
Context Aware Ontology based Information Extraction

Sapan Shah and Sreedhar Reddy

Tata Research Development and Design Center,

Tata Consultancy Services Limited,

Pune 411013

India

{sapan.hs, sreedhar.reddy}@tcs.com

Abstract

We have developed an ontology based

information extraction system where property

and relation name occurrences are used to

identify domain entities using patterns written in

terms of dependency relations. Our key intuition

is that, with respect to a given ontology,

properties and relations are much easier to

identify than entities, as the former generally

occur in a limited number of terminological

variations. Once identified, properties and

relations provide cues to identify related entities.

To achieve this, we have developed a pattern

language which uses the grammatical relations of

dependency parsing as well as linguistic features

over text fragments. Ontology constructs such as

classes, properties and relations are integral to

pattern specification and provide a means for

extracting entities and property values. The

pattern matcher uses the patterns to construct an

object graph from a text document. The object

graph comprises entity, property and relation

nodes. We have developed a global context

aware algorithm to determine the ontological

types of these nodes. Type of one node can help

determine the types of other related nodes. We

use the concept of entropy to measure the

uncertainty associated with the type of a node.

The type information is then propagated through

the graph from low entropy nodes to high

entropy nodes in an iterative fashion. We show

how the global propagation algorithm does better

than a local algorithm in determining the types of

nodes. The main contributions of this paper are:

an ontology aware pattern language; a global

context aware type identification algorithm.

1. Introduction

We live in a networked world where information is

growing at an explosive rate. The ability to draw useful

insights from this information is going to be a key

competitive advantage for enterprises. New business

models are emerging that require highly dynamic

configurations of supply chains. Effective management of

such supply chains requires constant monitoring and

analysis of information on suppliers, consumers,

competitors, their operating environments and so on. This

calls for a highly flexible and dynamic information

architecture that allows us to collect and integrate

information not only from within the enterprise but also

from outside the enterprise such as online sources, social

media sites and so on. The ability to dynamically discover

and integrate relevant information sources is a key feature

of this architecture.

With this in mind, we have developed an information

integration architecture (see fig. 1) where ontologies and

ontology driven information extraction play a key role.

We have an enterprise level ontology that provides a

unified view of information at the enterprise level. This

ontology is mapped to source level ontologies. A source

level ontology provides a conceptual view of information

available at the source.

Integration of a new source into the framework

involves specifying the relevant ontology and building an

adaptor. The adaptor is responsible for extracting

information and presenting it as an instance of the source

ontology. Integration of structured sources is relatively

easier and we will not discuss that in this paper.

Integration of unstructured sources is more complex. First

we have to identify the relevant ontology fragment (using

ontology discovery techniques) and then we have to build

a suitable information extraction component. Building an

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy

otherwise, to republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.
The 18th International Conference on Management of Data (COMAD),

14th-16th Dec, 2012 at Pune, India.

Copyright ©2012 Computer Society of India (CSI).

information extraction component using traditional IE

techniques is a fairly involved job as they require

extensive customizations (training, mark-up, tweaking

rules, and so on). This is not a viable approach in a

dynamic discovery and integration scenario. We need a

more nimble approach. We discuss one such approach

where information extraction can be driven entirely by the

ontology, without any domain specific customizations.

This obviously has its trade-offs. The approach places a

higher premium on precision than on recall, as reliability

of information is much more critical in a dynamic

integration scenario where there is minimal expert

intervention.

1.1. Ontology based Information Extraction

Information Extraction (IE) is the task of extracting

structured information from unstructured or semi-

structured sources. IE systems are supplied with the

information of what is to be extracted in the form of

output templates. Ontology based information extraction

(OBIE) has recently emerged as a sub-field of IE where

ontologies are used in the information extraction process.

Output of the extraction process may also be represented

in terms of an ontology. Ontology is defined as a formal

and explicit specification of a shared conceptualization

[11]. An ontology models a domain terminology in terms

of concepts, properties and relations which can be used to

specify information extraction targets. OBIE systems are

broadly classified as ontology learning systems and

ontology population systems. The task of an ontology

learning OBIE system is to construct domain specific

concepts and properties from unstructured text. Whereas,

an ontology population OBIE system extracts instances of

domain specific concepts and their property values for a

given ontology. In this paper, our focus is on an ontology

population system.

1.2. Our Approach

The key idea behind our approach is that it is much easier

to identify property (and relation) name occurrences than

entity name occurrences. The reason for this is that while

an entity name may occur without an associated concept

name reference, a property value rarely ever occurs

without the associated property name reference. To

illustrate, suppose we have an ontology fragment having

one concept i.e. Country and two properties i.e.

Country.population and Country.capital. Sentences such

as the following are quite common:
India has a population of 1.2 billion.

Its capital is Delhi.

While references to India frequently occur without the

associated concept name reference (i.e. Country), it is

difficult to imagine property values ‘1.2 billion’ and

‘Delhi’ without the associated property name references

(population and capital). Similarly it is difficult to

imagine relation values without the associated relation

name references. Also, while there can potentially be an

infinite number of entity name occurrences, property

(relation) names typically only occur in a limited number

of terminological variations (e.g. population, populace).

Thus in our approach we start by identifying occurrences

of property and relation names and use them to identify

entities. To achieve this, we have developed a pattern

language which uses the grammatical relations (such as

subject, verb, object, etc.) of dependency parsing to locate

entities once the properties and relations are identified.

The language also provides constructs to refer to ontology

elements. These constructs serve two purposes: one, to

specify constraints over ontology elements, and two to

provide semantics for extracting information.

The pattern matcher uses the patterns written in the

pattern language to construct an object graph from the

input text document. The nodes of the object graph

represent entities, properties and relations found in the

document. The next step is to determine their ontological

types for which we have developed a global context aware

algorithm. We use the concept of entropy to measure the

uncertainty associated with the type of a node. The type

information is then propagated through the graph from

low entropy nodes to high entropy nodes in an iterative

fashion. The intuition behind this approach is that a node

with a higher degree of certainty about its type can help

determine the types of related nodes that have a lower

degree of certainty about their types. For example,

consider an ontology with classes such as City, State and

Country and object property1 located_in between: City

and State; State and Country. Let’s say a text document

contains a sentence: Gujarat is located in

India. Here the relation occurrence located in is not

enough to decide the type of Gujarat which can

potentially be City or State. Similarly, the type of India

can be State or Country. Let’s say the same document

contains another sentence: India is a country in

South Asia. This sentence provides the information

that the type of India is Country. Now, if the information

1 We will use the terms relation and object property

interchangeably (similarly, property and data type property).

Figure 1: Enterprise Information Integration Framework

from India (a node with higher certainty about its type) is

propagated to Gujarat (node with lower certainty), we can

decide that the type of Gujarat is State.

The rest of the paper is organized as follows. Section 2

describes some of the systems developed for OBIE in the

past. Section 3 discusses how domain ontology can be

enriched to facilitate IE. Section 4 discusses details of

input text pre-processing. Section 5 discusses pattern

language constructs and their semantics. We present the

global context aware type identification algorithm in

section 6. Section 7 discusses experimental results.

Section 8 ends with concluding remarks.

2. Related Work

Ontology based information extraction has recently

emerged as a sub-field of IE. Research in this field has

mostly concentrated on finding instances of domain

specific concepts and learning taxonomic relations. Not

much work has been done on finding non-taxonomic

relations.

One of the first IE systems using ontology was the

Embley’s system [8] based on extraction ontologies,

where ontologies are extended with regular expression

based linguistic rules for ontological classes and

properties. Other notable systems based on linguistic rules

include FASTUS [1], PANKOW [4,5], OntoX [19],

Ontosyphon [13], KIM [15]. FASTUS uses a cascade of

finite state automata to extract the events and entities of

interest. To extract instances of domain specific concepts,

PANKOW, Ontosyphon and KnowItAll [9] systems use a

set of generic Hearst patterns. These patterns are

instantiated with ontological constructs for extraction

purposes. For example, <Concept>s such as <Instance> is

one of the Hearst patterns [12]. Here, Concept can be

instantiated with country class to extract country

instances. PANKOW [4,5] system first finds all proper

nouns in a document and then conducts web based

searches for every combination of proper noun and

ontological class for a set of Hearst patterns. It then uses

the number of hits recorded for each class to determine

the correct class label for the proper nouns. Ontosyphon

system uses a similar approach where instead of focusing

documents, it uses web based searches to find possible

instances of classes in the ontology. In addition to the

linguistic rules, systems such as KIM [15] and iDocument

[3] use gazetteer lists for some classes to facilitate IE.

As the constituency based parsers are typically closer

to the syntactic structure than the semantics of the

sentence, other parsing mechanisms such as dependency

parsing, link grammar, etc. are used by different systems

for relation extraction. Fundel et al. [10] have built RelEx

system for BioInformatics domain. It uses dependency

tree paths to extract interaction between genes and

proteins. It uses gazetteer lists for extracting genes and

protein names from natural language sentences. Similarly,

Schutz and Buitelaar have developed RelExt system [17],

where the goal is to extract relations between concepts for

ontology learning. The authors motivate the use of verbs

to express relation between classes that specify domain

and range of some action or event. Similarly, Banko et al.

[2] present open information extraction approach, where

binary relationships between the entities can be obtained

using verb-centric lexico-syntactic patterns.

IE systems perform linguistic processing (e.g.

tokenizing, POS tagging, chunking, etc.) over the input

text before the actual task of extraction. The generated

linguistic features then can be used as part of extraction

rules. Various NLP tools such as GATE2, Stanford

CoreNLP are used for this purpose. As we are building a

new pattern language, it is worthwhile to compare it with

JAPE3 component of GATE. JAPE provides finite state

transduction over document annotations based on regular

expressions. It is used by Saggion et al. [16] and KIM

[15] to write regular expression for entity extraction. It is

possible to write ontology aware JAPE transducers where

classes in the ontology can be referred as part of regular

expressions. However, The JAPE regular expressions are

written in terms of annotations over tokens while the

pattern language we have developed can be used to write

regular expression over trees in additions to tokens.

Second notable difference is that, one has to write explicit

JAVA code using GATE ontology APIs to store extracted

information into the ontology. In our case, we have

extended the pattern language itself with a set of

constructs that specify how to store the extracted

information into the ontology.

3. Ontology Enrichment for IE

To facilitate IE, ontologies in [8,19] are enriched with

annotations. On similar lines, we have added following

annotations to the domain ontology (A domain expert

assigns values for these annotations).

 Description: The classes of ontology should be

enriched with description annotations describing their

meaning. This can be useful for assigning initial

probability of an entity having a particular class type.

For each class, the similarity between the words in

the context of a given entity and the words in the

class description is calculated. These similarity

values are then normalized to get initial probability

values.

 Identification Weight: For each ontological class,

relative identification weights are assigned for its

data and object properties. These weights indicate the

relative importance of a property or relation in

identifying the class. For example, consider an

2 GATE – General Architecture for Text Engineering: java suite

of tools to perform NLP tasks developed at University of

Sheffield. (http://gate.ac.uk/)

3 JAPE – Java Annotation Patterns Engine: regular expression

language in GATE.

Organization domain with two classes i.e. Employee,

Department and three properties i.e. Employee.name,

Department.name, Employee.reports_to. Here, the

occurrence of reports_to in text can provide cues that

the type of the associated entity is Employee. The

same is not true for name. Hence, reports_to is given

more identification weight than name.

 Synonyms: While finding out property and relation

mentions in the text, we also want to consider their

synonyms. Hence, we provide an annotation to

manually add synonyms for properties, relations and

classes. The WordNet4 synonyms can also be added

as part of this annotation.

 Value Patterns: Stricter constraints on the values of

data type property may be required in some cases.

Hence, we enrich the ontology with value patterns

annotation that specifies the regex patterns that the

values of the data type property should match. For

example, consider a Camera Review domain with a

property Camera.megapixel. As observed in the

Camera Review corpus, the regex for the value

pattern can be: \d+(\.\d+)?(mp|megapixel).

The pattern matcher uses above mentioned annotation

for identification as well as classification of entities and

their property values.

4. Pre-Processing

IE from unstructured text generally employs a series of

pre-processing steps where linguistic features of the input

text are collected. This section describes these pre-

processing steps and builds a data structure which will be

used by the pattern matcher.

4.1. Linguistic features using Stanford CoreNLP

Stanford CoreNLP5 is an integrated suite of natural

language processing tools for English. The input text is

first tokenized and passed to sentence splitter which

converts the input text document into a sequence of

sentences. The sentences are then POS tagged using

Maximum Entropy based tagger. It uses Penn Tree bank

tag set for POS tagging. The sentences are then parsed

using lexicalized PCFG parser and the constituent parses

are stored in a data structure. Stanford has also developed

rules for converting phrase structure trees to dependency

trees. A dependency tree provides a representation for

grammatical relations between words in a sentence. It

uses the concepts of dependency parsing [14] such as

relation, governor and dependent. Pronominal co-

reference resolution is also important for information

4 WordNet is a large lexical database of English developed at

Princeton University. (http://wordnet.princeton.edu/)

5 Stanford CoreNLP: a set of natural language analysis tools

provided by Stanford University.

(http://nlp.stanford.edu/software/corenlp.shtml)

extraction. We use Stanford’s co-reference resolution

system for this purpose.

4.2. Induced Tree data structure

As mentioned earlier, we use the grammatical

relations of dependency parsing to locate entities once the

property (relation) occurrences are found. We use

Stanford dependencies for this purpose. Stanford

dependencies (SD) [7] provide a representation of

grammatical relations between words in a sentence. These

relations are binary in nature and can be represented in the

form of triplets: <name of relation, governor, dependent>.

Few examples of the relations follow.

 Nominal Subject (nsubj): It is a noun phrase

(dependent) which is a syntactic subject of a clause

(governor).

 Direct Object (dobj): The direct object of a VP is the

noun phrase (dependent) which is the (accusative)

object of the verb (governor).

SD representation contains a total of 53 grammatical

relations [6]. The words of a sentence along with their

grammatical relations form a tree called dependency tree

where nodes represent the words and edges represent the

grammatical relations (as an example see figure 2a).

We need regular expressions to be matched over this

tree structure as part of our pattern matching algorithm.

Stanford provides Tree Regular Expression (TRegex): a

utility for matching patterns in trees. The regular

expressions in TRegex are written in terms of node labels

and they do not consider edge labels. The regular

expression patterns that we need to apply use edge labels

in addition to node labels. To solve this problem, we

created a tree data structure different but derived from

Figure 2: Induced Tree data Structure for an Example

Sentence

dependency tree. This data structure contains nodes for

words as well as grammatical relations as shown in figure

2b. The grammatical relation nodes are internal nodes:

used only for patterns, not for extraction. We will refer to

this data structure as induced tree in the rest of the paper.

It should be noted that Stanford provides a utility for

pattern matching over dependency trees called Semgrex.

However, it does not provide any means of integrating

ontology information.

Node description in a TRegex pattern is specified

using literal or regular expression (specified between /).

During pattern matching, it matches with node labels of

the tree. Relations are specified between the node

descriptions. All relations in a pattern are relative to the

first node. Parenthesis can be used to group related nodes.

For example, A < B < C mean A is the parent of B and C;

A < (B < C) means A is a parent of B and B is a parent of

C. Named nodes are used to bind a variable with the value

matching the specified regex. For example, /NN.*/=Var is

a named node and variable Var can be used to refer to the

actual node label that matches with regex NN.*.

4.3. Tree Transformations

A set of tree transformations are applied to the

induced tree before the actual pattern matching starts.

Stanford provides TSurgeon - a tree transformation

language. TSurgeon pattern consists of a single TRegex

pattern P and a number of TSurgeon operations that are

executed when P matches on the tree. These operations

refer to the named nodes in the TRegex pattern for tree

manipulations. Suppose we want to perform IE for

GeoPolitical Entities domain having a Country class and

borders_with relation. Figure 2b shows an induced tree

for a sentence from this domain. A TRegex pattern to

extract this relation is

Where, Verb, Source and Target are TRegex variables.

When this pattern is applied to the induced tree, it returns

a match where the variable bindings for Verb, Source and

Target are borders, India and Pakistan respectively. As

Verb matches with the relation name, we can extract an

RDF triple viz. (India, borders_with, Pakistan). If we

observe the example sentence closely, we missed

extracting one more RDF triple viz. (India, borders_with,

China). To solve this problem, the induced tree needs to

be transformed such that China-Node becomes the child

of pobj-Node. Stanford dependencies handle and

conjunctions the following way: one of the conjuncts is

selected as head (Pakistan here); the rest of the conjuncts

become children of the head conjunct with conjunction

(conj) relation. Let's denote the parent of the head

conjunct as H (pobj here). First we need to apply a

TRegex pattern to find and conjunction and then apply

TSurgeon operations such that all the conjuncts become

children of H. Figure 2c shows the induced tree after the

application of this tree transformation (see table 1:

ConjunctionAndTransformation). As we can see, the

missed RDF triple can be extracted now, as it matches

with the TRegex pattern in 1. Table 1 lists a set of tree

transformations we have used.

5. Pattern Language

We have developed a pattern language for processing

the induced tree and extracting information. Due to space

constraints, we present only a subset of the grammar of

this language (see text box 1 below).

A pattern consists of a premise and a sequence of

Table 1: Tree Transformation Patterns

TreeTransformation TRegex Pattern - condition TSurgeon Operations Remarks

ConjunctionAnd /.*/=head < (cc=vCC <

and=vAnd) < (conj=vConj <

/.*/=brother)

move brother $- head;

delete vConj

All the conjuncts in and conjunction becomes

siblings; children of Parent of head conjunct.

(India borders with Pakistan and China)

CompoundNoun /.*/=head < (nn=vNN <

/.*/=compound)

accumulate compound head

compound;

excise vNN compound

Words in a compound noun are considered as

single unit e.g. India borders with Sri Lanka; Sri

Lanka is stored as a single induced tree node.

ModifierList /.*/=head < (/.*mod.*/=vMod

< /.*/=modifier)

accumulate modifier head

modifier; excise vMod modifier

All modifiers are stored along with an induced

tree node of word that they modify.

CompoundNumber /.*/=head < (number=vNumber

< /.*/=compound)

prune vNumber All the words in compound number are treated as

a single node e.g. I lost $ 3.2 billion. Here, $ 3.2

billion is treated as a single node of number type.

patterns:- pattern* <EOF>

pattern:- patternID "{" premise "}"

 "->" "{" actions "}"

patternID:- (DIGIT)+

premise:- (treePath ";")+

 (ontologyConstraint ";")+

 ("{" boolean_expression

 "}" ";")?

treePath:-element| element"--" treePath

ontologyConstraint:-

 ontologyElement = variable

actions:- ("{" action + "}")+

action :- LHS = RHS ";"

LHS:- ontologyActionElement | variable

RHS:-variable |identifier

 |action_function

1. Grammar for Pattern Language

actions. A premise is a set of conditions that should hold

true for the actions to be executed. It consists of,

 Tree paths: A tree path specifies a sequence of

elements. These elements are matched against node

labels in the induced tree. An element can be a

variable, identifier or a regular expression. A

variable can be bound or unbound. While an unbound

variable is bound with a value during pattern

matching, a bound variable specifies a constraint: a

matching tree node label must have the same value.

 Ontology Constraints: An ontology constraint is of

the form ‛<lhs> = <rhs>’. It specifies that the value

bound to a variable on the right hand side (rhs) must

match with an ontology element on the left hand side

(lhs). An ontology element can be a class, property,

relation or an instance. Looking at the example

sentence in figure 2, one would like to check whether

the variable Verb gets a binding that matches with

some ontology relation or its synonyms (which

happens to be borders_with in the example). If so, we

have a possible relation extraction with

corresponding source and target entities. We can

specify this constraint using

This way, our pattern language provides language

constructs to explicitly refer to various ontological

elements.

 Boolean Expression: We support two boolean

operators: And, Or. The basic operand in a boolean

expression is a Boolean function. We support

boolean functions over ontological constructs as well

as linguistic features. For example, to check whether

the type of the value bound to a variable matches

with a pre-defined data type in the ontology, we have

a function – isTypeMatching.

The actions component in the pattern specifies a

sequence of actions to be performed over variable

bindings from the premise. The basic constituent used in

an action is assignment. An assignment is of the form

‛<lhs> = <rhs>’. The left hand side (lhs) of an assignment

can either be a variable or an ontology element

(ontologyActionElement in the grammar). We have a set

of predefined keywords to refer to ontology elements with

the following semantics,

 relation (property): value of the right hand side (rhs)

expression must be interpreted as an object (data)

property in the ontology.

 class: value of the rhs expression must be interpreted

as a class (concept) in the ontology.

 source (target): value of the rhs expression must be

interpreted as a source (target) entity of the property

or relation occurring in the action.

 entity: value of the rhs expression must be

interpreted as an entity (class instance) in the

document.

 previous_entity: value of the rhs expression must be

interpreted as an entity matched in the previous

sentence in the document.

When lhs is a variable, it specifies that the values of

both lhs and rhs expressions refer to the same underlying

domain entity. This essentially says that lhs and rhs are to

be treated as aliases of the same domain entity.

The rhs expression of an assignment can be,

 Variable: bound value of the variable is used in the

action assignment.

 Literal: literal value specified as an identifier is used

in the action assignment.

 Action Function: We may want to manipulate the

bound value of a variable before it can be used for

extraction. To do this, we provide action functions.

The value returned by executing the action function is

used as an action assignment. For example, if we

have an instance of country and want to assign value

for the official name of the country, we can use a

function – concat(Republic, of, <Country>). During

execution, if variable Country is bound to India, we

can get the official name Republic of India using this

function.

As mentioned, an action is specified by a group of

assignments. For example, a relation extraction with

source and target entities are specified by,

Similarly there are actions to specify extraction of

property with source entity and target value; extraction of

class instance pair; extraction of an equivalent name

(name aliases) for an entity (India and Republic of India).

5.1. Example Patterns

We will go through an example to see how one specifies

patterns in this language. Consider GeoPolitical Entities

domain with a Country Class and coastline property. Let’s

look at a sample sentence (Table2 – Pattern 1):
India has a coastline of 7517 km.

In the dependency tree of this sentence, has is the root

verb; India is a subject and coastline is a direct

object of has; 7517 km is the prepositional object of

preposition-of which modifies the direct object. So, paths

that a pattern should look for in the induced tree are,

In addition, the direct object should match with some data

type property in the ontology. An ontology constraint to

specify this would be,

The premise built using paths and an ontology constraint

above can match any data type property in the ontology

hence it matches with coastline. The actions part for

this pattern should perform property extraction and can be

specified as,

If we look closely at the dependencies exhibited in this

example sentence, they are generic and can happen across

sentences from different domains. As long as a sentence

has a direct object matching with a data type property

from a domain specific ontology, the entity and property

value extraction is possible. In that sense the pattern

described above is generic and can be used across

different domains. We have compiled a set of such

generic, domain independent patterns. There are a total of

18 patterns out of which we list only 3 patterns in Table 2

due to space constraints. First two patterns in the table are

based on property extraction and relation extraction

respectively. The last pattern shows one of the class

identification patterns.

6. A Greedy Algorithm for Type

Identification

We will first describe the ontology we have used for our

experiments. We will be referring to it in the rest of the

paper. We have downloaded FAO (Food and Agriculture

Organization of the United Nations) Geopolitical

ontology and modified it for our experiments. Figure 3

shows a section of this ontology.

As described in section 4 and 5, the text document is

converted to a sequence of induced trees. The pattern

matching algorithm then applies a set of patterns on these

trees and generates a graph structure. We will refer to this

graph structure as object graph in the rest of the paper.

The object graph contains three types of nodes viz.

 Entity Node: represents an instance of a domain

entity found in the document.

 Property Node: links an entity node with its property

values.

 Relation Node: links two entity nodes that represent

domain and range of some ontological object

property.

These nodes just represent the entities, properties and

relations identified in the document; their ontological

types still have to be determined. The possible ontological

types for the three types of nodes are: classes for entity

nodes; data properties for property nodes; object

properties for relation nodes. As we also account for co-

references, the same entity node is used if the entity is

referred in different parts of a document.

Table 3 gives a simple algorithm to determine the

ontological types for the nodes in the object graph. We

will refer to this algorithm as LocalIE in the rest of the

paper. The first step in the algorithm applies a set of class-

identification patterns to determine types for the entity

nodes. We have used the Hearst patterns [10] for class-

identification. The type of an entity which matches these

patterns can directly be inferred; one does not have to rely

on property or relation occurrence for its type

identification. For example, consider a sentence: India

is a country in South Asia. The type for the

entity India can directly be determined using the pattern:

<Instance> is a <Concept>. Pattern 3 in table 2 captures

this pattern in terms of dependency relations. For the

entity nodes which do not match these patterns and for the

property and relation nodes, the algorithm assigns equal

scores for their ontological types.

Figure 3: GeoPolitical Entities Ontology fragment

Table 2: Generic Domain Independent patterns - Examples
India has a coastline of 7515 km. property extraction

1 {

<HAS=has> -- dobj -- <Property> -- prep -- of -- pobj -- <Value>; property = <Property>;

<HAS> -- nsubj -- <Entity>; {isRoot(<HAS>) && isTypeMatching(<Value>, Number)};

} -> {

 source=<Entity>; target=<Value>; property=<Property> }

Ratan Tata launched Tata Nano in 2010. relation extraction

2 {

<Verb> -- nsubj -- <Subject>; <Verb> -- dobj -- <Object>;

relation = <Verb>; {isRoot(<Verb>)};

} -> {

 source = <Subject>; target = <Object>; relation = <Verb>; }

India is a country in South Asia. Class Identification

3 {

<Concept> -- nsubj -- <Instance>; <Concept> -- cop;

class = <Concept>;

} -> {

 class = <Concept>; entity = <Instance>; }

The types for the property and relation nodes are

found by matching them with ontological data and object

properties respectively (step 2). Here, the edit-distance

based similarity scores are calculated between the words

of a property (relation) node and an ontology data (object)

property. The synonyms of a data (object) property are

also taken into account. The data (object) property with

the highest similarity score is then chosen as the correct

type for the property (relation) node (formula 2). To

determine the type of an entity node, the scores found for

the neighboring property and relation nodes as well as

their identification weights are used (formula 3). This

algorithm uses only the local context to find the correct

type of an entity node.

More informed decision for the type of an entity node

can be made if the global context is also taken into

account. Let us first motivate the need of such a global

context aware algorithm. Consider the ontology in figure

3. It contains an object property located_in between State

and Country; City and State; District and City. Whenever

this relation occurs in the text document, there is an

ambiguity about the types of the source and target entity

nodes as the same name is used to refer to three different

object properties in the ontology. Consider a text fragment

from this domain,
Surat is located in Gujarat. It is

recognized for its textile and diamond

businesses. Vadodara is also located in

Gujarat. It is the third most populated

city with a population of almost 1.6

million.

The underlined phrases in this fragment are the instances

of domain entities and their properties (relations). As we

can see in the first sentence, the relation located in cannot

provide correct type information for the related entities

i.e. Surat and Gujarat, as they may refer to any of the four

classes viz. District, City, State or Country. However from

the last sentence, we can easily infer that the type of the

entity Vadodara is City. If we use the type information of

Vadodara along with the located in relation in the third

sentence, we can infer that the type of Gujarat is State.

Now, if we use the type information of Gujarat in

sentence 1, we can infer that the type of Surat is City. The

local algorithm we described in table 3 neither takes

global context into account nor performs this kind of

information propagation.

6.1. Entropy - Information Theory

We use the concept of entropy from information theory

[18] to quantify the uncertainty associated with the type of

a node. Entropy is a measure of uncertainty associated

with a random variable and defined in terms of its

probability distribution. Let’s denote as a discrete

random variable having a set of possible values

 and a probability mass function (such

that). The entropy of

 is then defined as,

 (5)

For example, consider two experiments: tossing a fair

coin (); tossing a two-

headed coin (). The

outcome of the former experiment is most uncertain and

thus has highest entropy, while the later has a definite

Table 3: An Algorithm for IE using Local Context

LocalIE – An Algorithm for IE using local context

1. Apply class-identification patterns (e.g. Table 2-

Pattern 3) to get the type information for the entity

nodes in object graph.

2. Use formula 2 to find the types of property nodes

(Similarly find the types of relation nodes).

3. For each entity node (whose type is not determined

in step 1):

a. Find the score for each ontology class using

formula 3. As shown, this formula uses the local

context (related property and relation nodes) along

with their identification weights.

b. Assign class with the highest score as the

correct type for the entity node (formula 4).

4. Convert the object graph to RDF triples.

where,

= ith data property in the ontology;

 = words in the data property (including its
synonyms);

 = words occurring in the property node .

(2)

where,

 is an entity node in focus having a property node and a relation

node .

 = identification weight of property for class ;

 = identification weight of relation for class ;

;

= ith class in the ontology; = jth property in the ontology;

= kth relation in the ontology.

 = score for an ontological type given node .

(3)

 (4)

outcome and the entropy is 0. The entropy of a random

variable is proportional to the uncertainty of the outcome.

In our context, we use the concept of entropy to

measure the uncertainty associated with the type of a

node. For example, for an entity node the possible types

are the classes in the ontology. Let

denote the classes. If we do not have any information

about the type of an entity node E (highest uncertainty

and entropy), we assign uniform score for the classes i.e.

. In our algorithm, we use the

local formula in 2 to assign initial scores for the class

types of the entity nodes.

6.2. An Entropy based Greedy Algorithm

To find the correct type of an entity node, the LocalIE

algorithm just uses the neighbouring property and relation

nodes. If the information about the correct type of some

entity node in the object graph is available, it should be

used for classification of other related entity nodes in the

graph. Table 4 describes a global context aware algorithm

which uses related entity nodes in addition to the property

and relation nodes for classification. We will refer to this

algorithm as GlobalIE in the rest of the paper.

GlobalIE uses edit-distance based similarity score for

classifying property and relation nodes (same as LocalIE).

The main difference is the use of related entity nodes to

classify current entity in focus. The entity nodes in the

object graph are ordered according to their entropy values.

The rationale behind this ordering is: the nodes with high

information about their correct type can help determine

the types of other related nodes having low information

about their types.

In GlobalIE, once the types for the property and

relation nodes are determined, the entity nodes are added

to a min-priority queue (step 3). The nodes in this queue

are ordered in the increasing order of their entropy values.

To calculate the entropy value correctly, the scores for the

class types of an entity node must satisfy two

conditions: and

. To achieve the same, we

normalize these scores in the following way

During each pass of the while loop in step 4, an entity

node with the least entropy value is removed from the

queue and assigned its correct type using formula 4. The

information contained in this node is then propagated to

other nodes through the graph structure. In particular, the

type information is propagated through the graph from

low entropy nodes to high entropy nodes (see function:

propogate_score). As we do not want to update the score

of a node which is already assigned its type, we maintain

a list of visited nodes (visited_nodes list in step 3). The

time complexity of GlobalIE is in the order of the size of

the object graph. Let’s now go through an example to

demonstrate how the information is propagated between

the nodes and how the entropy based ordering is

beneficial for entity classification.

6.3. An Example demonstrating Global IE

Consider again the GeoPolitical entities domain (fig. 3)

and the example text fragment mentioned earlier in this

section. We used a set of generic patterns as described in

section 5 for information extraction and applied the

pattern matcher over this fragment. Figure 4 shows the

Table 4: An Entropy based Greedy Algorithm for IE

GlobalIE – An Entropy based Greedy Algorithm for IE

1. Execute step 1 to step 3a of the LocalIE algorithm to

determine the types of property and relation nodes, and to

get initial scores for entity nodes.

2. Normalize the class-score for each entity node such

that,

Calculate entropy values of all entity nodes.

3. Create a min-priority queue ; add all entity nodes in .

visited_nodes =

4. While(!= empty) {

 = remove a node from with the least entropy value;

Assign correct type for node E using formula 4.

Add E to visited_nodes;

propagate_score(visited_nodes, E);

}

5. Convert the object graph to RDF triples.

propagate_score(visited_nodes, entity_node E) {

 For(each relation where is the source entity) {

 = target entity for relation ;

 propagetIfLow(E, X);

 }

 For(each relation where is the target entity) {

 = source entity for relation ;

 propagateIfLow(E, Y);

 }

}

propagateIfLow(entity_node E, entity_node A) {

 If
) {

 For each class ,

 Update using formula 6.

 Normalize the class-score for node ;

 Re-calculate the entropy of node ;

 propagate_score(visited_nodes, A);

 }
}

where, D and E are source and target of relation node B

(6)

generated object graph. Let’s now go through the

execution of GlobalIE. Table 5 shows the scores of class

types of the entity nodes and their entropy values at

various points in time during the execution of the

algorithm. Initially, the scores are equal for all entity

nodes (except Vadodara, as it is directly assigned its

correct type by the class-identification pattern) as shown

in row 1. The scores of the property and relation nodes

(along with their identification weights) are then used to

update the scores of the entity nodes (step 1). Row 2

shows these scores after normalization (step 2). During

the first pass of the while loop in step 4, Vadodara is

selected and removed from the priority queue, as it has the

least entropy value. The scores of the class types of

Vadodara are then propagated through the graph

structure. The object graph has a relation node located_in

for which Vadodara is a source entity and Gujarat is a

target entity. Hence, the scores for the class types of

Gujarat are updated using the scores of Vadodara (row

4). In the second pass, Gujarat is selected and removed

from the priority queue as it has the least entropy value

now. The class type of this node is then determined using

formula 4. Now, this node is connected to two entity

nodes in the object graph i.e. Vadodara and Surat. As the

entity node Vadodara is already visited earlier, it is

ignored and the scores for the class types of Surat are

updated using the scores of Gujarat (row 5). In the third

pass, we are left with only one entity node i.e. Surat.

Hence, it is selected and removed from the priority queue

(row 6) and its class type is determined using formula 4.

The priority queue is empty now and the algorithm

terminates. The class types assigned by this algorithm for

the entity nodes are City, State and City for Vadodara,

Gujarat and Surat respectively. As we can see, the

algorithm finds the correct values for the class types of

the entity nodes. When we executed LocalIE algorithm on

the same text fragment, it incorrectly assigned class types

District and Country for the entity nodes Surat and

Gujarat respectively (The class type having highest score

in table 5 - row 2 is selected as the correct type of the

entity node in LocalIE).

7. Experiments

7.1. Digital Camera Reviews domain

Yildiz et al. [19] have developed an ontology driven IEs –

OntoX. It focuses mainly on identifying property

mentions and their values. The ontology contains one

class i.e. camera having five data properties. It is

enhanced with a set of keywords for each data type

property. The system uses regular expressions to find the

instances of pre-defined XML data types in the text

document and looks for keywords in their vicinity. The

property whose keyword is closest to the data type

instance and having the same XML data type is selected.

For example, consider a sentence: Powershot A95 is a 5.0

megapixel camera. Here, 5.0 is XSD:float and megapixel

is a property having keyword megapixel and data type

XSD:float. Hence, 5.0 is a value of megapixel property.

The dataset consists of 138 digital camera reviews. The

focus of this experiment is to show how the patterns based

on grammatical relations are useful for relating entities

with their property values.

It should be noted here that the task performed by

OntoX system is to just find property values. In our case,

we also find entities and associate them with their

property values. We have used the set of generic patterns

described in section 5.1 for IE over camera reviews

dataset. Table 6 shows the precision and recall values for

some of the camera properties. The precision of our

system is better than the OntoX system while the recall

values are very low. The reason is in our approach we

only identify those properties for which entities are

identified. Thus, we miss some of the properties. Whereas

OntoX focuses only on property values, so its recall is

higher. It is interesting to note that we get very high

precision values which suggest that our approach is

conservative. The system may not be able to extract all

the entities and property values but whatever is extracted

Figure 4: Object graph for text fragment

Table 5: The scores of class types of the entity nodes in the example text fragment. The first column specifies

the algorithm step; the rest of the columns specify the scores of class types of the entity nodes using the

format: (Territory, State, District, Country, City)

Step Gujarat Vadodara Surat

Init. (0.2, 0.2, 0.2, 0.2, 0.2) – 1.61 (0, 0, 0, 0, 1) - 0 (0.2, 0.2, 0.2, 0.2, 0.2) – 1.61

2 (0.05, 0.25, 0.05, 0.41, 0.25) – 1.35 (0, 0, 0, 0, 1) - 0 (0.08, 0.24, 0.37, 0.08, 0.24) – 1.44

While loop of step 4

pass 1 (0.03, 0.48, 0.03, 0.28, 0.17) – 1. 24 (0,0,0,0,1) - 0 (0.08, 0.24, 0.37, 0.08, 0.24) – 1.44

pass 2 (0.03, 0.48, 0.03, 0.28, 0.17) – 1. 24 (0,0,0,0,1) - 0 (0.05, 0.17, 0.26, 0.05, 0.47) – 1.31

pass 3 (0.03, 0.48, 0.03, 0.28, 0.17) – 1. 24 (0,0,0,0,1) - 0 (0.05, 0.17, 0.26, 0.05, 0.47) – 1.31

is extracted with high accuracy. If we look at the recall

values closely, the recall for the property model_name is

high. It then decreases for megapixel and very low for

display_size. If we observe any file from the corpus, the

model_name property is same as the name of an extracted

entity. The megapixel property occurs very near to the

entity occurrence (mostly in the same sentence). The

display_size property is mentioned very far from the

entity (mostly in the next paragraph), thus decreasing the

probability of associating the property with the entity. The

induced tree paths used in our patterns do not consider

word relations across sentences. We rely on co-reference

resolution when the entity and property mentions are in

different sentences. We have also provided a language

construct called previous_entity using which a pattern can

refer to the entities found in earlier sentences. Despite

this, it is not easy to relate an entity with its property if

they are widely separated in the text.

7.2. GeoPolitical Entities domain

We have downloaded 36 Wikipedia pages of country

profile, converted them to text and manually tagged them

for correct entity and property values. As part of this

experiment, we have considered the data and object

properties of only the country class (see fig. 3). We used

the generic patterns described in section 5.1 for IE. Our

experiments helped us identify these patterns and during

the course of the experiments our initial set went through

several additions and modifications. We randomly

selected 10% of corpora (4 pages) to analyze whether the

generic patterns we have are good enough for extraction,

especially we looked at the entity, property and relation

occurrences and how they are related by the dependency

relations. At the end of this exercise, we had to add 3 new

patterns and modify 4 existing patterns. In total we used

14 patterns and performed the experiments. Table 7 lists

the precision and recall values for classes, properties and

relations. The overall precision is 0.82 and recall is 0.54

which again strengthens our argument that the system is

conservative and makes fewer mistakes (high precision).

The reason for higher precision is that unlike in traditional

approaches where identification is primarily text pattern

based (which can throw up spurious matches), we also

consider an entity’s property and relationship context

which reduces spurious matches. However, this can have

an adverse impact on recall as some of the valid matches

might also be turned down on account of not having

matching property and relation contexts. As explained

earlier, this behaviour of higher precision and lower recall

is fine, as reliability is a key concern in our enterprise

information integration framework.

We would like to point out here that the extra patterns

that we had to add were due to the peculiar ways in which

some properties were written in the text corpora. The

generic patterns we have collected will work best when

the sentences in the text document are property formed

and follow the English grammar, such as in published

articles. The text documents in different genres may have

different styles of writing English sentences (publications

vs. blog posts) and it’s important to capture them in the

form of dependency relations. For this reason, we may

have to analyze different genres of text documents and

augment the list of generic patterns.

7.3. Analysis of our OBIE system

The key constituents of our system are: a pattern language

and a global type identification algorithm. A relevant

question in this context is what varieties of patterns can be

expressed in our pattern language. The constituents of the

language (dependency relations, boolean functions,

ontology constraints) provide the necessary power to

write various kinds of patterns mentioned in the IE

literature. A lot of systems in the literature have used

Hearst pattern [12] and lexico-syntactic patterns [2] for

extraction. We could successfully convert these patterns

into equivalent patterns in our pattern language.

Once the object graph is generated by the pattern

matcher, the type of the object graph nodes has to be

identified. The accuracy of type identification can

improve if we go beyond the local context and make use

of all the relevant information available in the document.

That’s what our global propagation algorithm aims to

achieve. The direction of propagation is determined by

entropy ordering where information flows from nodes of

high certainty to nodes of low certainty. In many cases

mere presence of properties and relations is sufficient to

uniquely identify an entity’s type. This is possible when

the names of these properties and relations are unique in

the ontology. However duplicate names are quite common

in real-life ontologies. For example, the located_in object

property given in section 6 relates three different class

pairs. Similarly, reports_to structure in an organization

ontology; part_of structure in a product ontology, and so

Table 6: Comparision of Our System with OntoX on

Camera Review domain

Property
Our System OntoX

Prec. Rec. Prec. Rec.

Megapixel 0.93 0.39 0.52 0.51

Display Size 0.88 0.2 0.80 0.82

Model Name 0.76 0.64 0.79 0.79

Table 7: Results on GeoPolitical Entities Domain

Concept/Property

/Relation
Precision Recall

Country 0.85 0.69

borders_with 0.72 0.39

located_in 0.86 0.78

official_name 1.0 0.74

population 0.92 0.57

coastline 0.57 0.80

area 1.0 0.60

Total 0.82 0.54

on. A global propagation algorithm can make a big

difference in such cases.

8. Conclusion and Future Work

We presented an information extraction approach where

we first identify property and relation name occurrences

in the text and then use patterns written in terms of

dependency relations to identify related entities. To

achieve the same, we have developed an ontology aware

pattern matcher which uses these patterns to generate an

object graph from a text document. We have also

developed a global context aware algorithm to identify the

ontological types of the object graph nodes. The algorithm

is greedy and it uses the entropy ordering to decide

information propagation between the nodes where type

information is passed from low entropy nodes to high

entropy nodes. The main contributions of this paper are:

an ontology aware pattern language; a global context

aware type identification algorithm.

We have experimented with GeoPolitical entities

domain with a small set of text documents from

Wikipedia. The result looks promising. An immediate

(also important) task at hand is to test our approach on

larger and varied set of corpora to check its applicability

in general. We also want to integrate our system into the

larger enterprise information integration framework to

check its utility.

References

[1] Douglas E. Appelt, Jerry R. Hobbs, John Bear, David

J. Israel, and Mabry Tyson, "FASTUS: A Finite-state

Processor for Information Extraction from Real-

world Text," in IJCAI, Chambéry, France, 1993, pp.

1172-1178.

[2] Michele Banko, Oren Etzioni, Stephen Soderland,

and Daniel Weld, "Open information extraction from

the web," Communication of ACM, vol. 51, no. 12,

pp. 68-74, 2008.

[3] Adrian Benjamin, Hees Jorn, van Elst Ludger, and

Dengel Andreas, "iDocument: Using Ontologies for

Extracting and Annotating Information from

Unstructured text," in KI, 2009, pp. 249-256.

[4] Philipp Cimiano, Siegfried Handschuh, and Steffen

Staab, "Towards the self-annotating web," in

Proceedings of the 13th international conference on

World Wide Web, NY, USA, 2004, pp. 462-471.

[5] Philipp Cimiano, Gunter Ladwig, and Steffen Staab,

"Gimme' the context: context-driven automatic

semantic annotation with C-PANKOW," in

Proceedings of the 14th international conference on

World Wide Web, Chiba, Japan, 2005, pp. 332-341.

[6] Marie-Catherine de Marneffe and Christopher D.

Manning, "Stanford typed dependencies manual,"

Stanford University, 2008.

[7] Marie-Catherine de Marneffe and Christopher D.

Manning, "The Stanford typed dependencies

representation," in 22nd International Conference on

Computational Linguistics, Manchester, United

Kingdom, 2008, pp. 1-8.

[8] David W. Embley, "Towards Semantic

Understanding -- An Approach Based on Information

Extraction Ontologies," in Proceedings of the

Fifteenth Australasian Database Conference,

Dunedin, New Zealand, 2004, pp. 18-22.

[9] Oren Etzioni et al., "Web-scale information

extraction in knowitall: (preliminary results)," in

Proceedings of the 13th international conference on

World Wide Web, New York, NY, USA, 2004, pp.

100-110.

[10] Katrin Fundel, Robert Kuffner, and Ralf Zimmer,

"RelEx - Relation extraction using dependency parse

trees," Bioinformatics, vol. 23, pp. 365-371, 2007.

[11] Thomas R. Gruber, "A translation approach to

portable ontology specifications," Knowledge

Acquisition, vol. 5, no. 2, pp. 199-220, July 1993.

[12] Marti A. Hearst, "Automatic acquisition of

hyponyms from large text corpora," in 14th

Internation Conference on Computational

Linguistics, Nantes, France, 1992, pp. 539-545.

[13] Luke K. McDowell and Michael Cafarella,

"Ontology-driven information extraction with

ontosyphon," in ISWC, Athens, GA, 2006, pp. 428-

444.

[14] Joakim Nivre, "Dependency Grammar and

Dependency Parsing," Vaxjo University: School of

Mathematics and Systems Engineering, 2005.

[15] Borislav Popov, Atanas Kiryakov, Damyan

Ognyanoff, Dimitar Manov, and Angel Kirilov,

"KIM – a semantic platform for information

extraction and retrieval," Natural Language

Engineering, vol. 10, no. 3, pp. 375-92, 2004.

[16] Horacio Saggion, Adam Funk, Diana Maynard, and

Kalina Bontcheva, "Ontology-Based Information

Extraction for Business Intelligence," in ISWC, 2007,

pp. 843-856.

[17] Alexander Schutz and Paul Buitelaar, "RelExt: A

Tool for Relation Extraction from Text in Ontology

Extension," in ISWC 2005, 2005.

[18] E. Claude Shannon, "A mathematical theory of

communication," Bell System technical journal, vol.

27, pp. 379-423, 1948.

[19] Burcu Yildiz and Silvia Miksch, "ontoX - a method

for ontology-driven information extraction," in

ICCSA'07, vol. 3, Kuala Lumpur, Malaysia, 2007,

pp. 660-673.

