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Abstract 

We have developed an ontology based 

information extraction system where property 

and relation name occurrences are used to 

identify domain entities using patterns written in 

terms of dependency relations. Our key intuition 

is that, with respect to a given ontology, 

properties and relations are much easier to 

identify than entities, as the former generally 

occur in a limited number of terminological 

variations. Once identified, properties and 

relations provide cues to identify related entities. 

To achieve this, we have developed a pattern 

language which uses the grammatical relations of 

dependency parsing as well as linguistic features 

over text fragments. Ontology constructs such as 

classes, properties and relations are integral to 

pattern specification and provide a means for 

extracting entities and property values. The 

pattern matcher uses the patterns to construct an 

object graph from a text document. The object 

graph comprises entity, property and relation 

nodes. We have developed a global context 

aware algorithm to determine the ontological 

types of these nodes. Type of one node can help 

determine the types of other related nodes. We 

use the concept of entropy to measure the 

uncertainty associated with the type of a node. 

The type information is then propagated through 

the graph from low entropy nodes to high 

entropy nodes in an iterative fashion. We show 

how the global propagation algorithm does better 

than a local algorithm in determining the types of 

nodes. The main contributions of this paper are: 

an ontology aware pattern language; a global 

context aware type identification algorithm. 

1. Introduction 

We live in a networked world where information is 

growing at an explosive rate. The ability to draw useful 

insights from this information is going to be a key 

competitive advantage for enterprises. New business 

models are emerging that require highly dynamic 

configurations of supply chains. Effective management of 

such supply chains requires constant monitoring and 

analysis of information on suppliers, consumers, 

competitors, their operating environments and so on. This 

calls for a highly flexible and dynamic information 

architecture that allows us to collect and integrate 

information not only from within the enterprise but also 

from outside the enterprise such as online sources, social 

media sites and so on. The ability to dynamically discover 

and integrate relevant information sources is a key feature 

of this architecture. 

With this in mind, we have developed an information 

integration architecture (see fig. 1) where ontologies and 

ontology driven information extraction play a key role. 

We have an enterprise level ontology that provides a 

unified view of information at the enterprise level. This 

ontology is mapped to source level ontologies. A source 

level ontology provides a conceptual view of information 

available at the source. 

Integration of a new source into the framework 

involves specifying the relevant ontology and building an 

adaptor. The adaptor is responsible for extracting 

information and presenting it as an instance of the source 

ontology. Integration of structured sources is relatively 

easier and we will not discuss that in this paper. 

Integration of unstructured sources is more complex. First 

we have to identify the relevant ontology fragment (using 

ontology discovery techniques) and then we have to build 

a suitable information extraction component. Building an 
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information extraction component using traditional IE 

techniques is a fairly involved job as they require 

extensive customizations (training, mark-up, tweaking 

rules, and so on). This is not a viable approach in a 

dynamic discovery and integration scenario. We need a 

more nimble approach. We discuss one such approach 

where information extraction can be driven entirely by the 

ontology, without any domain specific customizations. 

This obviously has its trade-offs. The approach places a 

higher premium on precision than on recall, as reliability 

of information is much more critical in a dynamic 

integration scenario where there is minimal expert 

intervention. 

1.1. Ontology based Information Extraction 

Information Extraction (IE) is the task of extracting 

structured information from unstructured or semi-

structured sources. IE systems are supplied with the 

information of what is to be extracted in the form of 

output templates. Ontology based information extraction 

(OBIE) has recently emerged as a sub-field of IE where 

ontologies are used in the information extraction process. 

Output of the extraction process may also be represented 

in terms of an ontology. Ontology is defined as a formal 

and explicit specification of a shared conceptualization 

[11]. An ontology models a domain terminology in terms 

of concepts, properties and relations which can be used to 

specify information extraction targets. OBIE systems are 

broadly classified as ontology learning systems and 

ontology population systems. The task of an ontology 

learning OBIE system is to construct domain specific 

concepts and properties from unstructured text. Whereas, 

an ontology population OBIE system extracts instances of 

domain specific concepts and their property values for a 

given ontology. In this paper, our focus is on an ontology 

population system. 

1.2. Our Approach 

The key idea behind our approach is that it is much easier 

to identify property (and relation) name occurrences than 

entity name occurrences. The reason for this is that while 

an entity name may occur without an associated concept 

name reference, a property value rarely ever occurs 

without the associated property name reference. To 

illustrate, suppose we have an ontology fragment having 

one concept i.e. Country and two properties i.e. 

Country.population and Country.capital. Sentences such 

as the following are quite common: 
India has a population of 1.2 billion. 

Its capital is Delhi. 

While references to India frequently occur without the 

associated concept name reference (i.e. Country), it is 

difficult to imagine property values ‘1.2 billion’ and 

‘Delhi’ without the associated property name references 

(population and capital). Similarly it is difficult to 

imagine relation values without the associated relation 

name references. Also, while there can potentially be an 

infinite number of entity name occurrences, property 

(relation) names typically only occur in a limited number 

of terminological variations (e.g. population, populace). 

Thus in our approach we start by identifying occurrences 

of property and relation names and use them to identify 

entities. To achieve this, we have developed a pattern 

language which uses the grammatical relations (such as 

subject, verb, object, etc.) of dependency parsing to locate 

entities once the properties and relations are identified. 

The language also provides constructs to refer to ontology 

elements. These constructs serve two purposes: one, to 

specify constraints over ontology elements, and two to 

provide semantics for extracting information. 

The pattern matcher uses the patterns written in the 

pattern language to construct an object graph from the 

input text document. The nodes of the object graph 

represent entities, properties and relations found in the 

document. The next step is to determine their ontological 

types for which we have developed a global context aware 

algorithm. We use the concept of entropy to measure the 

uncertainty associated with the type of a node. The type 

information is then propagated through the graph from 

low entropy nodes to high entropy nodes in an iterative 

fashion. The intuition behind this approach is that a node 

with a higher degree of certainty about its type can help 

determine the types of related nodes that have a lower 

degree of certainty about their types. For example, 

consider an ontology with classes such as City, State and 

Country and object property1 located_in between: City 

and State; State and Country. Let’s say a text document 

contains a sentence: Gujarat is located in 

India. Here the relation occurrence located in is not 

enough to decide the type of Gujarat which can 

potentially be City or State. Similarly, the type of India 

can be State or Country. Let’s say the same document 

contains another sentence: India is a country in 

South Asia. This sentence provides the information 

that the type of India is Country. Now, if the information 

                                                           
1 We will use the terms relation and object property 

interchangeably (similarly, property and data type property). 

 

Figure 1: Enterprise Information Integration Framework 

 



from India (a node with higher certainty about its type) is 

propagated to Gujarat (node with lower certainty), we can 

decide that the type of Gujarat is State. 

The rest of the paper is organized as follows. Section 2 

describes some of the systems developed for OBIE in the 

past. Section 3 discusses how domain ontology can be 

enriched to facilitate IE. Section 4 discusses details of 

input text pre-processing. Section 5 discusses pattern 

language constructs and their semantics. We present the 

global context aware type identification algorithm in 

section 6. Section 7 discusses experimental results. 

Section 8 ends with concluding remarks. 

2. Related Work 

Ontology based information extraction has recently 

emerged as a sub-field of IE. Research in this field has 

mostly concentrated on finding instances of domain 

specific concepts and learning taxonomic relations. Not 

much work has been done on finding non-taxonomic 

relations.  

One of the first IE systems using ontology was the 

Embley’s system [8] based on extraction ontologies, 

where ontologies are extended with regular expression 

based linguistic rules for ontological classes and 

properties. Other notable systems based on linguistic rules 

include FASTUS [1], PANKOW [4,5], OntoX [19], 

Ontosyphon [13], KIM [15]. FASTUS uses a cascade of 

finite state automata to extract the events and entities of 

interest. To extract instances of domain specific concepts, 

PANKOW, Ontosyphon and KnowItAll [9] systems use a 

set of generic Hearst patterns. These patterns are 

instantiated with ontological constructs for extraction 

purposes. For example, <Concept>s such as <Instance> is 

one of the Hearst patterns [12]. Here, Concept can be 

instantiated with country class to extract country 

instances. PANKOW [4,5] system first finds all proper 

nouns in a document and then conducts web based 

searches for every combination of proper noun and 

ontological class for a set of Hearst patterns. It then uses 

the number of hits recorded for each class to determine 

the correct class label for the proper nouns. Ontosyphon 

system uses a similar approach where instead of focusing 

documents, it uses web based searches to find possible 

instances of classes in the ontology. In addition to the 

linguistic rules, systems such as KIM [15] and iDocument 

[3] use gazetteer lists for some classes to facilitate IE.  

As the constituency based parsers are typically closer 

to the syntactic structure than the semantics of the 

sentence, other parsing mechanisms such as dependency 

parsing, link grammar, etc. are used by different systems 

for relation extraction. Fundel et al. [10] have built RelEx 

system for BioInformatics domain. It uses dependency 

tree paths to extract interaction between genes and 

proteins. It uses gazetteer lists for extracting genes and 

protein names from natural language sentences. Similarly, 

Schutz and Buitelaar have developed RelExt system [17], 

where the goal is to extract relations between concepts for 

ontology learning. The authors motivate the use of verbs 

to express relation between classes that specify domain 

and range of some action or event. Similarly, Banko et al. 

[2] present open information extraction approach, where 

binary relationships between the entities can be obtained 

using verb-centric lexico-syntactic patterns.  

IE systems perform linguistic processing (e.g. 

tokenizing, POS tagging, chunking, etc.) over the input 

text before the actual task of extraction. The generated 

linguistic features then can be used as part of extraction 

rules. Various NLP tools such as GATE2, Stanford 

CoreNLP are used for this purpose. As we are building a 

new pattern language, it is worthwhile to compare it with 

JAPE3 component of GATE. JAPE provides finite state 

transduction over document annotations based on regular 

expressions. It is used by Saggion et al. [16] and KIM 

[15] to write regular expression for entity extraction. It is 

possible to write ontology aware JAPE transducers where 

classes in the ontology can be referred as part of regular 

expressions. However, The JAPE regular expressions are 

written in terms of annotations over tokens while the 

pattern language we have developed can be used to write 

regular expression over trees in additions to tokens. 

Second notable difference is that, one has to write explicit 

JAVA code using GATE ontology APIs to store extracted 

information into the ontology. In our case, we have 

extended the pattern language itself with a set of 

constructs that specify how to store the extracted 

information into the ontology. 

3. Ontology Enrichment for IE 

To facilitate IE, ontologies in [8,19] are enriched with 

annotations. On similar lines, we have added following 

annotations to the domain ontology (A domain expert 

assigns values for these annotations). 

 Description: The classes of ontology should be 

enriched with description annotations describing their 

meaning. This can be useful for assigning initial 

probability of an entity having a particular class type. 

For each class, the similarity between the words in 

the context of a given entity and the words in the 

class description is calculated. These similarity 

values are then normalized to get initial probability 

values. 

 Identification Weight: For each ontological class, 

relative identification weights are assigned for its 

data and object properties. These weights indicate the 

relative importance of a property or relation in 

identifying the class. For example, consider an 

                                                           
2 GATE – General Architecture for Text Engineering: java suite 

of tools to perform NLP tasks developed at University of 

Sheffield. (http://gate.ac.uk/) 

3 JAPE – Java Annotation Patterns Engine: regular expression 

language in GATE. 



Organization domain with two classes i.e. Employee, 

Department and three properties i.e. Employee.name, 

Department.name, Employee.reports_to. Here, the 

occurrence of reports_to in text can provide cues that 

the type of the associated entity is Employee. The 

same is not true for name. Hence, reports_to is given 

more identification weight than name. 

 Synonyms: While finding out property and relation 

mentions in the text, we also want to consider their 

synonyms. Hence, we provide an annotation to 

manually add synonyms for properties, relations and 

classes. The WordNet4 synonyms can also be added 

as part of this annotation. 

 Value Patterns: Stricter constraints on the values of 

data type property may be required in some cases. 

Hence, we enrich the ontology with value patterns 

annotation that specifies the regex patterns that the 

values of the data type property should match. For 

example, consider a Camera Review domain with a 

property Camera.megapixel. As observed in the 

Camera Review corpus, the regex for the value 

pattern can be: \d+(\.\d+)?(mp|megapixel). 

The pattern matcher uses above mentioned annotation 

for identification as well as classification of entities and 

their property values. 

4. Pre-Processing 

IE from unstructured text generally employs a series of 

pre-processing steps where linguistic features of the input 

text are collected. This section describes these pre-

processing steps and builds a data structure which will be 

used by the pattern matcher. 

4.1. Linguistic features using Stanford CoreNLP 

Stanford CoreNLP5 is an integrated suite of natural 

language processing tools for English. The input text is 

first tokenized and passed to sentence splitter which 

converts the input text document into a sequence of 

sentences. The sentences are then POS tagged using 

Maximum Entropy based tagger. It uses Penn Tree bank 

tag set for POS tagging. The sentences are then parsed 

using lexicalized PCFG parser and the constituent parses 

are stored in a data structure. Stanford has also developed 

rules for converting phrase structure trees to dependency 

trees. A dependency tree provides a representation for 

grammatical relations between words in a sentence. It 

uses the concepts of dependency parsing [14] such as 

relation, governor and dependent. Pronominal co-

reference resolution is also important for information 

                                                           
4 WordNet is a large lexical database of English developed at 

Princeton University. (http://wordnet.princeton.edu/) 

5 Stanford CoreNLP: a set of natural language analysis tools 

provided by Stanford University. 

(http://nlp.stanford.edu/software/corenlp.shtml) 

extraction. We use Stanford’s co-reference resolution 

system for this purpose. 

4.2. Induced Tree data structure 

As mentioned earlier, we use the grammatical 

relations of dependency parsing to locate entities once the 

property (relation) occurrences are found. We use 

Stanford dependencies for this purpose. Stanford 

dependencies (SD) [7] provide a representation of 

grammatical relations between words in a sentence. These 

relations are binary in nature and can be represented in the 

form of triplets: <name of relation, governor, dependent>. 

Few examples of the relations follow. 

 Nominal Subject (nsubj): It is a noun phrase 

(dependent) which is a syntactic subject of a clause 

(governor). 

 Direct Object (dobj): The direct object of a VP is the 

noun phrase (dependent) which is the (accusative) 

object of the verb (governor). 

SD representation contains a total of 53 grammatical 

relations [6]. The words of a sentence along with their 

grammatical relations form a tree called dependency tree 

where nodes represent the words and edges represent the 

grammatical relations (as an example see figure 2a). 

We need regular expressions to be matched over this 

tree structure as part of our pattern matching algorithm. 

Stanford provides Tree Regular Expression (TRegex): a 

utility for matching patterns in trees. The regular 

expressions in TRegex are written in terms of node labels 

and they do not consider edge labels. The regular 

expression patterns that we need to apply use edge labels 

in addition to node labels. To solve this problem, we 

created a tree data structure different but derived from 

 
Figure 2: Induced Tree data Structure for an Example 

Sentence 

 



dependency tree. This data structure contains nodes for 

words as well as grammatical relations as shown in figure 

2b. The grammatical relation nodes are internal nodes: 

used only for patterns, not for extraction. We will refer to 

this data structure as induced tree in the rest of the paper. 

It should be noted that Stanford provides a utility for 

pattern matching over dependency trees called Semgrex. 

However, it does not provide any means of integrating 

ontology information. 

Node description in a TRegex pattern is specified 

using literal or regular expression (specified between /). 

During pattern matching, it matches with node labels of 

the tree. Relations are specified between the node 

descriptions. All relations in a pattern are relative to the 

first node. Parenthesis can be used to group related nodes. 

For example, A < B < C mean A is the parent of B and C; 

A < (B < C) means A is a parent of B and B is a parent of 

C. Named nodes are used to bind a variable with the value 

matching the specified regex. For example, /NN.*/=Var is 

a named node and variable Var can be used to refer to the 

actual node label that matches with regex NN.*. 

4.3. Tree Transformations 

A set of tree transformations are applied to the 

induced tree before the actual pattern matching starts. 

Stanford provides TSurgeon - a tree transformation 

language. TSurgeon pattern consists of a single TRegex 

pattern P and a number of TSurgeon operations that are 

executed when P matches on the tree. These operations 

refer to the named nodes in the TRegex pattern for tree 

manipulations. Suppose we want to perform IE for 

GeoPolitical Entities domain having a Country class and 

borders_with relation. Figure 2b shows an induced tree 

for a sentence from this domain. A TRegex pattern to 

extract this relation is 

 
 

Where, Verb, Source and Target are TRegex variables. 

When this pattern is applied to the induced tree, it returns 

a match where the variable bindings for Verb, Source and 

Target are borders, India and Pakistan respectively. As 

Verb matches with the relation name, we can extract an 

RDF triple viz. (India, borders_with, Pakistan). If we 

observe the example sentence closely, we missed 

extracting one more RDF triple viz. (India, borders_with, 

China). To solve this problem, the induced tree needs to 

be transformed such that China-Node becomes the child 

of pobj-Node. Stanford dependencies handle and 

conjunctions the following way: one of the conjuncts is 

selected as head (Pakistan here); the rest of the conjuncts 

become children of the head conjunct with conjunction 

(conj) relation. Let's denote the parent of the head 

conjunct as H (pobj here). First we need to apply a 

TRegex pattern to find and conjunction and then apply 

TSurgeon operations such that all the conjuncts become 

children of H. Figure 2c shows the induced tree after the 

application of this tree transformation (see table 1: 

ConjunctionAndTransformation). As we can see, the 

missed RDF triple can be extracted now, as it matches 

with the TRegex pattern in 1. Table 1 lists a set of tree 

transformations we have used.   

5. Pattern Language 

We have developed a pattern language for processing 

the induced tree and extracting information. Due to space 

constraints, we present only a subset of the grammar of 

this language (see text box 1 below). 

A pattern consists of a premise and a sequence of 

Table 1: Tree Transformation Patterns 

TreeTransformation TRegex Pattern - condition TSurgeon Operations Remarks 

ConjunctionAnd /.*/=head < (cc=vCC < 

and=vAnd)  < (conj=vConj < 

/.*/=brother) 

move brother $- head; 

delete vConj 

All the conjuncts in and conjunction becomes 

siblings; children of Parent of head conjunct. 

(India borders with Pakistan and China) 

CompoundNoun /.*/=head < (nn=vNN < 

/.*/=compound) 

accumulate compound head 

compound;                         

excise vNN compound 

Words in a compound noun are considered as 

single unit e.g. India borders with Sri Lanka; Sri 

Lanka is stored as a single induced tree node. 

ModifierList /.*/=head < (/.*mod.*/=vMod    

< /.*/=modifier) 

accumulate modifier head 

modifier; excise vMod modifier 

All modifiers are stored along with an induced 

tree node of word that they modify. 

CompoundNumber /.*/=head < (number=vNumber  

< /.*/=compound) 

prune vNumber All the words in compound number are treated as 

a single node e.g. I lost $ 3.2 billion. Here, $ 3.2 

billion is treated as a single node of number type. 

 

patterns:- pattern* <EOF> 

pattern:- patternID "{" premise "}" 

    "->" "{" actions "}" 

patternID:- (DIGIT)+  

premise:- (treePath ";")+    

 (ontologyConstraint ";")+ 

  ("{" boolean_expression  

   "}" ";")? 

treePath:-element| element"--" treePath 

ontologyConstraint:- 

 ontologyElement = variable 

actions:- ("{" action + "}")+ 

action :- LHS = RHS ";" 

LHS:- ontologyActionElement | variable 

RHS:-variable |identifier

 |action_function 

1. Grammar for Pattern Language 



actions. A premise is a set of conditions that should hold 

true for the actions to be executed. It consists of, 

 Tree paths: A tree path specifies a sequence of 

elements. These elements are matched against node 

labels in the induced tree. An element can be a 

variable, identifier or a regular expression. A 

variable can be bound or unbound. While an unbound 

variable is bound with a value during pattern 

matching, a bound variable specifies a constraint: a 

matching tree node label must have the same value. 

 Ontology Constraints: An ontology constraint is of 

the form ‛<lhs> = <rhs>’. It specifies that the value 

bound to a variable on the right hand side (rhs) must 

match with an ontology element on the left hand side 

(lhs). An ontology element can be a class, property, 

relation or an instance. Looking at the example 

sentence in figure 2, one would like to check whether 

the variable Verb gets a binding that matches with 

some ontology relation or its synonyms (which 

happens to be borders_with in the example). If so, we 

have a possible relation extraction with 

corresponding source and target entities. We can 

specify this constraint using 

 

This way, our pattern language provides language 

constructs to explicitly refer to various ontological 

elements. 

 Boolean Expression: We support two boolean 

operators: And, Or. The basic operand in a boolean 

expression is a Boolean function. We support 

boolean functions over ontological constructs as well 

as linguistic features. For example, to check whether 

the type of the value bound to a variable matches 

with a pre-defined data type in the ontology, we have 

a function – isTypeMatching. 

The actions component in the pattern specifies a 

sequence of actions to be performed over variable 

bindings from the premise. The basic constituent used in 

an action is assignment. An assignment is of the form 

‛<lhs> = <rhs>’. The left hand side (lhs) of an assignment 

can either be a variable or an ontology element 

(ontologyActionElement in the grammar). We have a set 

of predefined keywords to refer to ontology elements with 

the following semantics, 

 relation (property): value of the right hand side (rhs) 

expression must be interpreted as an object (data) 

property in the ontology. 

 class: value of the rhs expression must be interpreted 

as a class (concept) in the ontology. 

 source (target): value of the rhs expression must be 

interpreted as a source (target) entity of the property 

or relation occurring in the action. 

 entity: value of the rhs expression must be 

interpreted as an entity (class instance) in the 

document. 

 previous_entity: value of the rhs expression must be 

interpreted as an entity matched in the previous 

sentence in the document.  

When lhs is a variable, it specifies that the values of 

both lhs and rhs expressions refer to the same underlying 

domain entity. This essentially says that lhs and rhs are to 

be treated as aliases of the same domain entity. 

The rhs expression of an assignment can be, 

 Variable: bound value of the variable is used in the 

action assignment. 

 Literal: literal value specified as an identifier is used 

in the action assignment. 

 Action Function: We may want to manipulate the 

bound value of a variable before it can be used for 

extraction. To do this, we provide action functions. 

The value returned by executing the action function is 

used as an action assignment. For example, if we 

have an instance of country and want to assign value 

for the official name of the country, we can use a 

function – concat(Republic, of, <Country>). During 

execution, if variable Country is bound to India, we 

can get the official name Republic of India using this 

function.  

As mentioned, an action is specified by a group of 

assignments. For example, a relation extraction with 

source and target entities are specified by, 
 

Similarly there are actions to specify extraction of 

property with source entity and target value; extraction of 

class instance pair; extraction of an equivalent name 

(name aliases) for an entity (India and Republic of India). 

5.1. Example Patterns 

We will go through an example to see how one specifies 

patterns in this language. Consider GeoPolitical Entities 

domain with a Country Class and coastline property. Let’s 

look at a sample sentence (Table2 – Pattern 1): 
India has a coastline of 7517 km. 

In the dependency tree of this sentence, has is the root 

verb; India is a subject and coastline is a direct 

object of has; 7517 km is the prepositional object of 

preposition-of which modifies the direct object. So, paths 

that a pattern should look for in the induced tree are, 
 

 

In addition, the direct object should match with some data 

type property in the ontology. An ontology constraint to 

specify this would be, 

 

The premise built using paths and an ontology constraint 

above can match any data type property in the ontology 

hence it matches with coastline. The actions part for 

this pattern should perform property extraction and can be 

specified as, 
 



If we look closely at the dependencies exhibited in this 

example sentence, they are generic and can happen across 

sentences from different domains. As long as a sentence 

has a direct object matching with a data type property 

from a domain specific ontology, the entity and property 

value extraction is possible. In that sense the pattern 

described above is generic and can be used across 

different domains. We have compiled a set of such 

generic, domain independent patterns. There are a total of 

18 patterns out of which we list only 3 patterns in Table 2 

due to space constraints. First two patterns in the table are 

based on property extraction and relation extraction 

respectively. The last pattern shows one of the class 

identification patterns. 

6. A Greedy Algorithm for Type 

Identification 

We will first describe the ontology we have used for our 

experiments. We will be referring to it in the rest of the 

paper. We have downloaded FAO (Food and Agriculture 

Organization of the United Nations) Geopolitical 

ontology and modified it for our experiments. Figure 3 

shows a section of this ontology.  

As described in section 4 and 5, the text document is 

converted to a sequence of induced trees. The pattern 

matching algorithm then applies a set of patterns on these 

trees and generates a graph structure. We will refer to this 

graph structure as object graph in the rest of the paper. 

The object graph contains three types of nodes viz. 

 Entity Node: represents an instance of a domain 

entity found in the document. 

 Property Node: links an entity node with its property 

values. 

 Relation Node: links two entity nodes that represent 

domain and range of some ontological object 

property. 

These nodes just represent the entities, properties and 

relations identified in the document; their ontological 

types still have to be determined. The possible ontological 

types for the three types of nodes are: classes for entity 

nodes; data properties for property nodes; object 

properties for relation nodes. As we also account for co-

references, the same entity node is used if the entity is 

referred in different parts of a document. 

Table 3 gives a simple algorithm to determine the 

ontological types for the nodes in the object graph. We 

will refer to this algorithm as LocalIE in the rest of the 

paper. The first step in the algorithm applies a set of class-

identification patterns to determine types for the entity 

nodes. We have used the Hearst patterns [10] for class-

identification. The type of an entity which matches these 

patterns can directly be inferred; one does not have to rely 

on property or relation occurrence for its type 

identification. For example, consider a sentence: India 

is a country in South Asia. The type for the 

entity India can directly be determined using the pattern: 

<Instance> is a <Concept>. Pattern 3 in table 2 captures 

this pattern in terms of dependency relations. For the 

entity nodes which do not match these patterns and for the 

property and relation nodes, the algorithm assigns equal 

scores for their ontological types. 
 

Figure 3: GeoPolitical Entities Ontology fragment 

 

Table 2: Generic Domain Independent patterns - Examples 
India has a coastline of 7515 km.  property extraction 

1 { 

<HAS=has> -- dobj -- <Property> -- prep -- of -- pobj -- <Value>; property = <Property>; 

<HAS> -- nsubj -- <Entity>; {isRoot(<HAS>) && isTypeMatching(<Value>, Number)}; 

} -> { 

 source=<Entity>; target=<Value>; property=<Property> } 

Ratan Tata launched Tata Nano in 2010. relation extraction 

2 { 

<Verb> -- nsubj -- <Subject>; <Verb> -- dobj -- <Object>; 

relation = <Verb>; {isRoot(<Verb>)}; 

} -> { 

 source = <Subject>; target = <Object>; relation = <Verb>; } 

India is a country in South Asia. Class Identification 

3 { 

<Concept> -- nsubj -- <Instance>; <Concept> -- cop; 

class = <Concept>; 

} -> { 

 class = <Concept>; entity = <Instance>; } 

 



The types for the property and relation nodes are 

found by matching them with ontological data and object 

properties respectively (step 2). Here, the edit-distance 

based similarity scores are calculated between the words 

of a property (relation) node and an ontology data (object) 

property. The synonyms of a data (object) property are 

also taken into account. The data (object) property with 

the highest similarity score is then chosen as the correct 

type for the property (relation) node (formula 2). To 

determine the type of an entity node, the scores found for 

the neighboring property and relation nodes as well as 

their identification weights are used (formula 3). This 

algorithm uses only the local context to find the correct 

type of an entity node. 

More informed decision for the type of an entity node 

can be made if the global context is also taken into 

account. Let us first motivate the need of such a global 

context aware algorithm. Consider the ontology in figure 

3. It contains an object property located_in between State 

and Country; City and State; District and City. Whenever 

this relation occurs in the text document, there is an 

ambiguity about the types of the source and target entity 

nodes as the same name is used to refer to three different 

object properties in the ontology. Consider a text fragment 

from this domain, 
Surat is located in Gujarat. It is 

recognized for its textile and diamond 

businesses. Vadodara is also located in 

Gujarat. It is the third most populated 

city with a population of almost 1.6 

million. 

The underlined phrases in this fragment are the instances 

of domain entities and their properties (relations). As we 

can see in the first sentence, the relation located in cannot 

provide correct type information for the related entities 

i.e. Surat and Gujarat, as they may refer to any of the four 

classes viz. District, City, State or Country. However from 

the last sentence, we can easily infer that the type of the 

entity Vadodara is City. If we use the type information of 

Vadodara along with the located in relation in the third 

sentence, we can infer that the type of Gujarat is State. 

Now, if we use the type information of Gujarat in 

sentence 1, we can infer that the type of Surat is City. The 

local algorithm we described in table 3 neither takes 

global context into account nor performs this kind of 

information propagation. 

6.1. Entropy - Information Theory 

We use the concept of entropy from information theory 

[18] to quantify the uncertainty associated with the type of 

a node. Entropy is a measure of uncertainty associated 

with a random variable and defined in terms of its 

probability distribution. Let’s denote  as a discrete 

random variable having a set of possible values 

 and a probability mass function  (such 

that ). The entropy of 

 is then defined as, 

 (5)  

For example, consider two experiments: tossing a fair 

coin ( ); tossing a two-

headed coin ( ). The 

outcome of the former experiment is most uncertain and 

thus has highest entropy, while the later has a definite 

Table 3: An Algorithm for IE using Local Context 

LocalIE – An Algorithm for IE using local context 

1. Apply class-identification patterns (e.g. Table 2- 

Pattern 3) to get the type information for the entity 

nodes in object graph. 

2. Use formula 2 to find the types of property nodes 

(Similarly find the types of relation nodes). 

3. For each entity node (whose type is not determined 

in step 1): 

a. Find the score for each ontology class using 

formula 3. As shown, this formula uses the local 

context (related property and relation nodes) along 

with their identification weights. 

b. Assign class with the highest score as the 

correct type for the entity node (formula 4). 

4. Convert the object graph to RDF triples. 

 

where, 

= ith data property in the ontology; 

 = words in the data property  (including its 
synonyms); 

 = words occurring in the property node . 

(2)  

 

 

 

where, 

 is an entity node in focus having a property node  and a relation 

node . 

 = identification weight of property  for class ; 

 = identification weight of relation  for class ; 

; 

= ith class in the ontology; = jth property in the ontology;  

= kth relation in the ontology. 

 = score for an ontological type  given node . 

(3)  

 (4)  

 



outcome and the entropy is 0. The entropy of a random 

variable is proportional to the uncertainty of the outcome.  

In our context, we use the concept of entropy to 

measure the uncertainty associated with the type of a 

node. For example, for an entity node the possible types 

are the classes in the ontology. Let  

denote the classes. If we do not have any information 

about the type of an entity node E (highest uncertainty 

and entropy), we assign uniform score for the classes i.e. 

. In our algorithm, we use the 

local formula in 2 to assign initial scores for the class 

types of the entity nodes. 

6.2. An Entropy based Greedy Algorithm 

To find the correct type of an entity node, the LocalIE 

algorithm just uses the neighbouring property and relation 

nodes. If the information about the correct type of some 

entity node in the object graph is available, it should be 

used for classification of other related entity nodes in the 

graph. Table 4 describes a global context aware algorithm 

which uses related entity nodes in addition to the property 

and relation nodes for classification. We will refer to this 

algorithm as GlobalIE in the rest of the paper. 

GlobalIE uses edit-distance based similarity score for 

classifying property and relation nodes (same as LocalIE). 

The main difference is the use of related entity nodes to 

classify current entity in focus. The entity nodes in the 

object graph are ordered according to their entropy values. 

The rationale behind this ordering is: the nodes with high 

information about their correct type can help determine 

the types of other related nodes having low information 

about their types. 

In GlobalIE, once the types for the property and 

relation nodes are determined, the entity nodes are added 

to a min-priority queue (step 3). The nodes in this queue 

are ordered in the increasing order of their entropy values. 

To calculate the entropy value correctly, the scores for the 

class types of an entity node  must satisfy two 

conditions:  and 

. To achieve the same, we 

normalize these scores in the following way 

  

During each pass of the while loop in step 4, an entity 

node with the least entropy value is removed from the 

queue and assigned its correct type using formula 4. The 

information contained in this node is then propagated to 

other nodes through the graph structure. In particular, the 

type information is propagated through the graph from 

low entropy nodes to high entropy nodes (see function: 

propogate_score). As we do not want to update the score 

of a node which is already assigned its type, we maintain 

a list of visited nodes (visited_nodes list in step 3). The 

time complexity of GlobalIE is in the order of the size of 

the object graph. Let’s now go through an example to 

demonstrate how the information is propagated between 

the nodes and how the entropy based ordering is 

beneficial for entity classification. 

6.3. An Example demonstrating Global IE 

Consider again the GeoPolitical entities domain (fig. 3) 

and the example text fragment mentioned earlier in this 

section. We used a set of generic patterns as described in 

section 5 for information extraction and applied the 

pattern matcher over this fragment. Figure 4 shows the 

Table 4: An Entropy based Greedy Algorithm for IE 

GlobalIE – An Entropy based Greedy Algorithm for IE 

1. Execute step 1 to step 3a of the LocalIE algorithm to 

determine the types of property and relation nodes, and to 

get initial scores for entity nodes.  

2. Normalize the class-score for each entity node  such 

that, 

  

Calculate entropy values of all entity nodes. 

3. Create a min-priority queue ; add all entity nodes in . 

visited_nodes =  

4. While(  != empty) { 

 = remove a node from  with the least entropy value;  

Assign correct type for node E using formula 4. 

Add E to visited_nodes; 

propagate_score(visited_nodes, E); 

} 

5. Convert the object graph to RDF triples. 

propagate_score(visited_nodes, entity_node E) { 

     For(each relation  where  is the source entity) { 

            = target entity for relation ; 

           propagetIfLow(E, X); 

     } 

     For(each relation  where  is the target entity) { 

            = source entity for relation ; 

           propagateIfLow(E, Y); 

     } 

} 

propagateIfLow(entity_node E, entity_node A) { 

     If  
) { 

               For each class , 

                    Update  using formula 6. 

               Normalize the class-score for node ; 

               Re-calculate the entropy of node  ; 

               propagate_score(visited_nodes, A); 

     } 
} 

 

 

where, D and E are source and target of relation node B 

(6)  

 



generated object graph. Let’s now go through the 

execution of GlobalIE. Table 5 shows the scores of class 

types of the entity nodes and their entropy values at 

various points in time during the execution of the 

algorithm. Initially, the scores are equal for all entity 

nodes (except Vadodara, as it is directly assigned its 

correct type by the class-identification pattern) as shown 

in row 1. The scores of the property and relation nodes 

(along with their identification weights) are then used to 

update the scores of the entity nodes (step 1). Row 2 

shows these scores after normalization (step 2). During 

the first pass of the while loop in step 4, Vadodara is 

selected and removed from the priority queue, as it has the 

least entropy value. The scores of the class types of 

Vadodara are then propagated through the graph 

structure. The object graph has a relation node located_in 

for which Vadodara is a source entity and Gujarat is a 

target entity. Hence, the scores for the class types of 

Gujarat are updated using the scores of Vadodara (row 

4). In the second pass, Gujarat is selected and removed 

from the priority queue as it has the least entropy value 

now. The class type of this node is then determined using 

formula 4. Now, this node is connected to two entity 

nodes in the object graph i.e. Vadodara and Surat. As the 

entity node Vadodara is already visited earlier, it is 

ignored and the scores for the class types of Surat are 

updated using the scores of Gujarat (row 5). In the third 

pass, we are left with only one entity node i.e. Surat. 

Hence, it is selected and removed from the priority queue 

(row 6) and its class type is determined using formula 4. 

The priority queue is empty now and the algorithm 

terminates. The class types assigned by this algorithm for 

the entity nodes are City, State and City for Vadodara, 

Gujarat and Surat respectively. As we can see, the 

algorithm finds the correct values for the class types of 

the entity nodes. When we executed LocalIE algorithm on 

the same text fragment, it incorrectly assigned class types 

District and Country for the entity nodes Surat and 

Gujarat respectively (The class type having highest score 

in table 5 - row 2 is selected as the correct type of the 

entity node in LocalIE). 

7. Experiments 

7.1. Digital Camera Reviews domain 

Yildiz et al. [19] have developed an ontology driven IEs – 

OntoX. It focuses mainly on identifying property 

mentions and their values. The ontology contains one 

class i.e. camera having five data properties. It is 

enhanced with a set of keywords for each data type 

property. The system uses regular expressions to find the 

instances of pre-defined XML data types in the text 

document and looks for keywords in their vicinity. The 

property whose keyword is closest to the data type 

instance and having the same XML data type is selected. 

For example, consider a sentence: Powershot A95 is a 5.0 

megapixel camera. Here, 5.0 is XSD:float and megapixel 

is a property having keyword megapixel and data type 

XSD:float. Hence, 5.0 is a value of megapixel property. 

The dataset consists of 138 digital camera reviews. The 

focus of this experiment is to show how the patterns based 

on grammatical relations are useful for relating entities 

with their property values. 

It should be noted here that the task performed by 

OntoX system is to just find property values. In our case, 

we also find entities and associate them with their 

property values. We have used the set of generic patterns 

described in section 5.1 for IE over camera reviews 

dataset. Table 6 shows the precision and recall values for 

some of the camera properties. The precision of our 

system is better than the OntoX system while the recall 

values are very low. The reason is in our approach we 

only identify those properties for which entities are 

identified. Thus, we miss some of the properties. Whereas 

OntoX focuses only on property values, so its recall is 

higher. It is interesting to note that we get very high 

precision values which suggest that our approach is 

conservative. The system may not be able to extract all 

the entities and property values but whatever is extracted 

 
Figure 4: Object graph for text fragment 

 

Table 5: The scores of class types of the entity nodes in the example text fragment. The first column specifies 

the algorithm step; the rest of the columns specify the scores of class types of the entity nodes using the 

format: (Territory, State, District, Country, City) 

Step Gujarat Vadodara Surat 

Init.  (0.2, 0.2, 0.2, 0.2, 0.2) – 1.61 (0, 0, 0, 0, 1) - 0 (0.2, 0.2, 0.2, 0.2, 0.2) – 1.61 

2 (0.05, 0.25, 0.05, 0.41, 0.25) – 1.35 (0, 0, 0, 0, 1) - 0 (0.08, 0.24, 0.37, 0.08, 0.24) – 1.44 

While loop of step 4   

pass 1 (0.03, 0.48, 0.03, 0.28, 0.17) – 1. 24 (0,0,0,0,1) - 0 (0.08, 0.24, 0.37, 0.08, 0.24) – 1.44 

pass 2 (0.03, 0.48, 0.03, 0.28, 0.17) – 1. 24 (0,0,0,0,1) - 0 (0.05, 0.17, 0.26, 0.05, 0.47) – 1.31 

pass 3 (0.03, 0.48, 0.03, 0.28, 0.17) – 1. 24 (0,0,0,0,1) - 0 (0.05, 0.17, 0.26, 0.05, 0.47) – 1.31 

 



is extracted with high accuracy. If we look at the recall 

values closely, the recall for the property model_name is 

high. It then decreases for megapixel and very low for 

display_size. If we observe any file from the corpus, the 

model_name property is same as the name of an extracted 

entity. The megapixel property occurs very near to the 

entity occurrence (mostly in the same sentence). The 

display_size property is mentioned very far from the 

entity (mostly in the next paragraph), thus decreasing the 

probability of associating the property with the entity. The 

induced tree paths used in our patterns do not consider 

word relations across sentences. We rely on co-reference 

resolution when the entity and property mentions are in 

different sentences. We have also provided a language 

construct called previous_entity using which a pattern can 

refer to the entities found in earlier sentences. Despite 

this, it is not easy to relate an entity with its property if 

they are widely separated in the text. 

7.2. GeoPolitical Entities domain 

We have downloaded 36 Wikipedia pages of country 

profile, converted them to text and manually tagged them 

for correct entity and property values. As part of this 

experiment, we have considered the data and object 

properties of only the country class (see fig. 3). We used 

the generic patterns described in section 5.1 for IE. Our 

experiments helped us identify these patterns and during 

the course of the experiments our initial set went through 

several additions and modifications. We randomly 

selected 10% of corpora (4 pages) to analyze whether the 

generic patterns we have are good enough for extraction, 

especially we looked at the entity, property and relation 

occurrences and how they are related by the dependency 

relations. At the end of this exercise, we had to add 3 new 

patterns and modify 4 existing patterns. In total we used 

14 patterns and performed the experiments. Table 7 lists 

the precision and recall values for classes, properties and 

relations. The overall precision is 0.82 and recall is 0.54 

which again strengthens our argument that the system is 

conservative and makes fewer mistakes (high precision). 

The reason for higher precision is that unlike in traditional 

approaches where identification is primarily text pattern 

based (which can throw up spurious matches), we also 

consider an entity’s property and relationship context 

which reduces spurious matches. However, this can have 

an adverse impact on recall as some of the valid matches 

might also be turned down on account of not having 

matching property and relation contexts. As explained 

earlier, this behaviour of higher precision and lower recall 

is fine, as reliability is a key concern in our enterprise 

information integration framework.  

We would like to point out here that the extra patterns 

that we had to add were due to the peculiar ways in which 

some properties were written in the text corpora. The 

generic patterns we have collected will work best when 

the sentences in the text document are property formed 

and follow the English grammar, such as in published 

articles. The text documents in different genres may have 

different styles of writing English sentences (publications 

vs. blog posts) and it’s important to capture them in the 

form of dependency relations. For this reason, we may 

have to analyze different genres of text documents and 

augment the list of generic patterns. 

7.3. Analysis of our OBIE system 

The key constituents of our system are: a pattern language 

and a global type identification algorithm. A relevant 

question in this context is what varieties of patterns can be 

expressed in our pattern language. The constituents of the 

language (dependency relations, boolean functions, 

ontology constraints) provide the necessary power to 

write various kinds of patterns mentioned in the IE 

literature. A lot of systems in the literature have used 

Hearst pattern [12] and lexico-syntactic patterns [2] for 

extraction. We could successfully convert these patterns 

into equivalent patterns in our pattern language. 

Once the object graph is generated by the pattern 

matcher, the type of the object graph nodes has to be 

identified. The accuracy of type identification can 

improve if we go beyond the local context and make use 

of all the relevant information available in the document. 

That’s what our global propagation algorithm aims to 

achieve. The direction of propagation is determined by 

entropy ordering where information flows from nodes of 

high certainty to nodes of low certainty. In many cases 

mere presence of properties and relations is sufficient to 

uniquely identify an entity’s type. This is possible when 

the names of these properties and relations  are unique in 

the ontology. However duplicate names are quite common 

in real-life ontologies. For example, the located_in object 

property given in section 6 relates three different class 

pairs. Similarly, reports_to structure in an organization 

ontology; part_of structure in a product ontology, and so 

Table 6: Comparision of Our System with OntoX on 

Camera Review domain 

Property 
Our System OntoX 

Prec. Rec. Prec. Rec. 

Megapixel 0.93 0.39 0.52 0.51 

Display Size 0.88 0.2 0.80 0.82 

Model Name 0.76 0.64 0.79 0.79 

Table 7: Results on GeoPolitical Entities Domain 

Concept/Property 

/Relation 
Precision Recall 

Country 0.85 0.69 

borders_with 0.72 0.39 

located_in 0.86 0.78 

official_name 1.0 0.74 

population 0.92 0.57 

coastline 0.57 0.80 

area 1.0 0.60 

Total 0.82 0.54 

 



on. A global propagation algorithm can make a big 

difference in such cases. 

8. Conclusion and Future Work 

We presented an information extraction approach where 

we first identify property and relation name occurrences 

in the text and then use patterns written in terms of 

dependency relations to identify related entities. To 

achieve the same, we have developed an ontology aware 

pattern matcher which uses these patterns to generate an 

object graph from a text document. We have also 

developed a global context aware algorithm to identify the 

ontological types of the object graph nodes. The algorithm 

is greedy and it uses the entropy ordering to decide 

information propagation between the nodes where type 

information is passed from low entropy nodes to high 

entropy nodes. The main contributions of this paper are: 

an ontology aware pattern language; a global context 

aware type identification algorithm. 

We have experimented with GeoPolitical entities 

domain with a small set of text documents from 

Wikipedia. The result looks promising. An immediate 

(also important) task at hand is to test our approach on 

larger and varied set of corpora to check its applicability 

in general. We also want to integrate our system into the 

larger enterprise information integration framework to 

check its utility.  
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