
A lightweight distributed order and duplication insensiti ve
algorithm for approximate top-k queries using order

statistics

Vinay Deolalikar
Hewlett Packard Labs
1501 Page Mill Road
Palo Alto, CA 94304

vinayd@hpl.hp.com

Kave Eshghi
Hewlett Packard Labs
1501 Page Mill Road
Palo Alto, CA 94304

kave@hpl.hp.com

Hernan Laffitte
Hewlett Packard Labs
1501 Page Mill Road
Palo Alto, CA 94304

hernan@hpl.hp.com

1. APPROXIMATE TOP-K
Let {e1, e2, . . . , el} be a set of distinct records in a database,

with unique IDs{id1, id2, . . . , idl}. Let A1, A2, . . . , Ap be a set
of distinct attributes for each record. For every recordei, the at-
tributeAj is zero or some positive value. We denote the value of
the attributeAj of recordei byAj(ei). The sum of the attributes of
ei is denoted byNi =

∑
j
Aj(ei). We would like to obtain the list

of topk records, ordered byNi. We present a highly configurable,
lightweight, distributed algorithm to solve the above problem ap-
proximately, based on order statistics.

2. THE ALGORITHM

2.1 Phase One: Generating a list of random
variables

A ticket is a triple< ID, r, b > whereid is a record,r is the
value of a random variable, andb is a binary flag which can be set
to either1 or 0, respectively.

Each peer first generates an exponential random variable for the
recordei with rate given byAj(ei). At the end of this phase, each
peer will have a list of random variables that is as long as the num-
ber of records. The list has two columns: the first column has the
record ID and the second column has the random variable value.

2.2 Phase Two: Pruning the list
Each peer thresholds the list of random variables they have gen-

erated. Rows in the list whose second column (random variable
value) is below a thresholdT are discarded.

2.3 Phase Three: Exchanging lists
In the third phase of the algorithm, each peer sends their pruned

list of (record ID, random variable value) to their neighbors. This
is the information passing phase of the algorithm.

2.4 Phase Four: Merging lists by maximum
Each peer now has lists from other peers. Each peer now merges

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
The 18th International Conference on Management of Data (COMAD),
14th-16th Dec, 2012 at Pune, India.
Copyright c©2012 Computer Society of India (CSI).

these lists by keeping only the maximum of the values of the ran-
dom variables for each record.

2.5 Phase Five: Cropping merged lists
Each peer now sorts his merged list in descending order of ran-

dom variable value, and crops it to have onlyL topmost records.
Now the algorithm proceeds by looping through phases Two

through Five for a fixed number of iterations. Experimental results
indicate that 5 iterations suffice for a stabilization of lists.

2.6 Phase Six: Running algorithm multiple
times and merging results

Phases One through Six are run a ’run count’ of times. At the
end of each run, a list emerges. Now, a final list is obtained as
follows. If a record occurs in at least ’merge count’ out of the total
’run count’ number of lists, then it is included in the final output of
the algorithm as a topk record.

As with any approximate algorithm, we may merge results of
multiple runs of the basic algorithm outlined above, in order to in-
crease accuracy.

3. EXPERIMENTAL RESULTS

 0

 20

 40

 60

 80

 100

 0  2  4  6  8  10

R
ec

al
l (

%
)

Item ID

Unique entries=15K, Zipfian skewness parameter=1.5

(4,2)
(4,3)
(7,2)
(7,3)
(7,5)

(10,2)
(10,3)
(10,5)

 0

 20

 40

 60

 80

 100

(4,3) (7,5) (10,5) (4,2) (7,3) (10,3) (7,2) (10,2)

P
re

ci
si

on
 (

%
)

(run count, merge threshold)

Unique entries=15K

skew=1
skew=1.5

skew=2

Figure 1: Tradeoff between (run count, merge threshold) and
precision vs. recall on Zipfian distribution over 15K distincts.
Item id indicates frequency of item: Item 0 is most frequent,
and so on.

We have validated our algorithm extensively on a wide array of
multi-parameter Zipfian datasets, varying the skewness of the dis-
tribution of records (only one parameter choice shown in Fig. 1).
We report strong performance of the algorithm over a wide range
of parameter values, and study the trade-offs involved in setting the
tunable parameters of the algorithm in order to obtain the precision
and recall that is desired.


