
ConnectivityTolerant Query Optimization Over Distributed
Mobile Repositories∗

Sharma Chakravarthy, Aditya Telang†, Mohan Kumar
Mark Linderman‡, Sanjay Madria§, Waseem Naqvi¶

Department of Computer Science and Engineering
University of Texas at Arlington

Arlington, TX, USA

sharma@cse.uta.edu, adtelang@in.ibm.com, kumar@cse.uta.edu,
Mark.Linderman@rl.af.mil, madrias@mst.edu, Waseem Naqvi@raytheon.com

ABSTRACT
Query processing and optimization in centralized and dis-
tributed environments is well-researched. Centralized query
optimization focused on minimizing the number of input/output
(or I/O) from disk. Distributed query processing focused
mainly on maximizing local computation and minimizing
data transfer between nodes. Here the distribution of data
was pre-determined and both connectivity and bandwidth
were pre-defined and guaranteed. Work on sensor data ac-
quisition deal with non-join queries without taking mobility
and connectivity interruptions into consideration. However,
these assumptions are no longer true when queries are exe-
cuted over repositories stored in mobile aerial vehicles which
collect, process, and store data in real-time, and connectiv-
ity changes significantly over the duration of interest. Cur-
rently, only data in one vehicle can be queried by the ground
control.
This paper explores query processing and optimization

issues along with concomitant metadata needed for process-
ing/optimizing queries over distributed, mobile, connectivity-
challenged environments. Since response-time and fault-
tolerance are the main focus, we propose plans using join,
semi-join, and replication-based approaches. We propose
and evaluate several heuristics for this environment rang-
ing from greedy to cumulative approaches along with the
use of replicated copies of data. We have performed elabo-
rate experimental analysis to validate heuristics that work
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well for this environment. As maintaining replication is a
challenge in this environment, we summarize our initial ap-
proach. This work on connectivity-tolerant query optimiza-
tion is part of a larger middleware-based, service-oriented
architecture.

1. INTRODUCTION
As part of a larger effort on distributed middleware-based

architecture for fault-tolerant computing over distributed
repositories, we address query processing and optimization
in this paper. A brief description of the larger problem is
provided for understanding the context for this work.

Figure 1: Example of Nodes and Connectivity

The general problem can be stated as follows: Consider
a number (2 to 15) of nodes (unmanned aerial or other ve-
hicles termed UAVs in this paper, and ground operators)
whose connectivity is dynamically changing, and whose data
bandwidth can vary from low to high. In this setting, how
do we accomplish a specific task (query, search, subscrip-
tion notification) that uses data and services from multiple
nodes (for computation or collaboration) that are subject
to QoS (Quality of Service) requirements (e.g., time to first
result, response time). In other words, each node is inde-
pendently acquiring multiple/different data types (e.g., lo-
cation, telemetry, and images) and storing them locally. The
data is stored in the form of Managed Information Objects



(or MIOs) and can be sent on-demand to ground operators,
and others nodes based on connectivity. There is also a need
for combining (or joining) data from multiple nodes to get
a better understanding of the overall situation. Data stored
in a node is defined using type, metadata, and the payload.
The communication between the nodes is through RF or sat-
com or other types of links (e.g., Link 16). It is also assumed
that the nodes can be of different types based on processing
capacity, storage, types of data it can collect, up/down link
bandwidths, and latencies of data transfer. Nodes can also
play different roles (depending upon the resources available
onboard): i) collect data and forward it, ii) collect data, pro-
cesses it, and forward both collected and processed data, and
iii) collect, process, store/hold, and forward data. A single
node can play different/multiple roles for different types of
data. Their roles may change over time.
A typical scenario consists of a number of Airborne plat-

forms (UAVs, Helos, Fighters, AWACs, etc.) which are trav-
eling at various speeds (100, 200, 500 knots etc.), some in
formation and some on independent tracks. Each has an as-
sociated ground platform that are either stationary or mov-
ing. Stationary platforms have semi permanent positions
whereas Mobile ones may be on vehicle or foot. The con-
nectivity among all airborne platforms is intermittent based
on distance, line-of-sight, obstacles, cloud coverage etc. The
transmission bandwidth is different for receiving and send-
ing and depends on a number of factors such as distance,
orientation, obstacles along the path etc. Each node (an
airborne platform) has storage that is meaningful for the
node type. Although computing power varies from node
to node, we can assume that it is sufficient to run a local
database management system (DBMS). Relational DBMS
is assumed. Power is assumed to be a non-issue in this work
because these platforms, we were told, have enough juice for
the duration of the mission. This general scenario arises in
various contexts:

• Disaster management, such as flooding, hurricanes,
and evacuation. Information needed: evacuation routes,
extent of damage, view of the area affected.

• Cooperative Combat Air Patrol. Mixture of UAVs,
manned fighters, and AWACs cooperatively defending
a region. Information needed: Signals, Lines of Bear-
ing, contact positions, tracks

The scenario described above is illustrated in Figure 1.
It is assumed that ground controllers are always in contact
with their respective UAVs. Connectivity of other nodes (or
UAVs) depends on dynamic factors. The connectivity (or
disruption) of the nodes changes dynamically in this scenario
as illustrated by solid lines and broken lines. Each line type
(solid or broken) represents a different configuration of the
network – one partitioning the nodes into two graphs and
the other maintaining reachability for all nodes. The figure
also shows new nodes coming into and existing nodes going
out of the network.
Currently, it is only possible to process queries on data

stored in a single airborne platform. Current state-of-the-art
in distributed query processing assumes fixed, hard-wired
connectivity among participating nodes. Replication is con-
sidered from an availability (of data) viewpoint and not
from connectivity viewpoint. Latest work in sensor query
processing [17] does not deal with mobile platforms with

Figure 2: Pluggable Middleware Architecture

resident relational DBMS and intermittent connectivity. It
is also possible to download data into ground nodes (from
all nodes) and then process queries over those nodes. This
results in delays that is not acceptable. Also, the data col-
lected by multiple vehicles for a situation provides a holistic
view and hence it is important to have the capability to is-
sue queries in real-time that can be processed over all the
relevant data available in one or more airborne platforms.
Based on the requirements of the situations listed earlier
(especially response time), it is important to have the capa-
bility to process queries over data in multiple nodes as they
are being acquired.

The following are examples of queries that need to be
executed on networked, distributed information sources.

1. Get all images taken within last 5 minutes of the area
bounded by ⟨latitude1, longitude1⟩
and ⟨latitude2, longitude2⟩.

2. Get all SAM (surface to air missile) locations within 12
NM (nautical miles) of the area bounded by ⟨latitude1,
longitude1⟩ and ⟨latitude2, longitude2⟩.

Since each node is autonomous and may belong to a group
that needs to solve problems collaboratively, there is a need
for two fundamental components that form the core of our
overall approach:

• a common middleware component that is common to
and present in all the nodes and a context (as a knowl-
edge base or KB) that holds the capabilities, network
configuration, and

• current state of the network at each node which is
managed and used by the middleware.

The KB will also include the global requirements as capa-
bilities of connected nodes are dynamically gathered. The
context information can be customized/tailored either to a
node, a task or for a set of tasks. The middleware heav-
ily relies on the context to perform operations, knows the
capabilities of self and other nodes, and to perform tasks
collaboratively. A service oriented architecture (SOA) for
the middleware is used to build larger systems in which this
fits as a component seamlessly.



Figure 2 shows the service-oriented architecture (SOA)
for the middleware for supporting query processing (and
other services) over distributed repositories and accommo-
date fault tolerance. The overall architecture includes a mid-
dleware in each node that has a number of services (based on
SOA) for collecting, managing, replicating data and meta-
data for the purposes of routing and query processing. Each
node will have the SOA middleware and as many plugin
components as needed. As a node collects data, it is stored
in the repository on that node. Connectivity and replication
information is periodically exchanged between nodes and
stored in the context/kowledge base. For details on other
services, please refer to [7] which contains an accessible url.
Contributions: Some of the key contributions of this paper
are as follows:

1. Formulation of the distributed query optimization prob-
lems for ad-hoc connectivity in the presence of connec-
tivity interruptions,

2. A cost metric that is different from traditional dis-
tributed cost metrics,

3. A query processing strategy with partial independent
computations in different nodes, and

4. Replication of data for dealing with availability and
incorporating it into query optimization

Overall, the novelty is in generalizing distributed query
optimization to ad-hoc networks with mobile platforms, in-
termittent connectivity, and replication.
The remainder of the paper is organized as follows. Sec-

tion 2 defines the problem being addressed in this paper.
Section 3 discusses related work on query processing and
metadata management. Section 4 discusses meta data used
for query processing and its management. Section 5 briefly
summarizes our replication strategy. In Section 6, we dis-
cuss our approach for processing queries, plan generation
alternatives, and introduce heuristics appropriate for this
environment. Section 7 has elaborate experimental analysis
and their interpretation. Section 9 has conclusions.

2. PROBLEM STATEMENT
The focus of this paper is on processing SQL queries over

distributed repositories collected/stored on each vehicle with
the specified constraints on connectivity and reachability.
This will allow for holistic queries without even having to
know which repository contains what information. Although
we are using SQL queries referring to relations in a node in
this paper, a GUI can easily generate these queries from
an interactive interface. It is meaningful to assume that
each node has secondary storage of reasonable size. It is
also assumed that each node has enough computing power
to support a database management system (DBMS) that
can process queries from its local (secondary) storage. A
relational DBMS is assumed at each node.
The problem at hand is somewhat different from the tradi-

tional query processing that has been developed for central-
ized, distributed, and federated architectures. Although the
computations/operators (e.g., join, semijoin) are the same
as that of traditional query processing systems, the environ-
ment and the goals of these computations are quite differ-
ent. Instead of knowing the schema, the data is published

using a managed information object (or MIO) that needs to
be used efficiently. An MIO (used to represent/encapsulate
data) consists of: data type, metadata, and the payload.
The metadata could be as simple as schema information or
it can consist of additional information, such as range val-
ues, organization of data, number and types of objects in a
picture etc.

Another difference is the need for replication of data – not
from the viewpoint of local processing, but from the view-
point of accessibility or reachability. Compared with earlier
approaches where the nodes at which data was stored (or
even replicated) were pre-determined, in the current sce-
nario it is an important decision that has to be made dy-
namically by the system. As connectivity is not complete,
multiple hops may be needed to reach a copy of the data.
Furthermore, nodes can even store data that may not be di-
rectly useful to that node but is in close proximity for others
that need it. When a node moves away (i.e., is not a neigh-
bor anymore), there is a need to decide whether to keep the
copy in that node or not. The utility of data and its copies
need to be optimized using some metric (or a combination)
such as cost of storage, cost of communication, time for data
transfer, and longevity of storage.

In this paper, we address the problems of: query plan
generation for this environment, relevant heuristics that are
meaningful for this architecture, and use of replication for
improving query processing. A prototype implementation
developed in Java is used for extensive experimental results
that validate our approaches and inferences.

3. RELATED WORK
Traditional relational database management systems

(DBMSs), consisting of a set of persistent relations, a set
of well-defined operations, and highly optimized query pro-
cessing and transaction management components, have been
researched for over several decades and are used for a wide
range of applications. Typically, data processed by a DBMS
is less frequently updated, and a snapshot of the database is
used for processing queries. Abstractions derived from the
applications for which a DBMS [5, 1, 15, 12, 18] is intended,
such as consistency, concurrency, recovery, and optimization
have received a lot of attention.

Query processing is a key consideration in database man-
agement systems. For this reason, query optimization has
been one of the most active research areas since the advent
of relational DBMSs. The acceptance and success of rela-
tional systems can be attributed largely to advances in query
optimization over several decades [19, 11]. A major advan-
tage of relational systems over earlier technologies is that
the users of a relational DBMS are relieved of the need to
describe their queries procedurally. More important, users
are not required to understand the details of physical repre-
sentation and its impact on queries posed to the DBMS.

In a distributed (or even a multi-database) environment,
queries are decomposed, and query fragments are directed
to particular sites (or databases) for processing [3, 2, 16].
Distribution of the database reduces the size of the data
stored at each node, increases the locality of reference for
the queries processed at a given node. Replicated databases
provide an additional opportunity – that of choosing the site
(at which a subquery is sent for processing) to increase the
probability of overlap with other subqueries. Hence, queries
processed at a site may have a lot of overlap of the data they



access.
Other forms of query optimization, such as semantic query

optimization [9], multiple query optimization [8, 20], and
more recently, continuous query processing [6] have focused
on modeling, scheduling, and load shedding strategies. The
work presented in this paper is related, but is distinctly dif-
ferent from them. In this work, queries are not transformed
using semantics, multiple queries are not batched and op-
timized, and continuous query processing techniques deal
with a different set of metrics and their optimization is very
different from what is required for this scenario.
Several middleware architectures have been developed in

the recent past to support mobile ad hoc networks (MANETs),
sensor networks, and pervasive systems. Boulkenafed and Is-
sarny develop a comprehensive middleware for data sharing
in MANETs [4]. The focus of the work however is min-
imizing energy consumption. Kalasapur et al. developed
an elegant middleware for service provisioning in pervasive
systems with mobile nodes [13]. Tamhane and Kumar have
developed a resource management mechanism for pervasive
systems with underlying ad hoc networks [21]. None of these
works consider dynamic networks such as that of UAVs,
where node mobility is a regular feature rather than a rarity.
Christman and Johnson discuss a customized self configur-
ing architecture designed for UAVs [10]. However, they
do not deal with on content sharing and query processing.
The middleware architecture proposed in [14] attempts to
address this important issue in UAV based networks.

4. METADATA AND ITS MANAGEMENT
In order to process queries, minimal information about

the schema, connectivity of the nodes, replication informa-
tion (if any) as well as available cardinality and other statis-
tics need to be available in each node. Furthermore, some
of the above need to be kept current in this dynamic envi-
ronment. At the core of our middleware is the use of graph
theoretic and sub-graph matching techniques to ensure net-
work status awareness and data access. A graph structure
is created to capture the essence of data objects/services,
corresponding computing nodes and the relationship among
the data objects as well as the nodes. The associated mid-
dleware tools facilitate the response to queries in dynamic
heterogeneous environment comprising mobile nodes. The
proposed service provisioning framework is flexible in rep-
resenting metadata and services, and adaptive to changing
environments by incorporating the replicated copies. We
assume the following information in the form of tables ac-
cessible to the local database.
Data at each node is assumed to be a relation with the

schema shown in Table 1. Rij corresponds to relation Ri at
node j. Rii (i = j) will be used to represent the primary
copy of a relation at node i. Rij (i <> j) will be used to
indicate the replica of Ri in node j. A field ‘TimeOfUpdate’
is maintained for each update that happens over the Meta
Data to estimate the accuracy of data and keep a track of
how recently the update has been done.
A number of additional information about the character-

istics of each Rii is maintained in a node i (and periodically
propagated to all other nodes) for the purpose of query plan
generation and cost estimation. If a relation Ri is replicated
at this node (j), then for each replicated relation Rij , we
need to maintain the same information as in Table 1. The
difference is that this information may not be current. Every

node maintains a copy of its original relation that is stored
at some other node. Currently, replication is assumed to be
a single copy and complete for each relation. Network Man-
aged data is maintained and updated by the middle-ware,
and accessed for processing by the local query processor for
executing intermediate steps of a query plan.

Selectivity for simple and composite conditions are calcu-
lated using standard formulas [19, 16] based on the informa-
tion in Table 2.

A Relation-to-Node mapping table, as shown in the Ta-
ble 3, is maintained by the message management system at
each node which indicates the location of the original and
the replica of a Relation. A value of 0 in the replica node
column indicates that the replica is not complete at this
point in time and hence is not considered for generating a
query plan.

Name Original Node Replica Node
R1 1 4
R2 2 1
... ... ...
Rn N k

Table 3: Relation and Replica Locations

Finally, a Connectivity map is maintained at each node
which checks for the existence of a connection between any
two nodes and the corresponding bandwidth between them.
If the Received Signal Strength (RSS) is zero or below a
threshold, then the connection is considered to be 0 and 1
(or present) otherwise. RSS value lies on a scale of 1 to 10.
The actual RSS value is used in cost estimation. LSF (Link
stability Factor) is a function of rate of change of RSS value
over a period of time. LSF, to some extent, measures the
stability of the link over a period of time. This is important
as the plan is generated once and the execution of steps take
some time. A pair is considered for the plan generation if the
RSS value at the instant is 1. A sample connectivity map
is shown in Table 4. Note that bi-directional connectivity is
maintained as the bandwidth is different between uplink and
downlink. See [14] for network related issues.

5. REPLICATION STRATEGY
In order to ensure accessibility and fault-tolerance, each

data object is replicated on other nodes. Currently, there
exists only one replica of a given data item. Ns represents
the source node, where the original copy of data item Di

was acquired. Nc is the candidate node that will contain
a replica of data object Di. When Ns decides to replicate
its contents on another node Nc, a node from the set of the
nodes that are immediate neighbors of the source node is se-
lected as candidate nodes for replication. Immediate neigh-
bors are those nodes which are directly connected to the
source node. The source node tries to replicate all its tuples
on the chosen candidate node. For each of the above se-
lected candidate nodes, a cost function C(s, c) is computed.
The node with the lowest cost is selected as a candidate for
replication. The cost function to determine the candidate
node for replication is dependent on the following factors:
Bandwidth defines the closeness of Nc from Ns in terms of
bandwidth. Greater bandwidth is desirable; Linkstability is
a measure of stability of the link between nodes Ns and Nc.
Greater stability of the link between the two nodes implies
better longevity; and greater DegreeofthenodeNc indicates



better accessibility of replicated data. Additional details can
be found in [14].

6. QUERY PROCESSING AND PLAN GEN
ERATION

Although it is tempting to try to optimize a query from
scratch as is done traditionally, we need to take the envi-
ronment and constraints into account for proposing an ap-
propriate solution. The focus here is to generate a query
plan that can complete the execution of a query with mini-
mal data transmission cost and good response time. Hence,
a plan generator that tries minimize I/O in each node is
not the best way as the local DBMS is likely to do a better
job; and we need to leverage that. Hence, we decided to
delegate local optimization to the DBMS at each node and
concentrate on a plan that minimizes data transfer (or data
movement) for processing a query. As a result, a query plan
for this scenario is envisioned as numbered sequence of plan
steps that can be easily interpreted and executed at any
node1. Table 5 gives a description of a plan format. Each
step includes the operation to be applied, the data items in-
volved, the node where it is applied, the name of the result
and the node where it is created.
Unlike traditional query processing, the plan needs to be

sent from node to node2 (or partial plans generated at each
node which is not considered in this paper) for the purposes
of query processing. A counter, as part of each plan, indi-
cates the next step to be executed and is initialized to 1. An
example of a query plan is shown in Table 6.
The plan format described above is sufficient to describe

any arbitrary relational query plan involving selects, projects,
and joins (also known as an SPJ query). The above format
can also accommodate SQL aggregate operators, such as a
SUM, COUNT, AVERAGE, MINIMUM, and MAXIMUM.
A query is executed as follows. A complete plan is generated
at the node where the query is received using the metadata
stored in that node. The plan is then sent to the node in
which the first operation takes place (if it is different from
the node where the query plan is generated) along with the
plan step counter. The interpreter in that node uses the
plan step counter to execute as many steps as possible in
that node. When a move or copy is encountered, it sends
the data as well as the plan (actually the remaining portion
of the plan to reduce the amount of data transferred) to the
next node. This process continues until the last step of the
plan is executed. The result of the query will always be sent
to the node at which the query was received.
Currently, a complete query plan is generated as follows.

Each node in the architecture has the same query plan gener-
ator and uses only the Metadata in that node. Note that the
metadata is updated by the underlying mechanism briefly
indicated in Section 4. The query plan is constructed one
join/semijoin at a time. Costs of partial plans are com-

1In fact, we assume that at each node, plan steps are com-
bined to generate an SQL query to be processed locally ac-
cessing only local data.
2As an alternative, it is possible to simultaneously send the
entire plan or preferably portions of the relevant plan steps
to each node. If this alternative is used, a synchronization
mechanism is needed to execute plan steps in the correct
sequence without any need to transfer plans. It is also pos-
sible to dynamically generate plan steps at each node when
needed rather than generating the entire plan to start with.

puted using well-defined statistics and formulae for comput-
ing selectivities for conditions and join. The lowest total
cost query plan is used as the final plan after the plan space
is explored either exhaustively or using heuristics. This will
result in a good plan (or an optimal plan). Several heuristics
are explored as part of this project to reduce the total com-
putation required for generating a plan and still generate a
good plan3. These heuristics are compared experimentally
with respect to replication and connectivity scenarios.

The complexity of the optimal plan generation is kn where
n is the number of joins and k is the number of alternatives
for each join. Currently, k being used is 18 (three alterna-
tives for join, semijoin, & hybrid alternatives, and the same
using replica as well). Note that this is at the logical level.
For each logical join alternative, there will be many phys-
ical alternatives making the plan space significantly larger.
Assuming three joins, we need to explore 5000+ alternative
query plans and compute cost for each one of them. For
plans with more than three joins, this exhaustive approach
is not viable. Hence, we have incorporated some heuristics
to limit the number of plans generated by pruning plans
carried forward after each join. A query optimizer has been
implemented to validate the heuristics and their effective-
ness on synthetic data and multi-join queries that simulate
actual data sets.

Cost for our plans is mainly data transfer cost which in
turn depends on the width of the tuple and cardinality of
the relation (intermediate or otherwise). Hence it is impor-
tant to estimate the number of tuples as well as their width.
Statistics in the form of cardinality and domain characteris-
tics are used for this purpose. Join and condition selectivity
are inferred from the statistics maintained. Intermediate
result sizes are also estimated as its accuracy is important
as the choice of the best query plan is primarily based on
the cost of data transfer based on availability of connectiv-
ity. The statistics used for evaluating the cost of a (partial)
query plan is the same as the ones used in traditional and
distributed query processing [19, 16]. All of these are well-
established for the relational model. We do not include the
processing cost for the operation/plan, but only the data
transfer cost. Processing cost depends upon the availabil-
ity of index and other structures and mainly influences the
order of join (which we take into account in our plan gener-
ation process). As future work, it will be useful to explore
what access structures are meaningful and take the process-
ing cost into account as well. In each node, the plan can
be executed by converting it into an SQL statement if a
relational database is used for storing data in that node.

To improve the accuracy of selectivity, for each attribute
of Rii on which a condition has been applied, selectivity
information is maintained as follows. Table 7 reflects the
actual selectivity values for conditions on that relation and
will be used when the same or similar condition is encoun-
tered in a later query. Otherwise, selectivity formulas are
used for calculating the resulting relation cardinality. The
conditions are maintained at the component level using a
hash table which can be associatively searched using the re-
lation and condition. The intermediate relation cardinality
and width are also maintained.

3Note that, in general, the objective of query optimization
is not as much as generating an optimal plan by spending a
lot of resources, but to certainly avoid bad plans and do it
fast.



Relation C1 C2 C3
R1 0.2 0.5
R2 0.6 0.67
R1 0.9 0.1 0.7

Table 7: Selectivity Table

6.1 Plan Generation Implementation
The query plan generator is implemented in Java. A re-

lational database is used for storing metadata (as will be
done in each node). A constants Java file is used for con-
ducting experiments and to setup parameters for varying
connectivity and replica information (as shown in Figure 3).
An interactive option is also available to input query, load
metadata from a file, and analyze individually best, worst,
or any plan generated. For details of implementation refer
to [7].
The generator begins by generating all distinct partial

plans (from an initial empty set) for each join. As an ex-
haustive algorithm, it generates 18n plans for a query con-
taining n joins. It is evident that this approach is not viable
beyond a few joins. This is being done so that we can com-
pare heuristics-based plans with the optimal ones to analyze
the effectiveness of heuristics we come up with (e.g., top-k
in each iteration, top-k cumulatively, top-k for each type
of plan.) for queries with fewer joins. The generator then
iterates through the relation list and creates the necessary
plan steps. Then all of the attributes required are projected
on the output and join condition attributes to minimize the
data transfer across nodes which form the bulk of the cost
of query processing in this environment. Since most of the
plans will use these initial select or project statements (to
reduce the width and cardinality of the relation), these same
statements are attached to every plan. For plan alternatives
using joins the generator moves the required relations to
the location of the join and then performs the join. Even
for this, projections are applied to reduce the overall width
and cardinality of relations moved. The plan class takes
care of updating intermediary name, location, and condi-
tion information. Then the generator moves on to the next
plan.
For plan alternatives using semijoins, the relation that will

be semijoined to is copied and projected on the attributes
used in the specific join condition to minimize data transfer.
Then it is moved to the location of the semijoin. The semi-
join is performed. When the semijoin step is added to a plan
the plan updates name, location, and condition information
and in the case of semijoins the output relation and the rela-
tion that still needs to be semijoined to finish the operation
is added to a stack to keep track of the remaining semijoins
(to generate chained semi join plans). Note that a join can
be processed as a sequence of two semijoins. However, when
multiple semijoins are performed in a sequence, the second
semijoin needs to be performed in reverse order (hence a
stack). The next plan is then processed. For multiple joins,
after all of the plans have been processed with the first join,
all of the joined relations will be projected on the remain-
ing join attributes required and then algorithm will iterate
through all the plans again performing the remaining joins
and semijoins. After a relation has been joined, its current
location is considered to be that of the result of the join even
if it currently has a replica, which may cause some of the
plans to be the same. After all cases have been exhausted,

the algorithm goes through and finishes each case by iter-
ating through the stack of remaining semijoins completing
the remaining semijoins in reverse order and then moves the
final relation to its output node. During each step of the
plan generation, the cost associated with a move or a copy
is calculated, if there is no direct connection between nodes
the cost is considered prohibitively high and value is auto-
matically forced to a very high level by using a very low
bandwidth for the calculation. After calculation the plans
can be viewed in sorted form. The plan generator generates
a summary of: number of plans generated, lowest and high-
est cost plan numbers. It is possible to view any of the plans
in detail. The same process is used for generating plans us-
ing heuristics except that a subset of plans are used in each
iteration which are selected based on the specific heuristic.

The plan generator also includes a network component
that generates the connectivity matrix using the seed pro-
vided. Each element in the matrix represents the cost of
the link from node x to node y. Number of connections is
also specified as part of the configuration. The connectivity
matrix generated is consistent with the bandwidth assump-
tions for this scenario. The connectivity matrix is updated
to simulate movements of the nodes.

6.1.1 Sample Best and Worst Plans
Consider a multi-join query that is sent to node 1 and the

results expected back in node 1.

Node TARGET 1
SELECT *
FROM U_1_D,U_2_D,U_5_D
WHERE ((U_5_D.OBJTYPE=1))

AND ((U_1_D.LAT>U_2_D.LAT))
AND ((U_2_D.LONG>U_5_D.LONG));

Plan Total Cost Remarks
Number (in milli secs)

253 493.873 alternatives 15 (first join)
and 2 (second join)

263 585.942 alternatives 15
and 11 (only semijoins)

3 175117.8 alternatives 1 and 3

Table 8: Sample Plan Costs

Below, we present Lowest cost, semijoin only cost, and
highest cost plans for the above query in Table 8 and addi-
tional information about how they were generated in terms
of plan combinations for a network configuration. In the
above the best plan seems to be a combination of join and
semijoin. The worst plan seems to be made of only joins. As
can be seen, the difference between the best and the worst
plan is significantly large. Hence, it is important to choose
plans closer to the best plan (i.e., a good plan).

6.2 HeuristicsBased plan generation
The purpose of generating an exhaustive plan space as in-

dicated above is to demonstrate the cost differences between
the best and the worst plans. The above algorithm is still
not exhaustive in that it does not consider all possible join
combinations. As can be seen clearly, there is a significant
difference between the best and the worst plan. The goal of
query optimization is not necessarily to choose the optimal
plan, but to avoid bad plans and choose a good (closer to
the optimal and far from the worst) plan.



During testing, we also realized that the connectivity plays
a critical role in that if only one way connection is available
between nodes, it impairs good plan generation as semijoin-
based plans need to finish the second half of join by bringing
the results back to that node. In order to generate a plan
without exhaustive search of the plan space, we have pro-
posed a number of heuristics to the above algorithm to com-
pare their performance with the optimal plan. We use this
prototype implementation to analyze various aspects such
as connectivity, bandwidth, as well as selectivity to under-
stand the types of plans generated and the effect of these
parameters on total plan cost. We have identified the fol-
lowing heuristics to be useful and have implemented them
so that we can compare them to the optimal ones to deter-
mine when and which heuristics to use for queries with more
joins.

1. Top-k Iteration: Plan generation is iterative with
respect to joins. For this heuristic, we choose top k
(where k can be specified as a parameter) lowest cost
partial plans in each round of expansion or iteration.
Note that each iteration in our approach corresponds
to processing a join. The number of iterations is equal
to the number of joins. The intuition behind this ap-
proach is to use a greedy local selection and hope that
it will turn out to be good globally as well. This sig-
nificantly reduces the size of the explored plan space.

2. Top-k Cumulative: For this heuristic, we choose
top k lowest cumulative cost (up to that point) plans
in each round/iteration of expansion. Again, the in-
tuition is that the cumulative cost up to this point is
more meaningful (than Top-k-iteration, for example)
and this would lead toward a good overall plan. Note
that this and the above heuristic will be identical up to
two joins. We expect this heuristic to do better than
the previous one as the number of joins increase.

3. Top-k Join-type: For this heuristic, we categorize
plans into join-based, semijoin-based, and hybrid (a
combination of join and semijoin). we choose top k
lowest cost plan from each category for expansion in
each round. The Top-k join-type is a different type
of heuristic as we have different types of partial plans
and their costs are likely to be different. Here, k lowest
cost plans from each type is chosen for the next round.
In order to compare them in a fair manner, the k value
need to be lower (1/3 as we have 3 join types) so that
the same number of plans are carried forward in each
round. Otherwise, this approach is likely to explore
a larger plan space and do better than the other two
heuristics.

In addition to the above, a number of other possibilities
for plan generation exist: i) incremental plan generation,
ii) looking ahead at connectivity and pruning plan alterna-
tives, iii) getting dynamic cost information and then gener-
ating partial plans
Note that connectivity, in this context, is likely to play

a significant role not only in the generation of a complete
plan, but also its cost. If sufficient connectivity does not
exist among the nodes that participate in the query (includ-
ing the nodes that have a replica), a complete query plan
may not even be feasible. The presence of replica increases

the probability of generating a complete plan and if several
exist, heuristics hopefully will choose a good one without
having to generate all plans. A heuristic that incorporates
connectivity would be very useful for this environment.

The above three heuristics have been implemented in our
prototype. The software has two modes: interactive and ex-
perimental to make it easy to test and use. In the interactive
mode, a query can be given at the prompt (or in a file) and a
heuristic specified for its plan generation. The generator will
indicate the number of plans generated as well as the lowest
and highest cost plans (along with plan number). One can
output (or look at) any plan in details by typing the plan
number. It is also possible to provide a file input to process
multiple queries in this mode. The selectivity and cardinal-
ity information is statically initialized. The connectivity is
also initialized at the start of the system. This can be easily
changed by loading a new or different relations and connec-
tivity information before executing the plan generator.

In the experimental mode, the configuration is set using
a Java Constants class (a sample is shown in Figure 3. The
input consists of: number of queries to be generated, seed
for query generation, number of connectivity configurations
to be used in the experiment, seed for configuration genera-
tion, and connectivity factor. The generator has a random
query generator on the schema stored in the system and
generates the desired number of queries for which minimum
and maximum number of joins can be specified. The seed
is to ensure repeatability of experiments as well as gener-
ate a new sequence of pseudo-random queries. The same is
true for network configurations and its seed. The connectiv-
ity factor is use to control the sparseness of the connectivity
matrix. If there are n nodes, the connectivity factor can vary
from 0 to (n-1), 0 indicating no connectivity at all and (n-1)
indicating complete connectivity. The connectivity itself is
generated randomly to satisfy the parameters specified.

The above setup allows one to perform different types of
experiments. For each query, connectivity can be changed
to determine how the plan cost changes and can also com-
pare the optimal cost with heuristics-based plan costs. It
is possible that due to the connectivity, a number of plans
cannot be completed resulting in a high cost. Queries or
connectivity sequences can be changed, independently, by
varying the corresponding seed.

7. EXPERIMENTAL ANALYSIS
In order to test the effectiveness of the heuristics pro-

posed for the query plan generator, we performed several
experiments using these heuristics across different connec-
tivity matrices and several different queries. The following
Java interface (see Figure 3) was typically used for setting
up parameters for all experiments.

A sample set of queries used for experimentation is shown
in Figure 4. Two and three join queries with different se-
lection and join conditions have been purposely chosen so
that they can be compared with optimal results. This will
force the execution of plan in multiple nodes and also brings
in the use of replicated relations based on the connectivity.
These queries were generated by domain experts who have
experience in these scenarios. Finally, the cardinality for all
relations ranges from 100000 tuples to 505000 tuples. This
cardinality also represents the amount of data acquired dur-
ing a mission. We have presented tables instead of plots as
the range of values from our experiments is quite large and



hence is not conducive to plotting.

7.1 Comparison of Heuristics
In this experiment, we tested the five queries (shown in

Figure 4) and tested the three heuristics along with the opti-
mal algorithm on the same configuration of the connectivity
matrix. Table 9, shows the cost (in milliseconds) incurred
by the various approaches towards generating the top-3 best
plans (average) for 5 different queries on the same connec-
tivity matrix configuration. Based on the results, it can be
observed that the plan generation process depends hugely on
the connectivity between the nodes. Among optimal plans,
the semijoin ones seem to perform better as expected since
data transfer is reduced significantly. Further, amongst the
different heuristic approaches, the semijoin approaches (ei-
ther top-k-iterative or top-k-cumulative) appear to perform
better for the current set of connectivity configurations.

7.2 Plans costs with and without replication
In this experiment, we compare the costs of generated

plans with and without replication to establish the need for
replication and its importance for this environment. In or-
der to test in the absence of replication, we selected each
query independently and altered the settings of Table 3 such
that for the nodes involved in the corresponding query no
replica existed. For instance, considering Query 2, we mod-
ified Table 3 such that replicas for nodes 5 and 10 did not
exist in any other node. We then evaluated the optimal
as well as heuristic-based plans for each query in the ab-
sence of replication, by averaging the costs obtained from
the corresponding top-3 plans. We then enabled replication
by creating replicas of the nodes, as shown in Table 3, and
evaluated the costs in the presence of replication.
Table 11 shows for a specific query (Query 3 ) the costs

obtained by each plan in the presence and absence of replica-
tion. It is clear that the processing cost without replication
is significantly higher (as high as 6 times). We also wanted
to understand the behavior of averages. Table 12 displays
the average costs obtained across all five queries, when repli-
cation was present and absent. We observed that, in the ab-
sence of replication, it was difficult to obtain a low cost plan
(due to the nature of the connectivity between the different
nodes); as a result, a relatively high-cost plan has to be se-
lected. In contrast, replication provides a distinct advantage
as a low cost plan, involving the replica nodes can be ob-
tained even though the connectivity between actual nodes
involved in the query may not exist. Consequently, the pres-
ence of replication yields comparatively low-cost plans, and
hence proves to be fruitful in such scenarios where the con-
nectivity between nodes is dynamic and susceptible to fre-
quent changes. This is for a single copy replication. It would
be interesting to study the tarde-offs between number of
copies and plan costs.

7.3 Impact of Connectivity on Plan Cost
In this experiment, we present a single query (shown be-

low) and computed the top-3 plan cost using the heuristics
proposed along with the optimal plan cost on six different
configurations of the connectivity matrix. We had to keep
the connectivity large; otherwise, no (or not many) plans
were generated. Since the connectivity matrix is large in
size, we do not show it here. Instead, we have displayed a
sample configuration file earlier. We have done this experi-

Method Replication No
Replication

Optimal Join 63.76 175.73
Optimal semijoin 135.33 326.28

Top-K Cumulative Join 85.57 195.14
Top-K Cumulative semijoin 78.46 179.07

Top-K Iterative Join 70.76 379.54
Top-K Iterative semijoin 129.39 894.21
Top-K Join-type Join 80.76 391.72

Top-K Join-type semijoin 129.39 666.67

Table 11: Replication Vs. No Replication: Effect on
costs for Query 3

Method Replication NO
Replication

Optimal Join 8.91 29.41
Optimal semijoin 29.33 126.81

Top-K Cumulative Join 527.21 143.73
Top-K Cumulative semijoin 279.21 795.41

Top-K Iterative Join 33.11 177.14
Top-K Iterative semijoin 318.25 828.21
Top-K Join-type Join 801.49 935.72

Top-K Join-type semijoin 304.71 899.67

Table 12: Replication Vs. No Replication: Effect on
costs across all queries

ment on several queries with similar results.

Query 1 target 2

SELECT * FROM UAV_2_DATA, UAV_4_DATA, UAV_6_DATA

WHERE ((UAV_2_DATA.NODEID=76)) AND ((UAV_2_DATA.LONG>=804))

AND ((UAV_6_DATA.LONG<=540) AND

((UAV_2_DATA.LAT=UAV_4_DATA.LAT)) AND (UAV_4_DATA.LONG=UAV_6_DATA.LONG));

Table 10 shows the cost (in milliseconds) incurred by the
various approaches towards generating the top-3 best plans
for the given query. Based on the results, it can be ob-
served that the plan generation process depends heavily on
the connectivity between nodes. For many network con-
figurations, no plan is generated even in optimal join case.
However, amongst the different heuristics, the semijoin ap-
proaches (both iterative and cumulative) appear to do better
and very close to optimal for the current set of connectivity
configurations. However, determining the exact relationship
between the type of join and the corresponding costs of plan
generation will require further analysis and is beyond the
scope of this paper.

7.4 Desiderata
It is very clear from the experiments that the proposed

heuristics are meaningful and generate good plans that are
not too far from the optimal without exploring the entire
plan space. The presence and absence of replication makes
a significant difference both for the number of plans available
and the cost of the plan. This is only for directly connected
replica. If multiple hops are included, reachability will be
even better (at the cost of transmission cost). Connectiv-
ity of the network certainly plays a central role and more
attention needs to be placed on heuristics and optimization
to include predicted stability of network and its leveraging.
Alternate plan precessing strategies will also be beneficial
for this environment. As an example, parallel execution of



plan steps in different nodes is likely to reduce response time
substantially.
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9. CONCLUSIONS AND FUTURE WORK
In this paper, we have explored SQL query processing

and optimization in distributed environments where connec-
tivity is changing rapidly. Instead of optimizing the query
from scratch, we have relied on local optimization and have
used an incremental plan generation approach with several
heuristics for processing a query at the granularity of joins
and semijoins and concomitant data transfers. Replicated
copies are assumed and taken into account in order to al-
leviate availability of data due to connectivity issues and
increase the probability of an available copy during query
processing.
A number of extensions are currently being investigated:

i) optimum number of replicated copies instead of a single
copy, ii) generating the query plan incrementally and dy-
namically (due to connectivity issues), iii) use of parallel
plan evaluation with concomitant complexity to plan gener-
ation and evaluation, and iv) various QoS issues pertaining
to query results.
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Timestamp Nodeid Lat Long Obj type Obj desc Object ptr
8 bytes 4 bytes 4 bytes 4 bytes 8 chars Varchar (64) Pointer (8 bytes)

Table 1: Relation Format

Attr Name Type Cardinality Position Width Min Value Max Value Unique values in the range
Timestamp number 1200 1 100 50 140 90

Lat number 1200 2 4 10 100 90
ObjType varchar 4000 3 64 20 350 330
ObjPtr categorical 2000 3 8 Null Null 10

Table 2: Relation Metadata

Nodei Nodej RSS LSF Bandwidth Start-up Cost
1 3 1 5 100 10

Table 4: Connectivity map

Operation n Parameter Operand-1 Operand-1 Loc Operand-2 Operand-2 Loc Result Name Result Loc

Table 5: Plan Format

Operation Param Operand1 Operand1 Loc Operand2 Operand 2 Loc Result Name Result Loc
Select A > 100 R1 1 Null Null R1’ 1
Project A1, A3, A4 R1’ 1 Null Null R1” 1

Move or copy Null R1” 1 Null Null R” 2
Semi Join A > C R” 2 R2 2 SR1 2

Join B = D R12 2 R2” 2 JR1 2

Table 6: Example Query Plan

Configuration File:
package afrl;
public interface afrlConstants {

int NUMBER_OF_QUERIES = 1; //queries generated
String FILE_NAME = "outputFiles/apr13_queries_exp1.txt"; // file name
String NETWORK_FILE_NAME = "outputFiles/network/apr13_network_exp1"; //conn matrix file
int SEED = 4406235; //for query generator
int NETWORK_DEGREE = 11; //# of connected nodes
int NUM_NETWORKS = 6; //# of connectivity matric to be generated
int NETWORK_SEED = 33152035; //seed for connection matrix generator
int NUM_NODES = 13; //# of nodes in connection matrix
int TopKOptimal = 3; // optimal plans to display; 0 (all)
int TopKCumulativeCost = 3; //carry K plans, 0 (not use this heuristic)
int TopKIterationCost = 3; //carry K plans, 0 (not use this heuristic)
int TopKJoinType = 9; //carry k number of join type heuristic applying

//cumulative heuristic to k/3 of each type
boolean displayNonConnective = false; //true to display non connective plans
boolean heuristicDebug = false; //true to dump heuristic execution data to files}

Figure 3: A Sample Configuration Specification

Method Query 1 Query 2 Query 3 Query 4 Query 5
Optimal Join 8.19 55.34 63.76 2.89 2.52

Optimal semijoin 3.29 8.61 135.33 4.74 2.17
Top-K Cumulative Join 20.54 68.07 85.57 62.78 4.70

Top-K Cumulative semijoin 9.91 39.31 78.46 12.21 4.29
Top-K Iterative Join 8.19 59.54 70.76 5.34 5.62

Top-K Iterative semijoin 4.19 9.31 129.39 162.62 4.95
Top-K Join-type Join 174.20 485.37 80.76 7.12 7.70

Top-K Join-type semijoin 11.91 390.31 129.39 3.21 3.29

Table 9: Heuristics Vs. Optimal: Costs incurred across top-3 plans



Query 1: target 2
SELECT *
FROM UAV_2_DATA, UAV_4_DATA, UAV_5_DATA
WHERE ((UAV_2_DATA.NODEID=66)) AND((UAV_2_DATA.LONG>=614)) AND ((UAV_5_DATA.NODEID=77))

AND ((UAV_2_DATA.LAT=UAV_4_DATA.LAT)) AND ((UAV_4_DATA.NODEID=UAV_5_DATA.NODEID));

Query 2: target 5
SELECT *
FROM UAV_5_DATA, UAV_10_DATA
WHERE ((UAV_10_DATA.LAT=609)) AND ((UAV_10_DATA.OBJPTR<=246)) AND ((UAV_5_DATA.OBJPTR=UAV_10_DATA.OBJPTR));

Query 3: target 9
SELECT *
FROM UAV_9_DATA, UAV_10_DATA, UAV_5_DATA
WHERE ((UAV_9_DATA.LONG>351)) AND ((UAV_9_DATA.LAT>=40)) AND ((UAV_5_DATA.LONG<=804))

AND ((UAV_9_DATA.OBJPTR=UAV_10_DATA.OBJPTR)) AND ((UAV_10_DATA.LAT= UAV_5_DATA.LAT));

Query 4: target 6
SELECT *
FROM UAV_6_DATA, UAV_10_DATA, UAV_4_DATA
WHERE ((UAV_6_DATA.LAT<55)) AND ((UAV_6_DATA.NODEID<=260)) AND ((UAV_4_DATA.NODEID=22))

AND (((UAV_6_DATA.TIMESTAMP=UAV_10_DATA.TIMESTAMP)) AND (UAV_10_DATA.OBJPTR= UAV_4_DATA.OBJPTR));

Query 5: target 9
SELECT *
FROM UAV_9_DATA, UAV_3_DATA, UAV_2_DATA, UAV_4_DATA WHERE ((UAV_9_DATA.TIMESTAMP<=764))

AND ((UAV_9_DATA.LONG<102)) AND ((UAV_2_DATA.NODEID=66)) AND ((UAV_2_DATA.LONG>=614))
AND ((UAV_9_DATA.LAT=UAV_3_DATA.LAT)) AND ((UAV_3_DATA.LAT=UAV_2_DATA.LAT))
AND ((UAV_2_DATA.OBJPTR=UAV_4_DATA.OBJPTR));

Figure 4: Sample Queries Used

Method Network 1 Network 2 Network 3 Network 4 Network 5 Network 6
Optimal Join 8.07

Optimal semijoin 4.53 4.79 3.67 3.18 3.17 4.01
Top-K Cumulative Join 44.01 20.44 20.44 17.78 13.52 16.05

Top-K Cumulative semijoin 4.51 272.38 272.38 4.61 4.31 272.38
Top-K Iterative Join

Top-K Iterative semijoin 5.18 5.55 14.48 3.15 4.17 4.47
Top-K Join-type Join 33.31 20.44 16.73 17.78 16.23 14.55

Top-K Join-type semijoin 6.81 4.55 4.47 4.81 4.17 6.06

Table 10: Heuristics V/S Optimal: Costs incurred across different connectivity configurations


