Vi, Vj) is undefined if all values of Vi or Vj are equal.
The vectors of the correlation ranking matrix are ranked in
decreasing order of the Pearson coefficient between the first
vector and the remaining vectors.

Definition 3 (Top-k ranking matrix). Let V =
[V1, V2, . . . , Vn] be a matrix of n vectors. Vtop-k =

48

[V ′
1 , V

′
2 , . . . , V

′
k] is defined as the top-k ranking matrix of V

with respect to a given vector that contains initialized miss-
ing values V 1

q ∈ V iff:

• Vtop-k contains the k vectors that are most correlated
to V 1

q : ∀V ′
i ∈ Vtop-k ∀Vj ∈ V \ Vtop-k : |ρ(V ′

i , V
1
q)| ≥

|ρ(Vj , V
1
q)|

• The elements of Vtop-k are sorted by their correla-
tion coefficient to V 1

q : ∀1 ≤ i < k : |ρ(V ′
i , V

1
q)| ≥

|ρ(V ′
i+1, V

1
q)|

For each matrix Vtop-k we define a cor-
responding top-k ranking vector ρVtop-k =

[ρ(V 1
q , V

top-k
1), ρ(V 1

q , V
top-k
2), . . . , ρ(V 1

q , V
top-k

k)] for V 1
q

with the l1-norm ||ρVtop-k || =
∑k

i=1(|ρ(V
1
q , V

top-k
i)|).

Example 3. Consider Figure 6 with V = [V1, V2, V3, V4]
and top-3 ranking Vtop-3 = [V4, V3, V1] for V4.

V=




4 6 3 2
5 7 1 3
6 7 9 8
7 6 8 7


, V

top-3=




2 3 4
3 1 5
8 9 6
7 8 7




Figure 6: Example of Vtop-3

We get ρVtop-3 = [ρ(V4, V4), ρ(V4, V3), ρ(V4, V1)] =
[1, 0.93, 0.87] and ||ρVtop-3 || = 2.75.

4.2 Stepwise Correlation Monotonicity
We prove that REBOM is stepwise monotonic, i.e, choos-

ing a bigger correlation value in the same iteration implies a
bigger sum of variances. Lemma 1 states that the l1-norm of
a ranking vector ρV is proportional to the sum of the vari-
ance of vectors obtained by the application of the low rank
SVD. In what follows a submatrix Vi = [Vi1 , Vi2 , . . . , Vik]
that contains k different columns of V is denoted as Vi ∈ V.

Lemma 1. Let Vi = [Vi1 , Vi2 , . . . , Vik] and Vj =
[Vj1 , Vj2 , . . . , Vjk] be two different m × k matrices and let
V be m × n matrix such that n ≥ k and Vi,Vj ∈ V.
Let Wi = [Wi1 ,Wi2 , . . . ,Wik] = SV Dr(Vi) and Wj =
[Wj1 ,Wj2 , . . . ,Wjk] = SV Dr(Vj) such that Vi1 = Vj1 . The
l1-norm of ρVi

and ρVj
is proportional to the sum of the

variances of Wi and Wj :

||ρVi
|| > ||ρVj

|| ⇒
k∑

p=1

var(Wjp) >
k∑

p=1

var(Wip)

Lemma 1 states that choosing a matrix with a bigger l1-
norm of the ranking vector implies a higher sum of variances
over the vectors obtained by the SVD. Therefore, more cor-
related vectors of the input matrix yields a higher sum of
the variances after the application of SV Dr(). Thus, by
considering the top-k ranking matrix, the result of SV Dr()
maximizes the following objective function:

∑

Vi∈SV Dr(V)

var(Vi)

V=




4 6 3 2
5 7 1 3
6 7 9 8
7 6 8 7


, W=




4.2 5.6 2.3 2.8
4.9 7.1 1.4 2.4
6.6 6.6 8.9 7.7
6.2 6.4 8.1 7.1




Figure 7: Example of a matrix and its SV Dr trans-

formation

Example 4. Consider matrix V = V1, V2, V3, V4 from ex-
ample 3 and the result matrix of the application of SV Dr(V)
as shown in Figure 7.

Let’s take the example of V1,V2 ∈ V where V1 =
{V4, V3, V1} and V2 = {V4, V2, V1}, and let W1 = SV Dr(V1)
and W2 = SV Dr(V2) .
If we apply the computation with respect to vector V4, we

get ||V1|| = 2.75, ||V2|| = 2.07,
∑k

p=3 var(W1p) = 24 and∑3
p=1 var(W2p) = 9.4.
Lemma 1 holds for any other matrices Vi,Vj ∈ V .

4.3 Iterative Recovery of REBOM
This section proves that REBOM terminates. In each step

we compute the partial correlation ranking for the time se-
ries based on the missing values. If this partial ranking is the
same as the global ranking, the recovery stops. For all miss-
ing values t ∈ T 0

i (cf. Definition 1) the partial correlation
ρ̃(Vi, Vj) is defined as follows:

ρ̃(Vi, Vj) =

|T0
i |∑

t=1

(vit − v̄i)(vjt − v̄j)

√√√√
|T0

i |∑

t=1

(vit − v̄i)
2

|T0
i |∑

t=1

(vjt − v̄j)
2

Where |T 0
i | is the length of T 0

i . ρ̃(Vi, Vj) is undefined if
all missing values of Vi or Vj are equal. The partial ranking
matrix contains the partially most correlated vectors to the
vector that contains the missing blocks to recover.

Definition 4 (Partial ranking matrix).
Given a matrix V = [V1, V2, . . . , Vn] of n vectors,

Ṽtop-k = [V ′
1 , V

′
2 , . . . , V

′
k] is defined as the top-k par-

tial ranking matrix of V with respect to a given vector
V 1
q ∈ V iff:

• Ṽtop-k contains the k vectors that are partially most

correlated to V 1
q : ∀V ′

i ∈ Ṽtop-k ∀Vj ∈ V \ Ṽtop-k :
ρ̃(V ′

i , V
1
q) ≥ ρ̃(Vj , V

1
q)

• The elements of Ṽtop-k are sorted by their partial cor-
relation coefficient to V 1

q : ∀1 ≤ i < k : ρ̃(V ′
i , V

1
q) ≥

ρ̃(V ′
i+1, V

1
q)

The top-k ranking and the top-k partial ranking are used
to terminate the iterative recovery process.

Lemma 2 (Termination Condition). Let W
top-k
i =

[Wi1 ,Wi2 , . . . ,Wik] and let Ranking() be the ranking of vec-

tors inside a matrix. If W
top-k
i and its partial correlation

matrix have the same ranking then the algorithm can not
anymore create a matrix Wi+1 with bigger sum of variances
along its vectors. Formally:

49

Ranking(Wtop-k
i) = Ranking(W̃top-k

i) ⇒

∑

Wij
∈ Wi

var(Wij) >
∑

W(i+1)j
∈ Wi+1

var(W(i+1)j
)

After each iteration, REBOM compares the ranking of
vectors in the top-k ranking with the ranking of vectors in
the top-k partial ranking. If the two rankings are equal, the
recovery process terminates. As long as the two rankings
are different or one of the two rankings is undefined, the
most correlated time series can be used to further improve
the accuracy of the recovery.

Example 5. Let V1 = [V11 , V12 , V13 , V14 , V15] and k = 3.
After each iteration we create matrix Wi with recovered val-

ues and compare Ranking(Wtop-3) with Ranking(W̃top-3).

Initially, ρ̃(V1, Vi) and Ranking(Ṽtop-3) are undefined and
thus, REBOM iterates. REBOM terminates after two steps

since Ranking(Wtop-3
2) = Ranking(W̃top-3

2) = {V1, V2, V3}.
The vectors of the top-k ranking and top-k partial ranking
are highlighted in gray and the recovered values are displayed
in bold.

V1
V11

V12
V13

V14
V15

-1 0.5 0.25 0.75 1
0 0 0.2 0 0
-1 0.5 0.25 0 1
0 0.5 0 0.75 0
1 0 0 0 0
0 0 -0.25 0 0
-1 0.5 0.25 0.75 -1
-1 0.2 0 0 0.7
-1 0.4 -0.25 0 0.4
-1 0.2 0 0.75 0.8
-1 0.5 0.25 0.75 1
0 0 0 0 0
-1 0.5 0.25 0.75 1

ρ(V11
, V1i

) 1 -0.69 -0.33 -0.43 -0.46

ρ̃(V11
, V1i

) - - - - -

W1
W

11
W

12
W

13
W

14
W

15

-1 0.5 0.25 0.75 1
0 0 0.2 0 0
-1 0.5 0.25 0 1
0 0.5 0 0.75 0
1 0 0 0 0
0 0 -0.25 0 0
-1 0.5 0.25 0.75 -1

-0.5 0.2 0 0 0.7
-0.8 0.4 -0.25 0 0.4
-0.5 0.2 0 0.75 0.8
-1 0.5 0.25 0.75 1
0 0 0 0 0
-1 0.5 0.25 0.75 1

ρ(W
11

,W
1i

) 1 -0.78 -0.45 -0.47 -0.41

ρ̃(W
11

,W
1i

) 1 -1 1 0.5 0.97

W2
W21

W22
W23

W24
W25

-1 0.5 0.25 0.75 1
0 0 0.2 0 0
-1 0.5 0.25 0 1
0 0.5 0 0.75 0
1 0 0 0 0
0 0 -0.25 0 0
-1 0.5 0.25 0.75 -1

-0.2 0.2 0 0 0.7
-0.8 0.4 -0.25 0 0.4
-0.2 0.2 0 0.75 0.8
-1 0.5 0.25 0.75 1
0 0 0 0 0
-1 0.5 0.25 0.75 1

ρ(W21
,W2i

) 1 -0.8 -0.48 -0.46 -0.36

ρ̃(W21
,W2i

) 1 -1 1 0.5 0.97

Figure 8: Iterative Recovery of REBOM

4.4 Algorithm
Algorithm 1 implements the block recovery of REBOM.

First, using the method described in subsection 3.2, X1 is
created by initializing the missing values of X0. Then, the
vectors representing each time series of X1 are inserted as
columns in the matrix of vectors W1. The vector to re-
cover is inserted as the first column of W1. The order of
the selected vector to recover has no impact on the result of
the recovery since only the original vectors are used in the
recovery process. Therefore, the proposed recovery is deter-
ministic and does not depend on the order of time series to
recover. Next, if the ranking of the top-k ranking matrix
is different from the ranking of the top-k partial matrix or
one of the rankings is undefined (NAN), the recovery is per-

formed. If Ranking(Wtop-k
j) is equal to Ranking(W̃top-k

j)
the recovered time series is inserted into the set of recovered
time series, i.e, X̃j . Once all time series have been recov-

ered, X̃j will be returned as the result of REBOM’s block
recovery.

Input: A set of n time series
X0 = {X0

1 , X
0
2 , . . . , X

0
n}

Output: A set of recovered time series

X̃ = {X̃j1
1 , X̃

j2
2 , . . . , X̃jn

n }
begin1

X1 = Init(X0);2

for each X1
i ∈ X1 do3

V 1
i = Extract val(X1

i);4

j = 1;5

Wj = [V 1
i];6

for each X̃1
p ∈ X̃1 \ X̃1

i do7

V1
p = Extract val(X̃1

p);8

Wj = [Wj , V
1
p];9

while10

Ranking(Wtop-k
j) <> Ranking(W̃top-k

j) or

Ranking(Wtop-k
j)=NAN or

Ranking(W̃top-k
j) = NAN do

LΣRT = SVD(Wtop-k
j);11

Σr = Reduce Dim(Σ, n, r);12

M = L×Σr ×RT ;13

Wj = UMV (Wtop-k
j ,M);14

j+ = 1;15

X̃
j
i = Add ts(Wji);16

X̃j = {X̃j} ∪ {X̃j
i };17

i+ = 1;18

return X̃j ;19

end20

Algorithm 1: REBOM’s Block Recovery

Extract val() and Add ts() are used respectively to ex-
tract values from a time series and to add time stamps to a
vector.
The UMV algorithm (cf. Algorithm 2) updates missing

values. It accesses the database and uses procedural SQL to
determine the indexes of missing values (load mv indexes()).
The code of this function is described in the the first section
of the appendix.

50

Algorithm:UMV(V1,V2)1

begin2

for each Vi ∈ V1 do3

T 0
i =load mv indexes(i);4

for each vij ∈ Vi do5

if position(vij) ∈ T 0
i then6

Insert element(V3, v
′
ij);7

// Insert v′ij ∈ V2 in row i and

column j of V3

else8

Insert element(V3, vij);9

return V3;10

end11

Algorithm 2: Updating Initialized Missing Values

5. EXPERIMENTS

5.1 Experimental Setup
For the evaluation we use real world datasets and syn-

thetic data sets that describe hydrological phenomena of up
to 15 million observations produced by sensors in 242 moun-
tain stations. Our hydrological database contains 79 tem-
perature time series, 69 precipitation time series, 48 water
level time series, 15 humidity time series, 4 wind speed time
series and 3 air pressure time series. The data was provided
by an environmental engineering company [23].

We ran experiments to compare the recovery accuracy of
REBOM against state-of-the-art techniques.

5.2 Experiments with Hydrological Time Se­
ries

5.2.1 Restoration of Peaks and Valleys

In the first set of experiments, we compare the accuracy
of REBOM for the restoration of missing blocks against a
non parametric recovery technique that is the (non-iterated)
low rank SVD and a parametric recovery technique that is
DynaMMo [10]. These two techniques are the most accu-
rate techniques for the recovery of blocks of missing val-
ues in time series. We ran our experiment on wind speed
and humidity time series. Figure 9(a) shows two time series
measured during summer season (one measurement every
15 minutes) in two different areas of the region of Alto-
Adige (Italy). We drop a block of values for t ∈]160, 220[
and restore it using the low rank SVD and DynaMMo. The
dropped block includes a valley with a small peak.

The recovery of the two techniques is shown in Fig-
ure 9(b). The low rank SVD is only able to detect part
of the trend of the missing block, i.e., only a valley is recov-
ered. The shape of the recovered valley resembles the shape
of the block that belongs to the same time interval of the
missing block in the other time series. DynaMMo is able
to detect the entire trend of the missing block, i.e., a valley
containing a small peak. However the shape of the original
block is not accurately restored. The recovered block looks
similar to a smooth spline that contains a small peak. Since
we use only tow time series REBOM will not iterate. There-
fore, the recovery of REBOM is similar to the recovery of
the low rank SVD.

We add a second humidity time series to the experiment to

-2

-1

 0

 1

 2

 3

 4

 5

 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

v
a
lu

e
 (

k
m

/h
|%

)

time (every 15min)

Wind speed in Adige a Lasa summer/2001
Humidity in Col dei Baldi summer/2001

(a) Time Series Measured in Two Different Ar-
eas

-2

-1

 0

 1

 2

 3

 4

 5

 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

v
a
lu

e
 (

k
m

/h
|%

))

time (every 15min)

Wind speed in Adige a Lasa summer/2001
Humidity in Col dei Baldi summer/2001

Recovery using low rank SVD
Recovery using DynaMMo

(b) Recovery of a Removed Block

Figure 9: Recovery using Low Rank SVD and Dy-

naMMo

compare the block recovery of REBOM against DynaMMo
(see Figure 10). The result of Figure 10(b) shows that the
recovery of DynaMMo does not change by the addition of a
third time series because DynaMMo cannot use more than
one reference time series in the recovery process. REBOM
exploits the two humidity time series in the recovery process.
It uses the history of the wind speed time series together
with the correlation with respect to the two humidity time
series to recover the missing block. Both the trend and the
shape of the missing block are accurately recovered. Adding
more correlated time series will further improve the block
recovery of REBOM (see Figure 12).
We run a second set of experiments in which we com-

pare the block recovery error using the Mean Square Error
(MSE):

MSE =
1

n

n∑

i=1

(wi − vi
+)2

where w is the recovered value, v+ is the original value and
n is the number of deleted observations.

Figure 11 shows the cumulative recovery error for removed
blocks of values of increasing length: we set a starting times-
tamp, we vary the length of the removed block and we com-
pute the cumulative MSE of each block. The x-axis repre-
sents the length (number of values) of the removed block
to recover and the y-axis represents the average cumulative
MSE. The experiments in Figures 11(a) and 11(b) are ex-
ecuted respectively on six different temperature time series
with 1000 values each measured in region of Alto Adige and
four different humidity time series with 1000 values each
measured in the region of Vipetino. For these two experi-
ments, we remove a block from one time series only while the
other time series are complete. The results in both exper-

51

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0 20 40 60 80 100 120 140 160 180 200 220

A
V

G
 c

u
m

u
la

ti
v
e

 M
S

E

Length of removed blocks

Cubic Spline
Low rank SVD

DynaMMo
REBOM

(a) Average Cumulative Error for Successive
Removed Blocks in One Temperature Time Se-
ries. The correlated temperature time series
used in the recovery are complete.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120 140 160 180 200 220

A
V

G
 c

u
m

u
la

ti
v
e

 M
S

E

Length of removed blocks

Cubic Spline
Low rank SVD

DynaMMo
REBOM

(b) Average Cumulative Error for Successive
Removed Blocks in One Humidity Time Series.
The correlated humidity time series used in the
recovery are complete.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120 140 160 180 200 220

A
V

G
 c

u
m

u
la

ti
v
e

 M
S

E

Length of removed blocks

Cubic Spline
Low rank SVD

DynaMMo
REBOM

(c) Average Cumulative Error for Successive
Removed Blocks in One Humidity Time Series.
The correlated humidity time series used in the
recovery contain missing values.

Figure 11: Recovery of Blocks of Different Lengths

-2

-1

 0

 1

 2

 3

 4

 5

 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

v
a
lu

e
 (

k
m

/h
|%

))

time (every 15min)

Wind speed in Adige a Lasa summer/2001
Humidity in Col dei Baldi summer/2001
Humidity in Monte Piana summer/2001

(a) Time Series Measured in Three Different Ar-
eas

-2

-1

 0

 1

 2

 3

 4

 5

 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

v
a
lu

e
 (

k
m

/h
|%

))

time (every 15min)

Wind speed in Adige a Lasa summer/2001
Humidity in Col dei Baldi summer/2001
Humidity in Monte Piana summer/2001

Recovery using REBOM
Recovery using DynaMMo

(b) Recovery of a Removed Block

Figure 10: Recovery Using REBOM and DynaMMo

iments show that REBOM outperforms the low rank SVD
and DynaMMo for the recovery of successive blocks of miss-
ing values and cubic spline is off the scale. For blocks of
up to 100 removed values, the recovery error of REBOM
slightly increases with the number of removed values. For
blocks of more than 100 removed values, the error becomes
almost stable and is not anymore affected by the number
of removed values. In contrast, the recovery error of Dy-
naMMo and the low rank SVD increases with the length
of removed blocks. The small cumulative recovery error of
REBOM is due to the use of different correlated time se-
ries at every iteration of the algorithm. The experiment
of Figure 11(c) is executed on four humidity time series of
1000 values each. The first time series is complete, the sec-
ond time series contains a missing block in the time range
[0, 100], the third time series contains a missing block in the

time range [100, 200] and the fourth time series contains a
missing block in the time range [200, 300]. We execute the
same process performed in the experiment of Figure 11(b)
for the complete correlated humidity time series. The exper-
iment shows that, compared to the result of Figure 11(b),
the recovery accuracy of REBOM, DynaMMo and low rank
SVD gets worse when using multiple time series with miss-
ing values. The recovery accuracy of REBOM is still better
than the one of the other techniques.
In the experiment of Figure 12, we use different correla-

tions and number of input time series (n) to evaluate the
impact on the recovery MSE. We vary n and we compute
the MSE of REBOM for the same block containing 90 miss-
ing values. Figure 12(a) shows that in the case of time series
of high correlation (1 ≥ |ρ| > 0.7), the MSE of REBOM de-
creases only slightly as n grows. REBOM is able to restore
the missing block using a small number of highly correlated
input time series. This result is explained by the fact that,
for highly correlated time series, the starting top-k ranking
matrix is similar to the partial ranking matrix. Therefore,
the recovery of REBOM converges quickly. Figure 12(b)
shows that, using more time series of moderate correlation
(0.7 ≥ |ρ| > 0.4), the MSE of REBOM decreases linearly.
REBOM uses all the time series to perform the most ac-
curate recovery. Figure 12(c) illustrates that, the MSE in-
creases for input time series with low correlated time series
(0.4 ≥ |ρ| > 0).
In the experiment of Figure 13 we set n to 10 and we vary

the number of time series in the top-k ranking matrix. In
Figure 13(a) the minimum MSE is reached for k ∈ [2, 4].
In Figures 13(b) and 13(c), the minimum recovery MSE is
reached for a single value that is respectively k = 4 and
k = 2. Again, the recovery accuracy of REBOM decreases
for time series with low correlation, i.e., 0.4 ≥ |ρ| > 0, in
the top-k ranking matrix.

5.2.2 Invariance to Initialization Method

We run this experiment to test the impact of the initial-
ization method on the block recovery of REBOM. Figure 14
shows that with different initialization techniques, REBOM
needs more iterations to reach the minimum recovery er-
ror. Compared to our initialization method, a linear spline
initialization needs twice the number of iterations to reach
the minimum recovery error. Using a k Nearest Neighbor
initialization, REBOM needs 2.5 times more iterations than

52

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4 5 6 7 8 9 10

M
S

E

number of input time series (n)

Block Recovery of REBOM

(a) Impact of Input Time Series in the Recov-
ery MSE. Each time series has a correlation
value: 1 ≥ |ρ| > 0.7

 0

 5

 10

 15

 20

 0 1 2 3 4 5 6 7 8 9 10

M
S

E

number of input time series (n)

Block Recovery of REBOM

(b) Impact of Input Time Series in the Recov-
ery MSE. Each time series has a correlation
value: 0.7 ≥ |ρ| > 0.4

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1 2 3 4 5 6 7 8 9 10

M
S

E

number of input time series (n)

Block Recovery of REBOM

(c) Impact of Input Time Series in the Recov-
ery MSE. Each time series has a correlation
value: 0.4 ≥ |ρ| > 0

Figure 12: Impact of n in the Recovery MSE of REBOM

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 1 2 3 4 5 6 7 8 9 10

M
S

E

number of time series (k)

Block Recovery of REBOM

(a) Impact of k in the Recovery MSE. Each
time series has a correlation value: 1 ≥ |ρ| >
0.7

 0

 5

 10

 15

 20

 0 1 2 3 4 5 6 7 8 9 10

M
S

E

number of time series (k)

Block Recovery of REBOM

(b) Impact of k in the Recovery MSE. Each
time series has a correlation value: 0.7 ≥ |ρ| >
0.4

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1 2 3 4 5 6 7 8 9 10

M
S

E

number of time series (k)

Block Recovery of REBOM

(c) Impact of k in the Recovery MSE. Each
time series has a correlation value: 0.4 ≥ |ρ| >
0

Figure 13: Recovery MSE using different number of time series in the top-k ranking matrix

our initialization technique to reach the same recovery er-
ror. Thus, the accuracy of REBOM is independent from the
initialization method. However, our initialization initializa-
tion method provides a faster recovery of blocks of missing
values.

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
V

G
 M

S
E

number of iterations

Linear spline
KNN

Linear spline + KNN

Figure 14: Number of Iterations using Different Ini-

tialization Techniques

5.2.3 Running Time Performance

The REBOM implementation uses the Golub/Kahan de-
composition algorithm [24] and has a run time complexity
of O(#iterations × (4n2k + 8nk2 + 9k3)), where n is the
length of the longest time series and k is the number of vec-
tors of Vtop-k. The complexity of building Vtop-k is the cost
of computing k times ρ between two time series and that is

O(kn2). Therefore, the total complexity of using REBOM is
O(#iterations× (5n2k+8nk2 +9k3)). Figure 15 compares
the total running time of REBOM against DynaMMo that
has a complexity of O(#iterations × (kn3)). 3000 differ-
ent time series were created by extracting 1000 observations
from 15 different temperature time series.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 1000

A
V

G
 r

u
n
n
in

g
 t
im

e
 (

s
e
c
o
n
d
s
)

number of observations

 REBOM
3000

REBOM
2000

DynaMMo

REBOM
1000

Figure 15: Average Running Time Comparison

Figure 15 shows the average running time comparison per-
formed on the created time series for the recovery of blocks
containing 200 missing values. We set the value of k to
four, since we reached the optimal recovery accuracy with
this value. The result of this experiment shows that with
1500 time series, REBOM is faster than DynaMMo. With
a higher number of input time series, the performance of
REBOM starts to be slower than DynaMMo.

53

5.2.4 Recovery Using Linear Time Series

In the experiment of Figure 16, we show the impact of
using extremely irregular time series. We take as input a
humidity time series measured in spring 2001 from which
we remove a block for t ∈]120, 160[, a constant time series,
and a monotonic time series. The result of Figure 16(a)
shows that, since the correlation between the humidity time
series and the constant time series is undefined (all values are
equal), REBOM performs a bad recovery. In Figure 16(b),
the humidity time series and the monotonic time series are
correlated. Therefore, both time series are used to recover
the type of the missing block. The recovered block has an
increasing monotonic shape that looks similar to the mono-
tonic time series. In the experiment of Figure 16(b), both
the type and the shape of the missing block are accurately
recovered. The application of DynaMMo in the experiment
would set all the recovered values to 0.

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 40 80 120 160 200 240

v
 (

%
)

t (every 15min)

Humidity in Monte Piana
Removed block

Recovery using REBOM
Constant time series

(a) Recovery of REBOM using lines of function
v=c, where c is a constant. The result of the
recovery is the same for any given value of c

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 40 80 120 160 200 240

v
 (

%
)

t (every 15min)

Humidity in Monte Piana
Removed block

Recovery using REBOM
Monotonic time series

(b) Recovery of REBOM using lines of function
v=at+b, where a =0.5 and b=-2.5

Figure 16: Impact of Extremely Irregular Time Se-

ries in the Recovery of REBOM

5.3 Experiments with Synthetic Regular Time
Series

This subsection describes a set of experiments conducted
with synthetic data. We compare the block recovery of RE-
BOM against DynaMMo.

5.3.1 Different Amplitudes

Figure 17 compares the recovery of the two techniques
for two regular time series having different amplitudes. The
first time series is a sin(t) wave and the second time series
is a sine wave multiplied by a negative scaling factor, i.e.,
-0.25*sin(t). For t ∈]70, 110[, we drop a block from sin(t)
and we recover it using REBOM and DynaMMo. Both tech-

niques are able to accurately recover the missing block. RE-
BOM uses the correlation between the two time series in
order to determine the shape of the missing block, i.e, a
peak. The amplitude of the missing peak is determined us-
ing the amplitude of the existing peaks from sin(t). The
two techniques perform an accurate recovery for any other
scaling factor of the second wave.

5.3.2 Shifted Peaks

Figure 18 shows two regular time series shifted in time,
i.e., sin(t) and cos(t). For t ∈]70, 110[, we drop a block
from sin(t) and we recover it using REBOM and DynaMMo.
REBOM is applied without initial alignment of the two time
series. As expected, DynaMMo outperforms REBOM in
recovering the missing block. DynaMMo is able to compute
the periodicity model and performs a good block recovery.
However, REBOM recovers a block that is only influenced
by the shape of the block in cos(t) for t ∈]70, 110[, i.e., a peak
followed by a valley. For shifted time series, REBOM is not
able to use the history of sin(t) in the recovery process. The
decomposition performed by our technique is sensitive to
the row position of values inside the Vtop-k matrix. In order
to overcome this problem, an initial alignment between the
two time series must be performed in a preprocessing step
(cf. Subsection 3.2).

6. CONCLUSION
This paper studies the recovery of blocks of missing val-

ues in irregular time series. We develop an iterative greedy
algorithm called REBOM, that uses at every iteration the
most correlated time series to the time series that contains
the missing blocks to reconstruct missing peaks and valleys.
Empirical studies on real hydrological data sets demonstrate
that our algorithm has the most accurate block recovery
among existing techniques. In future work, it is of interest
to examine the impact of using the recovered time series in
the recovery process instead of the original ones. It is also
foreseen to investigate the impact the global correlation on
the recovery accuracy together with the local correlation.
Another promising direction, is to progress the interaction
with the database and develop an SQL based recovery solu-
tion that reduces the number of I/O’s.

Acknowledgments

The authors would like to thank HydroloGis company [23]
for providing the hydrological datasets that we have used for
our experiments, and Michal Koltonik for his contribution
in the implementation of REBOM. We wish also to give spe-
cial thanks to the anonymous reviewers for their insightful
comments.

7. REFERENCES

[1] Mueen, A., Nath. S., and Liu, J., : Fast Approximate
Correlation for Massive Time-series Data, in
SIGMOD, 2010

[2] Srebro, N., and Jaakkola, T., : Weighted Low-Rank
Approximations, in ICML, 2003

[3] Tsechansky, M.S., and Provost, F., : Handling
Missing Values when Applying Classification Models,
in JMLR, 2007

54

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 20 40 60 80 100 120 140

fu
n

c
ti
o

n
(t

)

t

sin(x)
-0.25*sin(x)

(a) Original Waves

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 20 40 60 80 100 120 140

fu
n

c
ti
o

n
(t

)

t

sin(x)
-0.25*sin(x)

Recovered block

(b) Recovery of REBOM

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 20 40 60 80 100 120 140

fu
n

c
ti
o

n
(t

)

t

sin(x)
-0.25*sin(x)

Recovered block

(c) Recovery of DynaMMO

Figure 17: Recovery of DynaMMO and REBOM for Time Series of Different Amplitudes

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 20 40 60 80 100 120 140

fu
n

c
ti
o

n
(t

)

t

sin(t)
cos(t)

(a) Original Waves

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 20 40 60 80 100 120 140

fu
n

c
ti
o

n
(t

)

t

sin(x)
cos(x)

Recovered block

(b) Recovery of REBOM

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 20 40 60 80 100 120 140

fu
n

c
ti
o

n
(t

)

t

sin(x)
cos(x)

Recovered block

(c) Recovery of DynaMMO

Figure 18: Recovery of DynaMMO and REBOM for Shifted Time Series

[4] Romero, V., and Salmerón, F., : Multivariate
Imputation of Qualitative Missing Data using
Bayesian Networks, in SMPS, 2004

[5] Harvey, M., Carman, M.J., Ruthven, I., and Crestani,
F., : Bayesian Latent Variable Models for
Collaborative Item Rating Prediction, in CIKM, 2011

[6] Srebro, N., and Jaakola, T., : Weighted Low-Rank
Approximations, in ICML, 2003

[7] Li, L., MacCann, J., Pollard, N., and Faloutsos, C., :
DynaMMo: Mining and Summarization of Coevolving
Sequences with Missing Values, in KDD, 2009

[8] Jain, A., Chang, E.Y., and Wang, Y.F., : Adaptive
Stream Resource Management using Kalman Filters,
in SIGMOD, 2004

[9] Ding, H., et al. : Querying and Mining of Time Series
Data: Experimental Comparison of Representations
and Distance Measures, in PVLDB, 2008

[10] Chen, Q., Chen, L., Lian, X., and Yu, J.X., : Indexable
PLA for Efficient Similarity Search, in VLDB, 2007

[11] Gelaman, A., : Data Analysis using Regression and
Multilevel/Hierarchical Models, Publisher: Cambridge
University Press, 1 edition, 2006

[12] Yi., B.K., Sidiropoulos, N.D., Johnson, T. , Jagadish,
H.V., Faloutsos, C., and Biliris, A., : Online Data
Mining for Co-Evolving Time Sequences, in ICDE,
2000

[13] Troyanskaya, O., et al : Optimal Multi-step k-Nearest
Neighbor Search, in J. Bioinformatics, 2001

[14] Seidl, T., and Kriegel, H.P., : Optimal Multi-step
k-Nearest Neighbor Search, in SIGMOD, 1998

[15] Kurucz, M., Benczur, A.A., and Csalogany, K., :

Methods for Large Scale SVD with Missing Values, in
KDD, 2007

[16] Meyer, C.D., : Matrix Analysis and Applied Linear
Algebra, Publisher: SIAM-Society for Industrial and
Applied Mathematics, pages 412-417 and 489-504,
2000

[17] Kalman, D., : A Singularly Valuable Decomposition:
The SVD of a Matrix, in J. College Mathematics, 1996

[18] Brand, M., : Incremental Singular Value
Decomposition of Uncertain Data with Missing Values,
in ECCV, 2002

[19] Alter, O., and al., : Singular value decomposition for
genome-wide expression data processing and modeling,
in PNAS, 2000

[20] Mohan, M., Chen., Z., and Weinberger, K., :
Web-Search Ranking with Initialized Gradient Boosted
Regression Trees, in JMLR, 2011

[21] He, Y., : Missing Data Imputation for Tree-Based
Models, PhD dissertation, 2006

[22] Ding, Y., and Simonoff., J.S., : An Investigation of
Missing Data Methods for Classification Trees Applied
to Binary Response Data, in JMLR, 2010

[23] HydroloGIS company, available for online access at:
http://www.hydrologis.eu/

[24] Erricos, J., : Handbook on Parallel Computing and
Statistics, Book, Chapter 4, 2005

[25] Lagarias, J.C., : Monotonicity Properties of the Toda
Flow, the QR-Flow, and Subspace Iteration, in SIAM
J. Matrix Analysis and Applications, 1991

55

APPENDIX

A. FUNCTION COMPUTING MISSING

TIME STAMPS
We consider two relations:

• Observation (series id, ts, val) that stores the values of
observations, where series id is the id of time series, ts
and val are respectively the time stamp and value of
observations

• Series (id, granul) that stores information about time
series, where id is the id of time series and granul is
the granularity of time series, i.e., a time series has a
granularity of two if the observations occur every two
minutes.

Given these two relations, we define function
load mv indexes() that efficiently finds the indexes of
all missing time stamps. This function uses the granu-
larity of each time series in order to create a sequence of
incremental granularities, e.g., {2,4,6,. . . }. Then, the set
difference between the sequence of granularities and the
existing time stamps gives the indexes of missing time
stamps. load mv indexes() is executed as an SQL function
on the database server side.

FUNCTION load_mv_indexes (in_series_id IN

INTEGER) AS

ts_lst INTEGER;

gran INTEGER;

out_mv_indexes INTEGER;

BEGIN

SELECT granul

INTO gran

FROM Series

WHERE id=in_series_id;

SELECT MAX(ts)

INTO ts_lst

FROM Observation

WHERE series_id=in_series_id;

SELECT ts

BULK COLLECT INTO out_mv_indexes

FROM (

SELECT * FROM (

SELECT (level-1)*gran ts

FROM dual

CONNECT BY LEVEL <= (ts_lst+gran)/gran

MINUS

SELECT ts

FROM Observation

WHERE series_id=in_series_id

) ORDER BY 1

);

RETURN(out_mv_indexes);

END;

B. PROOF SKETCHES

B.1 Lemma 1

Proof. We prove that our algorithm is stepwise mono-
tonic. We perform this proof by showing that the correlation

matrix used is monotonic at every step of the algorithm. i)
From Def. 2 (SVD) we know that the singular values de-
fine the variances along the vectors. ii) From the definition
of the top-k ranking matrix we know that at every step of
SVD, we take the matrix with the biggest l-1 norm of corre-
lation. iii) From the definition of SV Dr() we know that only
the smallest variance will be nullified and the biggest ones
will be kept. Using i), ii) and iii) we can deduce that our
algorithm takes the biggest ||ρV

i
|| in order to compute the

biggest
∑

Vij
∈W

i
var(Vij) where Wi = SV Dr(Vi). There-

fore, the bigger the correlation is, the bigger sum of variances
we will obtain. This implies that the correlation used by the
algorithm is stepwise monotonic.

B.2 Lemma 2

Proof. We prove that our algorithm terminates after
finding the matrix that has the maximum sum of variances
along its vectors. We perform this proof by showing that the
iterative refinement of missing values satisfies the following
two properties:

• a) finite number of rankings: i) From Def. 2 (SVD)
we know that the variance values obtained by SVD
are ranked in increasing order in matrix Σ. ii) From
[25] we have that the singular values obtained by SVD
are monotonic. Using i) and ii) it follows that the
variance obtained by the decomposition is monotonic
and thus: W1j ∈ W

top-k
1 ∧ W2j 6∈ W

top-k
2 ⇒ W3j 6∈

W
top-k
3 where W

top-k
2 = SV Dr(W

top-k
1) and W

top-k
3 =

SV Dr(W
top-k
2) . Therefore, the number of rankings

generated by our algorithm is finite and this property
is satisfied.

• b) ranking of a matrix determine the result of SV Dr():

Let Ri be the ranking of matrix Wi , R̃i be the par-
tial ranking of matrix Wi and Ri+1 be the ranking of
matrix Wi+1 where Wi+1 = SV Dr(Wi). i) We have
from Def. 3 that the correlation value determines the
ranking inside a matrix and then ||ρWi

|| = ||ρWi+1 || ⇒
Ri = Ri+1. ii) Since UMV algorithm (cf. Subsec-
tion 4.4) is updating only the missing values of the ma-

trix, then: R̃i determines ||ρWi+1 || and it follows that:

Ri = R̃i ⇒ ||ρWi
|| = ||ρWi+1 ||. Using i) and ii) we

deduce by transitivity that: Ri = R̃i ⇒ Ri = Ri+1 and
therefore, this property is satisfied.

Properties a) and b) hold for matrices whose vectors are
correlated. It follows the proof for this lemma.

56

A Novel Query­Based Approach
for Addressing Summarizability Issues in XOLAP

Marouane Hachicha Chantola Kit Jérôme Darmont

Université de Lyon (ERIC Lyon 2)
5 avenue Pierre Mendès-France

69676 Bron Cedex
France

marouane.hachicha@univ-lyon2.fr, kchantola@gmail.com, jerome.darmont@univ-lyon2.fr

ABSTRACT

The business intelligence and decision-support systems used
in many application domains casually rely on data ware-
houses, which are decision-oriented data repositories mod-
eled as multidimensional (MD) structures. MD structures
help navigate data through hierarchical levels of detail. In
many real-world situations, hierarchies in MD models are
complex, which causes data aggregation issues, collectively
known as the summarizability problem. This problem leads
to incorrect analyses and critically affects decision making.
To enforce summarizability, existing approaches alter either
MD models or data, and must be applied a priori, on a
case-by-case basis, by an expert. To alter neither models
nor data, a few query-time approaches have been proposed
recently, but they only detect summarizability issues with-
out solving them. Thus, we propose in this paper a novel
approach that automatically detects and processes summa-
rizability issues at query time, without requiring any partic-
ular expertise from the user. Moreover, while most existing
approaches are based on the relational model, our approach
focus on an XML MD model, since XML data is custom-
arily used to represent business data and its format better
copes with complex hierarchies than the relational model.
Finally, our experiments show that our method is likely to
scale better than a reference approach for addressing the
summarizability problem in the MD context.

1. INTRODUCTION
Business intelligence and decision-support systems in gen-

eral are nowadays used in many business (e.g., finance, tele-
coms, insurance, logistics) and non-business (e.g., agricul-
ture, medicine, health and environment) domains. Such sys-
tems casually rely on data warehouses, which are designed,
both at the conceptual and logical levels, using multidimen-
sional (MD) structures [28]. In MD models, facts are anal-
ysis subjects of interest (e.g., sales) that are described by

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
The 18th International Conference on Management of Data (COMAD),

14th­16th Dec, 2012 at Pune, India.
Copyright c©2012 Computer Society of India (CSI).

a set of (usually numerical) measures (e.g., sale quantity
and amount) w.r.t. analysis axes called dimensions (e.g.,
book category, sale date, sale location...). Dimensions may
be organized in hierarchical levels to allow data aggregation
at different granularities (e.g., store, city, state or country,
from the finer level to the coarser level).
MD modeling essentially aims at easing online analyti-

cal processing (OLAP), whose main operators help navigate
data through coarser (roll up) and finer (drill down) levels
of detail. In this context, aggregating measures works fine
when intradimensional relationships are one-to-many (e.g.,
a book belongs to one single category). However, in real-
world situations, dimension hierarchies may be much more
complex [3, 17], which leads to a semantic gap between MD
models and current OLAP tools [28], an issue known as the
summarizability problem [13]. Violating summarizability is
a critical matter, for it causes erroneous aggregations and,
therefore, erroneous analyses that can jeopardize important
decisions [21]. However, testing summarizability is a difficult
(coNP-complete) problem [10]. Finally, complex hierarchies
are difficult to both represent in classical database man-
agement systems and query with SQL-like languages, while
XML storage and interrogation with XQuery is much more
natural [3], which led to the design of XML data warehouses
and so-called XOLAP solutions.

The summarizability problem is widely acknowledged as
crucial and has received some attention in the Nineties, with
most solutions aiming at a priori normalizing data to en-
force summarizability. Quite surprisingly, few researchers
came back on this topic since then, although we identify two
types of shortcomings in normalization approaches. First,
normalizing data breaks initial conceptual MD models, pro-
voking the alteration or loss of some semantics. Thus, there
would be no point in exploiting XML’s flexibility to model
rich, complex hierarchies if they were “flattened” after nor-
malization. Second, data normalization applies a priori, on
a case-by-case basis, and requires the intervention of an ex-
pert in MD modeling. Such an approach is subjective, likely
to be costly and does not scale well w.r.t. data volume [20].
Finally, to the best of our knowledge, there is no existing
XOLAP approach that provides a practical solution to sum-
marizability issues, while they are much likely to occur in
an XML data warehouse with complex dimension hierar-
chies. The closest approach does detect summarizability
issues, but then returns no result [22, 23].

Thus, we propose in this paper a novel approach, set in the

57

XOLAP context, to the summarizability problem. By con-
trast to normalization, our approach does not alter data to
retain all semantics. We also favor paying the price of some
overhead and tackle the summarizability problem at query
time, without requiring any expertise beyond the user’s, to
avoid re-normalizing when data schema evolves, favor scal-
ability and eliminate human-related costs. In many institu-
tions, decision-support applications indeed require external
Web data [7]. Due to the heterogeneity and high evolutivity
of such data, an XOLAP run-time solution is more suitable
than a priori expert interventions.

The remainder of this paper is organized as follows. In
Section 2, we formalize the background information related
to data warehouses, and define what we term complex hi-
erarchies and summarizability. We also review the existing
approaches for enforcing summarizability. In Section 3, we
motivate and introduce our query-based solution to complex
hierarchy management in XOLAP, including novel pattern
tree-based data and query models, as well as the aggrega-
tion algorithm that exploits them. In Section 4, we provide
a complexity study and an experimental validation of our
work. Finally, in Section 5, we conclude this paper and hint
at future research.

2. BACKGROUND
In this section, we formalize data warehousing concepts

and define complex hierarchies that lead to summarizability
issues. Then, we discuss the approaches that address the
summarizability problem.

2.1 Data Warehouses

2.1.1 Data Warehouse

A data warehouse W modeled w.r.t. a snowflake schema
(i.e., with dimension hierarchies) is defined as W = (F ,D),
where F is a set of facts to observe and D is a set of dimen-
sions or analysis axes. Let d = |D|.

2.1.2 Dimension and Hierarchy

∀i ∈ [1, d], a dimension Di ∈ D is defined as a hierarchy
made up of a set of ni levels: Di = {Hij |j = 1, ni}. By
convention, we denote Hi1 as the lowest granularity level.
∀j ∈ [1, ni], a hierarchy level Hij is defined in intention
as Hij = (IDij , {Aijk|k = 1, aij}, Rij), where IDij is the
identifier attribute of Hij , {Aijk} is a set of aij so-called
member attributes of Hij , and Rij is an attribute that ref-
erences a hierarchy level at a higher granularity than that
of Hij (notion of roll up).

Let dom() be a function that associates to any attribute its
definition domain. Let hij = |Hij |. ∀l ∈ [1, hij], instances
of Hij are tuples Hijl = (σijl, {αijkl|k = 1, aij}, ρijl), where
σijl ∈ dom(IDij), αijkl ∈ dom(Aijk) ∀k ∈ [1, aij], and ρijl ∈
dom(IDij′) with j′ ∈ [1, ni].

2.1.3 Fact

The set of facts F is defined in intention as F = ({∆i|i =
1, d}, {Mj |j = 1,m}), where {∆i} is a set of d attributes
that reference instances of hierarchy levels Hi1 of each di-
mension Di ∈ D, and {Mj} is a set of m measure (or indi-
cator) attributes that characterize facts.

Let f = |F|. ∀k ∈ [1, f], instances of F are tuples Fk =
({δik|i = 1, d}, {µjk|j = 1,m}), where δik ∈ dom(IDi1)
∀i ∈ [1, d], and µjk ∈ dom(Mj) ∀j ∈ [1,m].

2.2 Complex Hierarchies
We term a dimension hierarchy Di as complex if it is both

non-strict and incomplete. We choose this new, general de-
nomination because dimension hierarchy characterizations
vary wildly in the literature. For example, Beyer et al. name
complex hierarchies ragged hierarchies [3], while Rizzi de-
fines ragged hierarchies as incomplete only [27]. Malinowski
and Zimányi also use the terms of complex generalized hi-
erarchy [17], but even though they include incomplete hier-
archies, they do not include non-strict hierarchies.

2.2.1 Non­Strict Hierarchy

A hierarchy is non-strict [1, 16, 30] or multiple-arc [27]
when attribute Rij is multivalued. In other terms, from a
conceptual point of view, a hierarchy is non-strict if the re-
lationship between two hierarchical levels is many-to-many
instead of one-to-many. For example, in a dimension de-
scribing products, a product may belong to several cate-
gories instead of just one.

Similarly, a many-to-many relationship between facts and
dimension instances may exist [27]. For instance, in a sale
data warehouse, a fact may be related to a combination
of promotional offers rather than just one. Formally, here,
attributes ∆i (∀i ∈ [1, d]) may be multivalued.

2.2.2 Incomplete Hierarchy

A hierarchy is incomplete [4, 25], non-covering [1, 16, 30]
or ragged [27] if attribute Rij allows linking a hierarchy level
Hij to another hierarchy level Hij′ by “skipping” one or
more intermediary levels, i.e., Rij refers to IDij′ such that
j′ > j + 1. This occurs, for instance, if in a dimension de-
scribing stores, the store-city-state-country hierarchy allows
a store to be located in a given region without being related
to a city (stores in rural areas).
Similarly, facts may be described at heterogeneous gran-

ularity levels. For example, still in our sale data warehouse,
sale volume may be known at the store level in one part of
the world (e.g., Europe), but only at a more aggregate level
(e.g., country) in other geographical areas. This means that
∀i ∈ [1, d], δi ∈ dom(IDij) with j ∈ [1, ni] (constraint j = 1
is forsaken).
A particular case of incomplete hierarchies are called non-

onto [24], heterogeneous [10], unbalanced [9, 17] or asym-
metric [16] hierarchies. A hierarchy is non-onto when all
paths from the root to a leaf in the hierarchy do not have
equal lengths [24], but here, missing elements are always
child nodes, while they may be parent nodes in an incom-
plete hierarchy.

Note that some papers addressing the summarizability
problem differentiate between intradimensional relationships
and fact-to-dimension relationships [20]. By contrast, as
Pedersen et al. [24], we consider that summarizability issues
and solutions are the same in both cases, since facts may be
viewed as the very finer granularity in the dimension set.

2.3 Summarizability in MD Models
The notion of summarizability was introduced by Rafanelli

and Shoshani in the context of statistical databases [26],
where it refers to the correct computation of aggregate val-
ues with a coarser level of detail from aggregate values with
a finer level of detail. Then, Lenz and Shoshani defined three
constraints that guarantee summarizability in the MD con-

58

text [13]: (1) hierarchies must be strict; (2) hierarchies must
be complete; (3) aggregate data types must be compatible,
i.e., an aggregate function must be applicable to a given
measure for a given set of dimensions. For instance, a max-
imum sale amount is a meaningful aggregation, while a sum
of temperatures would be meaningless. These constraints
also hold for fact-to-dimension relationships [20]. In this
paper, we assume that the type compatibility constraint is
handled by users.

One way to ensure summarizability in a MD model is to
simply disallow complex hierarchies at design time, as in
the Dimensional Fact Model [5]. However, to support differ-
ent kinds of complex real-world situations, most MD models
do allow complex hierarchies. Thence, the summarizability
problem must be addressed. There are two main families
of approaches: schema normalization and data transforma-
tion, which are reviewed below. Both families of approaches
operate at design time.

More recent proposals operate at query time, but they are
very few. Guidelines have been proposed for tolerating and
displaying incorrect aggregation results [8], but they have
not been implemented. The generalized projection XOLAP
operator [22, 23] detects summarizability issues, but does
not solve them and returns an error flag instead.

Finally, the interested reader may find more details about
summarizability issues in the survey by Mazón et al. [21].

2.3.1 Schema Normalization

Two strategies may be used to achieve schema normaliza-
tion. The first strategy is based on the definition of con-
straints and transformation rules. For instance, Hurtado et
al. propose a class of integrity constraints to address in-
completeness, namely dimension constraints and frozen di-
mensions [10]. Frozen dimensions are minimal, complete
dimensions mixed up in incomplete dimensions using di-
mension constraints that help model incomplete hierarchy
schemas. From their part, Lechtenbörger and Vossen intro-
duce new MD normal forms (MNFs) [12]. 1MNF does not
allow non-strict hierarchies, while 2MNF and 3MNF permit
to model incomplete relationships using context dependen-
cies, i.e., dimension constraints. Specialization constructs
in dimensions can lead to incomplete relationships [13, 26]
and context dependencies enable an implicit representation
of such specializations.

The second strategy adds new structures into the model
in order to ensure summarizability. In relational implemen-
tations, bridge tables are used to capture non-strict fact-
to-dimension relationships via foreign keys that refer to the
dimension and fact tables [11, 29]. Arguing that bridge ta-
bles defined at the logical level make the modeling of com-
plex structures difficult, some authors introduce their equiv-
alent at the conceptual level [16, 20]. Such additional en-
tities/classes help store instances at the origin of incom-
pleteness and/or non-strictness. Finally, Mansmann and
Scholl propose a two-phase modeling approach that trans-
form incomplete hierarchies into a set of well-behaved sub-
hierarchies without summarizability problems [18, 19].

2.3.2 Data Transformation

The reference data transformation approach by Pedersen
et al. transforms dimension and fact instances to enforce
summarizability [24]. To solve incompleteness, all mappings
between hierarchical levels are transformed to be complete

with the help of an algorithm named MakeCovering. For
example, suppose that some addresses are missing in an
address-city-country hierarchy. MakeCovering inserts new
values into the missing hierarchical level address to ensure
that mappings to higher hierarchical levels are summariz-
able. MakeCovering exploits metadata and/or expert ad-
vice for this sake. For example, an expert would be required
to recover missing addresses in small streets in the USA
or Australia. The authors also propose a simplified ver-
sion of MakeCovering, MakeOnto, to handle summarizability
in non-onto hierarchies by replacing childless nodes by so-
called placeholder values.

Mappings are made strict with the help of another al-
gorithm named MakeStrict. MakeStrict avoids “double
counting” by “fusing” multiple values in a parent hierarchi-
cal level into one “fused” value, and then linking the child
value to the fused value. Fused values are inserted into a
new hierarchical level in-between the child and the parent.
Reusing this new level for computing higher-level aggregate
values leads to correct aggregation results.
Mansmann and Scholl further modify Pedersen et al.’s

algorithms to eliminate roll up/drill down incomplete and
non-strict hierarchies at the instance level [18, 19]. Finally,
Li et al. demonstrate that MakeCovering does not work
on some real-world cases, i.e., geographical hierarchies in
China [14]. They identify four types of incompleteness that
are specific to China and thence propose several variations
of MakeCovering to handle them.

3. QUERY­BASED COMPLEX HIERARCHY

MANAGEMENT IN XOLAP

3.1 Motivation and Contributions
In XML data warehouses and XOLAP, complex data struc-

tures, and especially complex hierarchies, are likely to be
present, and are likely to evolve with time faster than in
legacy decision-support systems. In such a context, sum-
marizability cannot be enforced through a costly [20] data
normalization process each time schema and data are up-
dated. Thus, as in the most recent existing approaches [8,
22, 23], we advocate for a run-time solution.

However, while existing run-time approaches do detect
summarizability issues and warn the user, they still output
incorrect or absent results. Our first contribution is thus to
complete the process and output correct results. To achieve
this goal, we adapt and automatize well-known solutions
from the literature (Sections 3.2 and 3.4). Since we oper-
ate at query time, we deliberately adopt simple and robust
solutions not to add too much overhead over summarizabil-
ity testing. Such reference approaches are still customarily
reused and adapted by recent approaches [18, 19].

Furthermore, all XOLAP approaches we are aware of pro-
pose operators under the form of ad-hoc programs, and rely
on relational database systems, including Pedersen et al.’s
[22, 23]. By contrast, we aim at contributing to build an XO-
LAP algebra that can later translate into standard XQuery
statements. Thus, our second contribution introduces data
and query models based on the data trees and tree patterns
used in XML processing [6], respectively (Section 3.3).

3.2 Principle of our Approach
To illustrate how our approach operates, let us consider

the example from Figure 1, which represents a complex

59

“project management” hierarchy at the instance level, adapted
from [18, 19]. This hierarchy is non-strict because teams
may manage several projects (Team 2 manages projects A
and B), while projects may be managed by several teams
(projects A and B are managed by teams 1 and 2, and teams
2 and 3, respectively). The hierarchy is also incomplete,
since Project D is not managed by any particular team; thus
it is complex.

Figure 1: Sample complex hierarchy

First, to handle non-strict hierarchies in a given dimen-
sion Di, we must avoid multiplying the aggregation of in-
stance measures of a hierarchy level Hij when rolling up
to level Hij+1. Thus, when building the set of groups G
with respect to a grouping criterion, we fuse multiple val-
ues in Hij+1 into one single “fused value”, i.e., we build
G =

⋃

l∈[1,hij]

ρijl, where multivariate values of ρijl are con-

sidered as sets instead of single values. In our example, sup-
pose we are counting projects per teams for projects A and
B. Then GNS = {{Team 1, T eam 2}, {Team 2, T eam 3}}.
The number of projects in {Team 1, T eam 2} is 1, the num-
ber of projects in {Team 2, T eam 3} is 1, for a correct total
of 2. If GNS had been {Team 1, T eam 2, T eam 3}, the total
number of projects would have been wrong (1 + 2 + 1 = 4)
in H12.

Second, to handle incomplete hierarchies, we must, when
rolling up from a hierarchy level Hij to level Hij+1, still
aggregate measures of instances of Hij that are not present
inHij+1. Thus, when buildingG, all “missing instances” are
grouped into an artificial “Other” group, i.e., G =

⋃

l∈[1,hij]

ρijl

∪{Other} such that ∃l′/ρijl = σi(j+1)l′ . In our example,
suppose we are again counting projects per teams, but for
projects C and D. Then GI = {Team 4, Other}. The num-
ber of projects in GI is 2, whereas it would have been wrong,
i.e., 1, if GI had been {Team 4} only.

Third, to handle complex hierarchies, we simply apply
both the managements of non-strict and incomplete hier-
archies. Thus, here, G =

⋃

l∈[1,hij]

ρijl ∪ {Other} such that

∃L/ρijl =
⋃

l′∈L

σi(j+1)l′ . In our example, if we are now count-

ing projects per teams for all projects, then GC = GNS∪GI ,
and the number of projects in GC is correct, i.e., 4.
Finally, note that, beyond the expert-based preprocess-

ing vs. our automatic, on-the-fly approach, there is a sub-
stantial difference between our view of incomplete hierarchy
management and Pedersen et al.’s reference solution [24].
While they call to an expert to replace all “missing val-
ues” in G by actual values, we indeed automatically add an
“Other” group for all “missing values” of a given hierarchical
level. “Other” values from different hierarchy levels are of
course distinguished, e.g., Project[Other] is different from
Team[Other].

Thus, we presumably loose in semantical finesse, but we
spare the cost of the expert. Moreover, the simplicity of our
approach helps handle all cases of incompleteness identified
by Li et al. [14], while MakeCovering cannot.

3.3 Data and Query Models

3.3.1 Data Model

Since complex hierarchies have been shown to be better
represented in XML at the physical level [3], we choose XML
to model MD data. Thus, at the logical level, we choose
XML data trees to model MD structures. Data trees are in-
deed casually used to represent and manipulate XML doc-
uments, whose hierarchical structure is akin to a labeled
ordered, rooted tree [6]. Moreover, data trees allow model-
ing MD structures. Formally, a data tree t models an XML
document or a document fragment. It can be defined as a
triple t = (r,N,E), where N is the set of nodes, r ∈ N is
the root of t, and E is the set of edges stitching together
couples of nodes (ni, nj) ∈ N ×N .
Figure 2 shows how we logically model MD data with a

data tree. ∗-labeled edges indicate a one-to-many relation-
ship. The data tree root, W , models the data warehouse.
Its child nodes F model facts. Each fact is described by a
set of dimensions D and measures M . For a given fact, we
may have several dimensions (such as client, supplier...) and
several measures (such as account, quantity...). A dimension
hierarchy can have any number of levels H. The ∗ multiplic-
ity on the D-H edge allows facts to roll up to any number
of hierarchy levels, at any granularity (fact-to-dimension re-
lationships). The recursive edge on H allows any hierarchy
level to roll up to several higher levels, possibly skipping
any number of intermediary levels (intradimension relation-
ships). Thus, this representation permits to model complex
hierarchies.

Figure 2: Multidimensional data tree model

Figure 3 exemplifies the instantiation of our model by
elaborating on the complex hierarchy from Figure 1. Here,
facts are described by a project and a customer dimension,
and the only measure is cost.

3.3.2 Query Model

Since we use XML data trees as our logical data model, we
use XML tree patterns, which are the most efficient struc-
tures to query data trees [6], as our query model. A tree
pattern (TP) or tree pattern query is a pair (t, F) where
t is a data tree (r,N,E). An edge in t may either be a

60

61

Algorithm 1 QBS grouping algorithm

1: Input:
2: D // Data tree
3: TPQ // Tree pattern
4: WTlist← ∅
5: for all $1 do

6: // Step #1: Summarizability processing
7: Group list ← ∅
8: for all $4 do

9: Group ← Group ∪ $4.value
10: if $4 /∈ $1.children() and Group.nbElements() <

$1.currentChild().nbChildren() then

11: Group ← Group ∪ “Other”
12: end if

13: Group list← Group list ∪Group
14: end for

15: // Step #2: Group matching
16: WT ←WTlist.exists(Group list)
17: if WT 6= ∅ then
18: WT .update($6, $7)
19: else

20: WT .create(D, TPQ)
21: WTlist←WTlist ∪WT
22: end if

23: end for

24: return product(WTlist)

(Step #1). In case of missing instances from a hierarchical
level of the grouping element (if statement on line 10), the
“Other” value is concatenated to Group. The test on line
10 means that $4 is not a child (i.e., dimension) node of the
current fact and the number of elements in Group is infe-
rior to the number of edges rooted at the current dimension
node (i.e., presence of an incomplete hierarchy). When a
new group list is about to be built, the algorithm tests its
existence in WTlist, i.e., it tests whether there exists a WT
from WTlist where a node tagged with the same grouping
elements has a value equal to the group list’s. If true, the
aggregation node is updated with current measures. Other-
wise, a new WT is added to WTlist w.r.t. TPQ. Finally,
all WTs are regrouped together under a unique root with
the help of the product() function.

The description of all functions called in QBS follows.

• x.children() returns the set of child nodes of node x.

• x.nbChildren() returns the number of children of node
x. If our context, this function returns the number of
edges rooted at x.

• x.currentChild() returns the current child of node x.

• G.nbElements() computes the number of elements in
group G.

• T list.exists(Glist) returns the data tree containing
group Glist from one of the trees of T list, and ∅ oth-
erwise.

• T .update(x, y) updates the value of node y from tree
T with the value of node x.

• T .create(D, TPQ) creates a tree T by matching TP
TPQ against data tree D.

• product(T list) regroups together all trees from tree
set T list under one single root.

Eventually, a roll up operation is simply achieved by call-
ing QBS several times, in sequence, with the output tree of
each stage becoming the input tree of the next stage (Fig-
ure 6). For example, let us consider the MD data tree from
Figure 3 and query Q1 = “total cost of projects per team
and per customer”, which translates into a TP whose for-
mula is provided in Figure 7.

Figure 7: Q1 TP formula

For fact Project[A], QBS builds Group = 1-2. A first WT
is thus created into WTlist w.r.t. Figure 7’s TP, with di-
mension nodes (grouping element instances) Team[1-2] and
Customer[α], and an aggregation node Sum[1000]. For fact
Project[B],Group = 2-3 is built. Then, the algorithm checks
whether there exists a WT inWTList containing theGroup list
(Team[2-3], Customer[α]). As the answer is no, a second
WT is created with dimension nodes Team[2-3] and Customer[α],
and aggregation node Sum[1500]. Similarly, for fact Project[C],
Group = 4 is built and a new WT is created with dimen-
sion nodes Team[4] and Customer[β], and aggregation node
Sum[500].
For fact Project[D], there is no grouping element. Thus,

we build Group = Other and a new WT is created with di-
mension nodes Team[Other] and Customer[γ], and aggrega-
tion node Sum[100]. Here, QBS traverses all elements of the
hierarchy associated to Project[D] before assigning “Other”
to Group. Finally, all created WTs in WTlist are appended
under the same root (Figure 8). Note that the hierarchy of
branches is always saved in WTs. QBS exploits the hierarchy
schema (metadata) to consider Group[Other] as the parent
element of Branch[I] in the corresponding WT.

To complete the roll up operation, i.e., aggregating on
branches from the aggregation already computed on groups,
QBS inputs a new TP corresponding to Q2 = “total cost of
projects per branch and per customer”, whose formula is
given in Figure 9, and the result tree from Figure 8.

Figure 9: Q2 TP formula

For fact Team[1-2], Group = I-II is built and a WT is
created with dimension nodes Branch[I-II] and Customer[α],
and aggregation node Sum[1000]. For fact Team[2-3], Group
= I-II is built. Then, QBS checks whetherGroup list (Branch

62

63

64

Figure 13: Comparison of QBS and Pedersen on simple
hierarchies

On average, the execution time of QBS is 2 times lower
than that of Pedersen with overhead, but it is 0.17 times
higher than that of Pedersen without overhead.

However, both QBS and Pedersen consume a lot of time,
especially when running the 4D query (about an hour). To
find out why, we perform two more experiments, dissociat-
ing complex hierarchy processing time (i.e., summarizability
processing time) from group matching time. This is possi-
ble because XWeB’s data are originally summarizable. Fig-
ure 14 shows that enforcing summarizability in QBS does not
affect time performance much, while group matching has a
great impact that increases with the number of dimensions.

Figure 14: Comparison of summarizability process-
ing time and group matching time in QBS

Figure 15 confirms that Pedersen also spends most of its
time processing group matching, while overhead consumes
little time. When processing group matching, we indeed
need to check whether the group exists.

Thus, we must check every hierarchy level instance in the
whole group, which contains several instances from all di-
mensions. Doing so is very time consuming comparing to
traditional aggregation, which only checks for the existing
group as a whole. However, no approach dealing with XML
grouping, and a fortiori no XOLAP approach, can avoid
this issue.

4.3.2 Results on Complex Hierarchies

Due to space limitations, we only present here our ex-
periments on 5% and 50% incomplete, non-strict and com-
plex hierarchies (the approximate minimum and maximum
scale), but we did go through the whole range.

Figure 15: Comparison of summarizability process-
ing time and group matching (overhead) time in
Pedersen

4.3.2.1 Incomplete Hierarchies.
The results from Figures 16 and 17 reveal two cases. When

the number of dimensions is small (up to query 2D), the ex-
ecution time of QBS is 0.9 times lower than that of Pedersen
with overhead, for both 5% and 50% hierarchies, on aver-
age.

Figure 16: Comparison of QBS and Pedersen on 5%
incomplete hierarchies

When overhead is not included in Pedersen, the execu-
tion time of QBS is 0.04 times lower (i.e., extremely close)
on 5% hierarchies and 0.02 times lower (i.e., extremely close)
on 50% hierarchies, on average. For a larger number of di-
mensions (query 3D), the execution time of QBS is the same
as Pedersen without overhead on 5% hierarchies and 0.06
times lower (i.e., extremely close) than that of Pedersen

without overhead on 50% hierarchies, on average. When
overhead is included in Pedersen, QBS’ execution time is on
average 0.2 and 0.06 times lower (i.e., extremely close), on
5% and 50% hierarchies, respectively. Both approaches ac-
tually have different tradeoffs. QBS takes less time when
reading incomplete data, but more time to solve incom-
pleteness, while the reverse is true for Pedersen where data
are normalized. Thus, when the number of dimensions in-
creases, QBS’ overhead when processing incomplete hierar-
chies at run-time is a handicap that evens global perfor-
mances w.r.t. Pedersen. Still, we can notice that both
approaches are affected by the poor performance of group
matching, which explains why we did not include query 4D
in these experiments.

65

Figure 17: Comparison of QBS and Pedersen on 50%
incomplete hierarchies

4.3.2.2 Non­Strict Hierarchies.
The results from Figures 18 and 19 show similar trends to

those of Figures 16 and 17, because the tradeoffs in QBS and
Pedersen are essentially the same for non-strictness man-
agement.

Figure 18: Comparison of QBS and Pedersen on 5%
non-strict hierarchies

Figure 19: Comparison of QBS and Pedersen on 50%
non-strict hierarchies

However, for QBS, non-strictness processing is 9 times higher
than incompleteness processing, on average (Figure 20). More-
over, non-strictness processing is 37 times higher than in-
completeness processing, on average (Figure 21).

Ultimately, the execution time of QBS is 0.1 times lower
than that of Pedersen with overhead (5% hierarchies) and

Figure 20: Evaluation of the three types of 5% hi-
erarchies in QBS

Figure 21: Evaluation of the three types of 50% hi-
erarchies in QBS

0.03 times lower (i.e., extremely close) than that of Pedersen
with overhead, on average (50% hierarchies). When over-
head is not included in Pedersen, the execution time of QBS
is on average 0.05 times lower (5% hierarchies) and 0.01
times lower (50% hierarchies) (i.e., extremely close).

4.3.2.3 Complex Hierarchies.
The results from Figures 22 and 23 bear similar results to

the non-strict case, again because the cost of non-strictness
processing is much higher than that of incompleteness pro-
cessing (Figures 20 and 21).
Group matching is indeed mainly impacted by non-strict

hierarchies. However, in some cases, such as in the 3D query
on 250,000 facts in Figure 20, QBS performs better in the
complex case than in the non-strict case, because non-strict
processing incidentally produces fewer complex groups, thus
simplifying group matching. For 5% hierarchies, QBS’ exe-
cution time is 1.8 times lower than that of Pedersen with

overhead and 0.01 times lower (i.e., extremely close) than
that of Pedersen without overhead, on average. For 50%
hierarchies, QBS’ execution time is 0.09 times lower (i.e., ex-
tremely close) than that of Pedersen with overhead and
0.05 lower (i.e., extremely close) than that of Pedersen without

overhead, on average.

66

Figure 22: Comparison of QBS and Pedersen on 5%
complex hierarchies

Figure 23: Comparison of QBS and Pedersen on 50%
complex hierarchies

5. CONCLUSION AND PERSPECTIVES
In this paper, we propose the first truly operational query-

based approach to solve summarizability issues in XML com-
plex hierarchies. With respect to existing approaches, ours
(1) modifies neither schema nor data, and thus has no space
overhead and does not alter schema nor data semantics;
(2) does not require any expertise beyond the user’s, thus
sparing the cost of expert intervention; (3) is dynamic w.r.t.
schema and data evolution, thus favoring scalability.

We indeed experimentally demonstrate that the overhead
induced by managing hierarchy complexity at run-time is
totally acceptable. The performance, in terms of query
response time, of our QBS algorithm is indeed comparable
to that of Pedersen et al.’s reference algorithms. However,
our comparison holds when the dataset is static. If schema
or data updates were made, complex hierarchy processing
would take place at regular intervals of time with Pedersen

(instead of once in our experiments). By contrast, QBS would
not have any further overhead, and should thus become more
efficient.

Finally, our approach is implemented as a free Java pro-
totype that is available online, along with our experimental
datasets and the source code of the QBS and Pedersen algo-
rithms1.

The perspectives of this work are twofold. First, although
XML is the best-suited format to represent complex hier-
archy structures, our experiments show that summarizabil-
ity management approaches are still too costly for realistic
OLAP processing, which is supposed to run online, due to

1http://eric.univ-lyon2.fr/~mhachicha/XOLAP.zip

group matching cost. Thus, it is crucial to optimize the
performance of our approach, e.g., by storing data in a non
XML native fashion and/or using effective sorting, indexing
and parallel processing techniques in group matching.

In a second step, we aim to define other XOLAP operators
(cube, drill down, etc.) over complex hierarchies in order to
complete an algebra, and implement them in our software
prototype to provide a fully operational XOLAP framework.

6. REFERENCES

[1] A. Abelló, J. Samos, and F. Saltor. YAM2: a
multidimensional conceptual model extending UML.
Information Systems, 31(6):541–567, 2006.

[2] A. Berglund, S. Boag, D. Chamberlin, M. F.
Fernández, M. Kay, J. Robie, and J. Siméon. XML
Path Language (XPath) 2.0 (Second Edition).
http://www.w3.org/TR/xpath20/, 2010.

[3] K. S. Beyer, D. D. Chamberlin, L. S. Colby, F. Özcan,
H. Pirahesh, and Y. Xu. Extending XQuery for
Analytics. In 24th International Conference on
Management of Data (SIGMOD 05), Baltimore, USA,
pages 503–514, 2005.

[4] C. E. Dyreson, T. B. Pedersen, and C. S. Jensen.
Incomplete Information in Multidimensional
Databases. In M. Rafanelli, editor, Multidimensional
Databases: Problems and Solutions, pages 282–309.
Idea Group, 2003.

[5] M. Golfarelli, D. Maio, and S. Rizzi. The Dimensional
Fact Model: A Conceptual Model for Data
Warehouses. International Journal of Cooperative
Information Systems, 7(2-3):215–247, 1998.

[6] M. Hachicha and J. Darmont. A Survey of XML Tree
Patterns. IEEE Transactions on Knowledge and Data
Engineering, 2012. In preprint.

[7] R. D. Hackathorn. Web farming for the data
warehouse. The Morgan Kaufmann Series in Data
Management Systems. Morgan Kaufmann, San
Francisco, USA, 1999.

[8] J. Horner and I.-Y. Song. A Taxonomy of Inaccurate
Summaries and Their Management in OLAP Systems.
In 24th International Conference on Conceptual
Modeling (ER 05), Klagenfurt, Austria, volume 3716
of LNCS, pages 433–448. Springer, 2005.

[9] W. Hümmer, W. Lehner, A. Bauer, and L. Schlesinger.
A Decathlon in Multidimensional Modeling: Open
Issues and Some Solutions. In 4th International
Conference on Data Warehousing and Knowledge
Discovery (DaWaK 02), Aix-en-Provence, France,
volume 2454 of LNCS, pages 275–285. Springer, 2002.

[10] C. A. Hurtado, C. Gutiérrez, and A. O. Mendelzon.
Capturing Summarizability with Integrity Constraints
in OLAP. ACM Transactions on Database Systems,
30(3):854–886, 2005.

[11] R. Kimball and M. Ross. The Data Warehouse
Toolkit. John Wiley & Sons, second edition, 2002.

[12] J. Lechtenbörger and G. Vossen. Multidimensional
Normal Forms for Data Warehouse Design.
Information Systems, 28(5):415–434, 2003.

[13] H.-J. Lenz and A. Shoshani. Summarizability in
OLAP and Statistical Data Bases. In 9th International
Conference on Scientific and Statistical Database

67

Management (SSDBM 97), Olympia, Washington,
USA, pages 132–143. IEEE Computer Society, 1997.

[14] Z. Li, J. Sun, J. Zhao, and H. Yu. Transforming
Non-covering Dimensions in OLAP. In 7th
Asia-Pacific Conference (APWeb 05), Shanghai,
China, volume 3399 of LNCS, pages 381–393.
Springer, 2005.

[15] H. Mahboubi and J. Darmont. XWeB: the XML
Warehouse Benchmark. In 2nd TPC Technology
Conference on Performance Evaluation &
Benchmarking (TPCTC 10), Singapore, volume 6417
of LNCS, pages 185–203. Springer, September 2011.

[16] E. Malinowski and E. Zimányi. Hierarchies in a
multidimensional model: from conceptual modeling to
logical representation. Data & Knowledge Engineering,
59(2):348–377, 2006.

[17] E. Malinowski and E. Zimányi. Advanced Data
Warehouse Design. Springer, Berlin, Heidelberg,
Germany, 2008.

[18] S. Mansmann and M. H. Scholl. Extending Visual
OLAP for Handling Irregular Dimensional Hierarchies.
In 8th International Conference on Data Warehousing
and Knowledge Discovery (DaWaK 06), Krakow,
Poland, volume 4081 of LNCS, pages 95–105.
Springer, 2006.

[19] S. Mansmann and M. H. Scholl. Empowering the
OLAP Technology to Support Complex Dimension
Hierarchies. International Journal of Data
Warehousing and Mining, 3(4):31–50, 2007.

[20] J.-N. Mazón, J. Lechtenbörger, and J. Trujillo. Solving
Summarizability Problems in Fact-Dimension
Relationships for Multidimensional Models. In ACM
11th International Workshop on Data Warehousing
and OLAP (DOLAP 08), Napa Valley, USA, pages
57–64, 2008.

[21] J.-N. Mazón, J. Lechtenbörger, and J. Trujillo. A
survey on summarizability issues in multidimensional
modeling. Data & Knowledge Engineering,
68(12):1452–1469, 2009.

[22] D. Pedersen, J. Pedersen, and T. B. Pedersen.
Integrating XML Data in the TARGIT OLAP
System. In 20th International Conference on Data
Engineering (ICDE 04), Boston, USA, pages 778–781.
IEEE Computer Society, 2004.

[23] D. Pedersen, K. Riis, and T. B. Pedersen. A Powerful
and SQL-Compatible Data Model and Query
Language for OLAP. In 13th Australasian Database
Conference (ADC 02), Melbourne, Australia, volume 5
of CRPIT. Australian Computer Society, 2002.

[24] T. B. Pedersen, C. S. Jensen, and C. E. Dyreson.
Extending Practical Pre-Aggregation in On-Line
Analytical Processing. In 25th International
Conference on Very Large Data Bases (VLDB 99),
Edinburgh, Scotland, UK, pages 663–674. Morgan
Kaufmann, 1999.

[25] E. Pourabbas and M. Rafanelli. Hierarchies and
Relative Operators in the OLAP Environment.
SIGMOD Record, 29(1):32–37, 2000.

[26] M. Rafanelli and A. Shoshani. STORM: A Statistical
Object Representation Model. In 5th International
Conference on Statistical and Scientific Database
Management (SSDBM 90), Charlotte, NC, USA,

volume 420 of LNCS. Springer, 1990.

[27] S. Rizzi. Conceptual Modeling Solutions for the Data
Warehouse. In R. Wrembel and E. Christian Koncilia,
editors, Data Warehouses and OLAP: Concepts,
Architectures and Solutions, pages 1–26. IRM Press,
Hershey, USA, 2007.

[28] S. Rizzi, A. Abelló, J. Lechtenbörger, and J. Trujillo.
Research in data warehouse modeling and design:
dead or alive? In ACM 9th International Workshop on
Data Warehousing and OLAP (DOLAP 06),
Arlington, Virginia, USA, pages 3–10. ACM, 2006.

[29] I.-Y. Song, W. Rowen, C. Medsker, and E. F. Ewen.
An Analysis of Many-to-Many Relationships Between
Fact and Dimension Tables in Dimensional Modeling.
In 3rd International Workshop on Design and
Management of Data Warehouses (DMDW 01),
Interlaken, Switzerland, volume 39 of CEUR
Workshop Proceedings, page 6. CEUR-WS.org, 2001.

[30] R. Torlone. Conceptual Multidimensional Models. In
E. Maurizio Rafanelli, editor, Multidimensional
Databases: Problems and Solutions, pages 69–90.
IDEA Group Publishing, Hershey, USA, 2003.

[31] TPC. TPC Benchmark H Standard Specification
revision 2.3.0. Transaction Processing Performance
Council, August 2005.

68

Hybrid HBase: Leveraging Flash SSDs to Improve Cost per
Throughput of HBase

Anurag Awasthi
Dept. of Computer Science

and Engineering,
Indian Institute of Technology,

Kanpur, India

anuraga@cse.iitk.ac.in

Avani Nandini
Dept. of Computer Science

and Engineering,
Indian Institute of Technology,

Kanpur, India

nadini@cse.iitk.ac.in

Arnab Bhattacharya
Dept. of Computer Science

and Engineering,
Indian Institute of Technology,

Kanpur, India

arnabb@iitk.ac.in

Priya Sehgal
NetApp Corporation, India

priya.sehgal@netapp.com

ABSTRACT

Column-oriented data stores, such as BigTable and HBase, have
successfully paved the way for managing large key-value datasets
with random accesses. At the same time, the declining cost of flash
SSDs have enabled their use in several applications including large
databases. In this paper, we explore the feasibility of introduc-
ing flash SSDs for HBase. Since storing the entire user data is
infeasible due to impractically large costs, we perform a qualita-
tive and supporting quantitative assessment of the implications of
storing the system components of HBase in flash SSDs. Our pro-
posed HYBRID HBASE system performs 1.5-2 times better than a
complete disk-based system on the YCSB benchmark workloads.
This increase in performance comes at a relatively low cost over-
head. Consequently, Hybrid HBase exhibits the best performance
in terms of cost per throughput when compared to either a complete
HDD-based or a complete flash SSD-based system.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems—Query Processing and

Optimization

Keywords

HBase, Flash SSD, Big Data, Cost per Throughput

1. INTRODUCTION
Column-oriented databases have been proven to be well-suited

for large database applications including data warehouses and sparse
data [1]. Recently, there is a substantial interest in distributed data
stores for large chunks of data, specially in the NoSQL domain,
such as Google’s BigTable [3], Amazon’s Dynamo [6], Apache
HBase [8] and Apache Cassandra [13]. These are being widely

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
The 18th International Conference on Management of Data (COMAD),

14th­16th Dec, 2012 at Pune, India.
Copyright c©2012 Computer Society of India (CSI).

used by several companies and industrial users to store “big data”
of the order of terabytes and petabytes on a daily basis. These sys-
tems are of key-value store type that utilize the column-oriented
architecture.

Out of these, we choose to work with HBase for multiple rea-
sons: (i) it is an open-source software and, therefore, easy to mod-
ify, (ii) it has been successfully deployed in many enterprises, (iii) it
is capable of efficiently hosting very large data with tables having
billions of rows and millions of columns including sparse data, and
(iv) it has become increasingly popular in recent years and has a
significantly large community following.

Traditionally, the column-oriented database systems have been
designed considering disk (HDD) as the underlying storage media.
This means that generally only random seeks have been attempted
to be minimized. The lower latency involved in random reads in
comparison to HDDs has drawn attention, and coupled with the
reducing cost of flash drives and increasing capacity per drive, sev-
eral successful attempts have been made for improving query per-
formance by introducing flash SSDs (some well known examples
are [7, 16, 20]). The use of flash SSDs as a substitute as well as a
complementary storage media for hard disks is also increasing due
to their lower power consumption, lower cooling cost, lesser noise
and smaller sizes.

However, flash has certain disadvantages as well. While exhibit-
ing good performance for random reads, it suffers in case of random
writes. Flash SSDs do not allow in-place updates and requires sub-
sequent garbage collection which results in write amplification and
erasures overhead, thereby impacting random write performance.
Frequent erase operations also shorten the lifetime of SSDs as flash
devices can typically sustain only 10,000 to 100,000 erase cycles.
This adversely affects the overall reliability of the SSD drive. Fur-
ther, the cost per unit capacity of flash SSDs is approximately 10
times that of HDDs.

With such high costs, low density, and low reliability compared
to hard drives, it is impractical to completely replace HDDs with
flash SSDs in large deployments like databases (100s of terabytes
to petabytes of capacity requirement). Instead, practitioners have
adopted hybrid solutions consisting of a mix of SSD and HDD
with different media serving different purposes – SSDs offering
high throughput (measured in terms of I/O operations per second)
while HDDs offering high storage capacity. Such hybrid solutions
provide good performance at better costs compared to pure HDD
or pure SSD systems [12].

69

In this work, we leverage this hybrid approach to come up with
a better cost per throughput solution for HBase columnar database
systems. As HBase has a lot of metadata or system components,
we try to figure out the relevant items that should be placed in flash
as opposed to HDD to yield an attractive cost per throughput. We
call this modified HBase as HYBRID HBASE.

Hybrid SSD and HDD solutions come in two forms with SSD
used as either as (i) a read-write cache for HDD [10, 24], or as
(ii) a permanent store at the same level as HDD [4, 12, 15]. While
the first case of using SSD as an intermediate tier between DRAM
and HDD seems very simple to use and deploy, it leads to caching
problems like redundancy, cache coherency (in case of shared HDD
infrastructure), etc. Further, as flash is limited in its erase and
program cycles, using it as a cache hurts its lifetime much more,
thereby increasing the overall cost per unit capacity of the hybrid
solution. Hence, we propose to use SSD as a permanent store at the
same memory hierarchy as the HDD for our Hybrid HBase.

Any column-oriented database system has two main components
residing on storage media: (i) user data components that store the
actual data, and (ii) system components needed for user data man-
agement that include catalog tables, logs, temporary storage or other
components storing information about current state of system, etc.
While flash can be used to host both the components, for industrial
strength data stores where data sizes are in the order of terabytes
and petabytes, it may be infeasible to host the user data components
due to impractically large costs. Further, the gain in throughput will
depend heavily on access patterns, etc.

Thus, we focus only on hosting the system components of a large
key-store data store on flash. In addition to being much smaller in
size, system components do not change significantly with different
database sizes and access patterns. For example, since write-ahead
log is designed to have sequential I/O, it will be accessed sequen-
tially irrespective of whether the update operation is a random up-
date or a sequential update. Also, the size of the write-ahead log
remains of the order of gigabytes even under heavy load. Addi-
tionally, system components must reside on a persistent media so
that they can be retrieved after a system crash. This rules out the
possibility of hosting them on main memory.

In this paper, we estimate which system components to host in
the flash to improve the cost per throughput of the system. We iden-
tify the system components for a HBase system and analyze the
effects of migrating them to flash both analytically as well as em-
pirically (by performing a thorough benchmarking using the YCSB
workloads). Since flash is used to host only a small amount of data,
the increase in cost is low, although the improvement in throughput
is quite high. Overall, this improves the cost per throughput of the
system considerably as compared to a complete HDD-based setup
or a complete flash SSD-based setup.

The focus of our proposed system is three-fold: (i) better cost
per throughput, (ii) performance independent of access pattern, hit
ratio, and size of data, (iii) easy to setup, i.e., easy deployment
and migration from standard HBase system. Further, the approach
presented is generic and can be applied to other column store archi-
tectures after similar analyses.

Specifically, the contributions of this paper are:

• We analyze the significance of the storage media in the per-
formance of HBase. We assess disk and flash as storage me-
dia, and compare changes in performance with changes in
system cost.

• We propose Hybrid HBase, which uses a combination of
HDD (for data components) and flash SSD (for system com-
ponents), and analyze its performance gain and system cost.

Parameter Disk Flash

Model
Western Digital Kingston

wd10EARS SV100S2
Capacity (GB) 1024 128

Cost/GB $0.15 $2.00
Random Seeks (/s) 151 1460

Reads (MB/s) 161 307.5
Sequential writes (MB/s) 128 182.5
Random re-writes (MB/s) 63.2 81.63

Table 1: Different parameters of the two storage media.

The generic analysis can be extended to other column stores
for improving the cost per unit throughput.

The rest of the paper is organized as follows. Section 2 presents
the required background information needed to understand the id-
iosyncrasies of flash SSD as a storage media and HBase as a data
store. It also briefly describes the related work. Section 3 discusses
the feasibility of using flash SSD for hosting the system compo-
nents of HBase and proposes the Hybrid HBase system. Section 4
describes the experimental setup along with performance compar-
ison of the Hybrid HBase system against a complete HDD-based
setup and a complete flash SSD-based setup. Finally, Section 5
concludes and outlines some possible future work.

2. BACKGROUND AND RELATED WORK

2.1 Flash as Storage Media
Hard disk drives (HDDs) are electromagnetic devices that have

moving heads that read/write data using rotation of spindles. This
enforces a mechanical bottleneck for I/O operations. In contrast,
flash solid state devices (SSDs) does not contain any moving parts
and provide instant reads. Consequently, flash provides good la-
tencies for random reads in comparison to disks (up to 100 times
for enterprise SSDs). Re-writes are slower in comparison to reads
due to the erase-before-write mechanism where re-writing requires
erasing a complete block after persisting all its data to a new lo-
cation, leading to write amplification. This, therefore, results in
asymmetric read and write performance. Further, each block can
be erased only a finite number of times before it turns into a bad
block (non-usable). Due to this erase-before-write mechanism, ef-
ficient wear leveling mechanism and garbage collection need to be
supported on flash, else some blocks become unusable much ear-
lier than others. Flash can, however, offer good performance for
sequential writes. Also, it requires less power consumption. Per-
formance comparison of HDDs versus flash SSDs have been done
in [21, 22]. As illustrated in Table 1, the comparison of actual run-
time parameters between disk and flash for the models used in our
experiments shows the same trends.

2.2 HBase
Apache HBase1 is an open-source implementation of Google’s

BigTable [3]. It is a distributed column-based key-value storage
system that leverages existing open-source systems such as Zoo-
keeper2 and Hadoop’s Distributed File System (HDFS)3.

HBase cluster has one master server, multiple region servers and
the client API. Zookeeper assists the master server in coordinating
with the region servers.

Tables are generally sparse and contains multiple rows contain-
ing several columns, grouped together into column-families. All

1http://hbase.apache.org/
2http://zookeeper.apache.org/
3http://hadoop.apache.org/

70

� �

�������

�	���

��
��
�
�

������������������

�����

������

�����

������ ������

�����

������

�����������

�	���

��
��
�
�
����������
�����������

�����

�	���

��
��
�
�
�����������

���

����
��
��
�
�

���

���

���

Figure 1: Hybrid HBase setup.

columns of a column family are stored together in sorted key-value

(ordered by key) format in store files. Each store file stores key-
value pair corresponding to only one column-family.

Each region server can host several regions. A region is a hor-
izontal division of a table and contains store files corresponding
to all column-families of that division. A region splits horizontally
(based on row key) into two daughter regions if its size grows above
a threshold. Therefore, a table is comprised of multiple regions dis-
tributed over different region servers.

Each region server also has a write-ahead log (WAL) file shared
by all its regions. When a write request from a client reaches a
region server, data is first written persistently to the WAL and then
to the in-memory memstore. The write-ahead log is used to retrieve
the data after a server crash. After each flush, the write-ahead log
can be discarded up to the last persisted modification.

The memstore stores data in a sorted manner, and its size can
grow to the order of gigabytes. Once the size of memstore crosses
a threshold, it is flushed to disk as a store file in a rolling fash-
ion, i.e., HBase stores data residing on disk in a fashion similar to
log-structured merge (LSM) trees [19], more specifically in “log-
structured sort-and-merge-map” form as explained in [8]. Accord-
ing to [8], background compaction of store files in HBase corre-
sponds to the merges in LSM trees and happens on a store file level
instead of the partial tree updates. Therefore, HBase uses a write-

behind mechanism and internally converts multiple random writes
to a sequential write for large chunks of data.

To read a key-value pair, first the region server hosting the cor-
responding region is identified using catalog tables. At the region
server, first the memstore is searched to see if the required value is
present there. If not, then the next level of LSM tree stored persis-
tently needs to be examined. This process continues until either all
the levels of LSM trees have been examined or the key is found.

Write involves inserting the updated or new key-value pair in
memstore and writing it sequentially to a WAL. Compaction, mem-
store flush and other such operations happen in background.

Therefore, in HBase, read latencies are higher than write laten-
cies as a read requires first searching the memstore, followed by
searching on-disk LSM-trees from the top most level to the bottom
level in a merging fashion.

On the administrative side, all the information about regions and
region servers are hosted in two catalog tables called .META. and
-ROOT-. Zookeeper, which stores information about the region
server, hosts the -ROOT- table. The -ROOT- table gives the address

of the server hosting the .META. table which, in turn, contains the
list of region servers and regions that they are hosting.

A new client first contacts Zookeeper to retrieve the server name
hosting the -ROOT- table. Afterwards, these catalog tables are
queried by the clients to reach the region server directly.

Only when catalog tables are changed due to system crash, re-
gion splitting, region merging or load balancing, does the client
need to re-establish the connection. It is important to note that
for most workloads such events are not too frequent. Thus, the
catalog tables are mostly read-intensive entities. Further, although
Zookeeper is extremely I/O intensive, it needs only a small amount
of persistent data.

2.3 Related Work
Flash SSDs have been successfully used as storage media in

many embedded systems and are ubiquitous in devices such as cell
phones and digital cameras. Hybrid database systems using both
types of storage media (i.e., HDDs and flash SSDs) have also been
proposed [12, 24]. In [12], capacity planning technique was pro-
posed to minimize the cost of a hybrid storage media. It uses flash
SSDs as a complementary device for HDDs rather than a replace-
ment. Further, in [24], a novel multi-tier compaction algorithm was
designed. An efficient tablet server storage architecture that ex-
tends the Cassandra SAMT structure was proposed. It was shown
to be capable of exploiting any layered mix of storage devices.

In [2], a flash-friendly data layout was proposed that used flash
to boost the performance for DRAM-resident, flash-resident and
HDD-resident data stores. Flash has also been used as part of a
memory hierarchy (in between RAM and HDD) for query process-
ing. In [9, 25], a general pipelined join algorithm was introduced
that used a column-based page layout for flash. In [10] flash was
used as a streaming buffer between DRAM and disk to save energy.

In order for applications to work transparently to the idiosyn-
crasies of the flash SSD media, various flash specific file systems
have been developed. YAFFS [18] and JFFS4 are among the most
popular ones and are part of the log-structured file system (LFS)
[23] class. LFS file systems has an advantage on flash as they log
the changes made to the data instead of overwriting it, thereby trad-
ing the costly erase operations with increased number of read op-
erations. LGeDBMS [11] used the design principle of LFS further
and introduced log structure to flash-based DBMS.

In OLTP systems, significance of flash becomes evident due to
the work of [15]. An order of magnitude improvement was ob-
served in transaction throughput by shifting the transactional logs
and roll back segments to flash SSD. An improvement by an or-
der of two was also observed in sort-merge algorithms by using
flash SSD for temporary tables storage. Further, in [14], it has been
shown that flash SSDs can help reduce the gap between the increas-
ing processor bandwidth and I/O bandwidth.

The work presented here is different from others due to multiple
reasons. Firstly, there have been attempts to introduce flash in the
memory hierarchy between RAM and disk as in [24], but to the
best of our knowledge there is no work done for benchmarking
the performance of column stores such as HBase with respect to
flash SSD as storage media. Secondly, we focus on and explore the
feasibility of using flash SSDs at the same memory hierarchy as
disk for hosting system components. Thirdly, our approach can be
generalized for any distributed key-value column-oriented storage
system, in particular the NoSQL domain.

4http://sourceware.org/jffs2/jffs2-html/

71

3. THE HYBRID HBASE SYSTEM
In this section, we describe our Hybrid HBase system. The anal-

yses of flash SSDs and HBase done in Section 2.1 and Section 2.2
respectively suggest that it is beneficial to leverage flash SSDs for
setting up a HBase system. However, when storage requirements
are high, it is not feasible to replace the entire storage capacity of
HDDs by flash SSDs. Hence, we focus only on the system compo-
nents of HBase.

3.1 System Components
The major system components of HBase are:

• Zookeeper data

• Catalog tables (-ROOT- and .META.)

• Write-ahead logs (WAL)

• Temporary storage for compaction and other such operations

In the following sections, for each of the above mentioned sys-
tem components, we discuss analytically whether hosting it on flash
SSD can give any performance boost. Section 4.2 analyzes the em-
pirical effects of putting them on a flash SSD as opposed to a HDD.

3.1.1 Zookeeper

The Zookeeper data component stores information about the mas-
ter server as well as the region server hosting the -ROOT- table, in
addition to a list of alive region servers. The client contacts the
Zookeeper to retrieve the server hosting the -ROOT- table while
the master contacts it to know about the available region servers.
The region servers report to Zookeeper periodically to confirm their
availability. This is similar to a heartbeat keep-alive mechanism
and a region server would be declared unavailable if it fails to re-
port. This, thus, makes the Zookeeper very I/O intensive.

The storage requirements for Zookeeper is essentially propor-
tional to the number of systems in the HBase cluster. For most
cases, it is very low and is in the order of kilobytes only per system.
Hence, it should be beneficial to host it in a flash SSD. However, it
cannot be hosted on main memory due to persistency requirements.

3.1.2 Catalog Tables

The catalog tables (-ROOT- and .META.) are mostly read inten-
sive and are not updated as frequently as the data tables. While the
-ROOT- table has almost a fixed size, the size of the .META. table
grows with the total number of regions in the cluster. Nevertheless,
their sizes are much less (almost insignificant) in comparison to the
data. Thus, these tables are also good candidates for being hosting
on flash SSDs. Again, although the sizes of these tables can fit into
main memory, they cannot be hosted there as persistency needs to
be maintained across system crashes.

3.1.3 Write­ahead­log (WAL)

The write-ahead-log (WAL) is used to simulate sequential writes.
Any write is first done on the WAL and it is later committed to the
disk in a rolling fashion. The WAL itself is written in a sequential
manner as well.

The size of the WAL, unlike the other system components, is not
small. The size grows proportionately with the following three pa-
rameters: (i) the time after which the WAL is committed to disk,
(ii) the rate at which writes happen, and (iii) the size of each key-
value pair. Thus, depending on the workload, the size can become
as large as gigabytes. This, therefore, rules out the possibility of
using main memory. Also, if the WAL resides on a flash SSD, sys-
tem recovery would be faster after a system crash as data written in

WAL could be read faster from SSDs. Hence, it would be produc-
tive to host it on flash SSDs.

3.1.4 Temporary Storage

Temporary storage space is used when a region is split or merged.
The rows are generally written sequentially in the temporary stor-
age and then later read in a sequential manner again. The size is not
expected to be large unless there are many region splits and merges.
Combined with the sequential nature of access, introducing flash
for temporary storage should, thus, improve the performance.

The above analyses thus suggest that shifting all the four sys-
tem components of HBase to flash SSDs can yield a better perfor-
mance at a marginal cost overhead. (Section 4.2 shows the gain in
throughput for each system component individually.) This forms
the basis of our proposed HYBRID HBASE system. The setup is
shown schematically in Figure 1. We next estimate the additional
cost of such a hybrid system.

3.2 Additional Cost of Hybrid HBase
The overhead of catalog tables is directly related to the size of the

database. If the maximum number of keys per region (as configured
by the HBase administrator) is R, then the number of entries in
.META. is m = N/R, where N is the total number of records in
the database in a stable major compacted state. The -ROOT- in turn
contains only m/R entries. Thus, we need extra space in the order
of 1/R + 1/R2 times the user data space. For typical values of
R, e.g., when R = 1000, this translates to an overhead of only
≈ 0.1%.

The space overheads for the Zookeeper and the temporary direc-
tory are proportional to the number of systems in cluster and are
insignificant in comparison to the total size of the database.

The write-ahead-log (WAL), however, can grow to a significant
size, and a flash SSD needs to be installed on each region server.
To get an upper estimate of the size of WAL, we observe that in
the worst case all the memstores will remain uncommitted and the
WAL will keep on growing. Usually there is an upper limit on
the size of the memstores and is always less than the heap size al-
located to HBase. However, in the extreme case, the entire heap
may be used for this purpose (although not recommended), thereby
starving other processes. This allows us to estimate the upper limit
by the size of the heap allocated for HBase. For our experiments,
we used 4 GB of heap and a maximum of 2 GB of memstores be-
fore flushing is forced. Even in higher end server machines having
32 GB RAM, if 16 GB is devoted for WAL (which is a high esti-
mate)5, we only need a flash SSD partition of size 16 GB on each
region server. The user data hosted on these machines can be very
high (say up to 2-4 TB) without increasing the risk of over-running
WAL. Thus, this constitutes the largest system cost requirement.
Assuming a 1 TB database and a 8 GB WAL space, the cost over-
head is 8/1024 ≈ 0.8%.

Adding all the system components together, the space overhead
grows to at most 1% of the total database size. At an estimate of
flash SSDs being 10 times more expensive than HDDs, the extra
cost overhead of our proposed Hybrid HBase system for installing
flash SSD drives is 10%. Thus, if the gain in throughput becomes
more than 10%, then the cost per unit throughput of the hybrid
system would be better.

Section 4 extensively discusses the gain in throughput by using
flash SSDs. However, before we present the experimental results
on how the hybrid system fares vis-à-vis a completely HDD based
system or a completely flash SSD based system, we describe our

5It is better to flush WAL when the size is small as then the system
rollback and recovery are faster after a system crash.

72

Workload
Operations

Access
Name Pattern

A−Update heavy
Read: 50%

Zipfian
Update: 50%

B−Read heavy
Read: 95%

Zipfian
Update: 5%

C−Read only Read: 100% Zipfian

D−Read latest
Read: 95%

Latest
Insert: 5%

E−Short ranges
Scan: 95% Zipfian/
Insert: 5% Uniform

F−Read-modify-write
Read: 50%

Zipfian
Read-Modify-Write: 50%

Table 2: YCSB workloads, as published in [5].

model of how the systems are compared according to the cost and
the cost per unit throughput measures.

3.3 Metrics for Comparing Systems
We compare the cost of storage media only as this is the sole

component varying across different system setups. In addition to a
fixed installation cost, there is a maintenance cost associated with
each storage media that includes power usage, cooling cost and
other such recurring costs. However, since it is harder to estimate
them and manage them, in this paper, we only consider the instal-
lation cost, information about which is readily available.

To calculate the system cost for a storage media over a given
workload, we first estimate the maximum amount of data stored in
the device while the workload is running. We also set the device
utilization ratio to 80% for HDDs and 50% for flash SSDs as sug-
gested in [12]. The device utilization ratio is important as when the
data size grows above it, the performance of the media decreases
due to various factors including garbage collection.

Assume that a system setup S uses n storage media. The max-
imum capacity and the utilization ratio for each of them are {D1,
D2, . . . , Dn} and {R1, R2, . . . , Rn} respectively. Hence, the am-
ount of data that can be stored in a device i is only Di/Ri. If the
price for unit capacity of each storage media is {P1, P2, . . . , Pn},
the system cost C for the entire setup S is

C =

n
X

i=1

(Pi.Di/Ri)

However, due to significant differences in latencies and cost of
the three systems (the hybrid one and the two using only one type of
storage media), we use the cost per unit throughput metric for a fair
comparison. If a system having a cost of C achieves a throughput
of T IOPS (I/O operations per sec), the cost per unit throughput is
C/T .

4. EXPERIMENTAL EVALUATION
In this section, we present the experimental analysis and bench-

marking of our proposed hybrid system vis-à-vis a complete flash-
based system and a complete disk-based system. We conduct the
experiments on a standalone instance of HBase (similar to [24]) to
completely eliminate the network related latencies. This enables
us to better understand the performance and design implications
of Hybrid HBase. Since the idea is to analyze performance im-
provement with respect to storage media, we can expect gain in
performance in similar proportions for a distributed environment.

The results are reported for experiments on a system running
on an Intel i5-2320 LGA1155 processor (4 cores and 4 threads at
3 GHz) with a total of 8 GB of RAM (4 GB as heap), Western Dig-

 20

 25

 30

 35

 40

WA WB WE

T
hr

ou
gh

pu
t (

in
 o

ps
/s

ec
)

On Flash

WAL
Zookeeper
Temporary

Catalog Tables
HDD-based

(a) Raw throughputs

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

WA WB WE

T
hr

ou
gh

pu
t R

at
io

 w
.r

.t.
 H

D
D

-b
as

ed

On Flash

WAL
Zookeeper
Temporary

Catalog Tables

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

T
hr

ou
gh

pu
t R

at
io

 w
.r

.t.
 H

D
D

-b
as

ed

On Flash

(b) Throughput as a ratio with HDD

Figure 2: Throughputs when single system components are hosted
on flash SSD.

ital 1 TB HDD, Kingston SV100S2 128 GB Flash SSD, with 64-
bit Ubuntu-Server 11.10 as the operating system and ext4 as the
underlying file system. We used HBase version 0.90.5 from the
Apache repository as the base system. For all analysis and perfor-
mance evaluations, we used Yahoo! Cloud Serving Benchmarking
(YCSB) [5] version 0.1.4. Table 2 shows the six standard work-
loads (A to F) as identified in [5].

The workloads are composed of Q number of queries (or op-
erations) on R records, and the key generation pattern is decided
by three models, namely, latest, uniform and Zipfian. For a work-
load following a uniform distribution, all records in the database
are equally likely to be chosen for the next query. For a Zipfian
distribution, some randomly selected keys are hot (more frequently
accessed) while most records are rarely accessed for queries. Lat-
est distribution, as the name implicates, reads or writes the most
recently accessed key-value pairs with a higher probability.

For our analysis, we used Q = 106 queries on a database with
R = 6 × 107 records. Each record is of size 1 KB and the total
number of regions in a compact state was found to be 72 (with a
maximum region size of ≈ 1 GB). We next discuss a few important
parameters of the system and the HBase configuration.

4.1 System Tuning
The benchmarking of any given system involves several vari-

ables which must be taken care of appropriately to get the true ef-
fect of the desired variable, which in our case, is the storage media.
By considering a standalone system, we have removed all exter-
nal network related issues. We run HBase on a dedicated partition
which is different from the operating system’s (O/S) partition. The
O/S runs on an ext4 HDD partition. Out of 8 GB RAM available,
4 GB had been allocated as heap for HBase and 4 GB had been
used by O/S. We also set the swappiness6 parameter to zero to en-
able using the entire available RAM. For the ext4 file system, we

6Swappiness is the tendency to use swap area in place of RAM in
order to reserve some RAM for future processes.

73

 1

 10

 100

 1000

 10000

 100000

 1e+06

AR AU BR BU CR DR DI ES EI FRFRMW

L
a

te
n

c
y
 (

in
 µ

s
)

YCSB Workloads

HDD
Hybrid

SSD

(a) Average Latency8

 0

 200

 400

 600

 800

 1000

 1200

A B C D E F
 0

 0.4

 0.8

 1.2

 1.6

 2

 2.4

 2.8

 3.2

 3.6

 4

T
h

ro
u

g
h

p
u

t
(i
n

 o
p

s
/s

e
c
)

C
o

s
t

(i
n

 $
)/

th
ro

u
g

h
p

u
t

YCSB Workloads

HDD throughput
Hybrid throughput

SSD throughput
HDD cost/throughput

Hybrid cost/throughput
SSD cost/throughput

(b) Throughput

Figure 3: Performance over different YCSB workloads.

deactivated the maintenance of file access times done by kernel to
further reduce the administrative overheads not needed by HBase.

On flash SSD, we additionally enable TRIM7 support to reset
all flash SSD wear-leveling tables prior to evaluation and main-
tain a 50% utilization ratio. This minimizes the internal flash SSD
firmware interference due to physical media degradation and caching
and enhances the flash performance. An unused flash performs very
well for the initial read and writes, before reaching a stable lower
performance. Hence, we completely fill and empty the flash several
times to eliminate this effect. Further, before starting the experi-
ments, we fill SSD completely with some random data so that each
query has the same state of flash for garbage collection.

For HBase, automatic major compaction was disabled. We per-
form major compaction manually and also empty the cache before
each experiment to provide the same data locality, i.e., the same
initial state for both cache and the data layout on disk. The MSLAB
[17] feature has been enabled to facilitate garbage collection as well
as to avoid lengthy pauses and memory fragmentation due to write
heavy workloads. We set the maximum regions per server to 200
and extended the session timeout limit (after which a server is de-
clared dead) to avoid possible server crashes due to delay in re-
sponses when the system is subjected to an overload.

7The TRIM command specifies which blocks of data in an SSD are
no longer used and can be erased.
8XR ≡ Read operation of workload X; XU ≡ Update operation
of workload X; XS ≡ Scan operation of workload X; XI ≡ Insert
operation of workload X; XRMW ≡ Read-modify-write operation
of workload X .

4.2 Single Component Migration
Before we benchmark the proposed Hybrid HBase system, we

first assess the effect of migrating one system component at a time.
These experiments, thus, measure the effects of hosting each sys-
tem component individually on a flash SSD while the rest three
remain on the HDD.

We ran half a million (5 × 105) queries on a database having
60 million (6×107) records over the workloads WA, WB and WE,
i.e., update-heavy, read-heavy and short-ranges. The characteristics
of the other workloads are similar to these (WC and WD are both
read-heavy and are similar to WB while WF has 50% read and 50%
write, similar to what WA also has).

Figure 2 shows the throughputs of the setups (both raw and as a
ratio with a completely HDD-based system). The gains in through-
put are more pronounced for WAL and temporary storage. Hence,
hosting these components on flash SSD is likely to improve the cost
per throughput ratio. However, since the space (and therefore, cost)
overheads of the catalog tables and Zookeeper are almost insignif-
icant, it is beneficial to host them on flash SSDs as well. These
conclusions, therefore, agree with the analyses done in Section 3.1.

4.3 Performance over the YCSB Workloads
Figure 3 depicts the performance of the Hybrid HBase setup vis-

à-vis the completely HDD-based system and the completely flash
SSD-based system for the different operations on the six YCSB
workloads. (As mentioned earlier, for all subsequent experiments,
the database consists of 6 × 107 keys and results reported are av-
erages over 3 runs, each having 106 queries. Moreover, all the four
system components are hosted on a flash SSD.)

Read latencies of SSD-based setup are significantly lower (ap-
proximately 13 times) than both Hybrid and HDD-based setups.
These read operations are random reads which are significantly
faster for a flash SSD and, hence, the lower latencies. Since the
catalog tables (-ROOT- and .META.) and also the Zookeeper data
is stored on SSD in the hybrid setup, read latencies are lower than
HDD (approximately 1.6 times). The user data remains on the disk,
and therefore, latencies are not as low as SSD.

Average latency for update operation is the lowest for SSD fol-
lowed by Hybrid and is the highest for HDD. The update oper-
ation is similar to a random write, and thus, involves writing to
the write-ahead-log (WAL) persistently and storing the updates in
memstores to be flushed later. Since WAL is on flash SSD in a Hy-
brid setup, average update latencies for Hybrid and SSD should be
similar. However, due to other background processes (e.g., major
compaction and JVM garbage collection) that run faster in SSD,
the update latencies for SSD setup are lower.

SSD outperforms Hybrid and HDD setup in scans (sequential
reads) moderately as the difference between sequential reads for
HDD and flash SSD is not as high as random reads (see Table 1).
Average insert latency for HDD, Hybrid and SSDs are also almost
similar. Insert operation differs from update operation as during
inserts, the size of a region grows and may lead to a region split. A
region split also requires updating the .META. table. Thus, average
insert latency is higher than average update latency over different
workloads.

Overall, therefore, as expected, the throughputs of a completely
SSD-based system is higher than that of the Hybrid one, which in
turn is better than a completely HDD-based setup.

Workload A is an update heavy workload and, hence, the through-
puts are lower in comparison to the other workloads. This high
variance in overall throughput is in accordance with the asymmet-
ric read/write performance of flash SSDs. Throughputs for work-
loads having higher percentage of reads are larger in comparison to

74

 0

 2

 4

 6

 8

 10

 12

 14

A B C D E F

R
a

ti
o

YCSB Workloads

y=1

Hybrid/HDD
SSD/HDD

 0

 2

 4

 6

 8

 10

 12

 14

R
a

ti
o

YCSB Workloads

y=1

(a) Throughput ratio

 0

 5

 10

 15

 20

 25

A B C D E F

R
a

ti
o

YCSB Workloads

y=1

Hybrid/HDD
SSD/HDD

 0

 5

 10

 15

 20

 25

R
a

ti
o

YCSB Workloads

y=1

(b) Cost ratio

 0

 1

 2

 3

 4

 5

 6

 7

A B C D E F

R
a

ti
o

YCSB Workloads

y=1

Hybrid/HDD
SSD/HDD

 0

 1

 2

 3

 4

 5

 6

 7

R
a

ti
o

YCSB Workloads

y=1

(c) Cost per throughput ratio

Figure 4: Relative comparison for different setups.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 0.2 0.4 0.6 0.8 1

T
im

e
 (

in
 s

)

Total Operations (in millions)

HDD
Hybrid

SSD

(a) Workload A

 0

 5000

 10000

 15000

 20000

 25000

 0 0.2 0.4 0.6 0.8 1

T
im

e
 (

in
 s

)

Total Operations (in millions)

HDD
Hybrid

SSD

(b) Workload B

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 0.2 0.4 0.6 0.8 1

T
im

e
 (

in
 s

)

Total Operations (in millions)

HDD
Hybrid

SSD

(c) Workload E

Figure 5: Total time taken for YCSB workloads.

workloads having no random reads (WE) or higher percentage of
random writes (WA).

4.4 Performance Ratios with respect to HDD
Figure 4 shows the different performance ratios of the Hybrid

and the completely flash SSD-based systems as compared to the
completely HDD-based setup. The performance metrics are through-
put, cost and cost per throughput. Even if the SSD-based setup
gives the highest throughput for all the workloads, the cost per
throughput is worse as compared to a Hybrid setup. In fact, due
to the high costs of flash SSDs, it is worse than even a fully HDD-
based setup. The y = 1 line is shown in Figure 4 to mark the base
HDD-based setup.

The throughput ratio between Hybrid and HDD setups is around
1.75 for all workloads. This leads to a lower cost per throughput
ratio for the Hybrid setup. The cost per throughput ratio for Hybrid
setup is below 1 (approximately 0.66 for all workloads).

The difference between cost per throughput of HDD-based and
SSD-based setups is even larger for workloads A and E, thereby in-
dicating that flash SSDs are not so suitable for update heavy work-
loads or workloads having no random reads. Our proposed Hybrid
HBase setup exhibits the lowest cost per throughput ratio for all
the workloads and can, therefore, be considered the best on this
criterion.

4.5 Progressive Running Time
Figure 5 shows the progressive running time for the different

workloads as more queries arrive (workloads C, D and F are not
shown as they exhibit similar effects). The SSD setup always per-
forms better than the Hybrid one which in turn outperforms the
HDD setup consistently.

We next measure the effect of introducing flash SSDs for garbage
collection and the CPU performance.

4.6 Garbage Collection
Figure 6 shows the behavior of Java garbage collector over the

three different experimental setups. The freed memory per minute
is the highest for SSD setup followed by Hybrid. However, accu-
mulative pauses are also the highest for SSD setup. Accumulative
pauses are significantly larger for workloads involving updates/in-
serts. Thus, memory fragmentation is highest for SSD setup which
further increases if an update heavy workload or an insert heavy
workload is applied. Accumulative pauses due to garbage collector
are higher for HDD setup in comparison to Hybrid setup. This is
due to the fact that system components on flash in a Hybrid setup
requires very less frequent random writes, and hence, there is less
memory fragmentation and less garbage collection time.

4.7 CPU Performance
Figure 7 shows the CPU utilization over the three different se-

tups for the workloads A, B and F (others are similar to WB). CPU
utilization for Hybrid setup is slightly larger than HDD setup. The
CPU utilization is highest for the SSD-based setup as flash SSDs
narrow the gap between I/O bandwidth and processor bandwidth.
Variation of CPU utilization in WA for SSD is high as it is an up-
date heavy workload and requires running garbage collector more
frequently, thereby increasing the CPU utilization significantly.

4.8 Effect of Database Size
The next set of experiments assess the impact of database size

on the storage layer in the standalone system. We vary the number
of records in the database, R, for R = {2, 4, 6, 8, 10} × 107. Due
to space limitations, we proceed only up to 6 × 107 records for
a completely flash SSD-based setup. Figure 8 to Figure 13 show
average latencies for all operations and overall throughputs for the
six workloads A to F.

For workload A, with the increase in number of records, read la-
tency also increases for all the setups. However, as shown in Figure

75

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

A B C D E F

F
re

e
d

 M
e

m
o

ry
 p

e
r

M
in

u
te

 (
in

 M
B

/m
in

)

YCSB Workload

HDD
Hybrid

SSD

(a) Freed memory per minute

 0

 50

 100

 150

 200

 250

 300

A B C D E F

A
c
c
u

m
u

la
ti
v
e

 P
a

u
s
e

 (
in

 s
)

YCSB Workload

HDD
Hybrid

SSD

(b) Accumulative pauses

Figure 6: Effect on garbage collector over YCSB workloads.

 0

 10

 20

 30

 40

 50

 0 5000 10000 15000 20000 25000 30000

C
P

U
 u

ti
liz

a
ti
o

n
 p

e
rc

e
n

ta
g

e

Time (in s)

HDD
Hybrid

SSD

(a) Workload A

 0

 10

 20

 30

 40

 50

 0 5000 10000 15000 20000 25000

C
P

U
 u

ti
liz

a
ti
o

n
 p

e
rc

e
n

ta
g

e

Time (in s)

HDD
Hybrid

SSD

(b) Workload B

 0

 10

 20

 30

 40

 50

 0 10000 20000 30000

C
P

U
 u

ti
liz

a
ti
o

n
 p

e
rc

e
n

ta
g

e

Time (in s)

HDD
Hybrid

SSD

(c) Workload F

Figure 7: Effect on CPU utilization over YCSB workloads. (Please see the soft copy version for better visualization of colors.)

8a latency increases faster for HDD setup in comparison to Hybrid
setup. As number of records increase, number of regions increases
as well. This leads to more accesses to -ROOT- and .META. tables
which are hosted on flash SSD in a Hybrid setup. Hence, although
initially with 2 × 107 records, read latencies of Hybrid and HDD
setup are comparable, for larger sizes, there is a significant differ-
ence between them. Read latency of SSD is very small in compar-
ison to other two setups as random reads are much faster on SSDs.
The same behavior is shown for read latencies in workloads B, C,
D and F and scan latencies in workload E.

To compare update latencies, it should be noted that while up-
dates to a single region are sequential, those to multiple regions are
random. Hence, if incoming updates/inserts are distributed across
multiple regions, the random write characteristic aggravates. Up-
date latency for workload A and B increases moderately with in-
creasing number of records as shown in Figure 8b and Figure 9b.
The update latencies for workload B is higher for all the three se-
tups as there are only 5% update operations as compared to 50% in
workload A. Since the update operations are distributed over all the
regions, and the number of regions remain approximately equal for
both workloads, this results in more random writes corresponding
to each region for workload A. Thus, in an update heavy workload
(WA), update latency for all database sizes is comparable owing to
the larger sequential write characteristics.

Throughput decreases as number of records increase in all three
setups for all workloads. However, as shown in Figure 8c, the
change in throughput is maximum for SSD setup for workloads
A, E and F. As number of regions increases, writes get more dis-
tributed. This results in smaller chunks of sequential write (random
writes converted to sequential write for each region when written
to new store files) for each region and larger number of such ran-
dom chunks. Workload E includes insert operations and leads to
many region splits. Consequently, garbage collection requirements

become higher as well. Thus, the throughput drops rapidly for SSD
setup for workloads A and E. The drop in throughput for the work-
loads B, C and D are less sharper as they are more read-heavy (Fig-
ure 9c, Figure 10b and Figure 11c).

For workloads A, E and F, the cost per throughput is the high-
est for SSD. With increase in number of records, it increases faster
than the other two setups as shown by slope of the lines. This hap-
pens since the increase in cost is not proportional to the increase in
throughput. For workloads B, C and D as well, SSD has the highest
cost per throughput, but the difference with SSD is smaller as they
are more read-intensive.

For all database sizes and all workloads, Hybrid HBase has the
lowest cost per throughput. This establishes the benefits of our
proposed system.

4.9 Effect of Access Pattern
We next evaluate effect of access pattern for workloads A to F.

The results are reported in Figure 14 to Figure 19.
Update latencies for the uniform access pattern are higher as

compared to the other access patterns since they are distributed to
a larger number of regions. To understand this better, consider the
scenario where there are 5000 write operations. If these are dis-
tributed over 10 regions, then there are 10 chunks of sequential
writes each containing 500 write operations. However, if these op-
erations are distributed over 100 regions (as is more likely for a
uniform access pattern), then there are 100 chunks of sequential
writes each containing 50 write operations. The first will always be
favorable for both HDDs and flash SSDs.

In a uniform access pattern, insert operations lead to lower num-
ber of region splits as all regions grow equally. However, in a Zip-
fian or latest access pattern, insert operations will happen more fre-
quently on a few regions, thereby resulting in more frequent region
splitting. Thus, in spite of having a more random write effect in

76

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

20 40 60 80 100

A
v
e

ra
g

e
 R

e
a

d
 L

a
te

n
c
y
 (

in
 m

s
)

Number of records (in million)

HDD
Hybrid

SSD

(a) Average Read Latency

 0

 2

 4

 6

 8

 10

20 40 60 80 100

A
v
e

ra
g

e
 U

p
d

a
te

 L
a

te
n

c
y
(i
n

 µ
s
)

Number of records (in million)

HDD
Hybrid

SSD

(b) Average Update Latency

 0

 100

 200

 300

 400

 500

 600

 700

 800

20 40 60 80 100
 0

 0.4

 0.8

 1.2

 1.6

 2

 2.4

 2.8

 3.2

 3.6

 4

T
h

ro
u

g
h

p
u

t
(i
n

 o
p

s
/s

e
c
)

C
o

s
t(

in
 $

)/
(T

h
ro

u
g

h
p

u
t)

Number of records (in million)

HDD throughput
Hybrid throughput

SSD throughput
HDD costperOPS

Hybrid costperOPS
SSD costperOPS

(c) Throughput

Figure 8: Effect of database size on YCSB workload A.

 0

 20

 40

 60

 80

 100

 120

 140

 160

20 40 60 80 100

A
v
e

ra
g

e
 R

e
a

d
 L

a
te

n
c
y
 (

in
 m

s
)

Number of records (in million)

HDD
Hybrid

SSD

(a) Average Read Latency

 0

 10

 20

 30

 40

 50

20 40 60 80 100

A
v
e

ra
g

e
 U

p
d

a
te

 L
a

te
n

c
y
 (

in
 µ

s
)

Number of records (in million)

HDD
Hybrid

SSD

(b) Average Update Latency

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

20 40 60 80 100
 0

 0.4

 0.8

 1.2

 1.6

 2

T
h

ro
u

g
h

p
u

t
(i
n

 o
p

s
/s

e
c
)

C
o

s
t

(i
n

 $
)/

(T
h

ro
u

g
h

p
u

t)

Number of records (in million)

HDD throughput
Hybrid throughput

SSD throughput
HDD costperOPS

Hybrid costperOPS
SSD costperOPS

(c) Throughput

Figure 9: Effect of database size on YCSB workload B.

 0

 20

 40

 60

 80

 100

 120

 140

 160

20 40 60 80 100

A
v
e

ra
g

e
 R

e
a

d
 L

a
te

n
c
y
 (

in
 m

s
)

Number of records (in million)

HDD
Hybrid

SSD

(a) Average Read Latency

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

20 40 60 80 100
 0

 0.4

 0.8

 1.2

 1.6

 2

T
h

ro
u

g
h

p
u

t
(i
n

 o
p

s
/s

e
c
)

C
o

s
t

(i
n

 $
)/

(T
h

ro
u

g
h

p
u

t)

Number of records (in million)

HDD throughput
Hybrid throughput

SSD throughput
HDD costperOPS

Hybrid costperOPS
SSD costperOPS

(b) Throughput

Figure 10: Effect of database size on YCSB workload C.

 0

 20

 40

 60

 80

 100

 120

 140

20 40 60 80 100

A
v
e

ra
g

e
 R

e
a

d
 L

a
te

n
c
y
 (

in
 m

s
)

Number of records (in million)

HDD
Hybrid

SSD

(a) Average Read Latency

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

20 40 60 80 100

A
v
e

ra
g

e
 I

n
s
e

rt
 L

a
te

n
c
y
 (

in
 µ

s
)

Number of records (in million)

HDD
Hybrid

SSD

(b) Average Insert Latency

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

20 40 60 80 100
 0

 0.4

 0.8

 1.2

 1.6

 2

T
h

ro
u

g
h

p
u

t
(i
n

 o
p

s
/s

e
c
)

C
o

s
t

(i
n

 $
)/

T
h

ro
u

g
h

p
u

t

Number of records (in million)

HDD throughput
Hybrid throughput

SSD throughput
HDD costperOPS

Hybrid costperOPS
SSD costperOPS

(c) Throughput

Figure 11: Effect of database size on YCSB workload D.

77

 0

 50

 100

 150

 200

20 40 60 80 100

A
v
e

ra
g

e
 S

c
a

n
 L

a
te

n
c
y
 (

in
 m

s
)

Number of records (in million)

HDD
Hybrid

SSD

(a) Average Scan Latency

 0

 50

 100

 150

 200

 250

20 40 60 80 100

A
v
e

ra
g

e
 I

n
s
e

rt
 L

a
te

n
c
y
 (

in
 µ

s
)

Number of records (in million)

HDD
Hybrid

SSD

(b) Average Insert Latency

 0

 50

 100

 150

 200

 250

 300

20 40 60 80 100
 0

 0.4

 0.8

 1.2

 1.6

 2

 2.4

 2.8

 3.2

 3.6

 4

T
h

ro
u

g
h

p
u

t
(i
n

 o
p

s
/s

e
c
)

C
o

s
t

(i
n

 $
)/

T
h

ro
u

g
h

p
u

t

Number of records (in million)

HDD throughput
Hybrid throughput

SSD throughput
HDD costperOPS

Hybrid costperOPS
SSD costperOPS

(c) Throughput

Figure 12: Effect of database size on YCSB workload E.

 0

 20

 40

 60

 80

 100

 120

 140

 160

20 40 60 80 100

A
v
e

ra
g

e
 R

e
a

d
 L

a
te

n
c
y
 (

in
 m

s
)

Number of records (in million)

HDD
Hybrid

SSD

(a) Average Read Latency

 0

 20

 40

 60

 80

 100

 120

 140

 160

20 40 60 80 100A
v
e

ra
g

e
 R

e
a

d
-M

o
d

if
y
-W

ri
te

 L
a

te
n

c
y
 (

in
 m

s
)

Number of records (in million)

HDD
Hybrid

SSD

(b) Average Read-Modify-Write Latency

 0

 100

 200

 300

 400

 500

 600

 700

20 40 60 80 100
 0

 0.4

 0.8

 1.2

 1.6

 2

 2.4

 2.8

T
h

ro
u

g
h

p
u

t
(i
n

 o
p

s
/s

e
c
)

C
o

s
t(

in
 $

)/
(o

p
s
/s

e
c
)

Number of records (in million)

HDD throughput
Hybrid throughput

SSD throughput
HDD costperOPS

Hybrid costperOPS
SSD costperOPS

(c) Throughput

Figure 13: Effect of database size on YCSB workload F.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

Latest Uniform Zipfian

A
v
e

ra
g

e
 R

e
a

d
 L

a
te

n
c
y
 (

in
 m

s
)

Access Pattern

HDD
Hybrid

SSD

(a) Average Read Latency

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

Latest Uniform Zipfian

A
v
e

ra
g

e
 U

p
d

a
te

 L
a

te
n

c
y
 (

in
 µ

s
)

Access Pattern

HDD
Hybrid

SSD

(b) Average Update Latency

 0

 200

 400

 600

 800

 1000

 1200

Latest Uniform Zipfian

T
h

ro
u

g
h

p
u

t
(i
n

 o
p

s
/s

e
c
)

Access Pattern

HDD
Hybrid

SSD

(c) Throughput

Figure 14: Effect of access pattern on operation combination of YCSB workload A.

 0

 20

 40

 60

 80

 100

 120

 140

 160

Latest Uniform Zipfian

A
v
e

ra
g

e
 R

e
a

d
 L

a
te

n
c
y
 (

in
 m

s
)

Access Pattern

HDD
Hybrid

SSD

(a) Average Read Latency

 0

 10

 20

 30

 40

 50

Latest Uniform Zipfian

A
v
e

ra
g

e
 U

p
d

a
te

 L
a

te
n

c
y
 (

in
 µ

s
)

Access Pattern

HDD
Hybrid

SSD

(b) Average Update Latency

 0

 100

 200

 300

 400

 500

 600

 700

Latest Uniform Zipfian

T
h

ro
u

g
h

p
u

t
(i
n

 o
p

s
/s

e
c
)

Access Pattern

HDD
Hybrid

SSD

(c) Throughput

Figure 15: Effect of access pattern on operation combination of YCSB workload B.

78

 0

 20

 40

 60

 80

 100

 120

 140

 160

Latest Uniform Zipfian

A
v
e

ra
g

e
 R

e
a

d
 L

a
te

n
c
y
 (

in
 m

s
)

Access Pattern

HDD
Hybrid

SSD

(a) Average Read Latency

 0

 100

 200

 300

 400

 500

 600

Latest Uniform Zipfian

T
h

ro
u

g
h

p
u

t
(i
n

 o
p

s
/s

e
c
)

Access Pattern

HDD
Hybrid

SSD

(b) Throughput

Figure 16: Effect of access pattern on operation combination of YCSB workload C.

 0

 20

 40

 60

 80

 100

 120

 140

 160

Latest Uniform Zipfian

A
v
e

ra
g

e
 R

e
a

d
 L

a
te

n
c
y
 (

in
 m

s
)

Access Pattern

HDD
Hybrid

SSD

(a) Average Read Latency

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

Latest Uniform Zipfian

A
v
e

ra
g

e
 I

n
s
e

rt
 L

a
te

n
c
y
 (

in
 µ

s
)

Access Pattern

HDD
Hybrid

SSD

(b) Average Insert Latency

 0

 100

 200

 300

 400

 500

 600

Latest Uniform Zipfian

T
h

ro
u

g
h

p
u

t
(i
n

 o
p

s
/s

e
c
)

Access Pattern

HDD
Hybrid

SSD

(c) Throughput

Figure 17: Effect of access pattern on operation combination of YCSB workload D.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

Latest Uniform Zipfian

A
v
e

ra
g

e
 S

c
a

n
 L

a
te

n
c
y
 (

in
 m

s
)

Access Pattern

HDD
Hybrid

SSD

(a) Average Scan Latency

 0

 50

 100

 150

 200

Latest Uniform Zipfian

A
v
e

ra
g

e
 I

n
s
e

rt
 L

a
te

n
c
y
 (

in
 µ

s
)

Access Pattern

HDD
Hybrid

SSD

(b) Average Insert Latency

 0

 50

 100

 150

 200

 250

Latest Uniform Zipfian

T
h

ro
u

g
h

p
u

t
(i
n

 o
p

s
/s

e
c
)

Access Pattern

HDD
Hybrid

SSD

(c) Throughput

Figure 18: Effect of access pattern on operation combination of YCSB workload E.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

Latest Uniform Zipfian

A
v
e

ra
g

e
 R

e
a

d
 L

a
te

n
c
y
 (

in
 m

s
)

Access Pattern

HDD
Hybrid

SSD

(a) Average Read Latency

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

Latest Uniform ZipfianA
v
e

ra
g

e
 R

e
a

d
-M

o
d

if
y
-W

ri
te

 L
a

te
n

c
y
 (

in
 m

s
)

Access Pattern

HDD
Hybrid

SSD

(b) Average Read-Modify-Write Latency

 0

 100

 200

 300

 400

 500

 600

Latest Uniform Zipfian

T
h

ro
u

g
h

p
u

t
(i
n

 o
p

s
/s

e
c
)

Access Pattern

HDD
Hybrid

SSD

(c) Throughput

Figure 19: Effect of access pattern on operation combination of YCSB workload F.

79

update access pattern, insert latencies for all access patterns are al-
most similar, with only slightly higher values for uniform access
pattern for all the three setups. If fewer regions are accessed more
frequently for read operations, then read latency decreases due to
lower cache miss. So, both read (in workloads A, B, C, D and F)
and scan (in workload E) latencies are lower for Zipfian and latest
access patterns in comparison to uniform. Read-modify-write op-
eration in workload F involves a read and an update operation, and
hence, has a higher latency for uniform access pattern.

Hence, throughput of uniform access pattern is the lowest for all
workloads. Also, similar to previous analyses, SSD setup provides
maximum throughput followed by Hybrid setup for all the tested
access patterns and workloads.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we analyzed the feasibility of introducing flash

SSD drives for large column store systems such as HBase. Since
hosting the entire database on flash SSDs is infeasible due to its
large costs, we chose only the system components. We did a thor-
ough qualitative and quantitative assessment (by using the standard
YCSB benchmark workloads) of the effects of hosting the four ma-
jor system components of HBase on flash SSDs.

While a complete SSD-based solution exhibited the best through-
put, and a complete HDD-based setup had the least cost, our pro-
posed Hybrid HBase achieved the best performance in terms of cost
per throughput. It was shown to be better by almost 33% than the
complete HDD setup.

In future, it would be useful to assess the effects of flash specific
file systems, if any. Also, we plan to extend our system to a truly
distributed setup where network latencies can play an important
role. Finally, it needs to be explored whether storing some data
components on the flash SSD instead of the HDD can improve the
cost per throughput ratio even further, and whether such a setup can
be tuned automatically according to the workload.

ACKNOWLEDGMENTS

We thank NetApp Corporation, India for partly supporting this work
through grant number NETAPP/CS/20110061.

6. REFERENCES
[1] D. J. Abadi. Columnstores for wide and sparse data. In

CIDR, pages 292–297, 2007.

[2] M. Athanassoulis, A. Ailamaki, S. Chen, P. B. Gibbons, and
R. Stoica. Flash in a DBMS: Where and how? IEEE Data

Engg. Bull., 33(4):28–34, 2010.

[3] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E. Grube.
Bigtable: A distributed storage system for structured data. In
OSDI, pages 205–218, 2006.

[4] S. Chen. FlashLogging: Exploiting flash devices for
synchronous logging performance. In SIGMOD, pages
73–86, 2009.

[5] B. F. Cooper, A. Silberstein, E. Tam, R. Ramkrishnan, and
R. Sears. Benchmarking cloud serving systems with YCSB.
In SoCC, pages 143–154, 2010.

[6] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: Amazon’s highly available
key-value store. In SOSP, pages 205–220, 2007.

[7] M. Du, Y. Zaho, and J. Le. Using flash memory as storage
for read-intensive database. In First Int. Workshop on

Database Technology and Applications, 2009.
[8] L. George, editor. HBase – The Definitive Guide: Random

Access to Your Planet-Size Data. O’Reilly, 2011.

[9] G. Graefe, S. Harizopoulos, H. A. Kuno, M. A. Shah,
D. Tsirogiannis, and J. L. Wiener. Designing database
operators for flash-enabled memory hierarchies. IEEE Data

Engg. Bull., 33(4):21–27, 2010.

[10] M. G. Khatib, B.-J. van der Zwaag, P. H. Hartel, and G. J. M.
Smit. Interposing flash between disk and dram to save energy
for streaming workloads. In ESTImedia, pages 7–12, 2007.

[11] G. J. Kim, S. C. Baek, H. S. Lee, H. D. Lee, , and M. J. Joe.
LGeDBMS: A small DBMS for embedded systems. In
VLDB, pages 1255–1258, 2006.

[12] Y. Kim, A. Gupta, B. Urgaonkar, P. Berman, and
A. Sivasubramaniam. HybridStore: A cost-efficient,
high-performance storage system combining SSDs and
HDDs. In MASCOTS, pages 227–236, 2011.

[13] A. Lakshman and P. Malik. Cassandra: A decentralized
structured storage system. Operating Systems Review,
44(2):35–40, 2010.

[14] S. W. Lee, B. Moon, and C. Park. Advances in flash memory
SSD technology for enterprise database applications. In
SIGMOD, pages 863–870, 2009.

[15] S. W. Lee, B. Moon, C. Park, J. M. Kim, and S. W. Kim. A
case for flash memory SSD in enterprise database
applications. In SIGMOD, pages 1075–1086, 2008.

[16] Y. Li, S. T. On, J. Xu, B. Choi, and H. Hu. DigestJoin:
Exploiting fast random reads for flash-based joins. In Mobile

Data Management, pages 152–161, 2009.

[17] T. Lipcon. Avoiding full GCs in HBase with memstore-local
allocation buffers. http://www.cloudera.com/blog, February
2011.

[18] A. One. YAFFS: Yet Another Flash File System.
http://www.yaffs.net/.

[19] P. E. O’Neil, E. Cheng, D. Gawlick, and E. J. O’Neil. The
log-structured merge-tree (LSM-tree). Acta Inf.,
33(4):351–385, 1996.

[20] S. Pelley, T. F. Wenisch, and K. LeFevre. Do query
optimizers need to be SSD-aware? In Second Int. Workshop

on Accelerating Data Management Systems using Modern

Processor and Storage Architectures, 2011.

[21] M. Polte, J. Simsa, and G. Gibson. Comparing performance
of solid state devices and mechanical disks. In 3rd Petascale

Data Storage Workshop, Supercomputer, 2008.

[22] M. Polte, J. Simsa, and G. Gibson. Enabling enterprise solid
state disks performance. In Workshop on Integrating

Solid-state Memory into the Storage Hierarchy, March 2009.

[23] M. Rosenblum and J. K. Ousterhout. The design and
implementation of a log structured file system. ACM Trans.

on Comp. Sys., 10(1):26–52, 1992.

[24] R. P. Spillane, P. J. Shetty, E. Zadok, S. Dixit, , and
S. Archak. An eficient multi-tier tablet server storage
architecture. In SoCC, pages 1–14, 2011.

[25] D. Tsirogiannis, S. Harizopoulos, M. A. Shah, J. L. Wiener,
and G. Graefe. Query processing techniques for solid state
drives. In SIGMOD, pages 59–72, 2009.

80

Entity Ranking and Relationship Queries Using an
Extended Graph Model

Ankur Agrawal
IIT Bombay

ankuragrawal.iitb@gmail.com

S. Sudarshan
IIT Bombay

sudarsha@cse.iitb.ac.in

Ajitav Sahoo
IIT Bombay

ajitavsahoo@gmail.com

Adil Anis Sandalwala
IIT Bombay

sandalwalaadil@gmail.com

Prashant Jaiswal
IIT Bombay

prash.jai@gmail.com

ABSTRACT
There is a large amount of textual data on the Web and
in Wikipedia, where mentions of entities (such as Gandhi)
are annotated with a link to the disambiguated entity (such
as M. K. Gandhi). Such annotation may have been done
manually (as in Wikipedia) or can be done using named
entity recognition/disambiguation techniques. Such an an-
notated corpus allows queries to return entities, instead of
documents. Entity ranking queries retrieve entities that
are related to keywords in the query and belong to a given
type/category specified in the query; entity ranking has been
an active area of research in the past few years. More re-
cently, there have been extensions to allow entity-relationship
queries, which allow specification of multiple sets of entities
as well as relationships between them.

In this paper we address the problem of entity ranking
(“near”) queries and entity-relationship queries on the Wiki-
pedia corpus. We first present an extended graph model
which combines the power of graph models used earlier for
structured/semi-structured data, with information from tex-
tual data. Based on this model, we show how to specify
entity and entity-relationship queries, and defined scoring
methods for ranking answers. Finally, we provide efficient
algorithms for answering such queries, exploiting a space ef-
ficient in-memory graph structure. A performance compari-
son with the ERQ system proposed earlier shows significant
improvement in answer quality for most queries, while also
handling a much larger set of entity types.

1. INTRODUCTION
Over the last decade, there has been a lot of work on key-

word search over structured and semi-structured data. Some
of this body of work focuses on finding a closely connected
set of data items containing specified keywords, for example
[4, 10, 1, 9]. In contrast ObjectRank [2] extended the idea
of PageRank to compute keyword specific ranks for objects

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without feeprovided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation onthefirst page. To copy otherwise, to
republish, to post onserversor to redistribute to lists, requires prior specific
permission and/or a fee.
The 18th International Conference on Management of Data (COMAD),
14th-16th Dec, 2012at Pune, India.
Copyright c©2012Computer Society of India (CSI).

in a connected graph. A similar idea of near queries was
also mentioned briefly in [11]. All the above work focused
primarily on structured data.

In recent years, search over annotated text data has re-
ceived increasing attention. This work is motivated in part
by the availability of annotated text in Wikipedia, and by
the availability of text annotators for named entity recog-
nition/disambiguation, such as [13, 19], which can work on
web scale data. Such annotations add semantic links to text,
identifying mentions of entities in text, and organizing the
entities into a type or category hierarchy. For example, the
occurrence of the words “Kleinberg” in text may be identi-
fied as a mention of the person entity “Jon Kleinberg”.

Suppose the annotation on a text corpus have identified
occurrences of person entities (amongst other types of enti-
ties). We can then run queries such as “find persons near
Web search”; the basic idea is to find mentions of entities
of type person close to the words Web and search, and ag-
gregate over multiple such occurrences to rank persons in
terms of their proximity to the words web and search. Work
in this area includes [5, 6, 8] and [7]; see Section 6 for more
details.

In general, entity ranking involves finding specific entities
as answers to queries. The user submits the search keywords
and also the target type of the desired answers. (We use the
words type and category interchangeably, since both terms
have been widely used in prior work.) Some examples of such
queries as obtained from the INEX 2008 track are: “Find a
list of musicians who appeared in at least one of the Blues
Brothers movies”, and “Find a list of the state capitals of
the United States of America”.

Wikipedia is often used as the source of entities, and the
YAGO category hierarchy [18] (which provides a cleaned up
version of Wikipedia categories combined with the Word-
Net ontology) is used to associate entities with a hierarchy
of categories. Several systems, such as Yago, also extract
relationships from unstructured information and represent
them, for example, using RDF or even relational schemas.
Structured queries are then run on the structured data, by
systems such as Naga [12], [3] and [17]. However, the num-
ber of extracted relationships are limited, and the integra-
tion of unstructured and structured information is limited.
See Section 6 for more details.

The ERQ system [14, 15] has worked on more complex
queries called entity-relationship queries, that can look for
relationships between entities. Queries can specify entities

81

in a manner similar to entity ranking queries, but addi-
tionally specify desired relationships through keywords. As
an example from [15], a query can ask for “persons related
to Stanford who have founded companies in silicon valley”;
more formally the query asks for “person entities near Stan-
ford that are related to company entities near silicon valley
by the term founded”.

The systems mentioned above exploit entity annotations,
but do not exploit the graph structure of the underlying
data. For example, they cannot answer a query of the form
“find universities near Nobel prize” unless there are men-
tions of the term Nobel prize near the university name. If
person entities related to Nobel prize, are also related to
a university entity, we would consider the university to be
related to Nobel prize. Such transfer of prestige does oc-
cur in graph based systems such as Object Rank [2] and
BANKS [11], but those systems do not support nodes con-
taining annotated text. Our goal is to have a unified model
that handles both graph information and annotated textual
data.

As a first attempt to address the issue, we treated the
Wikipedia corpus as a graph, with documents as nodes and
inter-page links as edges, and ran the near query implemen-
tation of [11] on the graph. However, the results were very
disappointing; the main reasons were (a) the graph is very
densely connected and (b) it makes no sense to consider a
link at the end of a long Wikipedia page to be related to a
word that occurs early in the page.

To address the above problem, we introduce the notion
of a graph where nodes contain words and edges, occurring
at specified offsets. When we traverse the graph to answer
a query, we take the offsets into account, in a way that we
describe later in the paper. This extended graph model is
well suited to Wikipedia data, to annotated Web pages, as
well as to traditional structured data, and can be used in
systems that integrate different types of data.

We then show how to use the extended graph model to de-
fine scoring models for entity and entity-relationship queries,
and to derive efficient algorithms for answering such queries.

The contributions of this paper are as follows:

1. We present (in Section 2) a new graph model that al-
lows nodes to contain terms as well as links at specified
offsets. This model combines the best features of the
graph model, and the document models, both of which
have been widely used in the past.

2. We present (in Section 3) new methods for scoring an-
swers to near queries taking the new graph model into
account.

Unlike earlier work on entity ranking and entity-rela-
tionship queries, our model does not require the user to
provide a precise specification of the desired type of the
results; instead, we allow type-keywords to describe
the desired type. Answers are scored based on how
well the type matches the given type-keywords, and
the entity matches the remaining keywords.

3. We then present (in Section 4) a scoring model for
entity-relationship queries, again based on the extended
graph model.

We also present efficient algorithms for answering entity-
relationship queries in the above graph model.

4. We present (in Section 5) several optimizations im-
prove result quality.

5. We present a performance study (in Section 7) which
shows that our techniques give good result quality, out-
performing [15] on most queries.

2. DATA MODEL
We now describe our extended graph model, and then

outline how semi-structured datasets from Wikipedia and
YAGO [18] can be represented in the extended graph model.

2.1 Extended Graph Model
The basic data model we use is a labelled directed multi-

graph G = (V, E), where V is a set of vertices and E a
multiset of edges. Our multigraph model has two further
extensions to better handle documents.

1. Vertices can have an associated text description, mod-
eled as a document; such vertices have an associated
set of (term, offset) pairs. The offset denotes the rel-
ative position of the term from the start of the docu-
ment. Vertices that do not represent documents can
still have text descriptions, with all terms assumed to
be at offset 0.

Vertices can have associated labels; for example, when
modeling Wikipedia, these labels can be used to distin-
guish regular entity nodes from category nodes. Ver-
tices can also store other information, for example a
node prestige may be associated with each node.

2. Edges are directed. Edges can represent a hyperlink
from one document to another; each such edge e =
v1 → v2 has an associated offset e.offset which is an
offset within the document represented by v1 where
the hyperlink occurs. There can be multiple edges
from one vertex to another, at different offsets, which
is why we use a multigraph model. Edges that do not
represent hyperlinks are assumed to have an offset of
0.

Edges can also have associated labels; for example,
when modeling Wikipedia data, edge labels can be
used to distinguish edges linking a node to its cat-
egory, from edges linking a node to a non-category
node. Edges can also have an associated edge weight.

We call the above graph model as the extended graph model.
The extended graph model only stores nodes and edges

with offset information. The mapping from terms to nodes
(including offset information for term occurrences) is stored
separately, in a full text Lucene index. The term frequency
(TF) of each term in a document can also be stored in
Lucene; for example, terms in a document title can be given
a higher TF. The node prestige of a node can also be used to
boost the score of the corresponding document in Lucene.

2.2 Representing Wikipedia Data
In Wikipedia, every entity is stored as a separate docu-

ment (a Wikipedia page) also called articles. Wikipedia ar-
ticles are all linked or cross-referenced. These articles are
categorized according to the type of entity it represents.
Wikipedia provides us with category types, into which an
author could categorize the pages.

82

In our model, each Wikipedia page/document represents
an entity, which is the basic unit of our search and thus, it
is represented by a node in the graph. There are two types
of nodes in our model:

• category nodes (representing Wikipedia categories)

• entity nodes (representing all other Wikipedia pages)

Each vertex has a label identifying whether it is a category
vertex or a entity vertex. In addition, each vertex has a sepa-
rate label denoting its page-rank, pre-computed as described
later. If we integrate other Web pages into our graph, we
could use a new node type, web-page node, to represent such
Web pages,

Labels are also associated with the edges to identify the
edge type; the different types of edges in the graph are as
follows.

1. Document to entity edges, which link from a document
to entities referenced in the document. Each entity
has an associated document in Wikipedia. The offset
associated with such an edge is the token offset of the
start of the link in the document.

2. Edges denoting the ’belongs to’ relation from an entity
to a category The offset of such edges is 0.

3. Edges denoting category to category hierarchy; the off-
set of such edges in 0.

Since, a single data graph is built for both entities and cat-
egories different parts of the graph can be traversed based
on the edge type.

Edges linking entities to categories that denote the “be-
longs to” relationship are treated specially for the purpose
of ranking.

As in [4, 11], the node prestige of a node is a measure of its
importance disregarding query keywords, and is computed
using a biased PageRank computation with edge weights,
as described in [11], with teleport probability of 0.3. Offset
information is ignored, and all edges in the original graph
are treated as being of unit weight.

As in [11], for each directed edge u → v in the original
graph, we introduce a reverse edge v → u, if such an edge is
not already present. Each reverse edge is assumed to be at
offset 0, and its weight is defined as the indegree of v.

The Wikipedia category hierarchy has a number of prob-
lems, such as cycles, and improper nesting of categories. For
example, Jerry Yang, the founder of Yahoo! is in the cate-
gory Yahoo!, and thus indirectly (after a few more levels in
the hierarchy) under the category Companies. Based on the
hierarchy, we expect each entity to belong to higher level cat-
egories also. However, we would certainly not expect Jerry
Yang to be categorized as a company.

To avoid these problems we used the category hierarchy of
the YAGO ontology [18]. YAGO includes all Wikipedia en-
tities, as well as conceptual categories from Wikipedia, but
replaces the Wikipedia category hierarchy by the WordNet
hierarchy, suitably integrated with the Wikipedia categories
(which now form the leaf level of the category hierarchy).
This not only improved the quality of results, linking entities
only to relevant categories in most cases, but also reduced
the execution time significantly.

3. NEAR QUERIES
In this section, we first describe our model for near queries,

and then describe how answers are scored using our extended
graph model.

3.1 Near Query Model
A near query q can be specified as

find C near (K)

Where C is one or more keywords specifying the target en-
tity type for the answer, and K is a set of keywords; phrases
enclosed in double quotes can also be used in place of key-
words to ensure that the keywords appear together in the
order specified.

Example. Consider a user searching for the list of movies
in which actor Robert De Niro has played a part and is di-
rected by famous Hollywood director Martin Scorsese. The
near query formulation of this query will be:

find films near (directed “martin scorsese” “robert de
niro”)

Here the keyword films gives the type information C, and
the set K is equal to {directed, martin scorsese, robert de
niro}.

Near queries using the above syntax were supported in
the BANKS system [11]. However, as mentioned earlier,
when we attempted to use the BANKS near query model
on the Wikipedia corpus, with Wikipedia pages modeled as
nodes, the performance was very poor; the reason is that
nodes have many keywords and many links, and a keyword
occurring early in a page often has little connection to a link
occurring late in the page. In Section 3.2 we describe how
to score answers based on proximity of keywords to links or
entity mentions.

We use the following terminology in the rest of the paper:

• categoryKeywordList : Keyword (or set of keywords) C
before the meta-word near which specifies the target
categories (entity types).

• nearKeywordList : The set of keywords following the
meta-word near. Each keyword is separated by space
within the parenthesis. Keywords within quotes are
considered as phrases and as a result, single keywords.

• nearKeywordOriginSet : The document pages that con-
tain the keywords in the nearKeywordList.

• relevantCategorySet : The set of categories relevant to
categoryKeywordList.

We could use either of the following alternatives to decide
which documents form the nearKeywordOriginSet:

• AND semantics: Every document in the nearKeywor-
dOriginSet must contain all the keywords in nearKey-
wordList.

• OR semantics: Every document in the nearKeywordO-
riginSet must contain at least one keyword from the
nearKeywordList.

In our implementation we use the default scoring mechanism
of Lucene, which corresponds to the OR semantics.

83

3.2 Scor ing model
We now see how to score answers to near queries, using

the idea of activation spreading, as well as the relevance
of a category to the category keywords in the query. Our
technique extends the spreading activation technique used
for near queries in [11], by taking the proximity between
keywords and links (calculated using offset values) into ac-
count. Our scoring models have a number of parameters;
default values are specified for some of the parameters when
they are introduced, but the values used in our experiments
are given later, in Section 7.3.

3.2.1 Activation Spreading
As described in [11], activation spreading is initiated from

the nodes containing keywords, and spreads activation to
neighboring nodes. The following are the key features: (a)
The initial activation from a given keyword is spread to
nodes containing that keyword, in proportion to the node
prestige (PageRank) of each such node. Nodes that receive
the maximum activation form the results of the near query.
(b) Each node retains part of its incoming activation, and
spreads the remaining to its neighbors; the fraction spread
to each neighbor is inversely proportional the weight of the
directed edge from the node to its neighbor. (c) Activation
received from multiple neighbors is combined using a com-
bining function. Activation spreading continues until the
amount spread falls below a specified threshold.

We now describe how the above scheme is modified in our
context.

3.2.1.1 Initial Activation.
In our context, activation spreading starts from nodes

representing the documents which contain the keywords.
The initial hit set for query keywords is obtained using the
searcher available in Lucene. Lucene also returns the score
of the documents that are obtained as hits during the search.

The initial activation of a node is a combination of of the
relevance of the node to the keywords, given by the Lucene
score for the node, and the node prestige of the node. The
initialActivation value for each node is calculated from these
two scores by combining them either additively:

NodePrestige ∗ α + LuceneScore ∗ (1 − α) (1)

or multiplicatively:

[LuceneScoreα] ∗ [NodePrestige(1−α)] (2)

Here α is a distribution factor that can be tuned to give more
weight to the desired score. By default we use multiplicative
combination with α = 0.5.

Note that the above model is a little different from the
near query model of [11]; that model allowed each near key-
word to appear in a different tuple, and spread activation
separately for each near keyword. The activation scores were
combined across multiple keywords either multiplicatively
(for the AND semantics) or additively (for the OR seman-
tics). In the context of search on Wikipedia and other docu-
ment collections, it makes more sense to compute the initial
activation across all keywords, and then spread activation
only once.

3.2.1.2 Proximity and Spreading of Activation.
When spreading activation from a node, an attenuation

factor µ is used. Every node spreads a fraction 1 − µ of its

activation to its neighbors and retains the remaining µ frac-
tion for itself. By default, we set µ = 0.75. As in BANKS,
the fraction of activation spread to each neighbor depends
on the edge weights. However, the spreading of initial acti-
vation is special cased. The fraction of the initial activation
spread to each outlink depends on the proximity of the out-
links to the near keywords. Intuitively, if a keyword and a
link to an entity occur in proximity in a document, we be-
lieve that the entity is related to the keyword; the closer the
occurrences, the higher is the estimate of relevance of the en-
tity to the keyword. We use this idea to define the amount
of activation transferred to each of the entities linked with
the document.

The position offset of each term of a document is stored
with the index. And the offset information for every link
in a document is stored in the graph during pre-processing
phase. This offset is calculated with respect to the start
of the document. The amount of activation spread to the
entity pointed to by the link is proportional to the distance
between the link and the query keyword in the document.

The function to calculate the proximity of a link with
respect to a keyword must be such that its value degrades
as the distance between the link and the keyword increases.

Formally, if a word w occurs at position i, and a link
to an entity at position j, then if the position j is closer
to i, the propagated activation for word w at that position
would be larger than the propagated activation at a position
farther away. The issue of how the activation should decay
with distance is studied in [16]. We use the Gaussian kernel
function to calculate the proximity score.

k(i, j) = exp[−(i−j)2

2σ2]

The initial activation associated with a node in nearKey-
wordOriginSet is spread to the outlinks of the node in pro-
portion to proximity (using the formula defined above) based
on the distance between the outlink and the nearest occur-
rence of the near keyword; with multiple keywords, we take
the distance as the minimum, across all keywords, of the
distance as above.

3.2.2 Category Relevance
The answers to a keyword query must satisfy the target

type information specified in the query. In the near query
model, a user specifies the target type for the answers by
providing relevant keywords. In the context of near queries,
this target type specifies one or more categories, and the
result entity must belong to one of these categories. Each
category has a category relevance score, which is used in
entity ranking.

The categories are indexed separately, as documents, and
the categoryKeywordList specified in the query is used to
retrieve relevant categories; we call the set of categories re-
turned as the relevantCategorySet. We use the relevance
score that Lucene returns for each category as the relevance
of that category.

To calculate relevance score of an entity, the set of cat-
egories to which this entity belongs is retrieved. It is then
checked if any of these categories belongs to relevantCat-
egorySet and the maximum of the Lucene scores of such
categories is taken as the category relevance of that entity.

84

3.2.3 CombiningActivation andCategory-Relevance
Scores

After spreading of activation, the result of activation spread-
ing is stored in a priority heap ResultHeap. To get the final
score score of each entity, the activation score actScore and
the the category relevance score relScore of each node in
ResultHeap are combined additively as follows:

score(e) = actScore(e) ∗ η + relScore(e) ∗ (1 − η) (3)

The parameter η denotes the weight given to the score. En-
tities in the result are sorted by their scores score(e), and
output in descending order.

3.3 Discussion
Our scoring model for near queries spreads activation from

entities to other entities that are referenced in the Wikipedia
page of the entity (only links in or before the infobox are
considered, since Wikipedia pages often have less relevant
links later in the document).

For example, if we search for Universities near “web search”,
we may find many references to a person working on web
search techniques near keywords “web search”. Spreading
activation from such person entities can then give us a uni-
versity as an answer.

Earlier systems such as [5, 8, 7] and [15] (described in more
detail in Section 6) cannot do this, since they only look for
co-occurrences of entities and keywords to determine their
association.

4. PROCESSING ENTITY-RELATIONSHIP
QUERIES

In this section, we focus on issues involved in answering
entity-relationship queries. The query model we use is ba-
sically the same as that described in [14, 15], but we use a
different scoring system, as well as a different system design
and implementation to solve such queries.

In our formulation of the entity-relationship queries, as in
[15], we have a list of entity variables. Unlike in [15], each
entity variable is associated with a list of keywords specify-
ing the category of the desired entities called categoryKey-
wordList, and these category keywords are used to identify
one or more categories to be considered for the entity vari-
able.

Each entity variable can be associated with zero or more
predicates. There are two kinds of predicates in an entity-
relationship query :

• Selection Predicate : A selection predicate consists
of an entity variable and a list of keywords specifying
the criterion on the selection of entities. We call the
list of keywords as the NearKeywordList.

• Relation Predicate : A relation predicate consists
of two or more entity variables and a list of keywords
specifying the relationship between the entities described
by these variables.

As an example consider the following query from [15]:
“Find companies and their founders, where the companies
are in Silicon Valley and founders are Stanford graduates”.
Simple entity ranking systems are not adequate for such
complex information needs. Li et al. [15] provide a solu-
tion to this problem, by designing an entity-centric struc-
tured query mechanism called entity-relationship queries.

The above query expressed in the language of [15] is as fol-
lows:

select X, Y
from person X, companies Y
where X:[Stanford graduate]

and Y:[“Silicon Valley”]
and X,Y: [founder]

In the above query, X and Y are entity variables, bound to
specific entity types, while the keywords act as predicates.

The above query can be expressed in our syntax as follows:
find person(x) near (Stanford graduate) and

company(y) near (”Silicon Valley”)
such that x,y near (founder)

In this query, there are two entity variables named x and
y. The categoryKeywordList for variable x contains the word
“person” and for variable y, it contains the word “company”.
Variable x has a selection predicate consisting of keywords
“Stanford” and “graduate” while variable y has a selection
predicate consisting of keyword “Silicon Valley”. The query
also has a relation predicate on variables x and y consisting
of keyword “founder”.

As in ERQ [15], an entity variable can have more than
one selection predicates. For example

find person (x) near (“Turing Award”)
and near (IBM)

If we had instead used near (“Turing award”, IBM), we
would only get entities mentioned near co-occurrences of
Turing Award and IBM. In contrast, by using separate se-
lection predicates, the set of documents that establish that
a person is associated with “Turing Award” can be different
from the set of documents that establish that the person is
associated with IBM.

4.1 Scor ing ERQ Answers
Scoring and ranking of the results is an important task.

The important concepts involved in ranking the entity search
results are:

• Proximity: Entities and keywords should be placed
close to each other in the text. Intuitively, the closer
they are to each other, the more likely is their associ-
ation with each other.

• Relevance to category: As the category itself is
specified in the form of keywords, there is uncertainty
involved regarding the relevance of an entity to the
specified category keywords.

• Number of Evidences: The more number of times
a set of entities appears with the keywords in the text,
the more likely is their association.

First, we score each answer entity tuple for each predicate
separately. Finally while merging the single predicate re-
sults, we calculate the aggregate score for each answer tuple
by taking the product of the single predicate scores for the
entities involved.

4.1.1 SelectionPredicateScoring
A selection predicate in an entity-relationship query is ba-

sically a near query, which we saw in Section 3. To compute
score of an answer entity e on a selection predicate p, we use
the scoring model for near queries described in Section 3.
We combine the activation score actScore and the category
relevance score relScore using the additive combination:

85

scorep(e) = actScore(e) ∗ η + relScore(e) ∗ (1 − η)

The combined score is a normalized score and the value is
always between 0 and 1.

If there is more than one selection predicates over the same
variable, we use the following formula, where p1, p2, . . . pn

denote the selection predicates on a single entity variable.

Scorep1,p2,...,pn
(e) = (Πi∈1...nactScorepi

(e)) ∗ η

+relScore(e) ∗ (1 − η)

4.1.2 RelationPredicateScoring
Consider a relation predicate answer tuple < e1, e2, ..., en >,

and the set of occurrences O of the entities in the answer
tuple and the keywords corresponding to the predicate ap-
pearing together in the text. We calculate the score for the
relation predicate p as:

scorep(< e1, e2, ..., en >) =
∑

o∈O

exp[
−(TokenSpan(o))2

2σ2
]

where TokenSpan(o) is the number of tokens present in
the minimal scope in o covering all the entities and keywords.
λ is an input parameter specifying the threshold for the
maximum allowed value of TokenSpan and all occurrences
beyond this threshold are ignored.

4.1.3 Aggregating SinglePredicateScores
After computing single predicate scores for each predicate

result, we finally merge the results and calculate the aggre-
gate score for the final answer tuples. The aggregate score
aggScore is calculated as :

aggScore =
∏

p∈selPreds

scorep ∗
∏

p∈relPreds

score
γ
p

where selPreds and relPreds denote the selection and rela-
tion predicates, and γ is an input parameter controlling the
weightage given to the relation predicate scores.

4.2 Query Evaluation Algor ithm
Given an entity-relationship query, our approach is to first

evaluate all the selection predicates individually to find the
list of entities for each entity variable involved in the query.
We then use these entity lists to evaluate the relation predi-
cates to find tuples of related entities. Finally we take a join
of the individual predicate result list on entities for same
entity variable. In the process, we also collect offset infor-
mation to finally score the answer tuples and rank them
accordingly. We look at the steps involved in evaluating an
entity-relationship query in the following sections.

4.3 Evaluating Selection Predicates
A selection predicate in Entity-Relationship Query is ex-

actly a near query. So we directly use the near query evalua-
tion algorithm described in Section 3 to get the list of answer
entities for each entity variable, along with their scores.

After this step, we will have a list of <entity, score> pairs
for each variable. For our example query, the lists would be:
variable x : <Scott McNealy, 1.0>, <Ken Kesey, 0.9973>,

<John Steinbeck, 0.9946>, ...
variable y : <Microsoft, 1.0>, <Hewlett-Packard, 0.9944>,

<Metro Newspapers, 0.9942>, ...

4.4 Evaluating Relation Predicates
Relation predicates specify a relationship between two or

more entities in terms of keywords. There are two alterna-
tive approaches to solve a relation predicate.

Approach 1

• Use the Lucene index to find documents containing
the relation keywords, along with their offsets in the
documents.

• For each Lucene hit page :

– Find entity references near those keyword occur-
rences, using the outlinks from the entity pages
(outlink information along with offsets is avail-
able in the extended graph representation, stored
in-memory).

– Check whether these entities belong to the selec-
tion predicate answer entity list for any of the
variables involved in this relation predicate and
put them in a list for the corresponding entity
variable.

– Perform a cross product of the lists for the entity
variables, to get the answer tuples.

– Note the offsets of the keywords and the entity
links for score calculation.

The problem in this approach is that in most cases, the
keywords specifying the relationship are very general (e.g.
“join”, “found” etc.) and generate a very large number of
hits. However only a small fraction of these pages contain
links to at least one entity from the selection predicate an-
swer list for each entity variable involved in this relation
predicate. Thus processing each document as above causes
a lot of useless processing.

We solve this problem using Approach 2 described below.

Approach 2. The result of a single relation predicate, tak-
ing into account selection predicates on all the associated
entity variables, can be computed as follows.

• Find lists of pages containing reference to at least one
of the entities in the selection predicate answer list for
each entity variable; this can be done using the inlinks
of the corresponding entity nodes, fetched from the
in-memory graph representation.

• Intersect these lists to find list of pages containing links
to at least one entity from the selection predicate an-
swer list for each entity variable.

• Intersect this list with the hit list for the relation key-
words to find all such pages also containing the relation
keywords.

• For each page in this list:

– Perform a cross product of the entity lists for each
entity variable present in this page to get the an-
swer tuples.

– Note the offsets of the keywords and the entity
links for score calculation.

86

1: Inputs: List of entity variables: eVars,
List of Keywords: nKeywords,
Mapping of variable to Entity list: varToEntityMap

2: Define: VarToPageMap: a mapping from entity
variables to list of pages

3: Define: VarPageToEntityMap: a mapping from
<entity-variable, page> pairs to a list of entities

4: for all v ∈ eVars do
5: for all entity ∈ varToEntityMap[v] do
6: pageSet ⇐ Find all pages pointing to entity

7: for all page ∈ pageSet do
8: VarToPageMap[v].Add(page)
9: VarPageToEntityMap[v, page].Add(entity)

10: end for
11: end for
12: end for
13: allLinkPageList ⇐ ∩v∈eV ars VarToPageMap[v]

/* Computes intersection of lists*/
14: LuceneHitArray ⇐ Find all pages which contain the

the keywords nKeywords using the Lucene Index.
15: for all luceneHitPage ∈ LuceneHitArray do
16: if luceneHitPage ∈ allLinkPageList then
17: Define varToEntitiesMap: a map from entity

variables to a list of entities
18: for all v ∈ eVars do
19: entityList ⇐ VarPageToEntityMap[v, NodeId]
20: varToEntitiesMap[v].Add(entityList)
21: end for
22: answerTuples ⇐ ×v∈eV arsvarToEntitiesMap[v]

/* Compute cross product (×) of entity lists;
optimization using band join described in text*/

23: ResultHeap.addAll(answerTuples)
24: end if
25: end for

Algorithm 1: Evaluating a relation predicate

An optimization of the this step is to perform a band
merge of lists sorted on their offsets, to only match en-
tity and relation keyword occurrences that are present
close to each other (in terms of their offsets), instead
of performing a cross product of the entity lists. This
can reduce costs greatly for pages with many entity
references and relation keyword occurrences.

The above intuition is formalized in Algorithm 1.
After this step, we have the list of entity-tuples with their

relation predicate scores. For our example query, we will
have a list like:
x,y : <(Bill Gates, Microsoft), 0.9896>,

<(David Filo, Yahoo!), 0.9745>,
<(Vinod Khosla, Sun Microsystems), 0.9257>, ...

4.5 Handling CompleteQueries
If a query does not involve any relation predicate, process-

ing is straightforward. If the entity variable in such a query
has more than one selection predicate, we need to combine
the results of each selection predicate; we use a simple merge
join of the results.

If the query involves only one relation predicate, Algo-
rithm 1 gives the desired final answers. In case the query
has more than one relation predicate, we process each re-
lation predicate as above, and then do an equijoin on the

results of each selection predicate. Currently we do not op-
timize the join order, since none of our benchmark queries
has more than 2 relation predicates, but this could be a topic
of future work.

As an optimization, if a query has an entity variable with
more than one selection predicate, as well as a relation predi-
cate involving the same entity variable, we can avoid the join
of the selection predicate results; instead, when we process
the relation keyword we get a list of neighboring entities for
each keyword occurrence, and look up such entities in the
result entity lists for each of the selection predicates on that
entity variable.

5. HEURISTIC OPTIMIZATIONS
We now describe a few heuristics aimed at improving the

scoring of results. The effect of these optimizations is stud-
ied empirically in Section 7.

Using Wikipedia Infoboxes. In our initial implemen-
tation, every term in a Wikipedia article was assumed to
be relevant to the entity. However, our initial experiments
showed that most Wikipedia articles have a lot of terms
that are not very relevant. However, the terms early in the
article, in particular those that occur in the Wikipedia in-
foboxes, are highly relevant. We could have chosen to tailor
the ranking scheme of Lucene, but instead chose to use our
extended graph model to exploit this information, as follows.

When we build the graph, we assume that a self-link to
the same Wikipedia entity is present near each term in the
infobox, at a small offset (with default value as 5). Thus,
if we find some keyword in the infobox, we add some initial
activation to the entity itself. Similarly, we create self links
to the Wikipedia page from terms in the first few sentences
of each article; for concreteness, we use all sentences that
appear before the infobox in the article, since these generally
constitute a highly relevant summary of the entity.

Exploiting Wikipedia category specificity by match-
ing near keywords. Another area of performance improve-
ment is the specificity of Wikipedia categories. Wikipedia
provides a large collection of categories, many of which are
associated with very specific entities. For example, Nov-
els by Jane Austen, Films directed by Steven Speilberg, Uni-
versities in Catalunya are all Wikipedia categories.

Users are generally not aware of the presence of such cat-
egories, and would query on a higher level category, for ex-
ample novels, even if they are specifically looking for novels
by Jane Austen.

Thus, we look for the near keywords in the category ti-
tles also. If we find any category whose title contains all
the near keywords, we judge entities belonging (directly) to
the category as being more relevant to the near keywords.
If such a category is a subcategory of the original query
categories, the resulting entities are directly answers to the
original query. But even otherwise, we wish to give extra
weight to such entities for the purpose of spreading activa-
tion through entities that occur close to occurrences of the
near keywords.

To handle both the above goals, we add a constant value
(0.2) to the initial activation to entities directly belonging
to the above category; if an entity belongs to more than one
such category, its initial activation gets increased only once.

87

We demonstrate the effect of this feature in Section 7.

Spreading activation from articles with title contain-
ing the near keywords. Intuitively, if the title of an ar-
ticle contains all the near keywords, all the content in the
article can be assumed to be related to the keywords with
high probability. We exploit this intuition by spreading ac-
tivation from such articles to its out-neighbors.

In our spreading activation mechanism, the activation de-
cays for links farther away from the keyword occurrence. In
the special case of keywords in the article title, we treat all
outlinks early in the article (up to and including the infobox
for the article) as closely related to the keyword, even if they
are somewhat further off in terms of token offset.

We demonstrate the effect of this feature in Section 7.

6. RELATED WORK
Several systems such as ObjectRank [2], the system of [5]

and Entity Search [7] have been developed which return a
ranked list of entities as answers to keyword queries.

ObjectRank works on a graph model of data, with enti-
ties as nodes, and is based on a biased random walk model
which is an extension of the random walk model of PageR-
ank. Nodes also contain descriptive text, with the starting
nodes of the walk being determined by which nodes contain
the given keywords. The biased random walk determines
the score of each entity. The near query model of BANKS,
briefly mentioned in [11] uses a similar model, and has sim-
ilar goals, although details vary.

Chakrabarti et al. [5] describe an entity querying system
based on a model where documents have terms as well as
entity mentions. Queries can specify the type of the desired
entities, and keywords that they should be associated with.
For example, a query may ask for “cities near Eiffel tower”.
The occurrence of an entity mention near the given key-
words provides support for the relevance of that entity. The
support for an entity is aggregated across multiple occur-
rences of mentions of that entity near the given keywords.
Chakrabarti et al. [5] also describe a query language which
allows more complex queries to be created, allowing for ex-
ample entities that occur near entities retrieved by a sub-
query. The implementation in [5] worked on a Web scale
corpus, but was limited to a small number of entity types;
that limitation was subsequently removed [6].

EntityRank [8] has a similar goal, and also works on Web
scale data, but allows recognition of multiple entities co-
occurring with given keywords. Specifically, it allows the
query to specify multiple target entity types, such as #pro-
fessor, #university, along with keywords such as “database”.
All entities and keywords should co-occur near each other
in the same document. Entity Search [7] has goals similar
to that of [5], but focuses on efficient evaluation of queries
by creating appropriate indices.

Users are however often interested in relationships be-
tween entities, where the keywords that select entities may
occur separately from keywords that specify the desired re-
lationships; we give an example shortly. If the relationships
have been extracted already, it is possible to represent the
information using a graph model such as RDF, and then
a query language such as NAGA [12] can be used to exe-
cute such queries on the graph. The NAGA query language
allows complex connections to be specified, and allows ag-
gregation of evidence from multiple parts of the graph. How-

ever, a problem with this approach is that relationships have
to be extracted ahead of time, and at Web scale the number
of potential relationships is enormous. The YAGO dataset
[18] used in the NAGA system only extracted a few tens
of relationships. Other related work which considers inte-
gration of structured information and textual data includes
the ESTER system [3] and Pound et al. [17]. Both these
systems focus on relationships that have already been ex-
tracted, using the YAGO dataset, and thus support only a
limited number of relationships. However, both these sys-
tem allow queries to combine some form of textual search
with the queries on structured data.

The ERQ system [14, 15] presents an alternative approach
where the corpus is stored uninterpreted except for identifi-
cation of entities. Relationships are specified by keywords,
and found by keyword search on the corpus, in effect per-
forming a simplified on-the-fly extraction of relationships.

ERQ uses three position-based features for ranking an-
swers tuples. The first is proximity which emphasizes the
fact that if the entities and keywords are close to each other
in an evidence, then it is more likely to form a valid evi-
dence. The second feature is the ordering pattern of en-
tities and phrases in an evidence. The ordering patterns
which appear more often are better indicators of valid ev-
idences. The third feature is the mutual exclusion rule
which dictates that when evidences of different entities co-
occur in the same sentence, at most one colliding pattern
is effective. Our scoring model takes proximity into ac-
count, but does not currently implement ordering patterns
and mutual exclusion.

Although the ERQ system does not limit the number of
relationships, the evaluation algorithm used in ERQ requires
separate indices per entity type, and the implementation of
[15] indexed only 10 selected entity types. Thus the num-
ber of queries that can be expressed is limited. In contrast,
in our system, we handle all possible categories specified
in Wikipedia/YAGO. To our knowledge, all the earlier sys-
tems require the answer types to be precisely specified in the
query. In the real world, such specification is not easy, since
users are not aware of what types are available. Our system
allows type specification to be done based on keywords that
match types, and all matching types are answer candidates;
a match score for each answer type is taken into account
along with entity scores, to get the overall answer ranking.

We use Lucene as a document-centric indexing system,
and exploit our extended graph model to efficiently find en-
tity mentions in proximity to keyword occurrences. The
in-memory graph also provides a mapping between entities
and their categories.

7. EXPERIMENTAL EVALUATION
In this section, we present a detailed analysis of the ef-

fectiveness our approach for solving near queries and entity-
relationship queries. We look at the contribution of different
factors involved in the approach. We also show a compari-
son of the quality of our results with those generated by the
ERQ system of Li et al. [15].

7.1 Experimental Setup
We have implemented our algorithms in Java using servlets;

we call our system WikiBANKS. Our system is available for
access over the Web at the URL www.cse.iitb.ac.in/banks.
The machine we used has 12 GB of RAM and an Intel Xeon

88

E5504, 2 GHz processor, with 1 TB Hard disk with SATA
interface, running Ubuntu 10.04 LTS with a Linux 2.6.32-34
kernel. The database system used is PostgreSQL 8.3.7.

The Wikipedia graph was created out of a Wikipedia
dump as of January 2009, and has following characteristics:
number of nodes: 16.28 million, number of edges: 179.5 mil-
lion, average indegree: 5.4303, maximum indegree: 374882.
The graph takes about 4 GB space and takes about 85 sec-
onds to load.

We index Wikipedia data using Lucene. For each docu-
ment in Wikipedia, a virtual document is created, containing
three fields: (a) Nodeid: the Wikipedia article ID, (b) Title:
the title of the article, and (c) Content: the textual content
of the article. The title and content field are indexed using
Lucene, while Nodeid is stored but not indexed. The index
stores term offsets for each occurrence of a term in each doc-
ument that it occurs in. The index building is done after
assigning prestige scores to the nodes of the graph. These
node prestige scores are also included in indexing to boost
the hits of the relevant nodes. We use Lucene Collectors to
collect the Lucene scores for documents and SpanQuery to
get the offsets of the search terms.

7.2 Query Set
Unlike the ERQ system of Li et al. [15], which supports

only a limited number of categories, our system supports
all the Yago categories, numbering nearly 150,000. Thus
our system can answer a vastly larger number of queries
than ERQ. However, to compare the two systems, we chose
a set of 27 queries from the “Own28” set of Li et al. [15],
available online at http://idir.uta.edu/erq/, as a performance
benchmark. The query set includes:

• Q1 - Q16 : Single selection predicate queries, i.e. Near
queries with only one selection predicate.

• Q17 - Q21 : Multiple selection predicate queries, i.e.
Near queries with multiple selection predicates on the
same entity variable.

• Q22 - Q27 : Entity-relationship queries, also known as
multi-predicate queries with join.

For each query, we have a manually collected a set of
correct answers, which we believe is fairly complete. We
consider these sets as the ground truth when evaluating the
performance. While [15] has only a limited number of entity
categories available for use in queries, when we expressed the
queries in our system for a few of the queries we made use
of the richer set of categories available to us; the specific
set of changes were: actor instead of person, football player
instead of player, and football club instead of club, in queries
where such substitutions are appropriate.

7.3 Parameter Sett ings
There are a number of input parameters involved in our

query processing and scoring model. We have executed a
large number of queries with different parameter settings,
and manually chose the optimum values for these parame-
ters, i.e. the values that gave the best precision. For se-
lection predicates, we set the token span λ = 12, and the
value σ = 6 for proximity scoring using the Gaussian kernel.
For near queries with a single selection predicate we use the
weightage for activation η = 0.1, while for near queries with

multiple selection predicates we use η = 0.6. For entity-
relationship queries, we set η = 0.8 for selection predicates;
for relation predicates we set λ = 16, σ = 8, and the multi-
plicative weighting factor for relations predicates γ = 0.6.

7.4 Measures of Performance
We have used the following precision measures to compare

the performance:

• Precision at k : Also referred to as P@k, it is the
precision at a given cut-off rank. It is calculated as:

P@k =
|relDocs

⋂
topKDocs|

k

where relDocs is the set of all relevant documents (here,
entities) and topKDocs is the set containing the top-
K documents (here, entities) that are retrieved. Our
precision at K graphs stop at K = 10.

• Recall : Recall is the fraction of the documents that
are relevant to the query that are successfully retrieved:

recall =
|relDocs

⋂
retrievedDocs|

|relDocs|

where retrievedDocs is the set of all documents (here,
entities) that are retrieved. To compare precision and
recall, we have plotted precision at specific values of
recall. To calculate this, we find the precision at the
point when we have retrieved just enough answers to
achieve a particular recall value (i.e. particular frac-
tion of the set of all correct answers). When the sys-
tem is unable to retrieve enough answers to achieve a
particular recall value, we define the precision at that
recall value as zero.

7.5 Experimental Results
Figure 1 compares the performance of the basic system

(without the optimizations described in Section 5) with and
without using offsets information. The comparison is for
near queries Q1 through Q16. For the case where offsets
are not used, we explore all nodes linked from the nodes
containing near keywords, without regards to the token dis-
tance between the near keyword and the links. This causes
a large number of irrelevant nodes to be explored, and in-
creases query execution time as well as memory utilization.
Figure 1 (a) shows that the average precision at k is much
lower without using offset information, for k up to 10.

However, Figure 1 (b) indicates that the average preci-
sion is lower for “with offsets” than “without offsets” at
80% recall. This is because, in case of “without offsets”,
a large number of nodes are explored and hence it gener-
ates higher fraction of correct answers. The “with offsets”
version spreads activation only to nodes that are within a
limited offset (span), which is set to 12 by default. As a
result this version explores fewer nodes, and fails to gener-
ate several answers which the “without offsets” technique is
able to generate; as per our definitions, the precision is 0 at
this point for these queries, reducing the average precision
significantly. Since users are likely to only view the top-k
results for some small value of k, the version with offsets is
definitely preferable.

Next, we compare the performance of our system with
ERQ [15]. We have experimented with 5 different versions
of our system to isolate the effect of various optimizations
described in Section 5. The different versions are as follows:

89

(a) Precision at k (b) Precision vs. recall

Figure 1: Effect of offsets on near queries with single selection predicate (no optimization)

Near Near
k Basic Titles Infobox Categories All 3 ERQ
1 0.704 0.666 0.814 0.851 0.851 0.741
2 0.741 0.777 0.759 0.833 0.814 0.833
3 0.703 0.728 0.753 0.79 0.814 0.796
4 0.731 0.75 0.741 0.796 0.833 0.75
5 0.733 0.748 0.733 0.807 0.822 0.76
6 0.703 0.715 0.703 0.802 0.814 0.716
7 0.693 0.714 0.692 0.793 0.804 0.72
8 0.675 0.694 0.689 0.777 0.81 0.734
9 0.678 0.691 0.695 0.765 0.802 0.71
10 0.681 0.685 0.696 0.751 0.785 0.698

Table 1: Precision at k for All Queries

• Basic: In this version, we use the basic model with-
out any of the optimizations.

• Near Titles: In this version, along with the ba-
sic features, we also spread activation from articles
whose titles contain the near keywords to all its out-
neighbors.

• Infobox: In this version, we use the infobox informa-
tion and add some initial activation to the node whose
infobox contains the near keywords.

• Near Categories: In this version, we exploit the
Wikipedia category specificity as explained earlier.

• All Features: This version uses all the above opti-
mizations along with the basic version.

The precision and precision versus recall numbers for ERQ
are obtained by running the queries on their system, avail-
able online at http://idir.uta.edu/erq/.

Table 1 gives the precision at k values for our complete
set of test queries. The table data clearly shows that each
of the additional features improves the precision. Specially,
the NearCategories feature improves the performance by a
large margin. Using all the features together gives us the
best performance.

Figure 2 shows the plot for the precision at k values across
all queries, with different system features turned on. Fig-
ure 3 shows the same information, but separately for differ-
ent types of queries. The graphs indicates that our system

Figure 2: Precision at k for all queries

clearly outperforms ERQ for near queries, with single selec-
tion predicate as well as with multiple selection predicates.

For entity-relationship queries, the ERQ system provided
better precision. One reason for the lower precision is that
our system allows flexible specification of categories. On
Q28 from the OWN28 set (not included in the performance
results) most of the films returned were in fact academy
award winning movies adapted from novels, but in place of
novels, the query returned other movies. This is because
these movies are in categories such as “movies adapted from
novels”, and since such a category is treated as a valid cat-
egory for the category keyword “novel”, the query treats
the movie itself as a novel. Requiring exact match for cate-
gories improved the result quality drastically, with 9 out the
top 10 answers being correct. Our scoring system needs to
be improved to avoid problems due to non-exact category
matches.

However, the ERQ system requires categories to be pre-
cisely specified, which is not an easy task for a casual user,
whereas we can handle queries where the categories are not
precisely specified. (In addition our implementation can
handle a very large number of categories in contrast to the
limited number of categories handled by the current ERQ
implementation.)

We also found anecdotally that the mutual exclusion and
ordering pattern heuristics used in [15] would have been use-
ful in improving precision, had we implemented them. Im-
plementing these heuristics is an area of future work.

Table 2 shows average query execution time for various
types of queries. Execution time is the response time mea-
sured when the query is input to the servlet. Table 3 shows
average memory utilization for the queries in terms of num-

90

(a) near queries with single selection (b) near queries with multiple selections (c) entity-relationship queries

Figure 3: Precision at k by query type

Query Set COLD CACHE WARM CACHE
Single Selection 4.546 1.694

Multiple Selection 12.112 5.837
Entity-Relationship 14.44 9.317

All 8.233 4.284

Table 2: Average Query Execution Time (in sec-
onds)

Query Nodes Size of
Set Explored Target Queue

Single selection 7474 210
Multiple selection 48132 4074
Entity relationship 84003 9635

All 32010 3020

Table 3: Average Memory Utilization

ber of nodes explored during activation spreading and size
of the target queue. Target queue size determines the collec-
tion of nodes which are processed during ranking to produce
final set of answers i.e. it is set of probable answers before
ranking. Table 4 gives the average recall i.e. average of frac-
tion of correct answers reported by the system for various
types of queries.

Figure 4 shows the plots of precision versus recall across all
queries, while Figure 5 shows the same information for each
query type. Since some queries do not have 100% recall up
to the number of answers retrieved, we show the precision
as 0 at recall percentages that are higher. Figure 4 show
that WikiBANKS outperforms ERQ overall, while Figure 5
shows that WikiBANKS outperforms ERQ in case of near
queries with single and multiple selection predicates, but
ERQ achieves better performance for relationship queries.

We also tested our system on a number of other queries,
many of which we could not run on the ERQ system since
they used types such as medicines, airports, languages, ani-
mals, currencies, and so on which are among the many types
not currently supported in the ERQ implementation. The
precision at k and execution time for these queries were sim-
ilar to the results we saw earlier for queries from the ERQ
system. We omit details for lack of space.

Query Near Info- Near
Set Basic Titles box Cate- All 3 ERQ

gories
Single 0.639 0.662 0.645 0.77 0.788 0.635

selection
Multiple 0.448 0.488 0.448 0.565 0.598 0.414
selection
Entity-
relation- 0.511 0.537 0.500 0.511 0.533 0.672

ship
All 0.575 0.602 0.577 0.674 0.696 0.602

Table 4: Average Recall

Figure 4: Precision vs. Recall for all queries

We also ran some queries to test the impact of spread-
ing activation through the graph, a feature we support,
but other entity ranking techniques do not support. How-
ever, we did not find much difference since in most cases
the Wikipedia corpus has direct links to the desired enti-
ties from pages containing the near keywords, and adding
indirect activation did not help. For example, for the query
“University near Nobel prize”, the infoboxes of Nobel prize
winners pages mentioned the Nobel prize and had a link to
their institutions. We expect these results will be different
if we include Web pages instead of just Wikipedia pages, an
area of ongoing work.

8. CONCLUSIONSAND FUTURE WORK
We have proposed a novel extended graph representation,

91

(a) near queries with single selection (b) near queries with multiple selections (c) entity-relationship queries

Figure 5: Precision vs. recall by query type

and showed how to exploit it to answer entity ranking (near)
queries and entity-relationship queries on the Wikipedia cor-
pus. Unlike earlier systems we allow type specification throu-
gh keywords, and develop novel scoring mechanisms based
on spreading activation. Our performance study shows good
result quality, beating earlier work on entity queries. Im-
proving performance on entity-relationship queries is an area
of current work.

The Wikipedia corpus has a limited number of explicit
entity mentions, limiting the effect of spreading activation
from keywords to nearby entities. We are currently extend-
ing our system to work on the annotated Web corpus of [6],
which would provide a much richer set of keyword-entity as-
sociations. With such a system, we cannot keep the entire
Web graph in memory; however, the number of entities is
still relatively small (since we use Wikipedia as the source
for entities), and we can keep these entities, along with their
category hierarchy, in memory. We have developed versions
of our algorithms tailored for such an environment, with
data partitioned across multiple machines. Initial results
demonstrate the feasibility of such a system, both in terms
of answer quality, and interactive response times. We are
currently working on improving the answer quality of the
system. Extending our implementation to add the mutual
exclusion and ordering pattern heuristics of [15] is another
direction for future work.

Acknowledgment: This work was partially supported
by IMPECS (Indo-German Max Planck Center for Com-
puter Science).

9. REFERENCES
[1] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A

system for keyword-based search over relational
databases. In ICDE, 2002.

[2] A. Balmin, V. Hristidis, and Y. Papakonstantinou.
ObjectRank: authority-based keyword search in
databases. In VLDB, 2004.

[3] H. Bast, A. Chitea, F. M. Suchanek, and I. Weber.
Ester: efficient search on text, entities, and relations.
In SIGIR, pages 671–678, 2007.

[4] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti,
and S. Sudarshan. Keyword searching and browsing in
databases using BANKS. In ICDE, 2002.

[5] S. Chakrabarti, K. Puniyani, and S. Das. Optimizing
scoring functions and indexes for proximity search in

type-annotated corpora. In WWW, pages 717–726,
2006.

[6] S. Chakrabarti, D. Sane, and G. Ramakrishnan.
Web-scale entity-relation search architecture. In
WWW (Companion Volume), pages 21–22, 2011.

[7] T. Cheng and K. C.-C. Chang. Beyond pages:
Supporting efficient, scalable entity search with
dual-inversion index. In SIGMOD, 2010.

[8] T. Cheng, X. Yan, and K. C.-C. Chang. EntityRank:
Searching entities directly and holistically. In VLDB,
2007.

[9] H. He, H. Wang, J. Yang, and P. S. Yu. BLINKS:
Ranked keyword searches on graphs. In SIGMOD,
pages 305–316, 2007.

[10] V. Hristidis and Y. Papakonstantinou. DISCOVER:
Keyword search in relational databases. In VLDB,
2002.

[11] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan,
R. Desai, and H. Karambelkar. Bidirectional
expansion for keyword search on graph databases. In
VLDB, 2005.

[12] G. Kasneci, F. M. Suchanek, G. Ifrim, M. Ramanath,
and G. Weikum. NAGA: Searching and ranking
knowledge. In ICDE, pages 953–962, 2008.

[13] S. Kulkarni, A. Singh, G. Ramakrishnan, and
S. Chakrabarti. Collective annotation of wikipedia
entities in web text. In KDD, pages 457–466, 2009.

[14] X. Li, C. Li, and C. Yu. Entityengine: answering
Entity-Relationship queries using shallow semantics.
In CIKM, pages 1925–1926, 2010.

[15] X. Li, C. Li, and C. Yu. Entity-relationship queries
over wikipedia. ACM Trans. on Intelligent Systems
and Technology, 3(4), Sept. 2012.

[16] Y. Lv and C. Zhai. Positional language models for
information retrieval. In SIGIR, pages 299–306, 2009.

[17] J. Pound, I. F. Ilyas, and G. E. Weddell. Expressive
and flexible access to web-extracted data: a
keyword-based structured query language. In
SIGMOD Conf., pages 423–434, 2010.

[18] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago -
a core of semantic knowledge. In WWW, 2007.

[19] M. A. Yosef, J. Hoffart, I. Bordino, M. Spaniol, and
G. Weikum. AIDA: An online tool for accurate
disambiguation of named entities in text and tables.
PVLDB, 4(12):1450–1453, 2011.

92

Towards Efficient Discovery of Frequent Patterns with
Relative Support

R. Uday Kiran and Masaru Kitsuregawa
Institute of Industrial Science,

University of Tokyo, Japan.
Email: uday rage@tkl.iis.u­tokyo.ac.jp and kitsure@tkl.iis.u­tokyo.ac.jp.

ABSTRACT

Frequent patterns are an important class of regularities that exist

in a database. Although there exists no universally acceptable best

measure to assess the interestingness of a pattern, relative support

is emerging as a popular measure to discover frequent patterns in-

volving both frequent and rare items. An Apriori-like algorithm

known as Relative Support Apriori (RSA) has been discussed in the

literature to discover the patterns. It has been observed that mining

frequent patterns with RSA is a computationally expensive process

because the discovered patterns do not satisfy the anti-monotonic

property. Moreover, RSA also suffers from the performance prob-

lems involving generation of the huge number of candidate patterns

and multiple scans on the database. This paper makes an effort

to discover frequent patterns effectively with the relative support

measure. To reduce the computational cost, we theoretically show

that the patterns discovered with the relative support measure sat-

isfy the convertible anti-monotonic property. Using this property,

a pattern-growth algorithm known as Relative Support Frequent

Pattern-growth (RSFP-growth) has been proposed to discover the

patterns. Experimental results on both synthetic and real-world

datasets show that the proposed RSFP-growth algorithm is signifi-

cantly better than the RSA algorithm.

1. INTRODUCTION
Frequent pattern mining is an important knowledge discovery

technique in data mining. In the basic model of frequent patterns

[3], a pattern (or an itemset) is considered frequent if it satisfies the

user-defined minimum support (minsup) constraint. The minsup

constraint controls the minimum number of transactions a pattern

must cover in a database. Since only a single minsup constraint

is used for the entire dataset, the model implicitly assumes that all

items in a database have uniform frequencies. However, this is of-

ten not the case in many real-world databases. In many real-world

applications, some items appear very frequently in the data, while

others rarely appear. It has to be noted that considering an item

in a database as either frequent or rare is a subjective issue which

depends on the user and/or application requirements. If the items’

frequencies in a database vary widely, we encounter the following

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
The 18th International Conference on Management of Data (COMAD),

14th­16th Dec, 2012 at Pune, India.
Copyright c©2012 Computer Society of India (CSI).

issues:

i. If minsup is set too high, we will miss those patterns that

involve rare items.

ii. In order to find the frequent patterns that involve both fre-

quent and rare items, we have to set low minsup. However,

this may cause combinatorial explosion, producing too many

frequent patterns, because those frequent items will combine

with one another in all possible ways and many of them can

be meaningless depending upon the user and/or application

requirements.

This dilemma is called the rare item problem [19]. One cannot

ignore the knowledge pertaining to rare items. It is because such

knowledge has been found useful in many real-world applications,

such as detecting oil spills in satellite images [11] and improving

the performance of recommender systems [5].

To confront the rare item problem in applications, numerous al-

ternative measures have been discussed in the literature [4, 13, 18,

20, 21]. Unlike the support measure, these measures assess the in-

terestingness of a pattern with respect to the frequencies of items

within it. Each measure has a selection bias that justifies the signif-

icance of a knowledge pattern. As a result, there exists no univer-

sally acceptable best measure to judge the interestingness of a pat-

tern for any given dataset or application. Researchers are making

efforts to suggest a right measure depending upon the user and/or

application requirements [17, 18, 20].

Yun et al. [21] have introduced the relative support measure and

showed that it can discover the frequent patterns involving signif-

icant rare items effectively. A significant rare item represents an

item that appears less frequently in the database (or having sup-

port less than the user-defined minsup threshold) but appears as-

sociated with the frequently occurring items in high proportion to

its frequency. An Apriori-like algorithm known as Relative Sup-

port Apriori (RSA) algorithm has also been introduced to discover

the patterns. We have observed that RSA is a computationally ex-

pensive algorithm because the patterns discovered with the relative

support measure do not satisfy the anti-monotonic property. More-

over, RSA also suffers from the performance problems involving

generation of the huge number of candidate patterns and multiple

scans on the database.

This paper makes an effort to discover frequent patterns effi-

ciently using the relative support and support measures. The con-

tributions are as follows.

• The paper theoretically investigates the relative support mea-

sure and shows that the discovered patterns satisfy a property

known as the convertible anti-monotonic property [15].

93

• Using the convertible anti-monotonic property and prior knowl-

edge regarding the FP-growth construction and mining tech-

nique, we redefine the frequent pattern with a novel concept

known as the conditional minimum support.

• Using the conditional minimum support, an FP-growth-like

algorithm known as Relative Support Frequent Pattern-growth

(RSFP-growth) has been proposed in this paper. Pei et al.

[15] have theoretically shown that the search space for a pattern-

growth algorithm discovering interesting patterns satisfying

the convertible anti-monotonic property is same as the search

space of a pattern-growth algorithm discovering interesting

patterns satisfying the anti-monotonic property. Therefore,

it can be said that the RSFP-growth algorithm reduces the

computational cost of mining the patterns effectively.

• Experimental results on various datasets show that the RSFP-

growth algorithm is runtime efficient and scalable than the

RSA algorithm.

The rest of this paper is organized as follows. Section 2 dis-

cusses previous works on mining frequent patterns. Section 3 in-

troduces the model of frequent patterns using the relative support

and support measures. Section 4 discusses the performance issues

of RSA algorithm, describes the basic idea and introduces the pro-

posed RSFP-growth algorithm. Experimental evaluations of RSA

and RSFP-growth algorithms are presented in Section 5. Finally,

Section 6 concludes with future research directions.

2. RELATED WORK
Since the usage of single minimum support (minsup) framework

to discover frequent patterns involving both frequent and rare items

suffers from the dilemma known as the rare item problem, researchers

have made efforts to discover frequent patterns with multiple minsups

framework [7, 8, 9, 10, 12, 16], or other interestingness measures

[4, 13, 18, 20, 21], or constraints [14].

In the multiple minsups framework, the user specifies a minsup-

like constraint, called minimum item support, for every item in the

database. Next, the minsup for a pattern is represented with the

minimum item supports of the items within it. An open research

problem of this framework is the methodology to determine the

minimum item supports of all the items in a database.

Researchers have also introduced numerous alternative measures

to discover frequent patterns. Examples includes all-confidence,

any-confidence, bond [13], li f t and χ2 [4]. Each measure has its

own selection bias that justifies the significance of knowledge pat-

tern. Thus, there exists no universally acceptable best measure to

judge the interestingness of a pattern for any given application. In

other words, selecting a right measure to discover frequent patterns

involving both frequent and rare items is an important research is-

sue. Researchers are making efforts to suggest a right algorithm

depending upon the user and/or application requirements [17, 18,

20].

Yun et al. [21] have introduced the relative support measure to

discover the frequent patterns involving significant rare items. An

Apriori-like algorithm known as RSA has also been proposed to

discover the complete set of patterns with the relative support and

support measures [21]. The pattern model used in RSA requires

three user-specified thresholds: first support (s1), second support

(s2) such that s1 > s2 and minimum relative support (minRsup).

The s1 and s2 thresholds are used to classify the items into either

frequent or rare items. That is, items having support no less than

s1 are classified as frequent items and the items having support

in between s1 and s2 are classified as significant rare items. If a

pattern contains only frequent items, its support has to satisfy s1 to

be a frequent pattern. If an pattern contains rare items, its support

must satisfy s2 and its relative support must satisfy minRsup to be

a frequent pattern. In many real-world applications, it is often dif-

ficult for the user to classify the items into either frequent or rare

items. Therefore, a simplified approach is discover frequent item-

sets using only s2 and minRsup thresholds. In this paper, we use

this approach to discover the frequent patterns. The performance

issues of RSA algorithm and our efforts to address them are dis-

cussed in later parts of this paper.

3. THE FREQUENT PATTERN MODEL US­

ING RELATIVE SUPPORT
The frequent pattern model using the relative support measure is

as follows [21]:

Let I = {i1, i2, · · · , in} be a set of items, and DB be a database that

consists of a set of transactions. Each transaction T contains a set of

items such that T ⊆ I. Each transaction is associated with an iden-

tifier, called T ID. Let X ⊆ I be a set of items, referred as an itemset

or a pattern. A pattern that contains k items is a k-pattern. A trans-

action T is said to contain X if and only if X ⊆ T . The frequency (or

support count) of a pattern X in DB, denoted as f (X), is the number

of transactions in DB containing X . The support of X , denoted as

S(X), is the ratio of its frequency to the DB size, i.e., S(X) =
f (X)

|DB|
.

The relative support of a pattern X , denoted as Rsup(X), is the ra-

tio of its support to the minimum support of an item (or 1-pattern)

within it. That is, Rsup(X) =
S(X)

min(S(i j)|∀i j ∈ X)
. The pattern

X is frequent if its support and relative support are no less than

the user-defined minimum support (minsup) and minimum relative

support (minRsup) thresholds. That is, X is said to be frequent if

S(X) ≥ minsup

and (1)

Rsup(X) ≥ minRsup.

We call the frequent pattern containing only one item as frequent

item. We now illustrate the frequent pattern model using the trans-

actional database shown in Table 1.

Table 1: Transactional database.

TID Items TID Items

1 a, b 11 a, b

2 a, b, e 12 a, c, f

3 c, d 13 a, b, e

4 e, f 14 b, e, f, g

5 c, d 15 c, d

6 a, c 16 a, b

7 a, b 17 c, d

8 e, f 18 a, c

9 c, d, g 19 a, b

10 a, b 20 c, d, f

EXAMPLE 1. The transactional database shown in Table 1 has

20 transactions. The set of items I = {a,b,c,d,e, f ,g}. The set of

items ‘a’ and ‘b’, i.e., {a, b} is a pattern. It is a 2-pattern. For sim-

plicity, we write this pattern as “ab”. It occurs in 8 transactions

(tids of 1,2,7,10,11,13,16 and 19). Therefore, the support count

of “ab,” i.e., f (ab)= 8. The support of ab, i.e., S(ab)= 0.4

(

=
8

20

)

.

94

The relative support of ab, i.e., Rsup(ab)= 0.88

(

=
0.4

min(0.6,0.45)

)

.

If the user-specified minsup = 0.3 and minRsup = 0.65, then ab

is a frequent pattern because S(ab) ≥ minsup and Rsup(ab) ≥
minRsup.

It can be observed that the relative support measure assess the

interestingness of a pattern with respect to the minimal support of

an item within it. Thus, it can effectively discover all those frequent

patterns that contain rare items occurring together with other items

in high proportions of their frequencies.

The problem definition is as follows. Given the transactional

database (DB), and the user-defined minimum support (minsup)

and minimum relative support (minRsup) thresholds, discover the

complete set of frequent patterns in a database that satisfy both

minsup and minRsup thresholds.

4. PROPOSED APPROACH
In this section, we first discuss the performance problems of RSA

algorithm. Subsequently, we introduce the basic idea and proposed

RSFP-growth algorithm.

4.1 Performance problems of RSA algorithm
The relative support measure can effectively confront the rare

item problem while mining frequent patterns involving both fre-

quent and rare items. However, the RSA algorithm has the follow-

ing issues.

• The RSA is a computationally expensive algorithm because

the frequent patterns discovered with the relative support

measure do not satisfy the anti-monotic property. That is,

although a pattern satisfies the user-defined minRsup thresh-

old, all its non-empty subsets may not have satisfied the minRsup

threshold.

• It also suffers from the same performance problems as the

Apriori algorithm, which includes generating huge number

of candidate patterns and multiple scans on the database.

4.2 Basic Idea
The space of items in a database gives rise to a subset lattice. The

itemset lattice is a conceptualization of the search space when min-

ing frequent (or user-interest based) patterns. Reducing this search

space is an important research issue in pattern mining. The popular

techniques to reduce the search space involve the usage of anti-

monotonic property, monotonic property, or succinct property (see

Definition 1). If a constraint does not satisfy any of these proper-

ties, then it is said that mining patterns with it is a computationally

expensive process as the mining algorithm has to search the entire

lattice space, i.e., 2I itemsets.

DEFINITION 1. (Anti-monotone, Monotone and Succinct Con-

straints.) A constraint Ca is anti-monotone if and only if whenever

a pattern S violates Ca, so does any superset of S. A constraint Cm

is monotone if and only if whenever a pattern S satisfies Cm, so does

any superset of S. Succinctness is defined in steps, as follows

• A pattern X ⊆ I is a succinct set, if it can be expressed as

σp(I) for some selection predicate p, where σ is the selection

operator.

• SP ⊆ 2I is a succinct powerset, if there is a fixed number of

succinct sets I1, I2, · · · , Ik ⊆ I, such that SP can be expressed

in terms of the strict powersets of I1, · · · , Ik using union and

minus.

• Finally, a constraint Cs is succinct provided SATCs
(I) is a

succinct powerset.

Pei et al. [15] have investigated the concept of convertible con-

straints, and showed that some of the constraints which do not sat-

isfy any of these properties when items in a database are consid-

ered as an unordered set can satisfy these properties if items in a

database are considered as an ordered set. These properties are

known as the convertible anti-monotonic and convertible mono-

tonic properties. All the constraints or measures discussed in the

literature do not satisfy either of these two properties. Therefore,

identifying whether a constraint satisfies the convertible anti-monotonic

property, convertible monotonic property, or neither of these two

properties is a research problem in pattern mining.

To reduce the computational cost, we have investigated the na-

ture of relative support measure and found that it satisfies the con-

vertible anti-monotonic property if items are arranged in support

order. The correctness is based on Property 1 and Lemma 1 and is

shown in Theorem 1. Unlike the anti-monotonic property, the def-

inition of convertible anti-monotonic property varies with respect

to the measure(s) and the order in which items are to be arranged

to satisfy this property. Definition 2 defines the convertible anti-

monotonic property for the patterns discovered using the relative

support and support measures.

DEFINITION 2. (The convertible anti-monotonic property of

a frequent pattern.) If a sorted k-pattern, {i1, i2, · · · , ik}, k ≥ 2

and S(i1) ≥ S(i2) ≥ ·· · ≥ S(ik), is frequent, then all its non-empty

subsets containing the item having lowest support within it (i.e., ik)

will also be frequent. That is, if Rsup(X) ≥ minRsup and S(X) ≥
minsup, then ∀Y ⊆ X and ik ∈ Y , Rsup(Y)≥ minRsup and S(Y)≥
minsup.

EXAMPLE 2. In a transactional database, let xyz be a sorted

frequent 3-pattern such that S(x) ≥ S(y) ≥ S(z). Since xz ⊂ xyz, it

turns out that xz is a frequent pattern as Rsup(xz) ≥ Rsup(xyz) ≥
minRsup and S(xz) ≥ S(xyz) ≥ minsup. Similarly, yz is also a

frequent pattern because Rsup(yz) ≥ Rsup(xyz) ≥ minRsup and

S(yz) ≥ S(xyz) ≥ minsup). The 1-pattern z is also a frequent pat-

tern because S(z) ≥ S(xyz) ≥ minsup. Thus, in a sorted frequent

3-pattern xyz, all its non-empty subsets containing the item with

lowest frequency within it (i.e., z, xz and yz) are also frequent.

Please note that although xy ⊂ xyz, we cannot say Rsup(xyz) will

be less than or equal to Rsup(xy) because there exists a case where
S(xyz)

S(z)
6≤

S(xy)

S(y)
.

Pei et al. [15] have also theoretically shown that the convertible

anti-monotonic property is same as the anti-monotonic property for

a pattern-growth algorithm. Therefore, initially, we have extended

the existing FP-growth [6] (or the CFG algorithm in [15]) to dis-

cover the complete set of frequent patterns using both support and

relative support measures. It involved the following two steps:

i. Compress the database into the FP-tree, which retains the

itemset association information.

ii. Using each interesting item in the FP-tree as an initial suffix

item (or suffix pattern), construct its conditional pattern base

consisting of the set of complete prefix paths in the FP-tree

co-occurring with the suffix item, then construct its condi-

tional FP-tree with all those items that have support and rela-

tive support no less than the respective minsup and minRsup

thresholds, and perform mining recursively on such a FP-

tree. The pattern-growth is achieved by the concatenation of

95

the suffix pattern with the interesting patterns generated from

the conditional FP-tree. The correctness of the algorithm is

shown in Lemma 3.

We have observed that such approach is not an effective way to

discover the complete set of frequent patterns as the every item in

the conditional pattern base of a suffix pattern has to go through two

checks, namely minsup and minRsup, to derive the corresponding

conditional FP-tree. To reduce these number of checks, we rede-

fine the frequent pattern using the notion of sorted set of items in

a pattern. Definition 3 provides the alternative definition of a fre-

quent pattern using the support and relative support measures. The

correctness is shown in Lemma 2.

DEFINITION 3. Given the user-specified minsup and minRsup

constraints, a sorted k-pattern X, S(i1) ≥ S(i2) ≥ ·· · ≥ S(ik), is

said to be frequent if

S(X) ≥ max(S(ik)×minRsup, minsup). (2)

EXAMPLE 3. Continuing with Example 1, the pattern ab is fre-

quent because

S(ab) ≥ minsup

and (3)

S(ab)

S(b) (= min(S(a),S(b)))
≥ minRsup

From Equation 3, it turns out that for the frequent pattern ab its

S(ab)≥ max(minRsup×S(b), minsup).

Using Definition 3 and the prior knowledge regarding the FP-tree

construction and mining technique, we introduce a novel concept

known as the conditional minimum support (Cminsup). It is defined

in Definition 4, and correctness is shown in Lemma 4.

DEFINITION 4. (The conditional minimum support of a suffix

pattern). Let i j be the initial suffix item (or 1-pattern) having sup-

port S(i j). Let minsup and minRsup be the user-defined minimum

support and minimum relative support thresholds. The conditional

minimum support of a suffix pattern α∋ i j, denoted as Cminsup(α),
is max(minRsup×S(i j), minsup).

Using the concept of conditional minimum support, we propose

a pattern-growth algorithm known as Relative Support Frequent

Pattern-growth (RSFP-growth), which is discussed in subsequent

subsection.

PROPERTY 1. (Apriori property.) If X and Y are the patterns

such that Y ⊂ X, then S(Y)≥ S(X).

LEMMA 1. Let X = {i1, i2, · · · , ik}, 1≤ k ≤ n, be a pattern such

that S(i1)≥ S(i2)≥ ·· · ,S(ik). If Y ⊂ X and ik ∈Y , then Rsup(Y)≥
Rsup(X).

PROOF. The relative support of X , i.e.,

Rsup(X) =
S(X)

S(ik) (=min(S(i j)|∀i j∈X)
. The relative support of Y , i.e.,

Rsup(Y) =
S(Y)

S(ik) (=min(S(i j)|∀i j∈X)
. Since Y ⊂ X , it turns out that

S(Y) ≥ S(X) (Property 1). Thus, Rsup(Y) ≥ Rsup(X) as
S(Y)
S(ik)

≥

S(X)
S(ik)

.

THEOREM 1. If the relative support of pattern satisfies the user-

defined minRsup threshold, then all its non-subsets containing an

item having the lowest support within it also satisfy the minRsup

threshold.

PROOF. Let X = {i1, i2, · · · , ik}, 1≤ k ≤ n, be a pattern such that

S(i1)≥ S(i2)≥ ·· · ≥ S(ik). If Rsup(X)≥ minRsup, then

S(X)

S(ik) (= min(S(i j)|∀i j ∈ X)
≥ minRsup. (4)

If Y is a pattern such that Y ⊂ X and ik ∈ Y , then based on Lemma

1 it turns out that Rsup(Y) ≥ Rsup(X) ≥ minRsup. Therefore, if

the relative support of a pattern satisfies the user-defined minRsup

threshold, then all its subsets containing an item with lowest sup-

port within it will also satisfy the minRsup threshold.

LEMMA 2. Let X = {i1, i2, · · · , ik}, 1≤ k ≤ n, be a pattern such

that S(i1) ≥ S(i2) ≥ ·· · ,S(ik). For the user-defined minsup and

minRsup constraints, the pattern X can be said frequent if and only

if S(X)≥ max(S(ik)×minRsup,minsup).

PROOF. From the definition of frequent pattern given in Equa-

tion 1, the pattern X can be said frequent if

S(X) ≥ minsup

and (5)

S(X)

min(S(i1),S(i2), · · · ,S(ik))
≥ minRsup.

Since min(S(i1),S(i2), · · · ,S(ik)) = S(ik), Equation 5 can be ex-

pressed as follows:

S(X) ≥ minsup

and (6)

S(X)

S(ik)
≥ minRsup.

Thus, X can be a frequent patten if and only if S(X)≥ max(S(ik)×
minRsup,minsup).

LEMMA 3. Let α be a suffix pattern in FP-tree. Let min item sup(α)
be the minimum support of an item in α, i.e., min item sup(α) =
min(S(i j)|∀i j ∈ α). Let B be α conditional pattern base, and β be

an item in B. Let S(β) be the support of β in the transactional

database. Let SB(β) be the conditional support of β, i.e., sup-

port of β in B, respectively. If α is frequent, SB(β) ≥ minsup and
SB(β)

min item sup(α)
≥ minRsup, then the pattern < α,β > is also a

frequent pattern.

PROOF. According to the definition of conditional pattern base

and FP-tree, each subset in B occurs under the condition of the

occurrence of α in the transactional database. If an item β ap-

pears in B for n times, it appearers with α in n times. Further,

min item sup(α) = min item sup(α∪β) as FP-tree is constructed

in support descending order of items. Thus, from the definition

of frequent pattern used in this model, if the SB(β) ≥ minsup and
SB(β)

min item sup(α)
≥ minRsup, the pattern < α,β > is therefore a

frequent pattern.

LEMMA 4. Let α be a suffix pattern in FP-tree that has resulted

from the initial suffix item i j . Let the Cminsup(α) be the Cminsup

of α. Let B be α conditional pattern base, and β be an item in B. Let

S(β) and SB(β) be the support of β in the transactional database

and in B, respectively. If α is frequent and SB(β) ≥ Cminsup, the

pattern < α,β > is therefore also frequent.

PROOF. From the mining procedure of FP-tree, the

min item sup(α) = S(i j). From Lemma 3, it turns out that if the

96

SB(β) ≥ minsup and
SB(β)

S(i j)
≥ minRsup, the pattern < α,β > is a

frequent pattern. In other words, < α,β > is a frequent pattern

if SB(β) ≥ max(minsup,- minRsup× S(i j)). From the definition

of conditional minimum support, it can be said that < α,β > is

a frequent if SB(β) ≥ Cminsup(α) (= max(minsup, minRsup×
S(i j))).

4.3 Relative Support Frequent Pattern­growth
The RSFP-growth algorithm uses pattern-growth technique and

the concept of conditional minimum support to discover frequent

patterns effectively using the relative support and support mea-

sures. Briefly, the RSFP-growth involves the following two steps:

i. Compress the database into the FP-tree, which retains the

itemset association information.

ii. Using each interesting item in the FP-tree as an initial suffix

item (or suffix pattern), measure the conditional minimum

support (Cminsup) and construct its conditional pattern base

consisting of the set of complete prefix paths in the FP-tree

co-occurring with the suffix item. Next, construct the con-

ditional FP-tree with all those items that have support no

less than the Cminsup threshold in the conditional pattern

base, and perform mining recursively on such a FP-tree us-

ing Cminsup. The pattern-growth is achieved by the con-

catenation of the suffix pattern with the interesting patterns

generated from the conditional FP-tree.

The working of RSFP-growth is shown in Algorithm 1 and de-

scribed as follows. The RSFP-growth algorithm accepts transac-

tional database, minsup and minRsup as its input parameters. An

FP-tree [6] is created using minsup threshold (line 1 in Algorithm

1). Next, the procedure RSFP-mine 1 is called to discovered fre-

quent patterns from FP-tree. The RSFP-mine 1 procedure selects

each item in the FP-tree as an initial suffix item (or pattern) and

calculates its Cminsup (line 2 in Procedure 2). Next, the condi-

tional pattern base and conditional FP-tree are generated for the

suffix item using Cminsup (lines 3 to 11 in Procedure 2)). Next,

the RSFP-mine k procedure is called to recursively mine frequent

patterns from the conditional FP-tree of suffix item.

We now explain the working of RSFP-growth algorithm using

the database shown in Table 1. Let the user-defined minsup and

minRsup thresholds be 3 and 0.65, respectively. Scan the database

and measure the support of items in a database. Prune the infre-

quent items (i.e., items having support less than minsup) and sort

the remaining items in the order of descending support. This re-

sulting set or list is denoted L. Thus, we have L = {{a : 11},{b :

9},{c : 9},{d : 6},{e : 5},{ f : 5}}.

An FP-tree is constructed as follows. First, create the root of the

tree, labeled with “null.” Scan database DB a second time. The

scan of the first transaction, “1:a,b,” which contains two items (a

and b in L order), leads to the construction of the first branch of the

tree with two nodes, 〈a : 1〉 and 〈b : 1〉, where a is linked as a child

of the root and b is linked to a. The second transaction, “2:a,b,e,”

would result in a branch where a is linked to root, b is linked to a

and e is linked to b. However, this branch would share a common

prefix, a and b, with the existing path for “1”. Therefore, we instead

increment the count of a and b by 1, and create a new node, 〈e : 1〉,
which is linked as the child of 〈b : 2〉. Similar process is repeated

for other transactions in the database. To facilitate tree traversal, an

item header table is built so that each item points to its occurrences

in the tree via a chain of node-links. The FP-tree obtained after

scanning all transactions of Table 1 is shown in Figure 1 with the

associated node-links.

{}null

a:11

b:8

e:2

c:6

d:6

f:1

e:2

f:2

b:1

e:1

f:1

c:3

f:1

I S NL
a

b
c
d
e
f

11

9
9
6
5
5

Figure 1: FP-tree. The terms ‘I’, ‘S’ and ‘NL’ respectively denote

item, support and node-link.

Table 2: Mining frequent patterns.

SI Cmin- Conditional Conditional Frequent

sup Pattern Base FP-tree patterns

f 3 {{a,c : 1}, 〈e : 3〉 {e, f : 3}
{c,d : 1},

{e : 2},

{b,e : 1}}
e 3 {a,b : 2} - -

d 3 {c : 6} 〈c : 6〉 {c, d : 6}
c 3 {a : 3} - -

b 3 {ea : 8} 〈a : 8〉 {a, b : 8}

Mining frequent patterns using FP-tree of Figure 1 is shown in

Table 2 and detailed as follows. Consider the item f , which is the

last item in L, as a suffix item. The item f occurs in four branches

of the FP-tree of Figure 1. The Cminsup of ‘ f ’ is 3 (≃ max(3,5×
0.65). The paths containing f in FP-tree are 〈a,c, f : 1〉, 〈c,d, f : 1〉
〈e, f : 2〉 and 〈b,e, f : 1〉. Therefore, considering f as a suffix, its

corresponding four prefix paths are 〈a,c : 1〉, 〈c,d : 1〉, 〈e : 2〉 and

〈b,e : 1〉, which form its conditional pattern base. Its conditional

FP-tree contains only a single path, 〈e : 3〉. The items a, b, c and d

are not included in conditional FP-tree because their support of 1

is less than Cminsup. The concatenation of suffix pattern with the

item in conditional FP-tree generates the frequent pattern {e, f : 3}.

Similar process is repeated for the remaining other items in the FP-

tree to discover the complete set of frequent patterns.

5. EXPERIMENTAL RESULTS
In this section, we evaluate the performance of FP-growth, RSA

and RSFP-growth algorithms. We show that RSFP-growth is a bet-

ter algorithm to mine frequent patterns in different types of datasets.

The algorithms are written in GNU C++ and run with the Ubuntu

10.04 operating system on a 2.66 GHz machine with 1GB memory.

The runtime specifies the total execution time, i.e., CPU and I/Os.

The runtime is expressed in seconds. We pursued experiments on

synthetic (T10I4D100K) and real-world (BMS-WebView-1, Mush-

room and Kosarak) datasets. The datasets are available at Frequent

Itemset Mining repository [1]. The details of these datasets are

shown in Table 3.

5.1 Generation of Frequent Patterns
Figure 2(a), (b) and (c) respectively show the number of frequent

patterns generated in T 10I4D100k, BMS-WebView-1 and Mush-

room datasets with the basic model (denoted as BM) [2] and the

97

Table 3: Dataset Characteristics. The terms “Max.”, “Avg.” and “Tran.” are respectively used as the acronyms for “maximum”, “average”

and “transaction.“

Dataset Transa- Distinct Max. Avg. Type

ctions Items Trans. Trans.

Size Size

T 10I4D100k 100000 870 29 10.1 sparse

BMS-WebView-1 59602 4971 267 2.5 sparse

Mushroom 8124 119 23 23.0 dense

Kosarak 990002 41270 2498 8.1 sparse

 0

 5000

 10000

 15000

 20000

 25000

 30000

 2 4 6 8 10 12 14 16 18 20

F
re

q
u

e
n

t
p

a
tt

e
rn

s

α

BM

PM

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 2 4 6 8 10 12 14 16 18 20

F
re

q
u

e
n

t
p

a
tt

e
rn

s

α
(a) T10I4D100K dataset (b) BMS-WebView-1 dataset (c) Mushroom dataset

 0

 100000

 200000

 300000

 400000

 500000

 600000

 1 1.5 2 2.5 3 3.5 4 4.5 5

F
re

q
u

e
n

t
It

e
m

s
e

ts

α

BM

PM

BM

PM

Figure 2: Frequent patterns generated in different databases at different minRsup values.

 0

 20

 40

 60

 80

 100

 120

 2 4 6 8 10 12 14 16 18 20

R
u

n
ti
m

e
 (

s
)

α

FP-growth

RSFP-growth

RSA

 0

 2

 4

 6

 8

 10

 2 4 6 8 10 12 14 16 18 20

R
u

n
ti
m

e
 (

s
)

α

FP-growth

RSFP-growth

RSA

(a) T10I4D100K dataset (b) BMS-WebView-1 dataset (c) Mushroom dataset

 0

 2

 4

 6

 8

 10

 12

 14

 1 1.5 2 2.5 3 3.5 4 4.5 5

R
u

n
ti
m

e
 (

s
)

α

FP-growth

RSFP-growth
RSA

Figure 3: Runtime consumed by different algorithms in different databases at different minRsup values.

98

Algorithm 1 RSFP-growthAlgorithm (DB: database, minsup:

minimum support, minRsup: minimum relative support)

1: The FP-tree is constructed in the following steps:

i. Scan the transactional database D once. Collect F , the

set of frequent items, and their support counts. Sort F in

support descending order as L, the list of frequent items.

ii. Create the root of an FP-tree, and label it as “null.” For

each transaction t in D do the following. Select and sort

the frequent items in t according to the order of L. Let

the sorted frequent item list in t be [p|P], where p is

the first element and P is the remaining list. Call in-

sert tree([p|P],T), which is performed as follows. If

T has a child N such that N.item-name = p.item-name,

then increment N’s count by 1; else create a new node

N, and let its count be 1, its parent link be linked to T ,

and its node-link to the nodes with the same item-name

via the node-link structure. If P is non-empty, call in-

sert tree(P,N) recursively.

2: The FP-tree is mined by calling RSFP-mine 1(Tree,null).

proposed model (denoted as PM) of frequent patterns. The minsup

thresholds set in T 10I4D100k, BMS-WebView-1 and Mushroom are

0.1%, 0.1% and 25%, respectively. The minRsup threshold in each

database is set as 1
α and varied α from 1 to 20. The thick lines

shows the number of frequent patterns discovered by FP-growth

(or basic model). It can be observed that increase in α value has

increased the number of frequent patterns in the proposed model.

The reason is due to the decrease in minRsup threshold with the in-

crease in α value. If minRsup = 0 (or α is set too large), then both

the models will generate same number of frequent patterns.

5.2 Runtime Comparison of FP­growth, RSA
and RSFP­growth Algorithms

Figure 3(a), (b) and (c) respectively show the runtime taken by

FP-growth, RSA and FP-growth algorithms in T 10I4D100k, BMS-

WebView-1 and Mushroom datasets. The minsup thresholds set in

T 10I4D100k, BMS-WebView-1 and Mushroom are 0.1%, 0.1% and

25%, respectively. The minRsup threshold in each database is set

as 1
α and varied α from 1 to 20. To compare RSA and RFP-growth

algorithms, the s1 and s2 thresholds of RSA algorithm are respec-

tively set to 100% and minsup of the database. The following ob-

servations can be drawn from these figures.

• Since the number of frequent patterns getting generated with

FP-growth remained constant, the runtime of FP-growth has

resulted in a straight line.

• Increase in α value has increased the runtime of both RSA

and RSFP-growth algorithms. The reason is due to the in-

crease of number of frequent patterns with increase in α value.

• The RSFP-growth algorithm has taken relatively less run-

time than the FP-growth algorithm at lower α (i.e., higher

minRsup values). It is because of the less number of frequent

patterns discovered by RSFP-growth.

• At higher α (i.e., at low minRsup), the FP-growth and RSFP-

growth algorithms have discovered almost same the number

of frequent patterns. However, the runtime of RSFP-growth

is slightly more than the FP-growth. It is because of the addi-

tional runtime was spent by RSFP-growth algorithm in calcu-

lating the conditional minimum support for each suffix item.

Procedure 2 RSFP-mine 1(Tree,α); Constructing the conditional

pattern base for frequent item or length-1 suffix pattern.

1: for each ai in the header of Tree do

2: Calculate Cminsup = max(minsup,S(ai)×minRsup).
3: Generate pattern β = α ∪ ai with support = ai.support.

{The term support represent support count.} {S(β) = S(ai)
in α-projected database}

4: Get a set Iβ of items to be included in β-projected database.

5: for each item in Iβ, compute its support in β-projected

database;

6: for each b j ∈ Iβ do

7: if S(βb j)<Cminsup then

8: delete b j from Iβ; {pruning based on conditional mini-

mum support}
9: end if

10: end for

11: construct β-conditional FP-tree with items in Iβ Treeβ.

12: if Treeβ 6= /0 then

13: RSFP-mine k(Treeβ,Cminsup,β);

14: end if

15: end for

Procedure 3 RSFP-mine k(Tree,Cminsup,α); Constructing the

conditional pattern base for length-k, k > 1, suffix pattern.

1: for each ai in the header of Tree do

2: Generate pattern β = α∪ai with support = ai.support.

3: Get a set Iβ of items to be included in β-projected database.

4: for each item in Iβ, compute its support in β-projected

database;

5: for each b j ∈ Iβ do

6: if S(βb j)<Cminsup then

7: delete b j from Iβ; {pruning based on minimum sup-

port}
8: end if

9: end for

10: construct β-conditional FP-tree with items in Iβ Treeβ.

11: if Treeβ 6= /0 then

12: RSFP-mine k(Treeβ,Cminsup,β);

13: end if

14: end for

Please note that the runtime of RSFP-growth can be much

higher than FP-growth if conditional minimum support is not

used.

• At any α value (i.e., irrespective of minRsup threshold), RSFP-

growth is better than the RSA algorithm. It is because of two

reasons: first, the search space of RSA was more than the

search space of RSFP-growth algorithm; second, RSA suf-

fered from the same performance problems as the Apriori

algorithm.

5.3 Scalability Test on RSA and RSFP­growth
Algorithms

In this experiment, we evaluate the scalability performance of

RSA and RSFP-growth algorithms on runtime requirements by vary-

ing the number of transactions in a database. We use real-world

kosarak dataset for the scalability experiment, since it is a huge

sparse dataset. We divided the dataset into five portions of 0.2

million transactions in each part. Then we investigated the per-

formance of RSA and RSFP-growth algorithms after accumulating

99

 0

 50

 100

 150

 200

 2 4 6 8 9.9

R
un

tim
e

(s
)

Dataset size (100K)

RSA
RSFP-growth

Figure 4: Scalability of RSA and RSFP-growth algorithms.

each portion with previous parts while performing correlated pat-

tern mining each time. We fixed minsup = 0.1% and minRsup =
0.5 (i.e., α = 2) for each experiment. The experimental results are

shown in Figure 4. The runtime in y-axes of Figure 4 specify the

total runtime consumed by RSA and RSFP-growth algorithms with

the increase of database size. It is clear from the graphs that as the

database size increases, overall runtime increases for both RSA and

RSFP-growth algorithms. However, the RSFP-growth algorithm

requires relatively less runtime than RSA algorithm. Therefore, it

can be observed from the scalability test that RSFP-growth can effi-

ciently mine frequent patterns over large datasets and distinct items

with considerable amount of runtime.

Overall, the RSFP-growth algorithm is runtime efficient and scal-

able than the RSA algorithm.

6. CONCLUSIONS AND FUTURE WORK
This paper has proposed an efficient and effective pattern-growth

algorithm to discover the complete set of frequent patterns using

relative support and support measures. The paper has also shown

that it is not computationally expensive to mine the patterns as the

relative support measure satisfies the convertible anti-monotonic

property if items within a pattern are arranged in support order. A

novel concept known as conditional minimum support has been in-

troduced and extended to FP-growth algorithm to discover frequent

patterns. By conducting experiments on various datasets, we have

shown that RSFP-growth outperforms RSA algorithm with respect

to both runtime and scalability.

The future works of the paper are as follows: first, data min-

ing techniques, such as classification and clustering, employ fre-

quent patterns discovered with single minsup constraint to improve

their performance. As a result, these techniques also suffer from

the rare item problem. It is interesting to investigate the usage of

frequent patterns discovered with the relative support measure to

address the problem. Second, the interestingness of frequent pat-

terns discovered using various measures, such as relative support

and all-confidence, needs to be investigated.

7. REFERENCES
[1] Frequent itemset mining repository.

http://fimi.cs.helsinki.fi/data/ .

[2] R. Agrawal, T. Imieliński, and A. Swami. Mining association

rules between sets of items in large databases. In SIGMOD

’93: Proceedings of the 1993 ACM SIGMOD international

conference on Management of data, pages 207–216, New

York, NY, USA, 1993. ACM.

[3] R. Agrawal and R. Srikant. Fast algorithms for mining

association rules in large databases. In Proceedings of the

20th International Conference on Very Large Data Bases,

VLDB ’94, pages 487–499, 1994.

[4] S. Brin, R. Motwani, and C. Silverstein. Beyond market

baskets: generalizing association rules to correlations.

SIGMOD Rec., 26(2):265–276, 1997.

[5] F. Gedikli and D. Jannach. Neighborhood-restricted mining

and weighted application of association rules for

recommenders. In Proceedings of the 11th international

conference on Web information systems engineering,

WISE’10, pages 157–165, Berlin, Heidelberg, 2010.

Springer-Verlag.

[6] J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent patterns

without candidate generation: A frequent-pattern tree

approach. Data Min. Knowl. Discov., 8(1):53–87, 2004.

[7] R. U. Kiran and P. K. Reddy. An improved frequent

pattern-growth approach to discover rare association rules. In

KDIR, pages 43–52, 2009.

[8] R. U. Kiran and P. K. Reddy. Improved approaches to mine

rare association rules in transactional databases. In IDAR

’10: Proceedings of the Fourth SIGMOD PhD Workshop on

Innovative Database Research, pages 19–24, New York, NY,

USA, 2010. ACM.

[9] R. U. Kiran and P. K. Reddy. Mining rare association rules in

the datasets with widely varying items’ frequencies. In

DASFAA (1), pages 49–62, 2010.

[10] R. U. Kiran and P. K. Reddy. Novel techniques to reduce

search space in multiple minimum supports-based frequent

pattern mining algorithms. In EDBT, pages 11–20, 2011.

[11] M. Kubat, R. C. Holte, and S. Matwin. Machine learning for

the detection of oil spills in satellite radar images. Mach.

Learn., 30(2-3):195–215, Feb. 1998.

[12] B. Liu, W. Hsu, and Y. Ma. Mining association rules with

multiple minimum supports. In KDD ’99: Proceedings of the

fifth ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 337–341, New York, NY,

USA, 1999. ACM.

[13] E. R. Omiecinski. Alternative interest measures for mining

associations in databases. IEEE Trans. on Knowl. and Data

Eng., 15(1):57–69, 2003.

[14] J. Pei and J. Han. Constrained frequent pattern mining: a

pattern-growth view. SIGKDD Explor. Newsl., 4(1):31–39,

2002.

[15] J. Pei, J. Han, and L. V. Lakshmanan. Pushing convertible

constraints in frequent itemset mining. Data Mining and

Knowledge Discovery, 8:227–252, 2004.

10.1023/B:DAMI.0000023674.74932.4c.

[16] C. S. K. Selvi and A. Tamilarasi. Mining association rules

with dynamic and collective support thresholds.

International Journal on Open Problems Computational

Mathematics, 2(3):427–438, 2009.

[17] A. Surana, R. U. Kiran, and P. K. Reddy. Selecting a right

interestingness measure for rare association rules. In

COMAD, page 115, 2010.

[18] P.-N. Tan, V. Kumar, and J. Srivastava. Selecting the right

interestingness measure for association patterns. In

Proceedings of the eighth ACM SIGKDD international

conference on Knowledge discovery and data mining, KDD

’02, pages 32–41, New York, NY, USA, 2002. ACM.

[19] G. M. Weiss. Mining with rarity: a unifying framework.

SIGKDD Explor. Newsl., 6(1):7–19, 2004.

[20] T. Wu, Y. Chen, and J. Han. Re-examination of

interestingness measures in pattern mining: a unified

framework. Data Min. Knowl. Discov., 21(3):371–397, 2010.

[21] H. Yun, D. Ha, B. Hwang, and K. H. Ryu. Mining

association rules on significant rare data using relative

support. J. Syst. Softw., 67:181–191, September 2003.

D E M O N S T R A T I O N

103

Excel Solvers for the Traveling Salesman Problem

Mangesh Gharote, Dilys Thomas, Sachin Lodha
mangesh.g@tcs.com dilys@cs.stanford.edu sachin.lodha@tcs.com

Tata Consultancy Services, Pune, India

ABSTRACT

Ordering queries within a workload and ordering joins in a query

are important problems in databases [1]. We give algorithms for the

query sequencing problem that scale (small space) and are efficient

(low runtime) as compared to earlier work [4]. The errors are small

in practice and we are able to further reduce them using geometric

repair. We provide a computational comparison of TSP solvers and

show extensive testing on benchmark datasets [25] observing its

connection to these ordering problems.

1. PROBLEM STATEMENT
Database systems are facing an ever increasing demand for high

performance. Either as standalone Oracle, SQLServer or DB2 in-

stallations or as a backend to Peoplesoft, SAP or Siebel workloads

they are required to execute a batch of queries that contain sev-

eral common subexpressions. Traditionally, query optimizers like

[37], [36] optimize queries one at a time and do not identify any

commonalities in queries, resulting in repeated computations. As

observed in [3, 39] exploiting common results, multi-query opti-

mization (MQO), can lead to significant performance gains – this

requires the queries to be ordered in the workload for memory reuse

and reduced disk need. Motivated by the importance for ordering

problems, we study the combinatorial ordering problem of the trav-

elling salesman problem (TSP) and provide extensive testing on

benchmark datasets [25].

1.1 Applications
The traveling salesman problem has wide applicability in many

different industrial and scientific scenarios. Some notable ones are:

vehicle routing, bus scheduling, development of flight schedules,

crew scheduling, order-picking problem in warehouses, printing

press scheduling problem, network cabling in a country, computer

wiring, query workload ordering for optimization, VLSI chip de-

sign connectivity layout, drilling of printed circuit boards, genome

sequencing, hot rolling scheduling problem in iron & steel industry,

overhauling gas turbine engines , X-Ray crystallography (order-

ing positions for measurement), global navigation satellite system,

ordering test cases in regression suite to re-use components etc.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
The 18th International Conference on Management of Data (COMAD),

14th­16th Dec, 2012 at Pune, India.
Copyright c©2012 Computer Society of India (CSI).

See [6] for a description of some applications of TSP. Intractabil-

ity [12] [11] and restricted tractability results [9] [10] for TSP have

won top awards. We develop our own algorithms on top of reason-

able in-practice TSP algorithms. We obtain near optimal tours in

practice. Our aim is to reduce run time and be scalable in mem-

ory for medium to large instances of TSP. Ease of using the tool,

ability to handle different distance metrics including longitude and

latitude, and ease of visualizing the tours produced are the aims of

our project of improving state of the art TSP solvers available in

Excel [4].

2. NEAREST NEIGHBOR AND GREEDY AL­

GORITHMS

2.1 Nearest Neighbor
Algorithm 1 implemented in our Excel solver is the Nearest Neigh-

bor(NN) algorithm. Since it grows a single segment, it is similar to

left deep plans used in query optimizers. Different start points can

give different tours, see Figure 1.

Algorithm 1 Nearest Neighbor

Select an arbitrary vertex as current vertex.

while not all the vertices in domain are visited do

Find shortest edge connecting current vertex and an unvisited

vertex V.

Set current vertex to V. Mark V visited.

end while

2.2 Greedy
Instead of starting from one vertex in NN, Algorithm 2 the greedy

algorithm grows multiple segments and stitches them together to

get a tour, similar to bushy optimizer plans.

Algorithm 2 Greedy

Sort all edges.

while less than n edges in tour do

Select the shortest edge and add it to tour if

[1] not yet on tour and not creating a degree-3 vertex.

[2] not creating a cycle of size less than n.

end while

3. TOUR REPAIR
NN cannot approximate TSP to better than a factor of log(n) [40]

and may produce the worst possible tour [13]. In practice NN and

104

Figure 1: Different start points in 16 NN(32% from opt),(5%

from opt), 51 NN, Greedy(intersection removal, section 3.1)(8%

from opt),(11% from opt)

Figure 2: Intersection Unrolling

greedy gives within 25% away from optimal for moderately large

sized instances. See Figures 6, 7, 8. The solutions obtained can

be further repaired with our intersection removal, hinge-crest opti-

mization, and tested techniques like geometric constructions, k-opt,

etc.

3.1 Intersection Unrolling
From Figure 2 (i) Triangle Inequality ao + co > ac. (ii) Again

do+ ob > db. (iii) Adding (i) & (ii) ao+ co+ do+ bo > ac+ db.

(iv) Rearranging terms ao+ ob+ co+ do > ac+ db. (v) Intersec-

tion Unrolling ab + cd > ac + db. We solve for the intersection

point using Cramers Rule. Intersection unrolling is applied when

intersection point lies on both segments, as shown in Algorithm 3.

For every i, j intersection, the tour between vertices Tour[i+1] and

Tour[j] has been reversed by the inner while. See Figure 3 for

Algorithm 3 Unroll Intersection

while (Tour[i],Tour[i+1]) (Tour[j],Tour[j+1]) intersect do

L = i + 1. R = j.

while L < R do

Swap = Tour[L]. Tour[L] = Tour[R]. Tour[R] = Swap.

L = L + 1. R = R - 1.

end while

end while

examples.

3.2 Hinge and Crest Optimization
The hinge and crest optimization (transfer tour repair) from Fig-

ure 4 is given in Algorithm 4 and applied in Figure 5.

4. RELATED WORK AND EXPERIMENTS
Being the most important geometric combinatorial problem, the

TSP has multiple popular algorithms.

4.1 Lin­Kernighan
Lin-Kernighan heuristic tries removing k edges and adding k

other edges aiming to retain a tour but to reduce the cost taking at

most O(nk) time.

4.2 Linear Programming Formulation, Cut­
ting Plane

Figure 3: Intersection Removal on 16 NN(5% from opt),(3%

from opt) and 16 Greedy(17% from opt),(1% from opt)

Figure 4: Hinge and Crest Transfer

Figure 5: Hinge and Crest Transfer, 51 points

Figure 6: 48 US mainland capitals(our 7%),6 continents 535

airports(10%)

Figure 7: India 67 cities(our 1%), Africa and Islands(our 12%)

Figure 8: 2103 points PCB drilling(6%), Converting Pictures

to Tours using Voronoi diagrams [33](2)

105

Algorithm 4 Transfer tour repair

while there exists nearby points on different segments do

if hinge distance > crest distance i.e. h1 + h2 + g1 − g2 −
c1 − c2 > 0 then

Transfer points to nearer segment and decrease cost.

end if

end while

Algorithm 5 Computing Dij from longitude and latitude [25]

PI = 3.141592. R=6378.388. /* Radius of earth*/

degree = (int) X[i]. minute = X[i] - degree.

radian = PI * (degree + 5 *minute/3)/180.

v1 = cos(lng[i] -lng[j]).

v2 = cos(lat[i] - lat[j]). v3 = cos(lat[i] + lat[j]).

Dij = (int) (R * acos(1/2 *((1 + v1)*v2 - (1 - v1)*v3))+1).

Miller-Tucker-Zemlin were among the first to provide formula-

tions for TSP [14].

min
∑

i∈V

∑
j∈V,j>i

cijyij (minimize tour cost), Subject to,
∑

j∈V,j>i
yij +

∑
j∈V,j<i

yji = 2 ∀i ∈ V (vertex degree two),
∑

i∈S

∑
j∈S,j>i

yij ≤ |S| − 1 ∀φ 6= S ⊂ V (no subtours),

0 ≤ yij ≤ 1, ∀i, j ∈ V, j > i, yij integer ∀i, j ∈ V, j > i.
We use the bounds obtained from the Held Karp lower bound [17,

18, 28], an LP relaxation, in Table 1 (see [25]). [4] uses in its

backend linear programming solvers like CPLEX, Gurobi, Xpress

solvers for solving the TSP problem.

Concorde solver developed by Robert Bixby, Vasek Chvatal, William

Cook and David Applegate [7, 8], uses the cutting plane technique.

4.3 Held Karp Dynamic Programming
Algorithm 6, Held-Karp [15] dynamic programming is a (n22n)

time complexity algorithm for TSP. This memoizes the solutions to

2n subsets of locations. Take some starting vertex s for the tour.

For set of vertices R, s ∈ R, vertex w ∈ R, let B(R,w) = min-

imum length of a path, starting in s visiting only all vertices in R
and ending in w. Remembering the optimal subsolution (dynamic

Algorithm 6 Held Karp

B({s}, s) = 0.

for all S and w and |S| > 1 do

B(S,w) = minv∈S−{w}B(S − {w}, v) + weight(v, w).
end for

programming) for subsets reduces exponential term of the running

time from n! ((n/e)n) to 2n. It is a 50 year open problem if there

is an exact algorithm for TSP with time (cn) for c < 2 [27] (some

recent progress has been made for cubic graphs [21, 20] and hamil-

tonian paths [19]). Memoization is popular in modern query

optimizers including map reduce contexts [38].

4.4 Christofides
Algorithm 7, Christofides’s algorithm [16] is a 1.5 approxima-

tion to metric TSP. The MST (minimum spanning tree) is atmost

the cost of 1× TSP as a TSP tour without a single edge is a span-

ning tree. A min weight matching is atmost 0.5 × TSP as odd /

even edges in a TSP tour give a matching. In practice 10-20% away

from optimal solutions have been obtained [26]. It is a 35 year open

problem if there is an approximation algorithm with factor < 1.5

(some recent progress has been made at Stanford for shortest path

graph metrics [22, 23]). For the asymmetric case a similar algo-

rithm recently developed by our colleagues at Stanford University

Algorithm 7 Christofides

Get a MST T using Prim’s or Kruskal’s algorithm.

Set O = {v | v has odd degree in tree T}.

Compute a minimum weight matching M in the graph G[O].

Compute Euler tour C in graph T union M.

Add shortcuts to C to get a TSP-tour.

size nn nn-int greedy greedy-int

14 15.6 13.6 17 16.6

16 5.4 2.8 17.6 1.0

48 13 7.1 19.7 11.7

51 19.2 8.5 13 11

52 8.5 3.5 32.0 24.1

67 7.2 1.2 18.2 1

96 18.4 12.1 20.6 16.5

101 17 11.1 26.3 24.2

280 21.4 12.5 14.8 8.1

535 20.7 19.3 15.4 10.1

783 25 16.4 19.6 12.6

1002 21.4 13.6 19.2 14.4

2103 9.4 6.5

14051 21.3 13.8

33180 19.1 12.6

85900 15.2 10.1

Table 1: Performance of Excel Solver- %age away from opti-

mal

achieves O(log n / loglog n) approximation [5].

4.5 Tours and Rectifications
Starting from size 33 instance in 1950s, the largest instance solved

optimally till date is 85,900 locations taking 136 CPU years. Our

results from Table 1 (for datasets from [25] except 67 in Figure 7)

gives the percentage difference from optimal (obtained from Held

Karp lower bound and [25]) of the solutions obtained from NN

and greedy algorithms and with the intersection removal algorithm

applied to the solutions. Greedy performs better on larger datasets

but is more time expensive.

4.6 Metaheuristics
We also experimentally implemented heuristics like Simulated

Annealing (SA)[31], Ant Colony Optimization (ACO)[30] and Elec-

troMagnetism(EM) like algorithm [32] for the TSP Problem whose

results are shown in Table 2. Their complicated expensive noncom-

binatorial iteration rules lead to poor performance in CPU, RAM

and approximation ratio especially as instance sizes increase.

size EM SA ACO

14 15.0 18.4 15.0

52 8.5 17.2 6.5

96 18.2 35.9 14.2

159 15.4 29.5 14.3

226 15.9 17.6 13.1

299 20.2 27.9 20.8

654 24.2 28.3 24.0

Table 2: Performance of Metaheuristics- %age away from op-

timal

106

4.7 SQL Workload
In the first experiment, we generated 5 workloads with 100 queries

each, each query a join of a random subset of 20 tables. Distance

between two queries (with sets of tables ℜ1 and ℜ2) is the car-

dinality of the symmetric difference of the sets of tables in each

queries join (|ℜ1∆ℜ2|). This allows shared pipelined table scans

and LRU RAM reuse. On an average across workloads, we ob-

served the schedule developed by NN to be 3.7%, and greedy to

be 2.9% away from optimal. In the second experiment we gen-

erated 5 workloads with 1000 queries each, each query selecting

each table from totally 100 tables with probability 0.2 to be in the

query’s join (each approximately a 20 table join). On average 9.7

tables were shared between adjacent queries in the optimal order-

ing. The schedule developed by NN was 3.6% and greedy 2.3%

away from optimal on average with 8.8 tables shared between adja-

cent queries compared to a random ordering that could achieve only

four tables shared between adjacent queries. Considering columnar

storages and cache policies, in a third experiment we considered a

real world SAP workload containing 924 queries which reference

on average 7.4 columns per query. The reordering increased the

number of columns shared between adjacent queries from 0.42 to

4.9 on average. In a fourth experiment, a real world SAP workload

of 16000 queries with on average 13.8 columns per query had orig-

inally 1.8 columns shared between adjacent queries already show-

ing affinity, and after reordering shared 13.1 columns between ad-

jacent queries, most being with same prepared statement template

groupings. Template groupings make, batch execution techniques

like JDBC rewrite [2], and cache reuse techniques [34, 35] that use

LRU algorithm and time based aging across foreign keys, possible.

4.8 Critique of work
The most recent excel TSP solver [4] could solve upto 180 cities

without running out of memory or time. We present a solver that

can solve instances of upto 85,900 cities the largest instance solved

optimally to date, approximately. With no extra software installa-

tion and a click of a button we are able to solve multiple different

large sized TSP problems and provide tour rectifications for order-

ing problems. We provide an understanding of TSP solvers and

show extensive testing on benchmark ordering problem datasets [25].

NEOS solver requires expensive dedicated servers [29].

Acknowledgements: Metaheuristics were developed with help

from Prem Nathan, Prashant Kumar and Sani Kumbhar. Dr. Maitreya

Natu provided the SAP workload. Dr. Rajiv Raman provided a few

recent references.

5. REFERENCES
[1] S. Sudarshan, A. A. Diwan, Dilys Thomas, Scheduling and

caching in multiquery optimization, COMAD 2006,

150–153.

[2] M. Chavan, R. Guravannavar, K. Ramachandra, S.

Sudarshan, DBridge: A program rewrite tool for set-oriented

query execution, ICDE 2011.

[3] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobhe. Efficient

and extensible algorithms for multi-query optimization,

SIGMOD 2000, 249–260.

[4] Rasmus Rasmussen, TSP in spreadsheets: A fast and flexible

tool, Elsevier, Omega 39, 1, 51–63, January 2011.

[5] Arash Asadpour, Michel Goemans, Aleksander Madry,

Shayan Oveis Gharan, Amin Saberi, An O(log n / log log

n)-approximation algorithm for the asymmetric travelling

salesman problem, SODA 2010.

[6] Donald Davendra, Traveling Salesman Problem, Theory and

Applications, URL: http://www.intechopen.com, December

2010.

[7] Vasek Chvatal, Robert Bixby, William Cook, David

Applegate, Traveling salesman problem: A computational

study, PUP, 2006.

[8] D. Applegate, R. Bixby, V. Chvatal, and W. Cook, Concorde,

TSP Solver, URL: http://www.tsp.gatech.edu/concorde/,

2006.

[9] Sanjeev Arora, Polynomial time approximation schemes for

euclidean traveling salesman and other geometric problems,

JACM, 1998, 45, 5.

[10] Mitchell, J. S. B., Guillotine subdivisions approximate

polygonal subdivisions: A simple polynomial-time

approximation scheme for geometric TSP, k-MST, and

related problems, SIAM Journal on Computing, 1999.

[11] Stephen Cook, The complexity of theorem proving

procedures, STOC 1971, 151-158.

[12] Richard Karp, Reducibility among combinatorial problems,

Complexity of Computer Computations, 1972, 85-103.

[13] J. Bang-Jensen, G. Gutin, A.Yeo, When the greedy algorithm

fails, Discrete Optimization 1, 2004, 121-127.

[14] C.E. Miller, A.W. Tucker, R.A. Zemlin, Integer

programming formulations and traveling salesman problems,

JACM, 7, 1960, 326–329.

[15] M. Held, R. Karp. A dynamic programming approach to

sequencing problems, Journal of SIAM, 1962, 10, 196-210.

[16] Nicos Christofides, Worst-case analysis of a new heuristic

for the traveling salesman problem, Report 388, GSIA,

CMU, 1976.

[17] M. Held, R. M. Karp, The traveling-salesman problem and

minimum spanning trees, Operations Res. 18, 1970,

1138-1162.

[18] M. Held, R. M. Karp, The traveling-salesman problem and

minimum spanning trees: Part II, Math. Programming 1,

1971, 6-25.

[19] Andreas Björklund, Determinant Sums for Undirected

Hamiltonicity, FOCS 2010.

[20] Kazuo Iwama, Takuya Nakashima, An Improved Exact

Algorithm for Cubic Graph TSP, COCOON 2007.

[21] David Eppstein, The Traveling Salesman Problem for Cubic

Graphs, Journal of Graph Algorithms and Applications,

2007, 11(1) 61-81 .

[22] Shayan Oveis Gharan, Amin Saberi, Mohit Singh, A

Randomized Rounding Approach to the Traveling Salesman

Problem, FOCS 2011.

[23] Tobias Mömke, Ola Svensson, Approximating Graphic TSP

by Matchings, FOCS 2011.

[24] S. Lin, B. Kernighan. An effective heuristic algorithm for the

traveling-salesman problem. Operations Research, 1973,

21(2), 498-516.

[25] G. Reinelt. TSPLIB. Universität Heidelberg, Institüt für

Informatik, Im Neuenheimer Feld 368,D-69120 Heidelberg,

Germany, 2004. URL http://www.iwr.uni-

heidelberg.de/groups/comopt/software/TSPLIB95/

[26] M. Jünger, G. Reinelt, G. Rinaldi, The travelling salesman

problem, Handbooks in Operations Res. & Management Sc.,

Elsevier, 1995.

[27] Gerhard Woeginger, Exact algorithms for NP-Hard

problems, A survey, Combinatorial Optimization 2001,

185-208.

[28] D. S. Johnson, L. A. McGeoch, E. E. Rothberg, Asymptotic

experimental analysis for the Held-Karp traveling salesman

107

bound, SODA, 1996.

[29] NEOS Server for Optimization, http://neos-server.org/neos/

[30] Marco Dorigo, Luca Maria Gambardella, Ant colonies for

the traveling salesman problem, BioSystems 1997.

[31] S. Kirkpatrick, C. D. Gelatt, Jr., M. P. Vecchi, Optimization

by simulated annealing, Science, May 1983.

[32] S. Ilker Birbil, Shu-Cherng Fang, Electromagnetism-like

mechanism for global optimization, Journal of Global

Optimization, 2003, 25, 263-282.

[33] Robert Bosch, Opt Art, Math Horizons, February 2006,

14(3), 6–9.

[34] Times-Ten Team: Mid-tier caching: the TimesTen approach,

(Now Oracle cache and in memory database), SIGMOD

2002, 588–593.

[35] SAP HANA, Realtime in memory technology,

http://www.sap.com/hana/demos/index.epx

[36] G. Graefe and W. J. McKenna, Extensibility and search

efficiency in the Volcano optimizer generator, ICDE, 1993,

209–218.

[37] P. G. Selinger, M.M. Astrahan, D. D. Chamberlin, R. A.

Lorie, and T. Price, Access path selection in relational

database management system, In ACM SIGMOD Intl. Conf.

Management of Data, 1979, 23–34.

[38] Foto N. Afrati, Jeffrey D. Ullman, Optimizing Multiway

Joins in a Map-Reduce Environment, IEEE TKDE 2011,

23(9): 1282-1298

[39] M. Hong, M. Riedewald, C. Koch, J. Gehrke, and A.

Demers, Rule-Based Multi-Query Optimization, EDBT,

120–131, 2009

[40] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis, An

analysis of several heuristics for the traveling salesman

problem, SICOMP 563–581, 1977.

W O R K I N P R O G R E S S

111

A lightweight distributed order and dup lication insensitive
algorithm for approximate top-k queries using o rder

statistics

Vinay Deolalikar
Hewlett Packard Labs
1501 Page Mill Road
Palo Alto, CA 94304

vinayd@hpl.hp.com

Kave Eshghi
Hewlett Packard Labs
1501 Page Mill Road
Palo Alto, CA 94304

kave@hpl.hp.com

Hernan Laffitte
Hewlett Packard Labs
1501 Page Mill Road
Palo Alto, CA 94304

hernan@hpl.hp.com

1. APPROXIMATE TOP-K
Let {e1, e2, . . . , el} be a set of distinct records in a database,

with unique IDs {id1, id2, . . . , idl}. Let A1, A2, . . . , Ap be aset
of distinct attributes for each record. For every record ei, the at-
tributeAj is zero or some positive value. We denote the value of
the attributeAj of record ei byAj(ei). Thesum of the attributesof
ei is denoted byNi =

∑
j
Aj(ei). Wewould like to obtain the list

of top k records, ordered byNi. We present a highly configurable,
lightweight, distributed algorithm to solve the above problem ap-
proximately, based on order statistics.

2. THE ALGORITHM

2.1 Phase One: Generating a list of random
var iables

A ticket is a triple < ID, r, b > where id is a record, r is the
value of a random variable, and b is a binary flag which can be set
to either 1 or 0, respectively.

Each peer first generates an exponential random variable for the
record ei with rate given byAj(ei). At the end of this phase, each
peer will have alist of random variables that is as longas thenum-
ber of records. The list has two columns: the first column has the
record ID and thesecondcolumn has the random variable value.

2.2 PhaseTwo: Pruning the list
Each peer thresholds the list of random variables they have gen-

erated. Rows in the list whose second column (random variable
value) is below a threshold T arediscarded.

2.3 PhaseThree: Exchanging lists
In the third phase of the algorithm, each peer sends their pruned

list of (record ID, random variable value) to their neighbors. This
is the information passing phaseof the algorithm.

2.4 PhaseFour : Merging lists by maximum
Each peer now has lists from other peers. Each peer now merges

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without feeprovided that copies are
not made or distributed for profit or commercial advantage and that copies
bear thisnotice and the full citation onthefirst page. To copy otherwise, to
republish, to post onserversor to redistribute to lists, requiresprior specific
permissionand/or a fee.
The 18th International Conference on Management of Data (COMAD),
14th-16th Dec, 2012at Pune, India.
Copyright c©2012Computer Society of India (CSI).

these lists by keeping only the maximum of the values of the ran-
dom variables for each record.

2.5 PhaseFive: Cropping merged lists
Each peer now sorts his merged list in descending order of ran-

dom variable value, andcrops it to haveonly L topmost records.
Now the algorithm proceeds by looping through phases Two

throughFive for a fixed number of iterations. Experimental results
indicate that 5 iterations sufficefor astabilization of lists.

2.6 Phase Six: Running algor ithm multiple
times and merging results

Phases One throughSix are run a ’run count’ of times. At the
end of each run, a list emerges. Now, a final list is obtained as
follows. If a record occurs in at least ’merge count’ out of the total
’runcount’ number of lists, then it is included in thefinal output of
the algorithm as a top k record.

As with any approximate algorithm, we may merge results of
multiple runs of the basic algorithm outlined above, in order to in-
crease accuracy.

3. EXPERIMENTAL RESULTS

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

R
ec

al
l (

%
)

Item ID

Unique entries=15K, Zipfian skewness parameter=1.5

(4,2)
(4,3)
(7,2)
(7,3)
(7,5)

(10,2)
(10,3)
(10,5)

 0

 20

 40

 60

 80

 100

(4,3) (7,5) (10,5) (4,2) (7,3) (10,3) (7,2) (10,2)

P
re

ci
si

on
 (

%
)

(run count, merge threshold)

Unique entries=15K

skew=1
skew=1.5

skew=2

Figure 1: Tradeoff between (run count, merge threshold) and
precision vs. recall on Zipfian distr ibution over 15K distincts.
I tem id indicates frequency of item: I tem 0 is most f requent,
and so on.

We have validated our algorithm extensively on a wide array of
multi-parameter Zipfian datasets, varying the skewnessof the dis-
tribution of records (only one parameter choice shown in Fig. 1).
We report strong performance of the algorithm over a wide range
of parameter values, andstudy thetrade-offs involved in setting the
tunable parametersof the algorithm in order to obtain theprecision
and recall that is desired.

112

Who’s Who:
Linking User’s Multiple Identities on Online Social Media

Paridhi Jain
IIIT­Delhi, India

paridhij@iiitd.ac.in

Ponnurangam Kumaraguru
IIIT­Delhi, India
pk@iiitd.ac.in

Anupam Joshi
UMBC, United States
joshi@cs.umbc.edu

1. ABSTRACT
On online social media, users join new online social net-
works (OSNs) to exploit variety of services while maintain-
ing their old identities on other OSNs. A user maintains
an identity on each OSN mentioning metadata (e.g. profile
information) about her. Heterogeneity of metadata shared
by user across OSNs leads to a problem of finding if two
online identities on multiple OSNs belong to the same user
or different users. In this work, we attempt to understand
that to what extent can we link multiple online identities of
a user or disambiguate identities of different users, using an
easily accessible and public attribute – username. The so-
lution to the problem has multiple applications. In privacy
domain, the problem finds its application in understanding
the quantity and quality of the user’s information leakages
via either aggregation of user’s information from OSNs or
differences in privacy policies of multiple social networks.
In system building domain, the solution can help in build-
ing recommendation feature for social aggregation sites. In
security domain, the solution can help in linking malicious
user accounts present on multiple OSNs.

1.1 Methodology
We collected usernames of 1,193 users on different social
networks and created two datasets by different methods. In
dataset 1, no two users shared the same name and hence
their usernames were distinct and easily separable. How-
ever in real world, disambiguation of two users with similar
names was a challenge. Therefore in dataset 2, there ex-
ists users who shared the same first name and had similar
usernames. The existence of similar usernames belonging to
different users challenged the techniques we proposed to link
identities of a user and disambiguate identities of different
users.
We proposed a set of string based features to capture the
possible similarities a user’s two usernames had, in order to
predict if two usernames belong to the same user. Some of
the strong features were – n-gram coefficient, Jaccard coef-
ficient, Affine gap and Smith-Waterman distance.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
The 18th International Conference on Management of Data (COMAD),

14th­16th Dec, 2012 at Pune, India.
Copyright c©2012 Computer Society of India (CSI).

1.2 Analysis and Results
We analyzed 1,193 users and found that 359 users (30%)
used same username, and 327 (27.4%) users had twisted
versions of the user’s most used username on every OSN.
Rest of the users had atleast one different username on at
least one OSN. We observed that a more than half the users
(30% + 27.4%) had same or similar users, with possible
reasons as – the username they wished was already taken or
they modified their username on the basis of social network
nature. This motivated the string based feature set and the
techniques we discuss to link users.

1.2.1 Classification

We extracted a set of string based features for a username
pair (437,836 pairs for dataset 1 and 4,384 pairs for dataset
2) either belonging to same user or different users. We per-
formed random sub-sampling validation 10 times with 50%
training and 50% testing dataset. We used SVM with RBF
kernel to classify the username pair if it belonged to the same
user or two different users. SVM with the training accuracy
of 93.7% for dataset 1 and 85% for dataset 2, yielded a clas-
sification accuracy of 99.85% on dataset 1 while 75.37% on
dataset 2.
The classification accuracy (99.85%) is higher than the state-
of-the-art accuracy (71%) by Perito et. al [1] which experi-
ments with 10,000 username pairs of the users where no two
users have same names (similar to dataset 1). The higher
accuracy shows that string based features are efficient in
predicting similarities of two usernames of a user. However,
the classifier makes errors when different users with similar
usernames are marked as the usernames belong to the same
user (accuracy - 75.37%). To distinguish between users with
similar name, we need to incorporate other attributes e.g.
profile and network attributes.

1.3 Conclusion
In conclusion, we observe that majority (57.4%) of users use
same or similar usernames across multiple online networks.
Therefore we argue that username can be used as a unique
identifier to link user identities across OSNs. With string
based features of a username pair, accuracy of correct pre-
diction can be improved from 71% to 99.85%.

2. REFERENCES
[1] D. Perito, C. Castelluccia, M. A. Kâafar, and

P. Manils, “How unique and traceable are usernames?”
in PETS, 2011.

113

MODETL: A complete MODeling and ETL method for
designing Data Warehou ses from Semantic Databases

Selma Khouri
LIAS/ISAE-ENSMA

France

selma.khouri@ensma.fr

Ladjel Bellatreche
LIAS/ISAE-ENSMA

France

bellatreche@ensma.fr

Nabila Berkani
National High School for

Computer Science, Algeria

n berkani@esi.dz

ABSTRACT
In last decades, Semantic DataBases (SDB) have emerged
and the major DBMS editors provide semantic support in
their products. This is mainly due to the spectacular devel-
opment of ontologies in several important domains like E-
commerce, Engineering, Medicine, etc. Note that ontologies
can be seen as a natural continuity of conceptual models.
Contrary to traditional databases, where their instances are
stored in a relational layout, SDB store ontological data
according to one of three main storage layouts (horizon-
tal, vertical, binary). Actually, SDB are serious candidates
for business intelligence applications built around the Data
Warehouse (DW) technology. The important steps of the
life-cycle warehouse design (user requirement analysis, con-
ceptual design, logical design, ETL process, physical design)
are usually managed in isolation way. This treatment is
mainly due to the complexity of each phase. Actually, DW

technology is quite mature for traditional data sources. As a
consequence, leveraging its steps to deal with SDB becomes
a necessity. In this paper, we propose a method that covers
the most important steps of life-cycle of semantic DW. To
fitful our needs, four main objectives have been defined:
O1: leveraging the integration framework by con-

sidering ontologies: a DW can be seen as a materialized
data integration system, where data are viewed in a multi-
dimensional way. Data integration systems are formally de-
fined by a triple: <G,S,M>, where G is the global schema,
S is a set of local schemas that describes the structure of
each source participating in the integration process, and M

is a set of assertions relating elements of the global schema
G with elements of local schemas S. We defined an integra-
tion framework <G,S,M> adapted to SDB specificities,
where schema G is represented by a domain ontology, the
set of sources S considered are SDB, and M represents the
set of mapping assertions. A mathematical formalization of
ontologies, SDB and semantic DW is given, based on the
description logic formalism.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without feeprovided that copies are
not made or distributed for profit or commercial advantage and that copies
bear thisnotice and the full citation onthefirst page. To copy otherwise, to
republish, to post onserversor to redistribute to lists, requiresprior specific
permissionand/or a fee.
The 18th International Conference on Management of Data (COMAD),
14th-16th Dec, 2012at Pune, India.
Copyright c©2012Computer Society of India (CSI).

O2: User requirements have to be expressed at the

ontological level: the requirements model we proposed fol-
lows the goal oriented paradigm. After analyzing the major
studies related to this paradigm, we proposed a goal model
viewed as a pivot model, since it combines three widespread
goal-oriented approaches: KAOS, Tropos and iStar. The
goal model is then connected to the ontology meta-model in
order to specify requirements at the ontological level. Re-
quirements analysis allows the designer to construct the dic-
tionary identifying the set of relevant concepts and proper-
ties used by the target application. The conceptual, logical
and then physical model are defined based on that dictio-
nary. The availability of the ontology allows exploiting its
reasoning capabilities to correct the inconsistencies of the
conceptual model, and to infer new facts.

O3: The ETL process has to be defined at the

ontological level and not at physical or conceptual

levels: different ETL works proposed in the literature con-
sider logical schemas of sources as inputs of the DW system,
and make an implicit assumption that the DW model will be
deployed using the same representation (usually using a re-
lational representation). The third objective of our method
ensures the definition of the ETL process at the ontological
level independently of any implementation constraint. We
defined a generic ETL algorithm, based on ten generic oper-
ators defined in the literature, that aims at populating the
target DW schema, by data from SDB.

O4: the deployment process needs to consider the

different storage layouts of semantic DW: different
deployment solutions are proposed and implemented using
data access object design patterns. A prototype validating
our proposal using the Lehigh University Benchmark ontol-
ogy and Oracle SDB has been developed.

Categor ies and Subject Descriptors
H.2.7 [Database management]: [Data warehouse and repos-
itory]; D.2.10 [Software engineering]: Design—Method-

ologies

Keywords
Data warehouse design, Ontology, Semantic databases, ETL
process

114

Web Personalization and Recommender Systems: An
Overview

R. B. Wagh
∗

Research Scholar, Dept.of Computer
Engineering, RCPIT

Shirpur, Maharashtra, India

rajnikantw@gmail.com

Prof. Dr. J. B. Patil
†

Principal & Professor, Dept.of Computer
Engineering, RCPIT

Shirpur, Maharashtra, India

jbpatil@hotmail.com

ABSTRACT

Information overload is the major problem of today’s Inter-
net use. User frequently gets much more information than
needed. Also much of the information which the user gets
is less relevant and very few links, items, or contents are
really useful. To get rid of this problem, Web Personaliza-
tion or Recommender System is widely used now. It aims
at fulfilling the user needs more appropriately. By analyz-
ing and mining Web content data, structure data, usage
data and user profile data, system achieves the goal of user
satisfaction. In this paper, we focus on existing methods,
their mechanism, limitations and possible extensions which
may improve the capabilities. In our proposed work, we will
improve the accuracy of recommender system. For this pur-
pose, we will make use of various classification and clustering
methods. Presently we are concentrating on density based,
hierarchical and message passing algorithms to achieve the
desired goal of accuracy. More specifically, our aim is to
show that graph based message passing algorithms may out-
perform than K-means algorithm which makes use of par-
tition method. The methodology used for recommendation
purpose will be based on collaborative filtering approach.
Presently we are working on log file of our engineering col-
leges’ web site namely www.rcpit.ac.in. Our aim is to an-
alyze user behaviour in terms of navigational paths and to
recommend them the future navigations to help achieve the
necessary data in less time. Since the present log file is not
much larger and also the navigational patterns are also less
or alike, we are trying to get the dataset of North Maharash-
tra University, Jalgaon web site, namely www.nmu.ac.in.
Also, we will make use of some standard datasets like CTI,
MSNBC, Grouplens or Netflix for our experiment and eval-
uation purpose. We will use above mentioned clustering and
classification techniques to improve browsing experience of
user.

∗R. B. Wagh
†Prof. Dr. J. B. Patil

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
The 18th International Conference on Management of Data (COMAD),

14th­16th Dec, 2012 at Pune, India.
Copyright c©2012 Computer Society of India (CSI).

Keywords- Web personalization; Recommender system; Web
content data; Web structure data, Web usage data.

1. REFERENCES

[1] G. Adomavicius and A. Tuzhilin. Toward the next
generation of recommender systems: A survey of the
state-of-the-art and possible extensions. IEEE Trans.

on Knowl. and Data Eng., 17(6):734–749, June 2005.

[2] M. Eirinaki and M. Vazirgiannis. Web mining for web
personalization. ACM Trans. Internet Technol.,
3(1):1–27, Feb. 2003.

[3] B. K. F.Ricci, L.Rokac. Recommender Systems

Handbook. 2011.

[4] M. Jalali, N. Mustapha, M. N. Sulaiman, and
A. Mamat. Webpum: A web-based recommendation
system to predict user future movements. Expert Syst.
Appl., 37(9):6201–6212, sep 2010.

[5] X. Su and T. M. Khoshgoftaar. A survey of
collaborative filtering techniques. Adv. Artificial
Intellegence, 2009.

[6] N. M. Yahya AlMurtadha, Md. Nasir Bin Sulaiman and
N. I. Udzir. Ipact: Improved web page recommendation
system using profile aggregation based on clustering of
transactions. American Journal of Applied Sciences,
8(3):277–283, 2011.

115

Efficient Approximate Dictionary Matching

Saurabh Kishore

skishore@gmail.com

Ashish V. Tendulkar

ashishvt@gmail.com

ABSTRACT

Named entity recognition (NER) systems are important for extract-

ing useful information from unstructured data sources. It is known

that large domain dictionaries help in improving extraction perfor-

mance of NER. Unstructured text usually contains entity mentions

that are different from their standard dictionary form. Approxi-

mate matching is important to identify the correct dictionary entity

for such variants. This is a challenging problem, as every entity in

the dictionary is a candidate match for the variant. In this paper,

we propose a novel approach for efficient approximate dictionary

matching. The key idea is to compare a given query only against

a set of most likely candidate matches from the dictionary so as to

achieve substantial reduction in the number of matching operations.

In order to enable this, the proposed approach first performs cluster-

ing of similar entities and then represents each cluster with a profile

matrix, which stores the probability of an occurrence of a particular

character at a specific location in the entity string. Thus, the dictio-

nary is represented with a set of profile matrices, which are much

smaller than the actual number of entities. A given query entity

is first matched against the profiles and the clusters corresponding

to top-K best scoring profiles are selected to obtain a list of most

likely matching candidates. The query is then compared with each

candidate match entity and the approximate match is declared if

both the query and the candidate entity are within acceptable edit

distance threshold. We have performed rigorous evaluation of our

approach on several publicly available datasets. The proposed al-

gorithm outperforms alternative approaches in detecting approxi-

mately matching entities for a given query using far lesser number

of comparison operations.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
The 18th International Conference on Management of Data (COMAD),

14th­16th Dec, 2012 at Pune, India.
Copyright c©2012 Computer Society of India (CSI).

