Hybrid HBase: Leveraging Flash SSDs to Improve Cost per
Throughput of HBase

Anurag Awasthi
Dept. of Computer Science
and Engineering,
Indian Institute of Technology,
Kanpur, India

anuraga@cse.iitk.ac.in

Avani Nandini
Dept. of Computer Science
and Engineering,
Indian Institute of Technology,
Kanpur, India

nadini@cse.iitk.ac.in

Arnab Bhattacharya
Dept. of Computer Science
and Engineering,
Indian Institute of Technology,
Kanpur, India

arnabb@iitk.ac.in

Priya Sehgal
NetApp Corporation, India

priya.sehgal@netapp.com

ABSTRACT

Column-oriented data stores, such as BigTable and HBase, have
successfully paved the way for managing large key-value datasets
with random accesses. At the same time, the declining cost of flash
SSDs have enabled their use in several applications including large
databases. In this paper, we explore the feasibility of introduc-
ing flash SSDs for HBase. Since storing the entire user data is
infeasible due to impractically large costs, we perform a qualita-
tive and supporting quantitative assessment of the implications of
storing the system components of HBase in flash SSDs. Our pro-
posed HYBRID HBASE system performs 1.5-2 times better than a
complete disk-based system on the YCSB benchmark workloads.
This increase in performance comes at a relatively low cost over-
head. Consequently, Hybrid HBase exhibits the best performance
in terms of cost per throughput when compared to either a complete
HDD-based or a complete flash SSD-based system.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems—Query Processing and
Optimization

Keywords
HBase, Flash SSD, Big Data, Cost per Throughput

1. INTRODUCTION

Column-oriented databases have been proven to be well-suited
for large database applications including data warehouses and sparse
data [1]. Recently, there is a substantial interest in distributed data
stores for large chunks of data, specially in the NoSQL domain,
such as Google’s BigTable [3], Amazon’s Dynamo [6], Apache
HBase [8] and Apache Cassandra [13]. These are being widely

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

The 18th International Conference on Management of Data (COMAD),
14th-16th Dec, 2012 at Pune, India.

Copyright (©)2012 Computer Society of India (CSI).

used by several companies and industrial users to store “big data”
of the order of terabytes and petabytes on a daily basis. These sys-
tems are of key-value store type that utilize the column-oriented
architecture.

Out of these, we choose to work with HBase for multiple rea-
sons: (i) it is an open-source software and, therefore, easy to mod-
ify, (ii) it has been successfully deployed in many enterprises, (iii) it
is capable of efficiently hosting very large data with tables having
billions of rows and millions of columns including sparse data, and
(iv) it has become increasingly popular in recent years and has a
significantly large community following.

Traditionally, the column-oriented database systems have been
designed considering disk (HDD) as the underlying storage media.
This means that generally only random seeks have been attempted
to be minimized. The lower latency involved in random reads in
comparison to HDDs has drawn attention, and coupled with the
reducing cost of flash drives and increasing capacity per drive, sev-
eral successful attempts have been made for improving query per-
formance by introducing flash SSDs (some well known examples
are [7, 16, 20]). The use of flash SSDs as a substitute as well as a
complementary storage media for hard disks is also increasing due
to their lower power consumption, lower cooling cost, lesser noise
and smaller sizes.

However, flash has certain disadvantages as well. While exhibit-
ing good performance for random reads, it suffers in case of random
writes. Flash SSDs do not allow in-place updates and requires sub-
sequent garbage collection which results in write amplification and
erasures overhead, thereby impacting random write performance.
Frequent erase operations also shorten the lifetime of SSDs as flash
devices can typically sustain only 10,000 to 100,000 erase cycles.
This adversely affects the overall reliability of the SSD drive. Fur-
ther, the cost per unit capacity of flash SSDs is approximately 10
times that of HDDs.

With such high costs, low density, and low reliability compared
to hard drives, it is impractical to completely replace HDDs with
flash SSDs in large deployments like databases (100s of terabytes
to petabytes of capacity requirement). Instead, practitioners have
adopted hybrid solutions consisting of a mix of SSD and HDD
with different media serving different purposes — SSDs offering
high throughput (measured in terms of I/O operations per second)
while HDDs offering high storage capacity. Such hybrid solutions
provide good performance at better costs compared to pure HDD
or pure SSD systems [12].

In this work, we leverage this hybrid approach to come up with
a better cost per throughput solution for HBase columnar database
systems. As HBase has a lot of metadata or system components,
we try to figure out the relevant items that should be placed in flash
as opposed to HDD to yield an attractive cost per throughput. We
call this modified HBase as HYBRID HBASE.

Hybrid SSD and HDD solutions come in two forms with SSD
used as either as (i) a read-write cache for HDD [10, 24], or as
(ii) a permanent store at the same level as HDD [4, 12, 15]. While
the first case of using SSD as an intermediate tier between DRAM
and HDD seems very simple to use and deploy, it leads to caching
problems like redundancy, cache coherency (in case of shared HDD
infrastructure), etc. Further, as flash is limited in its erase and
program cycles, using it as a cache hurts its lifetime much more,
thereby increasing the overall cost per unit capacity of the hybrid
solution. Hence, we propose to use SSD as a permanent store at the
same memory hierarchy as the HDD for our Hybrid HBase.

Any column-oriented database system has two main components
residing on storage media: (i) user data components that store the
actual data, and (ii) system components needed for user data man-
agement that include catalog tables, logs, temporary storage or other
components storing information about current state of system, etc.
While flash can be used to host both the components, for industrial
strength data stores where data sizes are in the order of terabytes
and petabytes, it may be infeasible to host the user data components
due to impractically large costs. Further, the gain in throughput will
depend heavily on access patterns, etc.

Thus, we focus only on hosting the system components of a large
key-store data store on flash. In addition to being much smaller in
size, system components do not change significantly with different
database sizes and access patterns. For example, since write-ahead
log is designed to have sequential I/O, it will be accessed sequen-
tially irrespective of whether the update operation is a random up-
date or a sequential update. Also, the size of the write-ahead log
remains of the order of gigabytes even under heavy load. Addi-
tionally, system components must reside on a persistent media so
that they can be retrieved after a system crash. This rules out the
possibility of hosting them on main memory.

In this paper, we estimate which system components to host in
the flash to improve the cost per throughput of the system. We iden-
tify the system components for a HBase system and analyze the
effects of migrating them to flash both analytically as well as em-
pirically (by performing a thorough benchmarking using the YCSB
workloads). Since flash is used to host only a small amount of data,
the increase in cost is low, although the improvement in throughput
is quite high. Overall, this improves the cost per throughput of the
system considerably as compared to a complete HDD-based setup
or a complete flash SSD-based setup.

The focus of our proposed system is three-fold: (i) better cost
per throughput, (ii) performance independent of access pattern, hit
ratio, and size of data, (iii) easy to setup, i.e., easy deployment
and migration from standard HBase system. Further, the approach
presented is generic and can be applied to other column store archi-
tectures after similar analyses.

Specifically, the contributions of this paper are:

e We analyze the significance of the storage media in the per-
formance of HBase. We assess disk and flash as storage me-
dia, and compare changes in performance with changes in
system cost.

e We propose Hybrid HBase, which uses a combination of
HDD (for data components) and flash SSD (for system com-
ponents), and analyze its performance gain and system cost.

[Parameter i Disk [Flash]

Western Digital | Kingston

Model wdl0EARS | SV100S2
Capacity (GB) 1024 128
Cost/GB $0.15 $2.00
Random Seeks (/s) 151 1460
Reads (MB/s) 161 307.5
Sequential writes (MB/s) 128 182.5
Random re-writes (MB/s) 63.2 81.63

Table 1: Different parameters of the two storage media.

The generic analysis can be extended to other column stores
for improving the cost per unit throughput.

The rest of the paper is organized as follows. Section 2 presents
the required background information needed to understand the id-
iosyncrasies of flash SSD as a storage media and HBase as a data
store. It also briefly describes the related work. Section 3 discusses
the feasibility of using flash SSD for hosting the system compo-
nents of HBase and proposes the Hybrid HBase system. Section 4
describes the experimental setup along with performance compar-
ison of the Hybrid HBase system against a complete HDD-based
setup and a complete flash SSD-based setup. Finally, Section 5
concludes and outlines some possible future work.

2. BACKGROUND AND RELATED WORK
2.1 Flash as Storage Media

Hard disk drives (HDDs) are electromagnetic devices that have
moving heads that read/write data using rotation of spindles. This
enforces a mechanical bottleneck for I/O operations. In contrast,
flash solid state devices (SSDs) does not contain any moving parts
and provide instant reads. Consequently, flash provides good la-
tencies for random reads in comparison to disks (up to 100 times
for enterprise SSDs). Re-writes are slower in comparison to reads
due to the erase-before-write mechanism where re-writing requires
erasing a complete block after persisting all its data to a new lo-
cation, leading to write amplification. This, therefore, results in
asymmetric read and write performance. Further, each block can
be erased only a finite number of times before it turns into a bad
block (non-usable). Due to this erase-before-write mechanism, ef-
ficient wear leveling mechanism and garbage collection need to be
supported on flash, else some blocks become unusable much ear-
lier than others. Flash can, however, offer good performance for
sequential writes. Also, it requires less power consumption. Per-
formance comparison of HDDs versus flash SSDs have been done
in [21, 22]. As illustrated in Table 1, the comparison of actual run-
time parameters between disk and flash for the models used in our
experiments shows the same trends.

2.2 HBase

Apache HBase' is an open-source implementation of Google’s
BigTable [3]. It is a distributed column-based key-value storage
system that leverages existing open-source systems such as Zoo-
keeper® and Hadoop’s Distributed File System (HDFS)’.

HBase cluster has one master server, multiple region servers and
the client API. Zookeeper assists the master server in coordinating
with the region servers.

Tables are generally sparse and contains multiple rows contain-
ing several columns, grouped together into column-families. All

"http://hbase.apache.org/
Zhttp://zookeeper.apache.org/
3http://hadoop.apache.org/

Cluster
System Regi Redi -

Component si?\';? 52?"":‘ ________ F;eglon
(e.g., Zookeeper) erver

— /v \;

System . .
E COn}llponent Region| -------|Region
(e.g., temp. storage) / \

— — | System Data
Component Component
SSD | [(e.g., WAL)

Figure 1: Hybrid HBase setup.

columns of a column family are stored together in sorted key-value
(ordered by key) format in store files. Each store file stores key-
value pair corresponding to only one column-family.

Each region server can host several regions. A region is a hor-
izontal division of a table and contains store files corresponding
to all column-families of that division. A region splits horizontally
(based on row key) into two daughter regions if its size grows above
a threshold. Therefore, a table is comprised of multiple regions dis-
tributed over different region servers.

Each region server also has a write-ahead log (WAL) file shared
by all its regions. When a write request from a client reaches a
region server, data is first written persistently to the WAL and then
to the in-memory memstore. The write-ahead log is used to retrieve
the data after a server crash. After each flush, the write-ahead log
can be discarded up to the last persisted modification.

The memstore stores data in a sorted manner, and its size can
grow to the order of gigabytes. Once the size of memstore crosses
a threshold, it is flushed to disk as a store file in a rolling fash-
ion, i.e., HBase stores data residing on disk in a fashion similar to
log-structured merge (LSM) trees [19], more specifically in “log-
structured sort-and-merge-map” form as explained in [8]. Accord-
ing to [8], background compaction of store files in HBase corre-
sponds to the merges in LSM trees and happens on a store file level
instead of the partial tree updates. Therefore, HBase uses a write-
behind mechanism and internally converts multiple random writes
to a sequential write for large chunks of data.

To read a key-value pair, first the region server hosting the cor-
responding region is identified using catalog tables. At the region
server, first the memstore is searched to see if the required value is
present there. If not, then the next level of LSM tree stored persis-
tently needs to be examined. This process continues until either all
the levels of LSM trees have been examined or the key is found.

Write involves inserting the updated or new key-value pair in
memstore and writing it sequentially to a WAL. Compaction, mem-
store flush and other such operations happen in background.

Therefore, in HBase, read latencies are higher than write laten-
cies as a read requires first searching the memstore, followed by
searching on-disk LSM-trees from the top most level to the bottom
level in a merging fashion.

On the administrative side, all the information about regions and
region servers are hosted in two catalog tables called .META. and
-ROOT-. Zookeeper, which stores information about the region
server, hosts the -ROOT- table. The -ROOT- table gives the address

of the server hosting the . META. table which, in turn, contains the
list of region servers and regions that they are hosting.

A new client first contacts Zookeeper to retrieve the server name
hosting the -ROOT- table. Afterwards, these catalog tables are
queried by the clients to reach the region server directly.

Only when catalog tables are changed due to system crash, re-
gion splitting, region merging or load balancing, does the client
need to re-establish the connection. It is important to note that
for most workloads such events are not too frequent. Thus, the
catalog tables are mostly read-intensive entities. Further, although
Zookeeper is extremely I/O intensive, it needs only a small amount
of persistent data.

2.3 Related Work

Flash SSDs have been successfully used as storage media in
many embedded systems and are ubiquitous in devices such as cell
phones and digital cameras. Hybrid database systems using both
types of storage media (i.e., HDDs and flash SSDs) have also been
proposed [12, 24]. In [12], capacity planning technique was pro-
posed to minimize the cost of a hybrid storage media. It uses flash
SSDs as a complementary device for HDDs rather than a replace-
ment. Further, in [24], a novel multi-tier compaction algorithm was
designed. An efficient tablet server storage architecture that ex-
tends the Cassandra SAMT structure was proposed. It was shown
to be capable of exploiting any layered mix of storage devices.

In [2], a flash-friendly data layout was proposed that used flash
to boost the performance for DRAM-resident, flash-resident and
HDD-resident data stores. Flash has also been used as part of a
memory hierarchy (in between RAM and HDD) for query process-
ing. In [9, 25], a general pipelined join algorithm was introduced
that used a column-based page layout for flash. In [10] flash was
used as a streaming buffer between DRAM and disk to save energy.

In order for applications to work transparently to the idiosyn-
crasies of the flash SSD media, various flash specific file systems
have been developed. YAFFS [18] and JFFS* are among the most
popular ones and are part of the log-structured file system (LFS)
[23] class. LFS file systems has an advantage on flash as they log
the changes made to the data instead of overwriting it, thereby trad-
ing the costly erase operations with increased number of read op-
erations. LGeDBMS [11] used the design principle of LFS further
and introduced log structure to flash-based DBMS.

In OLTP systems, significance of flash becomes evident due to
the work of [15]. An order of magnitude improvement was ob-
served in transaction throughput by shifting the transactional logs
and roll back segments to flash SSD. An improvement by an or-
der of two was also observed in sort-merge algorithms by using
flash SSD for temporary tables storage. Further, in [14], it has been
shown that flash SSDs can help reduce the gap between the increas-
ing processor bandwidth and I/O bandwidth.

The work presented here is different from others due to multiple
reasons. Firstly, there have been attempts to introduce flash in the
memory hierarchy between RAM and disk as in [24], but to the
best of our knowledge there is no work done for benchmarking
the performance of column stores such as HBase with respect to
flash SSD as storage media. Secondly, we focus on and explore the
feasibility of using flash SSDs at the same memory hierarchy as
disk for hosting system components. Thirdly, our approach can be
generalized for any distributed key-value column-oriented storage
system, in particular the NoSQL domain.

*http://sourceware.org/jffs2/jffs2-html/

3. THE HYBRID HBASE SYSTEM

In this section, we describe our Hybrid HBase system. The anal-
yses of flash SSDs and HBase done in Section 2.1 and Section 2.2
respectively suggest that it is beneficial to leverage flash SSDs for
setting up a HBase system. However, when storage requirements
are high, it is not feasible to replace the entire storage capacity of
HDDs by flash SSDs. Hence, we focus only on the system compo-
nents of HBase.

3.1 System Components
The major system components of HBase are:

e Zookeeper data

e Catalog tables (-ROOT- and .META.)

e Write-ahead logs (WAL)

e Temporary storage for compaction and other such operations

In the following sections, for each of the above mentioned sys-
tem components, we discuss analytically whether hosting it on flash
SSD can give any performance boost. Section 4.2 analyzes the em-
pirical effects of putting them on a flash SSD as opposed to a HDD.

3.1.1 Zookeeper

The Zookeeper data component stores information about the mas-
ter server as well as the region server hosting the -ROOT- table, in
addition to a list of alive region servers. The client contacts the
Zookeeper to retrieve the server hosting the -ROOT- table while
the master contacts it to know about the available region servers.
The region servers report to Zookeeper periodically to confirm their
availability. This is similar to a heartbeat keep-alive mechanism
and a region server would be declared unavailable if it fails to re-
port. This, thus, makes the Zookeeper very I/O intensive.

The storage requirements for Zookeeper is essentially propor-
tional to the number of systems in the HBase cluster. For most
cases, it is very low and is in the order of kilobytes only per system.
Hence, it should be beneficial to host it in a flash SSD. However, it
cannot be hosted on main memory due to persistency requirements.

3.1.2 Catalog Tables

The catalog tables (-ROOT- and .META.) are mostly read inten-
sive and are not updated as frequently as the data tables. While the
-ROOT- table has almost a fixed size, the size of the .META. table
grows with the total number of regions in the cluster. Nevertheless,
their sizes are much less (almost insignificant) in comparison to the
data. Thus, these tables are also good candidates for being hosting
on flash SSDs. Again, although the sizes of these tables can fit into
main memory, they cannot be hosted there as persistency needs to
be maintained across system crashes.

3.1.3 Write-ahead-log (WAL)

The write-ahead-log (WAL) is used to simulate sequential writes.
Any write is first done on the WAL and it is later committed to the
disk in a rolling fashion. The WAL itself is written in a sequential
manner as well.

The size of the WAL, unlike the other system components, is not
small. The size grows proportionately with the following three pa-
rameters: (i) the time after which the WAL is committed to disk,
(ii) the rate at which writes happen, and (iii) the size of each key-
value pair. Thus, depending on the workload, the size can become
as large as gigabytes. This, therefore, rules out the possibility of
using main memory. Also, if the WAL resides on a flash SSD, sys-
tem recovery would be faster after a system crash as data written in

WAL could be read faster from SSDs. Hence, it would be produc-
tive to host it on flash SSDs.

3.1.4 Temporary Storage

Temporary storage space is used when a region is split or merged.
The rows are generally written sequentially in the temporary stor-
age and then later read in a sequential manner again. The size is not
expected to be large unless there are many region splits and merges.
Combined with the sequential nature of access, introducing flash
for temporary storage should, thus, improve the performance.

The above analyses thus suggest that shifting all the four sys-
tem components of HBase to flash SSDs can yield a better perfor-
mance at a marginal cost overhead. (Section 4.2 shows the gain in
throughput for each system component individually.) This forms
the basis of our proposed HYBRID HBASE system. The setup is
shown schematically in Figure 1. We next estimate the additional
cost of such a hybrid system.

3.2 Additional Cost of Hybrid HBase

The overhead of catalog tables is directly related to the size of the
database. If the maximum number of keys per region (as configured
by the HBase administrator) is R, then the number of entries in
.META. is m = N/R, where N is the total number of records in
the database in a stable major compacted state. The -ROOT- in turn
contains only m /R entries. Thus, we need extra space in the order
of 1/R + 1/R? times the user data space. For typical values of
R, e.g., when R = 1000, this translates to an overhead of only
~ 0.1%.

The space overheads for the Zookeeper and the temporary direc-
tory are proportional to the number of systems in cluster and are
insignificant in comparison to the total size of the database.

The write-ahead-log (WAL), however, can grow to a significant
size, and a flash SSD needs to be installed on each region server.
To get an upper estimate of the size of WAL, we observe that in
the worst case all the memstores will remain uncommitted and the
WAL will keep on growing. Usually there is an upper limit on
the size of the memstores and is always less than the heap size al-
located to HBase. However, in the extreme case, the entire heap
may be used for this purpose (although not recommended), thereby
starving other processes. This allows us to estimate the upper limit
by the size of the heap allocated for HBase. For our experiments,
we used 4 GB of heap and a maximum of 2 GB of memstores be-
fore flushing is forced. Even in higher end server machines having
32GB RAM, if 16 GB is devoted for WAL (which is a high esti-
mate)’, we only need a flash SSD partition of size 16 GB on each
region server. The user data hosted on these machines can be very
high (say up to 2-4 TB) without increasing the risk of over-running
WAL. Thus, this constitutes the largest system cost requirement.
Assuming a 1 TB database and a § GB WAL space, the cost over-
head is 8/1024 = 0.8%.

Adding all the system components together, the space overhead
grows to at most 1% of the total database size. At an estimate of
flash SSDs being 10 times more expensive than HDDs, the extra
cost overhead of our proposed Hybrid HBase system for installing
flash SSD drives is 10%. Thus, if the gain in throughput becomes
more than 10%, then the cost per unit throughput of the hybrid
system would be better.

Section 4 extensively discusses the gain in throughput by using
flash SSDs. However, before we present the experimental results
on how the hybrid system fares vis-a-vis a completely HDD based
system or a completely flash SSD based system, we describe our

*It is better to flush WAL when the size is small as then the system
rollback and recovery are faster after a system crash.

W;)Irkload Operations Access
ame Pattern
A—Update heavy Uli)iiﬁzezsg(()%‘}o Zipfian
B—Read heavy ll}gggt:e?s'jo‘/;b Zipfian
C—Read only Read: 100% Zipfian
D—Read latest 1%;:&;:955 (Zj’ Latest
E—Short ranges Tnsert: 5% Crntorm
F—Read-modify-write Rea d-le)?ﬁ(fi}:/-%(\)/;‘/iﬂte: 50% Zipfian

Table 2: YCSB workloads, as published in [5].

model of how the systems are compared according to the cost and
the cost per unit throughput measures.

3.3 Metrics for Comparing Systems

We compare the cost of storage media only as this is the sole
component varying across different system setups. In addition to a
fixed installation cost, there is a maintenance cost associated with
each storage media that includes power usage, cooling cost and
other such recurring costs. However, since it is harder to estimate
them and manage them, in this paper, we only consider the instal-
lation cost, information about which is readily available.

To calculate the system cost for a storage media over a given
workload, we first estimate the maximum amount of data stored in
the device while the workload is running. We also set the device
utilization ratio to 80% for HDDs and 50% for flash SSDs as sug-
gested in [12]. The device utilization ratio is important as when the
data size grows above it, the performance of the media decreases
due to various factors including garbage collection.

Assume that a system setup .S uses n storage media. The max-
imum capacity and the utilization ratio for each of them are { D1,
Ds,...,D,}and {R1, Ra, ..., Ry} respectively. Hence, the am-
ount of data that can be stored in a device 7 is only D;/R;. If the
price for unit capacity of each storage media is {P1, Pa, ..., Pp},
the system cost C' for the entire setup S is

C= Zn:(Pi.Di/Ri)

However, due to significant differences in latencies and cost of
the three systems (the hybrid one and the two using only one type of
storage media), we use the cost per unit throughput metric for a fair
comparison. If a system having a cost of C' achieves a throughput
of T IOPS (I/0 operations per sec), the cost per unit throughput is
C/T.

4. EXPERIMENTAL EVALUATION

In this section, we present the experimental analysis and bench-
marking of our proposed hybrid system vis-a-vis a complete flash-
based system and a complete disk-based system. We conduct the
experiments on a standalone instance of HBase (similar to [24]) to
completely eliminate the network related latencies. This enables
us to better understand the performance and design implications
of Hybrid HBase. Since the idea is to analyze performance im-
provement with respect to storage media, we can expect gain in
performance in similar proportions for a distributed environment.

The results are reported for experiments on a system running
on an Intel i5-2320 LGA1155 processor (4 cores and 4 threads at
3 GHz) with a total of 8 GB of RAM (4 GB as heap), Western Dig-

On Flash
40

WAL
Zookeeper
Temporary wzzzzi
35 Catalog Tables ==s=x1

Uk HDD-based

Throughput (in ops/sec)

ES
@
s
m g

(a) Raw throughputs
On Flash

B 13 WAL
& 105 Zookeeper
2 ’ Temporary
8 Catalog Tables ==X
9 12
< 7
3 1.15
2
= 11
< 7
5 105 -
=
g’ i % ll
o \
£ \
F o9 ék

WA WwB WE

(b) Throughput as a ratio with HDD
Figure 2: Throughputs when single system components are hosted
on flash SSD.

ital 1 TB HDD, Kingston SV100S2 128 GB Flash SSD, with 64-
bit Ubuntu-Server 11.10 as the operating system and ext4 as the
underlying file system. We used HBase version 0.90.5 from the
Apache repository as the base system. For all analysis and perfor-
mance evaluations, we used Yahoo! Cloud Serving Benchmarking
(YCSB) [5] version 0.1.4. Table 2 shows the six standard work-
loads (A to F) as identified in [5].

The workloads are composed of) number of queries (or op-
erations) on R records, and the key generation pattern is decided
by three models, namely, latest, uniform and Zipfian. For a work-
load following a uniform distribution, all records in the database
are equally likely to be chosen for the next query. For a Zipfian
distribution, some randomly selected keys are hot (more frequently
accessed) while most records are rarely accessed for queries. Lat-
est distribution, as the name implicates, reads or writes the most
recently accessed key-value pairs with a higher probability.

For our analysis, we used @ = 10° queries on a database with
R = 6 x 107 records. Each record is of size 1 KB and the total
number of regions in a compact state was found to be 72 (with a
maximum region size of ~ 1 GB). We next discuss a few important
parameters of the system and the HBase configuration.

4.1 System Tuning

The benchmarking of any given system involves several vari-
ables which must be taken care of appropriately to get the true ef-
fect of the desired variable, which in our case, is the storage media.
By considering a standalone system, we have removed all exter-
nal network related issues. We run HBase on a dedicated partition
which is different from the operating system’s (O/S) partition. The
O/S runs on an ext4 HDD partition. Out of 8 GB RAM available,
4GB had been allocated as heap for HBase and 4 GB had been
used by O/S. We also set the swappiness® parameter to zero to en-
able using the entire available RAM. For the ext4 file system, we

Swappiness is the tendency to use swap area in place of RAM in
order to reserve some RAM for future processes.

1e+06 | HDD
Hybrid zzzzz
100000 | A
% 10000 b \f ! i i v
£
g 1000 f
5]
3 100 vl
F N
il
LA W
Ar Ay Br By Cg Dg Dy Es E; FaFpuw
YCSB Workloads
(a) Average Laltency8
1200 4
HDD throughput
Hybrid throughput zzzzzz { 3.6
1000 } SSD throughput &===31 | 3.0
3 HDD costthroughput -+ c 5
@ Hybrid costthroughput --—+--] 28 &
g 800f SSD costhroughput -+~)
° * 124 3
S 600 ® 12 g
Q. : N 4o
< N 8 N 116 ¢
2 L N N N =
§ 400 s s g : s 112 3
= NN A N 3
T 200 RN N 108
B S
AR 3

YCSB Workloads

(b) Throughput
Figure 3: Performance over different YCSB workloads.

deactivated the maintenance of file access times done by kernel to
further reduce the administrative overheads not needed by HBase.

On flash SSD, we additionally enable TRIM’ support to reset
all flash SSD wear-leveling tables prior to evaluation and main-
tain a 50% utilization ratio. This minimizes the internal flash SSD
firmware interference due to physical media degradation and caching
and enhances the flash performance. An unused flash performs very
well for the initial read and writes, before reaching a stable lower
performance. Hence, we completely fill and empty the flash several
times to eliminate this effect. Further, before starting the experi-
ments, we fill SSD completely with some random data so that each
query has the same state of flash for garbage collection.

For HBase, automatic major compaction was disabled. We per-
form major compaction manually and also empty the cache before
each experiment to provide the same data locality, i.e., the same
initial state for both cache and the data layout on disk. The MSLAB
[17] feature has been enabled to facilitate garbage collection as well
as to avoid lengthy pauses and memory fragmentation due to write
heavy workloads. We set the maximum regions per server to 200
and extended the session timeout limit (after which a server is de-
clared dead) to avoid possible server crashes due to delay in re-
sponses when the system is subjected to an overload.

"The TRIM command specifies which blocks of data in an SSD are
no longer used and can be erased.

8 Xr = Read operation of workload X; Xy = Update operation
of workload X'; X5 = Scan operation of workload X'; X; = Insert
operation of workload X; X garw = Read-modify-write operation
of workload X.

4.2 Single Component Migration

Before we benchmark the proposed Hybrid HBase system, we
first assess the effect of migrating one system component at a time.
These experiments, thus, measure the effects of hosting each sys-
tem component individually on a flash SSD while the rest three
remain on the HDD.

We ran half a million (5 x 10°) queries on a database having
60 million (6 x 107) records over the workloads WA, WB and WE,
i.e., update-heavy, read-heavy and short-ranges. The characteristics
of the other workloads are similar to these (WC and WD are both
read-heavy and are similar to WB while WF has 50% read and 50%
write, similar to what WA also has).

Figure 2 shows the throughputs of the setups (both raw and as a
ratio with a completely HDD-based system). The gains in through-
put are more pronounced for WAL and temporary storage. Hence,
hosting these components on flash SSD is likely to improve the cost
per throughput ratio. However, since the space (and therefore, cost)
overheads of the catalog tables and Zookeeper are almost insignif-
icant, it is beneficial to host them on flash SSDs as well. These
conclusions, therefore, agree with the analyses done in Section 3.1.

4.3 Performance over the YCSB Workloads

Figure 3 depicts the performance of the Hybrid HBase setup vis-
a-vis the completely HDD-based system and the completely flash
SSD-based system for the different operations on the six YCSB
workloads. (As mentioned earlier, for all subsequent experiments,
the database consists of 6 x 107 keys and results reported are av-
erages over 3 runs, each having 10° queries. Moreover, all the four
system components are hosted on a flash SSD.)

Read latencies of SSD-based setup are significantly lower (ap-
proximately 13 times) than both Hybrid and HDD-based setups.
These read operations are random reads which are significantly
faster for a flash SSD and, hence, the lower latencies. Since the
catalog tables (-ROOT- and .META.) and also the Zookeeper data
is stored on SSD in the hybrid setup, read latencies are lower than
HDD (approximately 1.6 times). The user data remains on the disk,
and therefore, latencies are not as low as SSD.

Average latency for update operation is the lowest for SSD fol-
lowed by Hybrid and is the highest for HDD. The update oper-
ation is similar to a random write, and thus, involves writing to
the write-ahead-log (WAL) persistently and storing the updates in
memstores to be flushed later. Since WAL is on flash SSD in a Hy-
brid setup, average update latencies for Hybrid and SSD should be
similar. However, due to other background processes (e.g., major
compaction and JVM garbage collection) that run faster in SSD,
the update latencies for SSD setup are lower.

SSD outperforms Hybrid and HDD setup in scans (sequential
reads) moderately as the difference between sequential reads for
HDD and flash SSD is not as high as random reads (see Table 1).
Average insert latency for HDD, Hybrid and SSDs are also almost
similar. Insert operation differs from update operation as during
inserts, the size of a region grows and may lead to a region split. A
region split also requires updating the .META. table. Thus, average
insert latency is higher than average update latency over different
workloads.

Overall, therefore, as expected, the throughputs of a completely
SSD-based system is higher than that of the Hybrid one, which in
turn is better than a completely HDD-based setup.

Workload A is an update heavy workload and, hence, the through-
puts are lower in comparison to the other workloads. This high
variance in overall throughput is in accordance with the asymmet-
ric read/write performance of flash SSDs. Throughputs for work-
loads having higher percentage of reads are larger in comparison to

14 Hybrid/HDD

Hybrid/HDD Hybrid/HDD

SSD/HDD 25 | SSD/HDD 6 SSD/HDD
12 7
5
10
o 8 ° o 4
3 5 3
g 4 T3
4
: =
0 I
A B c D A B c D E F
YCSB Workloads 'YCSB Workloads YCSB Workloads
(a) Throughput ratio (b) Cost ratio (c) Cost per throughput ratio
Figure 4: Relative comparison for different setups.
2 4
30000 5000 5] 5000 o
Hybrid —— 40000 Hybrid -~
25000 | SS SSD
20000 35000
20000 f _ 30000 A
» » @ o
S 2 15000 2 25000 -
@ [)) 7
£] £ g 20000 L
= i 10000 = L
10000 ff .~ 15000 -
10000
5000 | 5000
5000 -
0 0 7 . 0 & .
0 0.2 0.4 0.6 08 1 0 0.2 0.4 06 0.8 1 0 0.2 0.4 0.6 08 1
Total Operations (in millions) Total Operations (in millions) Total Operations (in millions)
(a) Workload A (b) Workload B (c) Workload E

Figure 5: Total time taken for YCSB workloads.

workloads having no random reads (WE) or higher percentage of
random writes (WA).

4.4 Performance Ratios with respect to HDD

Figure 4 shows the different performance ratios of the Hybrid
and the completely flash SSD-based systems as compared to the
completely HDD-based setup. The performance metrics are through-
put, cost and cost per throughput. Even if the SSD-based setup
gives the highest throughput for all the workloads, the cost per
throughput is worse as compared to a Hybrid setup. In fact, due
to the high costs of flash SSDs, it is worse than even a fully HDD-
based setup. The y = 1 line is shown in Figure 4 to mark the base
HDD-based setup.

The throughput ratio between Hybrid and HDD setups is around
1.75 for all workloads. This leads to a lower cost per throughput
ratio for the Hybrid setup. The cost per throughput ratio for Hybrid
setup is below 1 (approximately 0.66 for all workloads).

The difference between cost per throughput of HDD-based and
SSD-based setups is even larger for workloads A and E, thereby in-
dicating that flash SSDs are not so suitable for update heavy work-
loads or workloads having no random reads. Our proposed Hybrid
HBase setup exhibits the lowest cost per throughput ratio for all
the workloads and can, therefore, be considered the best on this
criterion.

4.5 Progressive Running Time

Figure 5 shows the progressive running time for the different
workloads as more queries arrive (workloads C, D and F are not
shown as they exhibit similar effects). The SSD setup always per-
forms better than the Hybrid one which in turn outperforms the
HDD setup consistently.

We next measure the effect of introducing flash SSDs for garbage
collection and the CPU performance.

4.6 Garbage Collection

Figure 6 shows the behavior of Java garbage collector over the
three different experimental setups. The freed memory per minute
is the highest for SSD setup followed by Hybrid. However, accu-
mulative pauses are also the highest for SSD setup. Accumulative
pauses are significantly larger for workloads involving updates/in-
serts. Thus, memory fragmentation is highest for SSD setup which
further increases if an update heavy workload or an insert heavy
workload is applied. Accumulative pauses due to garbage collector
are higher for HDD setup in comparison to Hybrid setup. This is
due to the fact that system components on flash in a Hybrid setup
requires very less frequent random writes, and hence, there is less
memory fragmentation and less garbage collection time.

4.7 CPU Performance

Figure 7 shows the CPU utilization over the three different se-
tups for the workloads A, B and F (others are similar to WB). CPU
utilization for Hybrid setup is slightly larger than HDD setup. The
CPU utilization is highest for the SSD-based setup as flash SSDs
narrow the gap between I/O bandwidth and processor bandwidth.
Variation of CPU utilization in WA for SSD is high as it is an up-
date heavy workload and requires running garbage collector more
frequently, thereby increasing the CPU utilization significantly.

4.8 Effect of Database Size

The next set of experiments assess the impact of database size
on the storage layer in the standalone system. We vary the number
of records in the database, R, for R = {2,4,6,8,10} x 107. Due
to space limitations, we proceed only up to 6 x 10 records for
a completely flash SSD-based setup. Figure 8 to Figure 13 show
average latencies for all operations and overall throughputs for the
six workloads A to F.

For workload A, with the increase in number of records, read la-
tency also increases for all the setups. However, as shown in Figure

£ 5000 - o 300 D)
g 4500 Hybrid zzzzz Hybrid zzzzz2
S 4000 SSD ==x=x3 Z 250 SSD ==x=%3
= <
< 3500 s 200
2 3000 N 2
s 2500 N S & N % 150
5 N N N N N 2
S 2000 N N N N N £
g NI I \ 2 100
g 1500 \ $ N g N E
2 1000 N N N N N S
3 N
3 500 N N @
A B C D E F
YCSB Workload YCSB Workload
(a) Freed memory per minute (b) Accumulative pauses
Figure 6: Effect on garbage collector over YCSB workloads.
HDD —— 50 HDD —— %0 HDD ——
Hybrid - Hybrid - Hybrid -
g SSD S 4l SSD & 40 SSD
g 2 30 g 30}
s s 5 ‘
3 3 E]
] 2]
5 m & 10 e | 5 \ |
[‘_;.“nxr‘ﬂxw‘ bony] 4‘ . . X » 0 L] AR W A Y] BT Ll
0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 0 10000 20000 30000
Time (in s) Time (in's) Time (in s)
(a) Workload A (b) Workload B (c) Workload F

Figure 7: Effect on CPU utilization over YCSB workloads. (Please see the soft copy version for better visualization of colors.)

8a latency increases faster for HDD setup in comparison to Hybrid
setup. As number of records increase, number of regions increases
as well. This leads to more accesses to -ROOT- and .META. tables
which are hosted on flash SSD in a Hybrid setup. Hence, although
initially with 2 x 107 records, read latencies of Hybrid and HDD
setup are comparable, for larger sizes, there is a significant differ-
ence between them. Read latency of SSD is very small in compar-
ison to other two setups as random reads are much faster on SSDs.
The same behavior is shown for read latencies in workloads B, C,
D and F and scan latencies in workload E.

To compare update latencies, it should be noted that while up-
dates to a single region are sequential, those to multiple regions are
random. Hence, if incoming updates/inserts are distributed across
multiple regions, the random write characteristic aggravates. Up-
date latency for workload A and B increases moderately with in-
creasing number of records as shown in Figure 8b and Figure 9b.
The update latencies for workload B is higher for all the three se-
tups as there are only 5% update operations as compared to 50% in
workload A. Since the update operations are distributed over all the
regions, and the number of regions remain approximately equal for
both workloads, this results in more random writes corresponding
to each region for workload A. Thus, in an update heavy workload
(WA), update latency for all database sizes is comparable owing to
the larger sequential write characteristics.

Throughput decreases as number of records increase in all three
setups for all workloads. However, as shown in Figure 8c, the
change in throughput is maximum for SSD setup for workloads
A, E and F. As number of regions increases, writes get more dis-
tributed. This results in smaller chunks of sequential write (random
writes converted to sequential write for each region when written
to new store files) for each region and larger number of such ran-
dom chunks. Workload E includes insert operations and leads to
many region splits. Consequently, garbage collection requirements

become higher as well. Thus, the throughput drops rapidly for SSD
setup for workloads A and E. The drop in throughput for the work-
loads B, C and D are less sharper as they are more read-heavy (Fig-
ure 9c, Figure 10b and Figure 11c).

For workloads A, E and F, the cost per throughput is the high-
est for SSD. With increase in number of records, it increases faster
than the other two setups as shown by slope of the lines. This hap-
pens since the increase in cost is not proportional to the increase in
throughput. For workloads B, C and D as well, SSD has the highest
cost per throughput, but the difference with SSD is smaller as they
are more read-intensive.

For all database sizes and all workloads, Hybrid HBase has the
lowest cost per throughput. This establishes the benefits of our
proposed system.

4.9 Effect of Access Pattern

We next evaluate effect of access pattern for workloads A to F.
The results are reported in Figure 14 to Figure 19.

Update latencies for the uniform access pattern are higher as
compared to the other access patterns since they are distributed to
a larger number of regions. To understand this better, consider the
scenario where there are 5000 write operations. If these are dis-
tributed over 10 regions, then there are 10 chunks of sequential
writes each containing 500 write operations. However, if these op-
erations are distributed over 100 regions (as is more likely for a
uniform access pattern), then there are 100 chunks of sequential
writes each containing 50 write operations. The first will always be
favorable for both HDDs and flash SSDs.

In a uniform access pattern, insert operations lead to lower num-
ber of region splits as all regions grow equally. However, in a Zip-
fian or latest access pattern, insert operations will happen more fre-
quently on a few regions, thereby resulting in more frequent region
splitting. Thus, in spite of having a more random write effect in

(indyBnouy1)/($ uisod (indybnoay1)/($ ur) 1s0D indyBnouy 1/($ u) 1s00

© N oo © N oo © [3V) © < © o © <
+ o oaadN~~OS o o o p - S S o o p - S S =
NI 7] . B [
mm“ ok ok m ok ok o m ok ok
CINIZB X 5 o é L X 25 G L X,
SE5000 = 2 555000 = B SE5000 \
223a89 E & gasiay : g E & 822388 N 5y e
222558 < o0 29953 8 < o0 299538
ccconn 4 = cCccLL9 q = o9 4
535588~ 8 & 635888 . 1288 & 555588 PR
asnaza o os5n0zTO . o asnoza i
T M,S% 53 vrzz727727 5 ﬁ T MYS Q8 wzzzzzZZIZZZZZ] | 5 w./ (1ndyBnosy)/(§ ui) 100 T MV,S Q 5 Rurzzzzzzzzz 7z
T 5 O T 5 O © & @ @« I e
2 2 [N - - 1=} 1=} o |
|7 W V77777777777 77777 7 A . m V27777777 77777777 4
=z N Z S
BNg |l
INVERE] S
mmm H 182 _
g 8 8 8 8 8 8 88888888 5559990 mw. 2388888288
® K © b ¥ ® « A d® ® N © b ¥ ® N B .m..m..m.@@@ x?%mhc d® ©® K © b ¥ ® «
DODODLT T T £ g
99s/sdo ui) Indybno. 98s/sdo ul) Indybno. 333838 @ =] 9as/sdo ul) Indybno.
(0@s/sdo ur) indyBnoiy 2 (0es/sdo up) indyBnoy = gggsss 1 8 2% (0es/sdo up) indyBnoay
S S 555988 . P88 58
= = a7]=guta) e = 4
- = v = IR ED wzzzzzzzzzzzzzy s © 7
N o Z o I TL» g No © =~ g
N S E: z g%z L3
ZIN)Z AT 8 g SIS 8 | € m G
asa e 2 % oo R > me I 7 a
Q59 = o590 = A N @) a’
20 s 50O E 7] s 50 I
T 2 g 3 2 9
AN o 2 5 ™ SEEEESSSSY o £ 5 > -
C] ® E N o Crrrr | ® E T o m
€750 €50 g§8c88¢88¢8 Q
77777777777 8 5 Q zzz77777777 8 5 9 N
OIOIImMm e 5 8 N SIEIIEEIEIErEEY s 5 5 N ‘i
O] © § RD 2| © § 3,5 (09s/sdo uy) ndyBnoay L s
- D 2 - 2 9 2
TRZaZidd ° o & mmz77d o @ s]
A e 8 &) © SIS o 8 & © < Iy
BN § oS 2 R N7 g
S =2 = S 5= ZNY
2 0O 2 o 2N o
72777z > o 2 2 22] > ang_ g 8
IR o < = AR o < = o] :m
b N ~ © e . ©° as® = 2o &
2 5 o8 ISn S 2 Q
~ ~ I = (&)
=) B =K E g :crm))
% X _ sSssssSle RS
(sM ur)Aousye erepdn sbeieny o) (st ul) Aouere] eyepdn ebeseny) EzzzzzZZZZZzZ] © MM N (st ui) Aousre] pesu| ebeseny
= = 5 =]
d S o 5
& .20 S o & 6n o0
RV s . o] Gz ¥ £ S L .
g 2] 2]
mwm \\\\\\\\\\\VV\VV\VVV\VVV\V\VVV\VVM 8 ‘ %\\\\\\\VV\VV\VVV\V\/V\VV\VV\VVV\/\/ s Vllllllllllm < M : % s
azg A - gz A 2 —_ Q2g A~
ISh IS% S IS5
T ESNINTETESY o T AT o T) ATENNNNTY o
e] i e

O 9 © 9 @ 9 9o o o
© ¥§ d © © © ¥ «

60

Number of records (in million)
60

(sw u) Aousye] peay ebeleny e K

ANNNANNANAN

7
A |
e

=)
Bz <

40
Number of records (in million)

o
e N

(a) Average Read Latency
(a) Average Read Latency

O O © 9 9 9 9 © o o © 9o 9 o o o
© § 4 & ©® © ¥ « ¥ d © ® © ¥ «

(sw u1) Aousye] peay abeiany (sw ui) Aousye peay abesany (sw u1) Aousye peay abelsany

(c) Throughput

Number of records (in million)

Number of records (in million)

(b) Average Insert Latency
Figure 11: Effect of database size on YCSB workload D.

Number of records (in million)
(a) Average Read Latency

<

© N o %
@ o

ndyBnouy1/($ u) 1509

® o

HDD throughput ST
Hybrid throughput

R

SSD throughput E===3
Hybrid costperOPS

SSD costperOPS ---x---

N

\

\

N

N

\

N

N

HDD costperOPS

o o o o o
o Yol o wn o
@ N N — ~—
(oos/sdo ui) indybnouy
g
LN SSOIUITITITSSY 8
o B R
Q590
I>»n
x N] ©
222 [}
o
©
o
222zzzzzz27] ¥
o
o
o (=3 o o (=3 o
wn o wn o w0
o 3N ~— —

(st u1) Aousle uasu| abelany

N
g [ANANANNNNNANNANNNNNNNN =]
ann B R
aAs®n
I>»
T ESTETIRTESTIT ©
e
a7
SIS o
e
77
. SOIITIITINYY o
e
7,
ST ©
=
o o o o o
o 0 o 0
« - -

(sw u1) Aouaye ueos abesany

Number of records (in million)

Number of records (in million)

(b) Average Insert Latency
Figure 12: Effect of database size on YCSB workload E.

Number of records (in million)

(¢) Throughput

(a) Average Scan Latency

(0@s/sdo)/($ u1isoD

® % @ o o <%
o o o — - o o o
B [
g Pl
g ok NES
mmm ; i g2
555000 i
23anno :
555000 X § 3
555000 N 1
oo0o0gQoQ9 .
Cccovw ZZZZZZZZZZ777777Y
=E£E59800 "] o
oznl°e° . g ©
asnaTa .,
TN 5 Brzzzzzzzz7777777777774
I I N o
T =
\\\\\\\\\\\\\\E\Nﬂ °
> R
o o o o o o o o
o o o o o o o
~ © wn < (] N ~—

(

09s/sdo u1) indybnosy)

HDD S

Hybrid zzzzza

SSD ===y

N
7] ~

AANANNANANNANANRNNNN

o
BZZZ ©

ANAN
2z

EAARANNNNNNRNNRN [P
o] 8

<

AN o
EZ—) N

o 9 9 9 9 o o
N © © © ¥ «

HDD [y

Hybrid zzzzz1

SSD =31

NANNN\N
Bz

o
[=)

w u) Aouaye] peay abeiany

Number of records (in million)

Number of records (in million)

(b) Average Read-Modify-Write Latency
Figure 13: Effect of database size on YCSB workload F.

Number of records (in million)

(c) Throughput

(a) Average Read Latency

HDD STy

Hybrid
SSD ===

=]

1200
1000

=] o [=] o
=3 S =] =1
© © < [

(oas/sdo ui) indybnoay

Lz

HDD Sy
Hybrid

SSD

e

® o N~ © 1 ¥ M N~ O

(st ur) Aousye erepdn abeiany

Y

(sw u1) Aousye] peay abeiany

Zipfian

Uniform
Access Pattern

(¢) Throughput

Figure 14: Effect of access pattern on operation combination of YCSB workload A.

Latest

Uniform Zipfian

Access Pattern

Latest

Uniform Zipfian

Access Pattern

Latest

(b) Average Update Latency

(a) Average Read Latency

B

2

0

g

225

IS»

I

o o o o o o o o
o o o o o o o
~ © wn < () N ~—

(0as/sdo ui) Indybnoay

HDD S
Hybrid zzzzza

SSD =33

[=] =] [=] =] o o

(st ur) Aousle erepdn abesany

SSD =31

HDD [y

Hybrid zzzzz1

o o 9 9 9o o
N © © © ¥ «

o

160
140

sw uy) Aouaye] peay abeiany

Zipfian

Uniform
Access Pattern

(c) Throughput

Figure 15: Effect of access pattern on operation combination of YCSB workload B.

Latest

Uniform Zipfian

Access Pattern

Latest

Uniform Zipfian

Access Pattern

Latest

(b) Average Update Latency

(a) Average Read Latency

Average Scan Latency (in ms) Average Read Latency (in ms)

Average Read Latency (in ms)

200
180
160
140
120
100
80
60
40
20

180
160
140
120
100
80
60
40
20

N

HDD
Hybrid
SSD ===

N

N7

g TEE] T
g 120 § SSD === g 500
% 100 §? Q 5400
g ; \/ \ F 100
L B B L

(a) Average Read Latency

Access Pattern

Uniform
Access Pattern

(b) Throughput

Zipfian

Figure 16: Effect of access pattern on operation combination of YCSB workload C.

HDD
Hybrid zzzzz
SSD =31

7

7

e
A IIMIIIMITIINNNY

Q
§
|

N

N N

-
)

Uniform
Access Pattern

test Zipfian

(a) Average Read Latency

Average Insert Latency (in us)

HDD
Hybrid zzzzza
SD =9

7

7

7\

AT
e,
)

prr e,

7
o),

7

1

600

500

400

300

200

Throughput (in ops/sec)

100

W

NI

HDD
Hybrid zzzzz1
SSD o~

W

-

Uniform
Access Pattern

atest ipfian

(b) Average Insert Latency

Uniform
Access Pattern

(c) Throughput

Latest

Figure 17: Effect of access pattern on operation combination of YCSB workload D.

HDD
Hybrid
SSD

7

e
AT

N

Uniform
Access Pattern

Latest Zipfian

(a) Average Scan Latency

Average Insert Latency (in ps)

n
o
S

a
o

o
S

a
o

HDD
Hybrid
SSD ===

\

72002002

7

250

200

150

100

Throughput (in ops/sec)

50

Uniform
Access Pattern

(b) Average Insert Latency

Latest Zipfian

Zipfian

N

HDD
Hybrid
SSD

i

Uniform
Access Pattern

(¢) Throughput

Latest

Figure 18: Effect of access pattern on operation combination of YCSB workload E.

HDD
Hybrid zzzzz1
SSD =31

7

e
AT

Uniform
Access Pattern

(a) Average Read Latency

Latest Zipfian

Average Read-Modify-Write Latency (in ms

180
160
140
120
100
80
60
40
20
0

HDD
Hybrid zzzzza
SSD =33

g

600

500

300

200

Throughput (in ops/sec)

100

Uniform
Access Pattern

Latest

(b) Average Read-Modify-Write Latency
Figure 19: Effect of access pattern on operation combination of YCSB workload F.

Zipfian

57

N

HDD
Hybrid zzzzz1
SSD =1

N

Uniform
Access Pattern

(c) Throughput

Latest

Zipfian

update access pattern, insert latencies for all access patterns are al-
most similar, with only slightly higher values for uniform access
pattern for all the three setups. If fewer regions are accessed more
frequently for read operations, then read latency decreases due to
lower cache miss. So, both read (in workloads A, B, C, D and F)
and scan (in workload E) latencies are lower for Zipfian and latest
access patterns in comparison to uniform. Read-modify-write op-
eration in workload F involves a read and an update operation, and
hence, has a higher latency for uniform access pattern.

Hence, throughput of uniform access pattern is the lowest for all
workloads. Also, similar to previous analyses, SSD setup provides
maximum throughput followed by Hybrid setup for all the tested
access patterns and workloads.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we analyzed the feasibility of introducing flash
SSD drives for large column store systems such as HBase. Since
hosting the entire database on flash SSDs is infeasible due to its
large costs, we chose only the system components. We did a thor-
ough qualitative and quantitative assessment (by using the standard
YCSB benchmark workloads) of the effects of hosting the four ma-
jor system components of HBase on flash SSDs.

While a complete SSD-based solution exhibited the best through-
put, and a complete HDD-based setup had the least cost, our pro-
posed Hybrid HBase achieved the best performance in terms of cost
per throughput. It was shown to be better by almost 33% than the
complete HDD setup.

In future, it would be useful to assess the effects of flash specific
file systems, if any. Also, we plan to extend our system to a truly
distributed setup where network latencies can play an important
role. Finally, it needs to be explored whether storing some data
components on the flash SSD instead of the HDD can improve the
cost per throughput ratio even further, and whether such a setup can
be tuned automatically according to the workload.

ACKNOWLEDGMENTS

‘We thank NetApp Corporation, India for partly supporting this work
through grant number NETAPP/CS/20110061.

6. REFERENCES

[1] D.J. Abadi. Columnstores for wide and sparse data. In
CIDR, pages 292-297, 2007.

[2] M. Athanassoulis, A. Ailamaki, S. Chen, P. B. Gibbons, and
R. Stoica. Flash in a DBMS: Where and how? IEEE Data
Engg. Bull., 33(4):28-34, 2010.

[3] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E. Grube.
Bigtable: A distributed storage system for structured data. In
OSDI, pages 205-218, 2006.

[4] S. Chen. FlashLogging: Exploiting flash devices for
synchronous logging performance. In SIGMOD, pages
73-86, 2009.

[5] B.F. Cooper, A. Silberstein, E. Tam, R. Ramkrishnan, and
R. Sears. Benchmarking cloud serving systems with YCSB.
In SoCC, pages 143-154, 2010.

[6] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,

A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: Amazon’s highly available
key-value store. In SOSP, pages 205-220, 2007.

[7] M. Du, Y. Zaho, and J. Le. Using flash memory as storage
for read-intensive database. In First Int. Workshop on
Database Technology and Applications, 20009.

[8] L. George, editor. HBase — The Definitive Guide: Random
Access to Your Planet-Size Data. O’Reilly, 2011.

[9] G. Graefe, S. Harizopoulos, H. A. Kuno, M. A. Shah,

D. Tsirogiannis, and J. L. Wiener. Designing database
operators for flash-enabled memory hierarchies. IEEE Data
Engg. Bull., 33(4):21-27, 2010.

[10] M. G. Khatib, B.-J. van der Zwaag, P. H. Hartel, and G. J. M.
Smit. Interposing flash between disk and dram to save energy
for streaming workloads. In ESTImedia, pages 7-12, 2007.

[11] G.J. Kim, S. C. Baek, H. S. Lee, H. D. Lee, , and M. J. Joe.
LGeDBMS: A small DBMS for embedded systems. In
VLDB, pages 1255-1258, 2006.

[12] Y. Kim, A. Gupta, B. Urgaonkar, P. Berman, and
A. Sivasubramaniam. HybridStore: A cost-efficient,
high-performance storage system combining SSDs and
HDDs. In MASCOTS, pages 227-236, 2011.

[13] A.Lakshman and P. Malik. Cassandra: A decentralized
structured storage system. Operating Systems Review,
44(2):35-40, 2010.

[14] S. W. Lee, B. Moon, and C. Park. Advances in flash memory
SSD technology for enterprise database applications. In
SIGMOD, pages 863-870, 2009.

[15] S. W. Lee, B. Moon, C. Park, J. M. Kim, and S. W. Kim. A
case for flash memory SSD in enterprise database
applications. In SIGMOD, pages 1075-1086, 2008.

[16] Y.Li, S. T. On, J. Xu, B. Choi, and H. Hu. DigestJoin:
Exploiting fast random reads for flash-based joins. In Mobile
Data Management, pages 152-161, 20009.

[17] T. Lipcon. Avoiding full GCs in HBase with memstore-local
allocation buffers. http://www.cloudera.com/blog, February
2011.

[18] A. One. YAFFS: Yet Another Flash File System.
http://www.yaffs.net/.

[19] P. E. O’Neil, E. Cheng, D. Gawlick, and E. J. O’Neil. The
log-structured merge-tree (LSM-tree). Acta Inf.,
33(4):351-385, 1996.

[20] S. Pelley, T. F. Wenisch, and K. LeFevre. Do query
optimizers need to be SSD-aware? In Second Int. Workshop
on Accelerating Data Management Systems using Modern
Processor and Storage Architectures, 2011.

[21] M. Polte, J. Simsa, and G. Gibson. Comparing performance
of solid state devices and mechanical disks. In 3rd Petascale
Data Storage Workshop, Supercomputer, 2008.

[22] M. Polte, J. Simsa, and G. Gibson. Enabling enterprise solid
state disks performance. In Workshop on Integrating
Solid-state Memory into the Storage Hierarchy, March 2009.

[23] M. Rosenblum and J. K. Ousterhout. The design and
implementation of a log structured file system. ACM Trans.
on Comp. Sys., 10(1):26-52, 1992.

[24] R. P. Spillane, P. J. Shetty, E. Zadok, S. Dixit, , and
S. Archak. An eficient multi-tier tablet server storage
architecture. In SoCC, pages 1-14, 2011.

[25] D. Tsirogiannis, S. Harizopoulos, M. A. Shah, J. L. Wiener,
and G. Graefe. Query processing techniques for solid state
drives. In SIGMOD, pages 59-72, 2009.

