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ABSTRACT
The recovery of blocks of missing values in regular time se-
ries has been addressed by model-based techniques. Such
techniques are not suitable to recover blocks of missing val-
ues in irregular time series and restore peaks and valley.
We propose REBOM (REcovery of BlOcks of Missing val-
ues): a new technique that reconstructs shapes, amplitudes
and width of missing peaks and valleys in irregular time se-
ries. REBOM successfully reconstructs peaks and valleys by
iteratively considering the time series itself and its correla-
tion to multiple other time series. We provide an iterative
algorithm to recover blocks of missing values and analyti-
cally investigate its monotonicity and termination. Our ex-
periments with synthetic and real world hydrological data
confirm that for the recovery of blocks of missing values in
irregular time series REBOM is more accurate than existing
methods.

Keywords
Missing blocks recovery, irregular time series, Singular Value
Decomposition, ranking matrix.

1. INTRODUCTION
Time series data arise in a variety of domains, such as

environmental, telecommunication, financial, and medical
data. For example, in the field of hydrology, sensors are
used to capture environmental phenomena including tem-
perature, air pressure, and humidity at different points in
time. For such data, it is not uncommon that more than
20% of the data is missing as blocks, i.e., multiple consecu-
tive measurements are missing.

Existing techniques effectively recover blocks of missing
values in regular time series, i.e., time series series contain-
ing peaks and valleys with a possibly varying frequency or
amplitude that follow one or more periodic models, e.g., the
sinus model where the frequency varies over time. The re-
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covery accuracy of these techniques decreases for irregular
time series, i.e., time series containing peaks and valleys
that do not follow any model. In this work, we address the
problem of finding the optimal recovery of blocks of miss-
ing values in irregular time series. We propose REBOM
(REcovery of BlOcks of Missing values), a new data driven
recovery technique for blocks of missing values that is able
to restore missing peaks and valleys. We use the correlation
[1] between time series to recover blocks of missing values.
Intuitively, time series that tend to change their peaks and
valleys simultaneously are correlated and we use the Pearson
coefficient to quantify this correlation.

REBOM is an iterated low rank Singular Value Decom-
position (SVD) [2]. We decompose a matrix V of corre-
lated time series, where missing values have been initialized
through linear interpolation combined with nearest neighbor
imputation, into the product L × Σ × RT of three matri-
ces. By nullifying the smallest singular value of Σ we give
higher priority to the correlation between the time series.
The subsequent matrix multiplication yields an approxima-
tion of V that better approximates the missing values. After
each iteration, the ranking of the most correlated time series
with respect to the time series to recover, is updated. The
iterative recovery terminates if the total ranking, which is
determined by considering all observations of the time se-
ries, is identical to the partial ranking, which is determined
by considering only observations with timestamps of missing
values. If the total and the partial ranking are equal, the
correlation can no longer be used to improve the recovery of
missing values.

Problem definition: Assume a set of n irregular
correlated time series X0 = {X0

1 , X
0
2 , . . . , X

0
n} where

X0
1 , X

0
2 , . . . , X

0
n contain blocks of missing values. We pro-

pose a recovery method that determines, in j iterations, a

set of time series X̃j = {X̃j
1 , X̃

j
2 , . . . , X̃

j
n} where the missing

blocks of X0
1 , X

0
2 , . . . , X

0
n have been restored.

The result of REBOM for the recovery of peaks and val-
leys for two correlated time series is illustrated in Figure 1.
Each time series is displayed as a 2d plot where the x-axis
shows the timestamp t and the y-axis the value v for a given
t. X0

1 represents an air pressure time series and contains
a missing block for the time range ]90, 130[. X0

2 represents
a temperature time series that contains a missing block for
the time range ]60, 90[. REBOM can be used to restore the
missing blocks of X0

1 and X0
2 .

Figure 1 illustrates that REBOM accurately recovers
shape, amplitude and width of the missing blocks. REBOM
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Figure 1: Recovery Performed by REBOM

detects that the peaks and valleys of X0
1 and X0

2 are cor-
related (high pressure corresponds to low temperature and
vice versa). The shape and the width of the missing block
are recovered from the position of the local extrema of X0

1

with respect to the local extrema of the correlated time series
X0

2 . The amplitude of the missing block of X0
1 is recovered

based on the two preceding peaks of X0
1 .

At the technical level, we show how to iterate the low rank
SVD and we analytically investigate the main properties of
the method. The main contributions of this paper are:

• We propose REBOM: an iterated low rank SVD that
iteratively refines the initial recovery of missing values.

• We propose a greedy algorithm that repeatedly selects
a time series with missing values that have been ini-
tialized and uses the k most correlated time series to
iteratively refine the recovery of the missing values.

• We prove that our greedy algorithm is stepwise mono-
tonic, i.e., the accuracy of the recovery increases by
choosing, at each step, the most correlated time se-
ries. The algorithm terminates when the set of the
most correlated time series does not change anymore.

• We empirically show that the recovery accuracy of RE-
BOM is invariant to the initial recovery. Different ini-
tialization methods lead to the same recovery accuracy
but with different number of iterations.

• We present an experimental evaluation of the accuracy
of our technique that compares REBOM to state-of-
the-art techniques for the recovery of blocks of missing
values. The results show the superiority of our algo-
rithm for the restoration of peaks and valleys.

The rest of the paper is organized as follows. Section 2 re-
views related work on reduction methods and existing tech-
niques for imputing missing values. Section 3 defines the
initialization method and describes the basics of the low
rank SVD. Section 4 introduces and discusses REBOM and
its properties. Section 5 empirically compares the results of
REBOM to other techniques proposed in the literature for
the recovery of blocks of missing values.

2. RELATED WORK
Prediction models such as Maximum Likelihood Estima-

tion (MLE) [3], Bayesian Networks (BN) [4, 5] and Expec-
tation Maximization (EM) [6] were used to estimate single
missing values or small blocks of missing values in time se-
ries. These techniques are parametric and require a specific
type of data distribution, e.g, Gaussian distribution. There-
fore, they only perform well for the recovery of blocks of
missing values in regular time series where peaks and val-
leys follow a periodic model of constant frequency and am-
plitude.

Li et al. [7] presented an approach called DynaMMo that is
based on Expectation Maximization (EM) and Kalman Fil-
ter [8]. This technique is intended to recover missing blocks
in non linear time series that contain peaks and valleys. Dy-
naMMo allows to use one reference time series in addition to
the time series that contains the missing block. The Kalman
Filter uses the data of the time series that contains missing
blocks together with a reference time series, to estimate the
current state of the missing blocks. This estimation is per-
formed as a multi step process that uses two different esti-
mators. The first estimator represents the current state and
the second estimator represents the initial state and the er-
ror of the estimation. For every step of the process, an EM
method predicts the value of the current state and then the
two estimators are used to refine the predicted values of the
current state and to maximize their likelihood. DynaMMo
does not allow to use more than one reference time series for
the block recovery. DynaMMO performs an accurate block
recovery for any type of regular time series. The accuracy
of the block recovery decreases for irregular time series (cf.
Section 5).

Techniques that rely on basic statistical methods such as
mean imputation, piecewise approximation (linear spline,
cubic spline, . . . ) [9, 10], regression [11, 12] and k Nearest
Neighbors [13, 14] have been proposed for the recovery of
blocks of missing values. Figures 2(a) and 2(b) illustrate
the block recovery performed respectively by linear spline
and k nearest neighbor using values at t=60 and t=90. Fig-
ure 2(c) shows that the regression method replaces missing
values by points lying on the line that minimizes the regres-
sion error of all existing points. These techniques are not
able to accurately recover any of the two missing blocks in
X0

1 and X0
2 . The cubic spline technique finds a third order

polynomial that connects three successive values. Figure
2(d) shows that the cubic spline replaces the missing block
by a block opposite to the one that precedes the missing
block. Cubic spline is able to perform a good recovery only
for the missing block of X0

1 . All basic methods are not
suitable techniques for block recovery in regular time series
where peaks and valleys follow a periodic model of varying
amplitude or frequency, or in irregular time series.

Kurucz et al. [15] proposed a technique based on EM and
Singular Value Decomposition (SVD) [16, 17, 18, 19] for
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(a) Linear Spline Recovery
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(b) k Nearest Neighbor Recovery
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(c) Regression Recovery
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Figure 2: Recovery using Different Techniques

comparing recommender systems where one of them con-
tains missing values. A recovery of the missing values is per-
formed before the comparison process. Each recommender
system is represented by one column of values in a rating
matrix which is decomposed using SVD. The result of the
decomposition is modified using a method called gradient
boosting [20]. The EM algorithm is then applied to refine
the result of gradient boosting. The proposed solution dy-
namically discovers data dependencies from coordinate axes
that represent the recommender systems and is applicable
for more than one reference recommender system. How-
ever, the application of gradient boosting on different recom-
mender systems looses the dependencies among the original
values of recommender systems. Therefore, this technique
yields bad results for block recovery in case where more than
one recommender system contains missing blocks.

Tree-based methods were proposed to impute missing val-
ues. He [21] and Ding and Simonoff [22] present an overview
of tree classification methods that are able to replace miss-
ing values in time series. These trees find the optimal way to
classify missing values using a regression approach and are
called Classification and Regression Trees (CART). These
techniques are designed to create a classification of the miss-
ing values. Missing values that belong to the same class will
be recovered with the same value. Therefore, these methods
are not able to effectively restore missing peaks and valleys
in regular and irregular time series.

3. PRELIMINARIES AND BACKGROUND

3.1 Notation
We use the following notation: sets and vectors are upper-

case, matrices are upper-case bold, and elements of sets and
matrices are lower-case. A time series X1 = {x1, x2, . . . , xn}
is a set of n observations. Each observation xj from X1 is a
pair (tj , vj) where tj and vj are respectively the timestamp
and the value of the observation. T1 = {t |(t, ) ∈ X1)}
denotes the set of all timestamps from X1; V1 = {v |( , v) ∈
X1)} denotes the vector of all values from the time series
X1. A time series X1 with missing values that have not
been recovered yet, is denoted as X0

1 .

3.2 Preprocessing of Time Series
The first preprocessing step uses basic statistical methods

to initialize all missing values. After the initialization the
timestamps of all time series are aligned.

Definition 1 (Missing timestamps). Given a set of
n time series {X0

1 , . . . , X
0
n}, the set of missing timestamps

of time series X0
i with respect to the timestamps of the other

time series is T 0
i = {t | ((t, ) ∈ X0

1 ∨ . . . ∨ (t, ) ∈ X0
n) ∧

(t, ) 6∈ X0
i }.

Note that missing timestamps of one time series have to be
present in at least another time series. Timestamps missing
in all time series are not considered. An additional pre-
processing step can be added if such timestamps shall be
recovered as well.
X1

1 = {(t1, v1), ..., (tn, vn)} is the initial recovery of X0
1 iff

∀i ∈ {1, . . . , n}

(ti, vi) =



(ti, vi) if (ti, vi) ∈ X0
1

Else



(ti, v) if (s(ti), ) 6∈ X0
1 ,

(p(ti), v) ∈ X0
1

(ti, v) if (p(ti), ) 6∈ X0
1 ,

(s(ti), v) ∈ X0
1

(ti,
(ti−p(ti))(s(vi)−p(vi))

s(ti)−p(ti)
+ s(vi))

otherwise

p(ti) = max{tj | (tj , ) ∈ X0
1 ∧ tj < ti} is the predecessor

of timestamp ti in X0
1 and s(ti) = min{tj | (tj , ) ∈ X0

1 ∧
tj > ti} is the successor timestamp of ti in X0

1 . Similarly,
p(vi) = {vj | (tj , ) ∈ X0

1 ∧ tj = p(ti)} is the predecessor of
value vi in X0

1 and s(vi) = {tj | (tj , ) ∈ X0
1 ∧ tj = s(ti)} is

the successor value of vi in X0
1 . Thus, the initial recovery

of the missing values is a linear interpolation. If the missing
values occur as the first or the last elements of X0

1 , we use
the nearest neighbor imputation.

Two time series X1
1 and X1

2 with initialized missing values
define a set of multidimensional points: {(v, v′) | (t, v) ∈
X1∧(t, v′) ∈ X2}. The second preprocessing step constructs
a matrix with n m-dimensional points from m time series
with n observation each.

Example 1. Figure 3 shows two time series X0
1 and X0

2

with missing values, the initialized time series X1
1 and X1

2 ,
and the set of multidimensional points V. The initialized
missing values are highlighted in gray.

From Definition 1 we get T 0
1 = {100, 110, 120} and T 0

2 =
{70, 80}.

3.3 Low Rank Matrix Decomposition

3.3.1 Singular Value Decomposition
The Singular Value Decomposition (SVD) is a matrix de-

composition method that decomposes a matrix V into three
matrices L, Σ and RT . The product of the three matrices
is equal to V.



X0
1

t v
0 0
10 1
20 0
30 -1
40 0
50 -1
60 0
70 1
80 -1
90 -1
130 -1
140 0
150 1

X0
2

t v
0 0
10 -0.25
20 0
30 0.25
40 0
50 0.25
60 0
90 0.25
100 0
110 -0.25
120 0
130 0.25
140 0
150 -0.25

⇒

X1
1

t v
0 0
10 1
20 0
30 -1
40 0
50 -1
60 0
70 1
80 -1
90 -1
100 -1
110 -1
120 -1
130 -1
140 0
150 1

X1
2

t v
0 0
10 -0.25
20 0
30 0.25
40 0
50 0.25
60 0
70 0.08
80 0.16
90 0.25
100 0
110 -0.25
120 0
130 0.25
140 0
150 -0.25

⇒

V
V1 V2

0 0
1 -0.25
0 0
-1 0.25
0 0
-1 0.25
0 0
1 0.08
-1 0.16
-1 0.25
-1 0
-1 -0.25
-1 0
-1 0.25
0 0
1 -0.25

Figure 3: Original Time Series X0
1 , X0

2 ; Initialized
Time Series X1

1 , X1
2 ; Multidimensional Points V

Definition 2 (SVD). A matrix V = [V1|V2|. . . |Vn] ∈
Rm×n can be decomposed into a product of three matrices:

SV D(V) = L×Σ×RT

=

[
L1

∣∣∣. . . ∣∣∣Ln

]
︸ ︷︷ ︸

L(m×n)

×

 σ1 . . . 0
...

. . .
...

0 . . . σn


︸ ︷︷ ︸

Σ(n×n)

×

 RT
1

...

RT
n


︸ ︷︷ ︸
RT (n×n)

Where:

1. Σ: is a n × n square diagonal matrix that contains
strictly positive singular values of V. The diagonal
entries σi of Σ are the square roots of the eigen values
of VTV and are ranked in decreasing order such that
σ1 > σ2 > . . . > σn.

2. L: is an m × n orthogonal matrix whose columns are
the orthonormal eigen vectors of VVT (LTL = I,
where I is the identity matrix). The eigen vectors of
L are computed by solving Det(σI−VVT ) = 0 where
Det(X) is the determinant of matrix X.

3. R: is an n × n orthogonal matrix having as columns
orthonormal eigen vectors of VTV (RTR = I). The
eigen vectors of R are computed by solving Det(σI −
VTV) = 0.

4. A singular value σi defines the variance of vector Li

along dimension RT
i . Each dimension represents an

axis of projection: var(Li) = σi.

Example 2. Consider time series X1
1 and X1

2 from Fig-
ure 3. Figure 4 illustrates the SVD of V.

3.3.2 Dimensionality Reduction
SVD allows to perform a dimensionality reduction from a

dimension n to a lower dimension r. The dimensionality re-
duction is performed by nullifying the n−r smallest singular
values from matrix Σ, where 0 < σr < σn. Figure 5 illus-
trates the dimensionality reduction for r = n − 1, i.e., the
smallest singular value of Σ is nullified. We write SV Dr(V)
for the result of a low rank SVD of a matrix V. REBOM
uses the low rank SVD for improving the initial imputation
of the missing values as described in the next section.

SV D(V) =

0 0
0.31 −0.22

0 0
−0.31 0.22

0 0
−0.31 0.22

0 0
−0.30 −0.11
−0.30 0.04
−0.31 0.22
−0.30 −0.27
−0.30 −0.75
−0.30 −0.27
−0.31 0.22

0.00 0.00
0.31 −0.22


︸ ︷︷ ︸

L

×
[

3.35 0
0 0.51

]
︸ ︷︷ ︸

Σ

×
[

0.99 −0.14
0.14 0.99

]
︸ ︷︷ ︸

RT

Figure 4: Example of Singular Value Decomposition

SV Dr(V) =

[
L1

∣∣∣. . . ∣∣∣Lm

]
︸ ︷︷ ︸

L(m×n)

×


σ1 . . . 0 0
...

. . .
... 0

0 . . . σr 0
0 0 0 0


︸ ︷︷ ︸

Σr(n×n)

×

 RT
1

...

RT
n


︸ ︷︷ ︸
RT (n×n)

Figure 5: Illustration of Dimensionality Reduction

4. REBOM
REBOM combines the characteristics of a time series with

missing values with the characteristics of its most correlated
time series to recover blocks of missing values in irregular
time series.

4.1 Correlation Ranking Matrix
We define the top-k ranking matrix to capture the cor-

relation between different time series. The correlation is
defined over all values of the first vector of the matrix with
respect to all values of another vector. The Pearson coef-
ficient is used as a correlation metric. Given two vectors
Vi = [vi1 , vi2 , . . . , vin ] and Vj = [vj1 , vj2 , . . . , vjn ] of the
same length n, the Pearson correlation coefficient ρ of Vi

with respect to Vj is defined as follows:

ρ(Vi, Vj) =
cov(Vi, Vj)√
var(Vi)var(Vj)

=

n∑
p=1

(vip − v̄i)(vjp − v̄j)√√√√ n∑
p=1

(vip − v̄i)
2

n∑
p=1

(vjp − v̄j)
2

with v̄i =
1

n

n∑
p=1

vip , v̄j =
1

n

n∑
p=1

vjp

ρ(Vi, Vj) is undefined if all values of Vi or Vj are equal.
The vectors of the correlation ranking matrix are ranked in
decreasing order of the Pearson coefficient between the first
vector and the remaining vectors.

Definition 3 (Top-k ranking matrix). Let V =
[V1, V2, . . . , Vn] be a matrix of n vectors. Vtop-k =



[V ′1 , V
′
2 , . . . , V

′
k ] is defined as the top-k ranking matrix of V

with respect to a given vector that contains initialized miss-
ing values V 1

q ∈ V iff:

• Vtop-k contains the k vectors that are most correlated
to V 1

q : ∀V ′i ∈ Vtop-k ∀Vj ∈ V \Vtop-k : |ρ(V ′i , V
1
q )| ≥

|ρ(Vj , V
1
q )|

• The elements of Vtop-k are sorted by their correla-
tion coefficient to V 1

q : ∀1 ≤ i < k : |ρ(V ′i , V
1
q )| ≥

|ρ(V ′i+1, V
1
q )|

For each matrix Vtop-k we define a cor-
responding top-k ranking vector ρVtop-k =

[ρ(V 1
q , V

top-k
1 ), ρ(V 1

q , V
top-k
2 ), . . . , ρ(V 1

q , V
top-k
k )] for V 1

q

with the l1-norm ||ρVtop-k || =
∑k

i=1(|ρ(V 1
q , V

top-k
i )|).

Example 3. Consider Figure 6 with V = [V1, V2, V3, V4]
and top-3 ranking Vtop-3 = [V4, V3, V1] for V4.

V=


4 6 3 2
5 7 1 3
6 7 9 8
7 6 8 7

, Vtop-3=


2 3 4
3 1 5
8 9 6
7 8 7


Figure 6: Example of Vtop-3

We get ρVtop-3 = [ρ(V4, V4), ρ(V4, V3), ρ(V4, V1)] =
[1, 0.93, 0.87] and ||ρVtop-3 || = 2.75.

4.2 Stepwise Correlation Monotonicity
We prove that REBOM is stepwise monotonic, i.e, choos-

ing a bigger correlation value in the same iteration implies a
bigger sum of variances. Lemma 1 states that the l1-norm of
a ranking vector ρV is proportional to the sum of the vari-
ance of vectors obtained by the application of the low rank
SVD. In what follows a submatrix Vi = [Vi1 , Vi2 , . . . , Vik ]
that contains k different columns of V is denoted as Vi ∈ V.

Lemma 1. Let Vi = [Vi1 , Vi2 , . . . , Vik ] and Vj =
[Vj1 , Vj2 , . . . , Vjk ] be two different m × k matrices and let
V be m × n matrix such that n ≥ k and Vi,Vj ∈ V.
Let Wi = [Wi1 ,Wi2 , . . . ,Wik ] = SV Dr(Vi) and Wj =
[Wj1 ,Wj2 , . . . ,Wjk ] = SV Dr(Vj) such that Vi1 = Vj1 . The
l1-norm of ρVi and ρVj is proportional to the sum of the
variances of Wi and Wj:

||ρVi || > ||ρVj || ⇒
k∑

p=1

var(Wjp) >

k∑
p=1

var(Wip)

Lemma 1 states that choosing a matrix with a bigger l1-
norm of the ranking vector implies a higher sum of variances
over the vectors obtained by the SVD. Therefore, more cor-
related vectors of the input matrix yields a higher sum of
the variances after the application of SV Dr(). Thus, by
considering the top-k ranking matrix, the result of SV Dr()
maximizes the following objective function:∑

Vi∈SV Dr(V)

var(Vi)

V=


4 6 3 2
5 7 1 3
6 7 9 8
7 6 8 7

, W=


4.2 5.6 2.3 2.8
4.9 7.1 1.4 2.4
6.6 6.6 8.9 7.7
6.2 6.4 8.1 7.1


Figure 7: Example of a matrix and its SV Dr trans-
formation

Example 4. Consider matrix V = V1, V2, V3, V4 from ex-
ample 3 and the result matrix of the application of SV Dr(V)
as shown in Figure 7.

Let’s take the example of V1,V2 ∈ V where V1 =
{V4, V3, V1} and V2 = {V4, V2, V1}, and let W1 = SV Dr(V1)
and W2 = SV Dr(V2) .

If we apply the computation with respect to vector V4, we
get ||V1|| = 2.75, ||V2|| = 2.07,

∑k
p=3 var(W1p) = 24 and∑3

p=1 var(W2p) = 9.4.
Lemma 1 holds for any other matrices Vi,Vj ∈ V .

4.3 Iterative Recovery of REBOM
This section proves that REBOM terminates. In each step

we compute the partial correlation ranking for the time se-
ries based on the missing values. If this partial ranking is the
same as the global ranking, the recovery stops. For all miss-
ing values t ∈ T 0

i (cf. Definition 1) the partial correlation
ρ̃(Vi, Vj) is defined as follows:

ρ̃(Vi, Vj) =

|T0
i |∑

t=1

(vit − v̄i)(vjt − v̄j)√√√√|T0
i |∑

t=1

(vit − v̄i)
2

|T0
i |∑

t=1

(vjt − v̄j)
2

Where |T 0
i | is the length of T 0

i . ρ̃(Vi, Vj) is undefined if
all missing values of Vi or Vj are equal. The partial ranking
matrix contains the partially most correlated vectors to the
vector that contains the missing blocks to recover.

Definition 4 (Partial ranking matrix).
Given a matrix V = [V1, V2, . . . , Vn] of n vectors,

Ṽtop-k = [V ′1 , V
′
2 , . . . , V

′
k ] is defined as the top-k par-

tial ranking matrix of V with respect to a given vector
V 1
q ∈ V iff:

• Ṽtop-k contains the k vectors that are partially most

correlated to V 1
q : ∀V ′i ∈ Ṽtop-k ∀Vj ∈ V \ Ṽtop-k :

ρ̃(V ′i , V
1
q ) ≥ ρ̃(Vj , V

1
q )

• The elements of Ṽtop-k are sorted by their partial cor-
relation coefficient to V 1

q : ∀1 ≤ i < k : ρ̃(V ′i , V
1
q ) ≥

ρ̃(V ′i+1, V
1
q )

The top-k ranking and the top-k partial ranking are used
to terminate the iterative recovery process.

Lemma 2 (Termination Condition). Let Wtop-k
i =

[Wi1 ,Wi2 , . . . ,Wik ] and let Ranking() be the ranking of vec-

tors inside a matrix. If Wtop-k
i and its partial correlation

matrix have the same ranking then the algorithm can not
anymore create a matrix Wi+1 with bigger sum of variances
along its vectors. Formally:



Ranking(Wtop-k
i ) = Ranking(W̃top-k

i )⇒

∑
Wij

∈ Wi

var(Wij ) >
∑

W(i+1)j
∈ Wi+1

var(W(i+1)j
)

After each iteration, REBOM compares the ranking of
vectors in the top-k ranking with the ranking of vectors in
the top-k partial ranking. If the two rankings are equal, the
recovery process terminates. As long as the two rankings
are different or one of the two rankings is undefined, the
most correlated time series can be used to further improve
the accuracy of the recovery.

Example 5. Let V1 = [V11 , V12 , V13 , V14 , V15 ] and k = 3.
After each iteration we create matrix Wi with recovered val-

ues and compare Ranking(Wtop-3) with Ranking(W̃top-3).

Initially, ρ̃(V1, Vi) and Ranking(Ṽtop-3) are undefined and
thus, REBOM iterates. REBOM terminates after two steps

since Ranking(Wtop-3
2 ) = Ranking(W̃top-3

2 ) = {V1, V2, V3}.
The vectors of the top-k ranking and top-k partial ranking
are highlighted in gray and the recovered values are displayed
in bold.

V1
V
11

V
12

V
13

V
14

V
15

-1 0.5 0.25 0.75 1
0 0 0.2 0 0
-1 0.5 0.25 0 1
0 0.5 0 0.75 0
1 0 0 0 0
0 0 -0.25 0 0
-1 0.5 0.25 0.75 -1
-1 0.2 0 0 0.7
-1 0.4 -0.25 0 0.4
-1 0.2 0 0.75 0.8
-1 0.5 0.25 0.75 1
0 0 0 0 0
-1 0.5 0.25 0.75 1

ρ(V11
, V1i

) 1 -0.69 -0.33 -0.43 -0.46

ρ̃(V11
, V1i

) - - - - -

W1
W

11
W

12
W

13
W

14
W

15

-1 0.5 0.25 0.75 1
0 0 0.2 0 0
-1 0.5 0.25 0 1
0 0.5 0 0.75 0
1 0 0 0 0
0 0 -0.25 0 0
-1 0.5 0.25 0.75 -1

-0.5 0.2 0 0 0.7
-0.8 0.4 -0.25 0 0.4
-0.5 0.2 0 0.75 0.8
-1 0.5 0.25 0.75 1
0 0 0 0 0
-1 0.5 0.25 0.75 1

ρ(W
11
,W

1i
) 1 -0.78 -0.45 -0.47 -0.41

ρ̃(W
11
,W

1i
) 1 -1 1 0.5 0.97

W2
W21

W22
W23

W24
W25

-1 0.5 0.25 0.75 1
0 0 0.2 0 0
-1 0.5 0.25 0 1
0 0.5 0 0.75 0
1 0 0 0 0
0 0 -0.25 0 0
-1 0.5 0.25 0.75 -1

-0.2 0.2 0 0 0.7
-0.8 0.4 -0.25 0 0.4
-0.2 0.2 0 0.75 0.8
-1 0.5 0.25 0.75 1
0 0 0 0 0
-1 0.5 0.25 0.75 1

ρ(W21
,W2i

) 1 -0.8 -0.48 -0.46 -0.36

ρ̃(W21
,W2i

) 1 -1 1 0.5 0.97

Figure 8: Iterative Recovery of REBOM

4.4 Algorithm
Algorithm 1 implements the block recovery of REBOM.

First, using the method described in subsection 3.2, X1 is
created by initializing the missing values of X0. Then, the
vectors representing each time series of X1 are inserted as
columns in the matrix of vectors W1. The vector to re-
cover is inserted as the first column of W1. The order of
the selected vector to recover has no impact on the result of
the recovery since only the original vectors are used in the
recovery process. Therefore, the proposed recovery is deter-
ministic and does not depend on the order of time series to
recover. Next, if the ranking of the top-k ranking matrix
is different from the ranking of the top-k partial matrix or
one of the rankings is undefined (NAN), the recovery is per-

formed. If Ranking(Wtop-k
j ) is equal to Ranking(W̃top-k

j )
the recovered time series is inserted into the set of recovered
time series, i.e, X̃j . Once all time series have been recov-

ered, X̃j will be returned as the result of REBOM’s block
recovery.

Input: A set of n time series
X0 = {X0

1 , X
0
2 , . . . , X

0
n}

Output: A set of recovered time series

X̃ = {X̃j1
1 , X̃

j2
2 , . . . , X̃

jn
n }

begin1

X1 = Init(X0);2

for each X1
i ∈ X1 do3

V 1
i = Extract val(X1

i );4

j = 1;5

Wj = [V 1
i ];6

for each X̃1
p ∈ X̃1 \ X̃1

i do7

V1
p = Extract val(X̃1

p);8

Wj = [Wj , V
1
p ];9

while10

Ranking(Wtop-k
j ) <> Ranking(W̃top-k

j ) or

Ranking(Wtop-k
j )=NAN or

Ranking(W̃top-k
j ) = NAN do

LΣRT = SVD(Wtop-k
j );11

Σr = Reduce Dim(Σ, n, r);12

M = L×Σr ×RT ;13

Wj = UMV (Wtop-k
j ,M);14

j+ = 1;15

X̃j
i = Add ts(Wji);16

X̃j = {X̃j} ∪ {X̃j
i };17

i+ = 1;18

return X̃j ;19

end20

Algorithm 1: REBOM’s Block Recovery

Extract val() and Add ts() are used respectively to ex-
tract values from a time series and to add time stamps to a
vector.

The UMV algorithm (cf. Algorithm 2) updates missing
values. It accesses the database and uses procedural SQL to
determine the indexes of missing values (load mv indexes()).
The code of this function is described in the the first section
of the appendix.



Algorithm:UMV(V1,V2)1

begin2

for each Vi ∈ V1 do3

T 0
i =load mv indexes(i);4

for each vij ∈ Vi do5

if position(vij ) ∈ T 0
i then6

Insert element(V3, v
′
ij);7

// Insert v′ij ∈ V2 in row i and

column j of V3

else8

Insert element(V3, vij );9

return V3;10

end11

Algorithm 2: Updating Initialized Missing Values

5. EXPERIMENTS

5.1 Experimental Setup
For the evaluation we use real world datasets and syn-

thetic data sets that describe hydrological phenomena of up
to 15 million observations produced by sensors in 242 moun-
tain stations. Our hydrological database contains 79 tem-
perature time series, 69 precipitation time series, 48 water
level time series, 15 humidity time series, 4 wind speed time
series and 3 air pressure time series. The data was provided
by an environmental engineering company [23].

We ran experiments to compare the recovery accuracy of
REBOM against state-of-the-art techniques.

5.2 Experiments with Hydrological Time Se-
ries

5.2.1 Restoration of Peaks and Valleys
In the first set of experiments, we compare the accuracy

of REBOM for the restoration of missing blocks against a
non parametric recovery technique that is the (non-iterated)
low rank SVD and a parametric recovery technique that is
DynaMMo [10]. These two techniques are the most accu-
rate techniques for the recovery of blocks of missing val-
ues in time series. We ran our experiment on wind speed
and humidity time series. Figure 9(a) shows two time series
measured during summer season (one measurement every
15 minutes) in two different areas of the region of Alto-
Adige (Italy). We drop a block of values for t ∈]160, 220[
and restore it using the low rank SVD and DynaMMo. The
dropped block includes a valley with a small peak.

The recovery of the two techniques is shown in Fig-
ure 9(b). The low rank SVD is only able to detect part
of the trend of the missing block, i.e., only a valley is recov-
ered. The shape of the recovered valley resembles the shape
of the block that belongs to the same time interval of the
missing block in the other time series. DynaMMo is able
to detect the entire trend of the missing block, i.e., a valley
containing a small peak. However the shape of the original
block is not accurately restored. The recovered block looks
similar to a smooth spline that contains a small peak. Since
we use only tow time series REBOM will not iterate. There-
fore, the recovery of REBOM is similar to the recovery of
the low rank SVD.

We add a second humidity time series to the experiment to
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Figure 9: Recovery using Low Rank SVD and Dy-
naMMo

compare the block recovery of REBOM against DynaMMo
(see Figure 10). The result of Figure 10(b) shows that the
recovery of DynaMMo does not change by the addition of a
third time series because DynaMMo cannot use more than
one reference time series in the recovery process. REBOM
exploits the two humidity time series in the recovery process.
It uses the history of the wind speed time series together
with the correlation with respect to the two humidity time
series to recover the missing block. Both the trend and the
shape of the missing block are accurately recovered. Adding
more correlated time series will further improve the block
recovery of REBOM (see Figure 12).

We run a second set of experiments in which we com-
pare the block recovery error using the Mean Square Error
(MSE):

MSE =
1

n

n∑
i=1

(wi − vi+)2

where w is the recovered value, v+ is the original value and
n is the number of deleted observations.

Figure 11 shows the cumulative recovery error for removed
blocks of values of increasing length: we set a starting times-
tamp, we vary the length of the removed block and we com-
pute the cumulative MSE of each block. The x-axis repre-
sents the length (number of values) of the removed block
to recover and the y-axis represents the average cumulative
MSE. The experiments in Figures 11(a) and 11(b) are ex-
ecuted respectively on six different temperature time series
with 1000 values each measured in region of Alto Adige and
four different humidity time series with 1000 values each
measured in the region of Vipetino. For these two experi-
ments, we remove a block from one time series only while the
other time series are complete. The results in both exper-
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Figure 10: Recovery Using REBOM and DynaMMo

iments show that REBOM outperforms the low rank SVD
and DynaMMo for the recovery of successive blocks of miss-
ing values and cubic spline is off the scale. For blocks of
up to 100 removed values, the recovery error of REBOM
slightly increases with the number of removed values. For
blocks of more than 100 removed values, the error becomes
almost stable and is not anymore affected by the number
of removed values. In contrast, the recovery error of Dy-
naMMo and the low rank SVD increases with the length
of removed blocks. The small cumulative recovery error of
REBOM is due to the use of different correlated time se-
ries at every iteration of the algorithm. The experiment
of Figure 11(c) is executed on four humidity time series of
1000 values each. The first time series is complete, the sec-
ond time series contains a missing block in the time range
[0, 100], the third time series contains a missing block in the

time range [100, 200] and the fourth time series contains a
missing block in the time range [200, 300]. We execute the
same process performed in the experiment of Figure 11(b)
for the complete correlated humidity time series. The exper-
iment shows that, compared to the result of Figure 11(b),
the recovery accuracy of REBOM, DynaMMo and low rank
SVD gets worse when using multiple time series with miss-
ing values. The recovery accuracy of REBOM is still better
than the one of the other techniques.

In the experiment of Figure 12, we use different correla-
tions and number of input time series (n) to evaluate the
impact on the recovery MSE. We vary n and we compute
the MSE of REBOM for the same block containing 90 miss-
ing values. Figure 12(a) shows that in the case of time series
of high correlation (1 ≥ |ρ| > 0.7), the MSE of REBOM de-
creases only slightly as n grows. REBOM is able to restore
the missing block using a small number of highly correlated
input time series. This result is explained by the fact that,
for highly correlated time series, the starting top-k ranking
matrix is similar to the partial ranking matrix. Therefore,
the recovery of REBOM converges quickly. Figure 12(b)
shows that, using more time series of moderate correlation
(0.7 ≥ |ρ| > 0.4), the MSE of REBOM decreases linearly.
REBOM uses all the time series to perform the most ac-
curate recovery. Figure 12(c) illustrates that, the MSE in-
creases for input time series with low correlated time series
(0.4 ≥ |ρ| > 0).

In the experiment of Figure 13 we set n to 10 and we vary
the number of time series in the top-k ranking matrix. In
Figure 13(a) the minimum MSE is reached for k ∈ [2, 4].
In Figures 13(b) and 13(c), the minimum recovery MSE is
reached for a single value that is respectively k = 4 and
k = 2. Again, the recovery accuracy of REBOM decreases
for time series with low correlation, i.e., 0.4 ≥ |ρ| > 0, in
the top-k ranking matrix.

5.2.2 Invariance to Initialization Method
We run this experiment to test the impact of the initial-

ization method on the block recovery of REBOM. Figure 14
shows that with different initialization techniques, REBOM
needs more iterations to reach the minimum recovery er-
ror. Compared to our initialization method, a linear spline
initialization needs twice the number of iterations to reach
the minimum recovery error. Using a k Nearest Neighbor
initialization, REBOM needs 2.5 times more iterations than
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our initialization technique to reach the same recovery er-
ror. Thus, the accuracy of REBOM is independent from the
initialization method. However, our initialization initializa-
tion method provides a faster recovery of blocks of missing
values.
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5.2.3 Running Time Performance
The REBOM implementation uses the Golub/Kahan de-

composition algorithm [24] and has a run time complexity
of O(#iterations × (4n2k + 8nk2 + 9k3)), where n is the
length of the longest time series and k is the number of vec-
tors of Vtop-k. The complexity of building Vtop-k is the cost
of computing k times ρ between two time series and that is

O(kn2). Therefore, the total complexity of using REBOM is
O(#iterations× (5n2k+ 8nk2 + 9k3)). Figure 15 compares
the total running time of REBOM against DynaMMo that
has a complexity of O(#iterations × (kn3)). 3000 differ-
ent time series were created by extracting 1000 observations
from 15 different temperature time series.
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Figure 15 shows the average running time comparison per-
formed on the created time series for the recovery of blocks
containing 200 missing values. We set the value of k to
four, since we reached the optimal recovery accuracy with
this value. The result of this experiment shows that with
1500 time series, REBOM is faster than DynaMMo. With
a higher number of input time series, the performance of
REBOM starts to be slower than DynaMMo.



5.2.4 Recovery Using Linear Time Series
In the experiment of Figure 16, we show the impact of

using extremely irregular time series. We take as input a
humidity time series measured in spring 2001 from which
we remove a block for t ∈]120, 160[, a constant time series,
and a monotonic time series. The result of Figure 16(a)
shows that, since the correlation between the humidity time
series and the constant time series is undefined (all values are
equal), REBOM performs a bad recovery. In Figure 16(b),
the humidity time series and the monotonic time series are
correlated. Therefore, both time series are used to recover
the type of the missing block. The recovered block has an
increasing monotonic shape that looks similar to the mono-
tonic time series. In the experiment of Figure 16(b), both
the type and the shape of the missing block are accurately
recovered. The application of DynaMMo in the experiment
would set all the recovered values to 0.
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5.3 Experiments with Synthetic Regular Time
Series

This subsection describes a set of experiments conducted
with synthetic data. We compare the block recovery of RE-
BOM against DynaMMo.

5.3.1 Different Amplitudes
Figure 17 compares the recovery of the two techniques

for two regular time series having different amplitudes. The
first time series is a sin(t) wave and the second time series
is a sine wave multiplied by a negative scaling factor, i.e.,
-0.25*sin(t). For t ∈]70, 110[, we drop a block from sin(t)
and we recover it using REBOM and DynaMMo. Both tech-

niques are able to accurately recover the missing block. RE-
BOM uses the correlation between the two time series in
order to determine the shape of the missing block, i.e, a
peak. The amplitude of the missing peak is determined us-
ing the amplitude of the existing peaks from sin(t). The
two techniques perform an accurate recovery for any other
scaling factor of the second wave.

5.3.2 Shifted Peaks
Figure 18 shows two regular time series shifted in time,

i.e., sin(t) and cos(t). For t ∈]70, 110[, we drop a block
from sin(t) and we recover it using REBOM and DynaMMo.
REBOM is applied without initial alignment of the two time
series. As expected, DynaMMo outperforms REBOM in
recovering the missing block. DynaMMo is able to compute
the periodicity model and performs a good block recovery.
However, REBOM recovers a block that is only influenced
by the shape of the block in cos(t) for t ∈]70, 110[, i.e., a peak
followed by a valley. For shifted time series, REBOM is not
able to use the history of sin(t) in the recovery process. The
decomposition performed by our technique is sensitive to
the row position of values inside the Vtop-k matrix. In order
to overcome this problem, an initial alignment between the
two time series must be performed in a preprocessing step
(cf. Subsection 3.2).

6. CONCLUSION
This paper studies the recovery of blocks of missing val-

ues in irregular time series. We develop an iterative greedy
algorithm called REBOM, that uses at every iteration the
most correlated time series to the time series that contains
the missing blocks to reconstruct missing peaks and valleys.
Empirical studies on real hydrological data sets demonstrate
that our algorithm has the most accurate block recovery
among existing techniques. In future work, it is of interest
to examine the impact of using the recovered time series in
the recovery process instead of the original ones. It is also
foreseen to investigate the impact the global correlation on
the recovery accuracy together with the local correlation.
Another promising direction, is to progress the interaction
with the database and develop an SQL based recovery solu-
tion that reduces the number of I/O’s.
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Figure 18: Recovery of DynaMMO and REBOM for Shifted Time Series
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APPENDIX
A. FUNCTION COMPUTING MISSING

TIME STAMPS
We consider two relations:

• Observation (series id, ts, val) that stores the values of
observations, where series id is the id of time series, ts
and val are respectively the time stamp and value of
observations

• Series (id, granul) that stores information about time
series, where id is the id of time series and granul is
the granularity of time series, i.e., a time series has a
granularity of two if the observations occur every two
minutes.

Given these two relations, we define function
load mv indexes() that efficiently finds the indexes of
all missing time stamps. This function uses the granu-
larity of each time series in order to create a sequence of
incremental granularities, e.g., {2,4,6,. . . }. Then, the set
difference between the sequence of granularities and the
existing time stamps gives the indexes of missing time
stamps. load mv indexes() is executed as an SQL function
on the database server side.

FUNCTION load_mv_indexes (in_series_id IN

INTEGER) AS

ts_lst INTEGER;

gran INTEGER;

out_mv_indexes INTEGER;

BEGIN

SELECT granul

INTO gran

FROM Series

WHERE id=in_series_id;

SELECT MAX(ts)

INTO ts_lst

FROM Observation

WHERE series_id=in_series_id;

SELECT ts

BULK COLLECT INTO out_mv_indexes

FROM (

SELECT * FROM (

SELECT (level-1)*gran ts

FROM dual

CONNECT BY LEVEL <= (ts_lst+gran)/gran

MINUS

SELECT ts

FROM Observation

WHERE series_id=in_series_id

) ORDER BY 1

);

RETURN(out_mv_indexes);

END;

B. PROOF SKETCHES

B.1 Lemma 1
Proof. We prove that our algorithm is stepwise mono-

tonic. We perform this proof by showing that the correlation

matrix used is monotonic at every step of the algorithm. i)
From Def. 2 (SVD) we know that the singular values de-
fine the variances along the vectors. ii) From the definition
of the top-k ranking matrix we know that at every step of
SVD, we take the matrix with the biggest l-1 norm of corre-
lation. iii) From the definition of SV Dr() we know that only
the smallest variance will be nullified and the biggest ones
will be kept. Using i), ii) and iii) we can deduce that our
algorithm takes the biggest ||ρV

i
|| in order to compute the

biggest
∑

Vij∈W
i
var(Vij ) where Wi = SV Dr(Vi). There-

fore, the bigger the correlation is, the bigger sum of variances
we will obtain. This implies that the correlation used by the
algorithm is stepwise monotonic.

B.2 Lemma 2
Proof. We prove that our algorithm terminates after

finding the matrix that has the maximum sum of variances
along its vectors. We perform this proof by showing that the
iterative refinement of missing values satisfies the following
two properties:

• a) finite number of rankings: i) From Def. 2 (SVD)
we know that the variance values obtained by SVD
are ranked in increasing order in matrix Σ. ii) From
[25] we have that the singular values obtained by SVD
are monotonic. Using i) and ii) it follows that the
variance obtained by the decomposition is monotonic
and thus: W1j ∈ Wtop-k

1 ∧ W2j 6∈ Wtop-k
2 ⇒ W3j 6∈

Wtop-k
3 where Wtop-k

2 = SV Dr(Wtop-k
1 ) and Wtop-k

3 =

SV Dr(Wtop-k
2 ) . Therefore, the number of rankings

generated by our algorithm is finite and this property
is satisfied.

• b) ranking of a matrix determine the result of SV Dr():

Let Ri be the ranking of matrix Wi , R̃i be the par-
tial ranking of matrix Wi and Ri+1 be the ranking of
matrix Wi+1 where Wi+1 = SV Dr(Wi). i) We have
from Def. 3 that the correlation value determines the
ranking inside a matrix and then ||ρWi || = ||ρWi+1 || ⇒
Ri = Ri+1. ii) Since UMV algorithm (cf. Subsec-
tion 4.4) is updating only the missing values of the ma-

trix, then: R̃i determines ||ρWi+1 || and it follows that:

Ri = R̃i ⇒ ||ρWi || = ||ρWi+1 ||. Using i) and ii) we

deduce by transitivity that: Ri = R̃i ⇒ Ri = Ri+1 and
therefore, this property is satisfied.

Properties a) and b) hold for matrices whose vectors are
correlated. It follows the proof for this lemma.


