

Proceedings of the
21st International Conference on

Management of Data
Mar 11-13, 2016

Pune, India

 Editors

B. Ravindran, IIT Madras
Amol Deshpande, University of Maryland, College Park

Sayan Ranu, IIT Madras

© Computer Society of India, 2016

COMAD 2016

Preface

This volume contains the papers presented at COMAD2016: 21st International
Conference on Management of Data held on March 11-13, 2016 in Pune.

For over two decades, the International Conference on Management of Data
(COMAD), modelled along the lines of ACM SIGMOD, has been the premier
international database conference hosted in India by Division II of Computer
Society of India. The first COMAD was held in 1989, and it has been held on a
nearly annual basis since then (except for a few breaks such as in the years when
VLDB and ICDE were held in India). COMAD has always had a significant
international participation, with about 30% of the papers being from outside
India, including Europe, USA and East/South-East Asia.

This year COMAD decided to co-locate with the IKDD Conference on Data
Science (CoDS). The joint conference proved to be a big success attracting many
joint registrations and a very active common day with several keynote talks and
tutorials. The invited talks this year were by Minos Garofalakis (University of
Crete), Ravi Kumar (Google), Krithi Ramamritham (IIT Bombay) and Deepak
Agarwal (LinkedIn), the last two talks being shared with IKDD CoDS. We con-
tinued the COMAD tradition of inviting Indian authors of papers presented in
premier database conferences. Seven such premier papers were presented this
year from venues such as ICDE, SIGMOD, ICDM, and VLDB.

This year there were 27 submissions from around the world. The committee
decided to accept 7 full papers and 2 demos. There were 5 work in progress

posters accepted. We had a fantastic program committee of 23 people from 4
continents, including good representation from the Asia-Pacific region.

We also ran a Data Challenge, Dataview 2016, which was one of the first to
focus on open data. The participants were asked to answer questions on public
health with the help of open data put out by the Indian government and were also
asked to develop an app to facilitate delivery of the information. The winning
entries were presented as demos as well.

Pune, India Amol Deshpande
Balaraman Ravindran

Program Co-Chairs

Sayan Ranu
Proceedings Chair

iii

Table of Contents

Full Papers .

SkyCover: Finding Range-Constrained Approximate Skylines with
Bounded Quality Guarantees . 1

Shubhendu Aggarwal, Shubhadip Mitra and Arnab Bhattacharya

Short Text Matching in Performance Management . 13
Manoj Apte, Sachin Pawar, Sangameshwar Patil, Sriram Baskaran,

Apoorv Shrivastava and Girish Palshikar

An Architecture-Oriented Data Warehouse Testing Approach 24
Neveen Elgamal, Ali El Bastawissy and Galal Galal-Edeen

Supervised Learning in Matrix Completion Framework for
Recommender System Design . 35

Anupriya Gogna and Angshul Majumdar

BaSE(Byte addressable Storage Engine) Transaction Manager (Best

Paper) . 47
Sathyanarayanan Manamohan, Krishnaprasad Shastry, Shine Mathew,

Ravi Sarveswara, Kirk Bresniker and Goetz Graefe

Top-K High Utility Episode Mining from a Complex Event Sequence 56
Sonam Rathore, Siddharth Dawar, Vikram Goyal and Dhaval Patel

Soft Monotonic Constraint Support Vector Regression 64
Sapan Shah, Sreedhar Reddy, Avadhut Sardeshmukh and Shuaib Ahmed

Demo Papers .

UCliDSS : An Unsupervised Clinical Decision Support System for Text
(Demo Paper) . 74

Tahir Dar, Sumant Kulkarni, Srinath Srinivasa and Ullas Nambiar

Towards a General Framework for DataDriven City Comparison and
Ranking . 78

Vishalaksh Aggarwal, Biplav Srivastava and Srikanth Tamilselvam

iv

Organising Committee

General Chair P. Sreenivasa Kumar, IIT Madras
Program Chairs B. Ravindran, IIT Madras

Amol Deshpande, University of Maryland
CSI DIV II Chair Dr. R. Nadarajan, PSG College of Technology
Industry Chair Sudipto Das, Microsoft Research
Tutorial Chair Rajasekar Krishnamurthy, IBM Research
Data Challenge Chairs Biplav Shrivastava, IBM Research India

Debtanu Dutta, Latentview Analytics
Hemant Mittal, Latentview Analytics

Publication Chair Sayan Ranu, IIT Madras
Organizing Chair Arun Kadekodi, Soft Corner, Pune
Web Chair Anand Joglekar, Ameya Software

v

Program Committee

Srikanta Bedathur IBM Research
Arnab Bhattacharya Indian Institute of Technology, Kanpur
Mahashweta Das HP Labs, Palo Alto
Amol Deshpande University of Maryland
Prasad Deshpande IBM Research - India
Alan Fekete University of Sydney
Vikram Goyal IIIT-Delhi
Manish Gupta Microsoft
Kamalakar Karlapalem IIT Gandhinagar
Ashwin Kayyoor Veritas Labs
Udayan Khurana IBM T. J. Watson Research Center
Qiong Luo Hong Kong University of Science and Technology
Karin Murthy IBM Research
Dhaval Patel IIT Roorkee
Krishna Reddy Polepalli IIIT-H
Maya Ramanath IIT Delhi
Balaraman Ravindran Indian Institute of Technology Madras
Jagan Sankaranarayanan NEC Labs America
Ralf Schenkel Universitaet Passau
Kyuseok Shim Seoul National University
Srinath Srinivasa International Institute of Information Technology,

Bangalore
Divesh Srivastava AT&T Labs-Research
S. Sudarshan IIT Bombay

vi

SkyCover: Finding Range-Constrained Approximate

Skylines with Bounded Quality Guarantees

Shubhendu Aggarwal

shubhu@cse.iitk.ac.in

Shubhadip Mitra

smitr@cse.iitk.ac.in

Arnab Bhattacharya

arnabb@cse.iitk.ac.in

Dept. of Computer Science and Engineering,

Indian Institute of Technology, Kanpur.

India

ABSTRACT
Skyline queries retrieve promising data objects that are not dom-
inated in all the attributes of interest. However, in many cases, a
user may not be interested in a skyline set computed over the en-
tire dataset, but rather over a specified range of values for each
attribute. For example, a user may look for hotels only within a
specified budget and/or in a particular area in the city. This leads to
constrained skylines. Even after constraining the query ranges, the
size of the skyline set can be impractically large, thereby necessi-
tating the need for approximate or representative skylines. Thus, in
this paper, we introduce the problem of finding range-constrained
approximate skylines. We design a grid-based framework, called
SkyCover, for computing such skylines. Given an approximation
error parameter ✏ > 0, the SkyCover framework guarantees that
every skyline is “covered” by at least one representative object that
is not worse by more than a factor of (1 + ✏) in all the dimen-
sions. This is achieved by employing a non-uniform grid partition-
ing on the data space. We also propose two new metrics based on
the covering factor to assess the quality of an approximate skyline
set. Experimental evaluation reveals that SkyCover outperforms
the competing methods in both quality and running time.

1. INTRODUCTION
Since their introduction to the database community by [3], sky-

line queries have attracted a significant interest from researchers,
and have also found their way into commercial databases such as
PostgreSQL [11]. Skylines are especially suitable for situations
where there are multiple attributes of interest but no clear opti-
mization function that can help choose a single preferred object.
The skyline set returns all promising objects that are not worse than
another object in all the attributes. There is typically no ordering
among the skyline objects.

A preference function needs to be specified for every dimension
of interest for the skyline query. For example, while looking for
good hotel deals online, the attributes of interest may be cost and
distance to city center, and the preference functions are less than
for both. A user never chooses a hotel H

1

that costs more and is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 21st International Conference on Management of Data.
COMAD, March 11-13, 2016, Pune.
Copyright 2016 Computer Society of India (CSI).

farther from city center than another hotel H
2

. The hotel H
1

is,
hence, not a skyline.

Formally, assume that there is a dataset D with d skyline at-
tributes having the preference function in each attribute to be less
than (<).1 In other words, for every skyline dimension i, a smaller
value dominates a larger one. A point t dominates another point u,
denoted by t � u, if and only if 8i, t

i

 u
i

and 9j, t
j

< u
j

.
A point t is in the skyline set S ✓ D if and only if there does
not exist any other point u in the dataset that dominates it, i.e.,
t 2 S () 69u 2 D such that u � t.

Note that in the definition of skylines, the exact values of the ob-
jects are not important; only the relative ordering matters. Thus, the
ranges of the values can be modified (such as scaling and shifting)
as long as the preference relationships are maintained.

When the number of dimensions is large, the skyline query suf-
fers from the cardinality problem in the sense that the size of the
skyline set may be too large. Since one of the basic utilities of the
skyline query is to deduce the set of useful objects by discarding
the useless ones from the dataset that cannot be good, the entire
exercise of finding skylines may suffer.

In many cases, a user may not be interested in all the objects
over the entire range of the dataset. For example, while searching
for hotels, the user may have a certain budget and/or a particular
area of the city in mind. Hence, the skyline query needs to be
appropriately modified as well. The query should return the skyline
set considering only the specified range as the dataset. Informally,
we refer to such skyline objects over a specified query range as
range-constrained skyline objects.

Given a query range ⌦, specified by d ranges of the form [l
i

, u
i

)

for i = 1, . . . , d, let D(⌦) denote the induced set of objects (in D)
that fall within ⌦. An object t is referred to as a range-constrained
skyline of D(⌦) if there does not exist any object s 2 D(⌦) that
dominates it. In other words, t is a skyline object of the set D(⌦).
Note that t may not be a skyline object in D, as it may be dominated
by some object not in D(⌦). Therefore, the range-constrained sky-
lines cannot be simply computed from the skyline set of D by ap-
plying the range ⌦.

Although the range-constrained skylines have been addressed in
the literature [10, 17], they still do not address the cardinality is-
sue satisfactorily. For high dimensions, even the range-constrained
skylines can be very large in number. The cardinality may be pro-
hibitively large also when the query range ⌦ is large.

To address such high number of range-constrained skylines, in
this work, we propose approximate range-constrained skyline com-
putation. As there are several existing works on approximate or

1A greater than preference function can always be converted by
inverting or negating the values.

1

representative set of skylines [6,23,32], a natural proposition would
be to employ one of these techniques to compute approximate range-
constrained skylines. Given a query range ⌦, a range query is first
performed over D to compute the induced dataset D(⌦). Follow-
ing this step, skylines S(⌦) are computed over the set of objects
D(⌦). Finally, approximate skylines are computed from S(⌦).

However, this strategy has the following limitations:

• Low performance: The approximation is performed only
after computing the skyline set which needs the range query
to be solved before that. Thus, this can be fairly time con-
suming, especially when the range query answer set and the
skyline set are large.

• Low quality: Most of the existing approximate skyline com-
putation techniques do not cover the skyline set, i.e., for ev-
ery skyline object in the original dataset, there may not exist
a suitable representative object in the reported set. Moreover,
they consider optimizing metrics such as k most diverse sky-
lines or k most dominating skylines which are NP-hard prob-
lems and, therefore, resort to heuristics that yield sub-optimal
solutions.

• High storage: The storage of the sets D(⌦) and S(⌦) may
be fairly large.

Motivated by these challenges, in this paper, we propose a new
indexing framework called SKYCOVER that reports a set of approx-
imate range-constrained skylines. The approximation is pushed
within the skyline operator and not afterwards. Further, the approx-
imation is achieved by using a grid structure that guarantees the
coverage up to a user-defined error threshold. In other words, the
reported representative data objects cover the entire set of range-
constrained skylines with bounded approximation errors.

The SkyCover framework employs a hashing scheme that en-
sures the bounded quality guarantees, without requiring any sepa-
rate approximate skyline technique. The proposed index structure
stores a sampled set of objects that is sufficient to offer the quality
guarantees. As a result, the number of input objects to the sky-
line finding routine is reduced, thereby making it faster. The set
returned by the skyline query on this reduced input set is reported
as the SkyCover set, which is an approximate and succinct repre-
sentation of the range-constrained skyline set. In addition to its
efficiency, the proposed SkyCover framework is simple and easily
extensible to several practical variations of skyline queries, such as
top-k skyline queries [4,31], nearest-neighbor skyline queries [19],
progressive skyline queries [24, 29], skyline queries over dynamic
and streaming settings [22, 28], etc.

The basic idea in SkyCover is that if there are two or more ob-
jects that are quite similar to each other, the information added be-
yond the first object is low, and therefore, the subsequent objects
can be filtered out. The similarity is based on the proximity of
the values in the underlying data space. For all such objects that
have values close to each other, the SkyCover index structure re-
tains only one of them.

Ideally, the value of a skyline object that is not reported should be
within some threshold of tolerance within the skyline object that is
reported. The approximation error is captured by an error param-
eter ✏. SkyCover guarantees that every range-constrained skyline
object is covered by at least one object in the SkyCover set that is
not worse by a factor of (1 + ✏) in all the dimensions. Such an
approximation factor is natural in many applications. For example,
when a skyline hotel H

1

has no vacancies, a user may tolerate a ho-
tel H

2

that has larger cost and distance than H
1

within a factor of,

say, 5%. This translates to finding H
2

with cost less than or equal
to 105 units and distance less than 2.1 units when the H

1

has a cost
of 100 units and distance 2 units. The value of ✏ = 0.05 guarantees
this.

In sum, our contributions in this paper are as follows:

1. To the best of our knowledge, this is the first work to directly
address the problem of approximate range-constrained sky-
line computation.

2. We propose a novel SkyCover framework for efficiently com-
puting approximate range-constrained skylines with bounded
quality guarantees.

3. We propose two new metrics for measuring the quality of
an approximate skyline set based on the concept of covering
factor.

4. Experimental evaluation, on both real and synthetic datasets,
reveals that SkyCover outperforms the other competing meth-
ods in both quality and running time.

The outline of the rest of the paper is as follows. Section 2 dis-
cusses the related work. Section 3 describes the SkyCover frame-
work, the properties of which are analyzed in Section 4. In Sec-
tion 5, we propose two new quality metrics. The results are de-
scribed in Section 6. Section 7 concludes.

2. RELATED WORK
We first discuss the works in the area of skyline computation and

then describe the related literature for range-constrained skylines
and approximate skylines.

2.1 Skylines
The skyline problem has been first studied as that of determin-

ing the maxima of a set of vectors. The algorithms in this field
are typically based on the divide-and-conquer [20] and parallel ap-
proaches [25]. These methods assume that the entire data fits in the
main memory.

The notion of skyline for relational database systems was intro-
duced by [3] who proposed the “skyline” operator. Since then,
a large number of algorithms, both index-based and non-index-
based, have been proposed for skyline computation. Index-based
methods include B-tree based schemes [3], bitmap and index [29],
nearest-neighbor (NN) [19] and branch-and-bound (BBS) [24]. More
recently, a trie-based index structure has been proposed in [27]
to improve scalability and maintenance costs in case of data up-
dates. In non-index-based methods, block-nested-loop (BNL) and
divide-and-conquer (DC) were proposed in [3]. Chomicki et al. [7]
proposed a variant of BNL algorithm called the sort-filter-skyline
(SFS) algorithm that involves pre-processing of sorting the data
with respect to a monotone scoring function.

For high dimensional data, there has been a lot of focus on re-
ducing the number of skylines reported. Since it becomes increas-
ingly difficult for a point to dominate another in high dimensions,
k-dominance [6] was introduced to relax the dominance criteria
where it is sufficient to be better in k dimensions in order to domi-
nate another point.

The strategy of grid-based partitioning has been used in the dis-
tributed environment [1, 8, 21, 26, 33]. Essentially, in these works,
a grid is created on the data such that each grid cell has almost the
same amount of data. The same grid structure is imposed by all
the distributed nodes on the data space. Each node computes the
skylines in a specific grid (or a set of grids), and finally the local
results are merged to compute the desired skyline set.

2

2

1 (1+ε)2(1+ε)

(1+ε)2

(1+ε)

1

Figure 1: Example of ✏-SkyCover.

2.2 Range-Constrained Skylines
The problem of constrained subspace skyline computation was

introduced in [10]. In order to support constrained skylines for ar-
bitrary subspaces, they presented approaches exploiting multiple
low-dimensional indexes instead of a single high-dimensional in-
dex. Range-constrained skylines in two dimensions was investi-
gated in [17]. None of these works address the issue of high cardi-
nality of the skyline set.

2.3 Approximate Skylines
There are several works on approximate or representative sky-

lines. One one hand, [9,13,23] focused on finding k skyline points
that together dominate the maximum number of non-skyline points.
On the other hand, [14, 30] considered returning k skyline points
that best represents the skyline contour. Other works such as [32]
focused on reporting the k most diverse skyline points, where the
diversity is measured using Jaccard distance.

Approximately dominating representatives (ADRs) [18] reports
✏-approximate skyline for some ✏ given by the user. An ✏-ADR
query returns a set of points which together when boosted by ✏ in
all dimensions dominate all other points (they considered greater
than > as the preference function for all dimensions). This is sim-
ilar to the notion we implement as well. However, their work is
significantly different from ours as they assume that the skyline
set has been pre-computed and the task is to post-process and de-
termine the smallest possible ADR. We, on the other hand, push
the approximation scheme before the skyline operation. They also
show that for a given ✏, the problem of minimizing the cardinality
of ✏-ADR is NP-hard for three or more dimensions.

Approximate skylines over a data stream was computed in [28]
which gave a notion of additive errors in skylines by defining strong
domination. A point t strongly dominates another point u if for all
dimensions i, t

i

+ ✏ u
i

where ✏ is an acceptable difference dis-
tance. Their algorithm guarantees that any two approximate skyline
points are at least 2✏ apart and for every skyline point there is an
approximate skyline point within ✏ distance of it. An ✏-skyline was
proposed in [34] where the domination criteria called ✏-domination
was modified to allow additive error of ✏ along each weighted di-
mension. Thick skylines were proposed in [16] where all skyline
points and their ✏-neighbors (points within ✏ distance) are reported.
The algorithm involves computing distances between points which
is expensive.

2.4 Comparison with SkyCover
Next we closely compare our SkyCover approach with the k-

RSP approach [23] and SkyDiver approach [32], as they are the
most popular notions of representative skylines. For experimen-
tal evaluation, we compare the quality of the solutions realized by
SkyCover against these two approaches.

While all the three approaches attempt to suitably represent the
skyline set, the computational challenge in optimally (and also ap-
proximately) computing these solutions vary significantly. While

the sets reported by k-RSP and SkyDiver approaches are of fixed
cardinality of size k, the size of the set returned by our SkyCover
approach is not fixed. Due to this reason, while the optimal com-
putation of the representative sets in case of k-RSP and SkyDiver is
NP-hard, the computation of the representative set by our SkyCover
approach is polynomially solvable. While our approach guarantees
that the reported representative points have bounded approximation
errors in all dimensions w.r.t. the skylines missed (not reported),
there is no such guarantee in the other two approaches. For in-
stance, consider the example shown in Figure 1. Observe that each
point in the dataset is a skyline. Suppose a user wants k = 3 rep-
resentative points. Since the dominating sets, i.e., the set of points
dominated by the given point, for each of the points is empty, both
the k-RSP and the SkyDiver approaches report any 3 points arbi-
trarily. Therefore, the worst case approximation factor of the rep-
resentative sets returned by these two approaches can be arbitrarily
bad. On the other hand, as it will be described later, our ✏-SkyCover
would select one point from each of the three grid cells containing
the points, thereby guaranteeing that every missed skyline has a
representative point that is worse by a multiplicative factor of at
most (1 + ✏).

The k-RSP and SkyDiver problems being NP-hard for dimen-
sions greater than two, it was shown that when greedy heuristic
is applied to them, they can be approximated within a factor of
1 � 1

e

and 2 respectively. For scalability and efficiency reasons,
each of these heuristics consider randomized techniques that offer
theoretical accuracy guarantees. While k-RSP approach employ
probabilistic counting using FM algorithm [12], the SkyDiver em-
ploys min-hash (MH) [5] and LSH [15]. In contrast, we propose
an efficient deterministic algorithm based on the concept of hash-
ing using non-uniform grid-based partitioning, whose complexity
depends on the desired value of the approximation parameter.

Most importantly, the k-RSP and the SkyDiver approaches can
be applied only after the skyline computation which is quite expen-
sive. Our SkyCover approach is applied prior to skyline computa-
tion, which reduces the size of the dataset considerably, thereby
leading to savings in query-time.

In addition, our SkyCover framework is more generic as any of
the post-processing approximation techniques including k-RSP and
SkyDiver techniques can be applied after the approximation and
skyline computations have been done. Hence, our work can be
treated both as alternative as well as complementary to the existing
works in the space of approximate skyline representation.

3. THE SKYCOVER FRAMEWORK
In this section, we first introduce the problem of approximate

range-constrained skyline computation. Then, we describe the pro-
posed SkyCover framework for finding such skylines. Finally, we
analyze its running time, and discuss possible extensions of the
framework.

3.1 Range-Constrained Skylines
Assume that the dataset D is d-dimensional with the range in

each dimension between 1 and R. The total data space, therefore,
is [1, R]

d. Suppose S is the skyline set of D. All the symbols used
in this paper are listed in Table 1 for easy reference.

We first introduce the notion of range-constrained skylines. Given
a range ⌦ =

Q

i

[l
i

, u
i

), where (1 l
i

 u
i

 R), D(⌦)

denotes the induced dataset over ⌦, i.e., it contains the points in
D that lie within the range ⌦. Hence, p 2 D(⌦) if and only if
l
i

 p
i

 u
i

8i. The skylines S(⌦) computed over D(⌦) is the
range-constrained skyline set.

3

3

Table 1: List of Symbols.

Symbol Description
D Dataset

N = |D| Cardinality of dataset
d Dimensionality

[1, R] Range of values along a dimension
S Skyline set

s = |S| Cardinality of skyline set
⌦ =

Q

i

[l
i

, u
i

) Query range
D(⌦) Induced dataset over the range ⌦

n = |D(⌦)| Cardinality of induced dataset
S(⌦) Range-constrained skyline set of D(⌦)

✏ Error parameter
⌦

✏

= [l0
i

, u0
i

) Stretched range of ⌦
l0
i

= l
i

/(1 + ✏) Lower range of ⌦
✏

u0
i

= u
i

.(1 + ✏) Upper range of ⌦
✏

S0
(⌦

✏

) SkyCover set of D(⌦)

g Number of grid partitions along a dimension
P (⌦) Set of grid representatives that lie in ⌦

✏

m = |P (⌦)| Total number of grid representatives stored
S0 SkyCover set of D

k = |S0
(⌦

✏

)| Cardinality of SkyCover set

DEFINITION 1 (RANGE-CONSTRAINED SKYLINE). Given a
range ⌦, a point s 2 D(⌦) is in the range-constrained skyline set
S(⌦) of D(⌦) if and only if it is not dominated by any other point
in D(⌦).

It is important to note that S(⌦) is not necessarily a subset of the
skyline set S, as it may contain a point that is dominated by another
in D but not in D(⌦). A range-constrained skyline query is, thus,
a generalization of the regular skyline query.

Although by constraining the data range, the size of the dataset
is reduced, there is no guarantee that the size of the skyline set
will be reduced. This may happen since there may be a globally
dominating skyline outside the range, and not considering it allows
many other objects as skylines.

Even otherwise, the number of range-constrained skylines may
be too many, especially for high-dimensional spaces. Hence, a
flavor of representation or approximation is needed to reduce the
number. For that, we introduce the concept of skyline cover next.

3.2 Skyline Cover
Given an ✏ > 0, we first define ✏-cover.

DEFINITION 2 (✏-COVER). Given ✏ > 0, a point t 2 D ✏-
covers a point s 2 D, if and only if for every dimension i, t is not
worse than s by a multiplicative factor of (1 + ✏)

t ✏-covers s () 8i, t
i

 (1 + ✏)s
i

(1)

The simple dominance is a special case of ✏-cover when ✏ = 0.
Using this, we next define the concept of ✏-SkyCover. Infor-

mally, a set S0
(⌦

✏

) is a skyline cover of S(⌦) if each point in S(⌦)
has a suitable representative in S0

(⌦

✏

). The skyline cover S0
(⌦

✏

)

is an ✏-SkyCover if every point s 2 S(⌦) is represented within the
multiplicative factor of (1 + ✏), i.e., it is ✏-covered by at least one
point t 2 S0

(⌦

✏

).

DEFINITION 3 (✏-SKYCOVER). A set S0
(⌦

✏

) is an ✏-SkyCover
of S(⌦) if every point in S(⌦) is ✏-covered by at least one point in

S0
(⌦

✏

):

S0
(⌦

✏

) is an ✏-SkyCover of S(⌦)

() 8s 2 S(⌦), 9t 2 S0
(⌦

✏

) s.t. t ✏-covers s (2)

Assume that ⌦
✏

denotes the range of ⌦ that is stretched by a
factor of (1 + ✏) along each dimension, i.e., ⌦

✏

=

Q

i

[l0
i

, u0
i

)8i
where l0

i

= l
i

/(1+ ✏) and u0
i

= u
i

.(1+ ✏). The skyline set S0
(⌦

✏

)

of D(⌦

✏

) is necessarily an ✏-SkyCover of the skyline set S(⌦) of
D(⌦).

When the context is clear, we refer to an ✏-SkyCover by simply
SkyCover.

The parameter ✏ essentially captures the user’s tolerance to ap-
proximation. For example, consider the cost attribute of a particular
dataset. If the cost of a skyline point is 100 units and ✏ = 0.05, it
means that the user can tolerate a point that costs up to 105 units.

Note that ✏ is a multiplicative ratio which makes more sense than
an absolute margin (i.e., additive error) such as 5 units in this con-
text. When the cost of an object is more, the difference in cost is
more as well. When it is less, the difference automatically shrinks.
Hence, in the above example, if a skyline object costs 10 units, it
is more likely that a user will tolerate up to 10.5 units and not 15
units. Similarly, if the cost is 1000 units, the user can go up to 1050
units and not 1005 units.

3.3 Problem Statement
In this paper, we address the following query:

PROBLEM 1. Given a range ⌦ =

Q

i

[l
i

, u
i

), where (1 l
i

u
i

 R), report its SkyCover, i.e., S0
(⌦

✏

).

Note that the range ⌦ is available only at query time. Therefore,
since S0

(⌦

✏

) need not be a subset of S or its SkyCover S0, even
if we pre-compute the sets S or S0, it is not easy or efficient to
compute the set S0

(⌦

✏

) using these pre-computed sets.
The goal of the proposed SkyCover framework is to, thus, ef-

ficiently compute the SkyCover S0
(⌦

✏

). To achieve this, we first
build an index structure using sampled data points in D. On re-
ceiving the query range ⌦, we identify a set of points stored in the
index structure that lie in the stretched range of ⌦, i.e., ⌦

✏

. Finally,
we compute the skylines over this set of points to return the desired
SkyCover. We next discuss these steps in more detail.

3.4 Grid Partitioning
We construct a grid-based index structure by employing a non-

uniform grid partitioning scheme. The grid boundaries are imposed
at multiplicative intervals of (1+✏). Thus, the first grid cell is from
(1+ ✏)0 = 1 to (1+ ✏)1, the second one from (1+ ✏)1 to (1+ ✏)2,
and so on. The number of grid partitions, g, along any dimension
is, therefore, equal to

g = dlog
1+✏

Re (3)

Hence, the total number of grid cells for d-dimensional space is gd.
Assume that R = (1+✏)g such that there are exactly g grid parti-

tions along any dimension. (The data space can always be stretched
so that this happens.) Otherwise, using the ceiling function for g
imposes an error parameter ✏0 < ✏, thus, protecting the (1 + ✏)
SkyCover guarantees.

If the range of a dimension is [min,max], it can always be
shifted and stretched to fit [1, R]. If min = 1, then the ratios
after the transformation do not change. Otherwise, the error value
✏ in the [min,max] range can be mapped to an ✏0 in the [1, R]

range if min > 0. If both min and max are negative, the ra-
tios are inverted. If, however, min < 0 and max > 0, then the

4

4

(1+ε)

(1+ε)

(1+ε)2

(1+ε)3

(1+ε)2 (1+ε)3

u
s

z
w

t

1

1

v

Figure 2: Grid-based partitioning.

concept of multiplicative error makes little sense and we do not
consider such cases. As explained in Section 3.10, an additive er-
ror is more meaningful there and the SkyCover framework can be
appropriately modified to handle that using uniform grid partitions.

A grid cell x = (x
0

, . . . , x
d�1

) is indexed by the corresponding
d grid cell numbers along the dimensions. Here, 0 x

i

 g � 1

denotes the grid cell index for the ith dimension.
A point t = (t

0

, . . . , t
d�1

) falls in grid cell x = (x
0

, . . . , x
d�1

)

if and only if it satisfies the condition 8i, (1 + ✏)xi t
i

< (1 +

✏)xi

+1. The hash function h
i

(t
i

) that returns the grid cell index for
the attribute i of a point t is, thus, h

i

(t
i

) = blog
(1+✏)

t
i

c. The hash
function h(t) for a point t is the combination of the corresponding
hash functions for each dimension:

h(t) = hh
0

(t
0

), . . . , h
d�1

(t
d�1

)i (4)

Figure 2 shows an example partitioning of the space with g = 3

and d = 2.
Note that the grids are imposed on the original [1, R)

d space
before the query range is made available at run time.

3.5 Choosing Grid Cell Representative
All the points that hash to the same grid cell are represented by

only one of them. In this way, the SkyCover stores a much smaller
sample of the dataset. Since any point within the cell ✏-covers any
other point within the same cell, keeping anyone of them would
serve the purpose of ✏-SkyCover (shown in Theorem 1). Thus,
this not only ensures quality guarantees, but also significantly con-
tributes towards lower storage and, therefore, higher efficiency.

We next discuss how to choose the cell representative. For each
point t, we employ an entropy function similar to that used in the
SFS algorithm [7]: ent(t) =

P

d�1

i=0

t
i

. Since the ultimate goal
is to compute range-constrained skylines, the entropy function is
re-used later during the actual skyline computation phase.

The grid representative of a cell x is chosen as the point t with
the lowest entropy: t = argmin{ent(t)|t 2 x}. Note that no other
point in the same cell can dominate t as then its entropy would have
necessarily lower. Moreover, the scheme guarantees that t ✏-covers
any other point in the same cell.

3.6 Query Processing
When the query parameters ⌦ and ✏ arrive, the first step is the

retrieval of the set of grid representatives P (⌦) that map to the
stretched range of ⌦, i.e., ⌦

✏

. Assume the query range is ⌦ =

Q

i

[l
i

, u
i

). Along dimension i, we identify the grid cell indices
that map to the above space as follows. Assume x

i

= blog
1+✏

l
i

c
and y

i

= blog
1+✏

u
i

c. The set P (⌦) denotes the set of all the grid
representatives of the grids that lie in the space

Q

d�1

i=0

[x
i

, y
i

]:

P (⌦) = {grid representative of cell z| 8i, x
i

 z
i

 y
i

} (5)

Next, a skyline finding algorithm is employed over the set of
points in P (⌦). The answer thus obtained is reported as the Sky-
Cover S0

(⌦

✏

).

Algorithm 1 SkyCover Algorithm

1: procedure OFFLINE COMPUTATION (Dataset D, Error param-
eter ✏)

2: H �

3: for all t 2 D do
4: h(t) grid index of t using ✏ in Eq. (4)
5: if h(t) is empty then
6: Insert h(t), ht, ent(t)i in H
7: else
8: hu, ent(u)i value(h(t))
9: if ent(t) < ent(u) then

10: value(h(t)) ht, ent(t)i
11: end if
12: end if
13: end for
14: return H
15: end procedure
1: procedure ONLINE COMPUTATION (Query range ⌦)
2: Compute P (⌦) from H as described in Section 3.6
3: return S0

(⌦

✏

) FINDSKYLINES(P (⌦))
4: end procedure

For our implementation, we choose the SFS algorithm [7] as it is
an online algorithm with no requirement of index construction and,
is, thus, applicable in all situations. Moreover, it is quite simple,
easy to implement, and fairly efficient in terms of running time.

3.7 The SkyCover Algorithm
Using the above ideas, we now summarize the steps in the Sky-

Cover framework (pseudocode shown in Algorithm 1).
The framework comprises of two phases, the offline phase and

the online phase. During the offline phase, we build the SkyCover
index structure. A dynamic hash table H is maintained with the
grid cell index as the key and the 2-tuple consisting of the repre-
sentative point and its entropy, as the value. The data points are
processed one at a time. For a point t, its grid cell h(t) is computed
using Eq. (4). If there is no such key in H , a key-value pair with key
h(t) and value ht, ent(t)i is inserted. If, however, there is already
a key, then the value corresponding to it is extracted. If the entropy
of the new point is less than that of the old one, the old value is re-
placed with the new point (and its entropy). Otherwise, since there
is already a representative of this cell with a lower entropy, the new
point is discarded.

The online phase is discussed in Section 3.6.

3.8 Analysis of Running Time
In this section, we compare the running time of SkyCover algo-

rithm with that of the naı̈ve approach, discussed in Section 1, that
requires range search, followed by skyline computation, and finally
approximate skyline computation.

Assume that the cardinality of the dataset D is N , the dimen-
sionality is d, the size of the skyline set S is s, the number of repre-
sentative points left using the grid-based partitioning is m, and the
size of the SkyCover set extracted from m is k.

We assume that if the cardinality of the induced dataset D(⌦) is
n, the range search required to find all the points in the range ⌦ is
at least O(n).

We first analyze the naı̈ve approach. For skyline computation,
we consider the SFS algorithm. The SFS algorithm has the follow-
ing costs: (i) Computing entropy: O(nd) for mapping d dimen-
sions to a single value for all n points, (ii) Sorting the points based

5

5

on entropy: O(n log n), (iii) Skyline computation: O(ns) assum-
ing a window size of O(s). Hence the total time complexity of the
SFS algorithm is O(n.d+ n log n+ n.s).

Finally, using any existing approximate skyline techniques [6,
23, 32], reporting k representative skylines would require at least
O(sk) time. Hence the total time complexity of the naı̈ve approach
is at leastO(nd+ n log n+ n.s+ s.k).

The running time of the SkyCover framework comprises of the
following components: (i) Computing entropy and hashing during
the offline phase: O(nd) assuming O(1) hashing costs, (ii) Re-
trieving all the hash values during online phase: O(m), (iii) Sorting
based on entropy (during online phase): O(m logm), (iv) Skyline
computation during online phase: O(mk). Thus, the offline cost is
O(n.d), and the online cost is O(m logm+m.k).

It was shown in [2], that if the attribute values are chosen inde-
pendently, then the average number of skylines is O((lnn)d�1

).
Thus, assuming s = O((log n)d�1

), k = O((logm)

d�1

) and
d = O(1), and considering only the dominant terms, the query time
of the naı̈ve approach simplifies to O(n.(log n)d�1

+(logm)

d�1.
(log n)d�1

), and that of the SkyCover becomes O(m.(logm)

d�1

).
As m < n, the running cost of SkyCover framework is always bet-
ter than that of the naı̈ve approach, at least by an additive factor of
O((logm log n)d�1

). In Section 4.3, we present an analysis of
expected value of m.

3.9 SkyCover using Uniform Grids
The SkyCover framework can be easily modified to work with

uniform grid partitions. In this scheme, the total range R � 1 in
each dimension is split into g equal parts. The grid boundaries for
any dimension, therefore, fall at 1, 1+(R�1)/g, 1+2(R�1)/g,
etc. The total number of cells is again gd, i.e., the same as non-
uniform partitioning. The SkyCover framework remains the same
for the two cases.

3.10 Extensions of SkyCover
The grid-based hashing mechanism employed in the SkyCover

framework is generic enough to capture different kinds of errors.
For example, the error parameter can be different for each dimen-
sion. The number of partitions, g

i

, for dimension i, is computed
using the corresponding error parameter ✏

i

.
More importantly, SkyCover is not restricted to only multiplica-

tive errors. For example, guarantees for additive errors can be eas-
ily offered using uniform grid partitions. If the additive error toler-
ance is �, the width of the grid cells should be at most �.

Moreover, the SkyCover framework allows seamless integration
of skyline queries over attributes demanding different types of er-
ror tolerance. While some attributes may tolerate multiplicative
errors, some others may require additive errors, and the rest may
not tolerate any error. The dimensions for multiplicative error at-
tributes may be partitioned in a non-uniform manner, while those
for additive errors may be partitioned using equal grid widths. The
dimensions that do not tolerate any error will not be hashed at all
using the grid partitions.

We have, however, stuck to the multiplicative SkyCover frame-
work in this paper and have postponed the detailed experimentation
and analysis of the generalized framework to a later paper.

We also claim that the SkyCover framework is applicable to
streaming data settings [28] with insert-only operations. The multi-
dimensional data points arriving in the stream can be efficiently
hashed into the SkyCover index structure, and subsequently queried
upon. Similarly, the framework is particularly suited for update-
heavy workloads where most of the small updates in the values
of a point can be absorbed since it lies within the same cell. The

update in the skyline set needs to be checked only when a point
moves to a cell that was not occupied earlier. In addition, we claim
that the framework can be easily adapted for other settings such
as distributed environments [26], and moreover, help in computing
approximate top-k skylines [4, 31], progressive skylines [24, 29],
etc. However, in this paper, we do not evaluate the performance of
SkyCover over such settings.

4. PROPERTIES OF SKYCOVER
In this section, we first discuss the correctness of the SkyCover

framework, followed by quality guarantees on falsely reported range-
constrained skylines. Finally, we present a thorough analysis of the
expected number of grid representatives, m.

4.1 Correctness
The following theorem establishes the correctness.

THEOREM 1. Given any range ⌦, the SkyCover framework cor-
rectly computes its ✏-SkyCover, i.e., (1) S0

(⌦

✏

) ✓ D(⌦

✏

), and
(2) for every range-constrained skyline point s 2 S(⌦), there ex-
ists at least one t 2 S0

(⌦

✏

) that ✏-covers s.

PROOF. Assume the query range to be ⌦ =

Q

i

[l
i

, u
i

).
(1) Since the SkyCover set S0

(⌦

✏

) is a subset of the set of rep-
resentative points, P (⌦), i.e., S0

(⌦

✏

) ✓ P (⌦), it is sufficient to
show that P (⌦) ✓ D(⌦

✏

). Consider any point t 2 P (⌦) lying in
the grid cell z = hz

0

, . . . , z
d�1

i. Assuming non-uniform grid par-
titioning, the index structure ensures that 8i, x

i

 z
i

 y
i

, where
x
i

= blog
(1+✏)

l
i

c and y
i

= blog
(1+✏)

u
i

c. This implies that
8i, (1+ ✏)xi t

i

 (1+ ✏)yi+1. Plugging in the values of x
i

and
y
i

, and using the fact that for any real number a, a� 1 bac < a,
we get the following: 8i, l

i

/(1 + ✏) t
i

 u
i

.(1 + ✏). Hence,
t 2 D(⌦

✏

). Therefore, P (⌦) ✓ D(⌦

✏

).
(2) Consider a range-constrained skyline point s 2 S(⌦). Sup-

pose it lies in a grid cell z. Assume the point t to be the cell repre-
sentative of z where t may or may not be equal to s. Since s and t
are in the same cell, the construction of the non-uniform grid parti-
tioning ensures that t ✏-covers s. More formally, 8i, t

i

 (1+✏)s
i

.
If t 2 S0

(⌦

✏

), then s is covered by t. If, however, t /2 S0
(⌦

✏

),
then there must exist a point u 2 S0

(⌦

✏

) that dominates t, i.e.,
u � t. Combining with the above inequality, we get 8i, u

i

 t
i

(1 + ✏)s

i

, i.e., u ✏-covers s.

The ramification of this theorem is that even if s 2 S(⌦) was
missed, there is another point t 2 S0

(⌦

✏

) that approximates it in
the sense that it is not too bad in any of the dimensions. To be
precise, the values of t are within a multiplicative factor of (1 + ✏)
from those of s in every dimension.

Figure 2 shows an example of how Theorem 1 works. Assume
that ⌦ = [1, R)

2 where R = (1 + ✏)3. In this case, any range-
constrained skyline in S(⌦) is a skyline of D. The skyline point
u, which is reported, ✏-covers itself. The skyline t is missed and is
represented by s which has a lower entropy (the equi-entropy line
is shown as dashed). The reported point u 2 S0 dominates s, and
consequently, ✏-covers t. Similarly, even though w is not reported,
it is ✏-covered by its cell representative z 2 S0.

4.2 Falsely Reported Skylines
Even though the set S0

(⌦

✏

) returned by the SkyCover framework
correctly ✏-covers the range-constrained skyline set S(⌦), it may
happen that not every point returned is a range-constrained skyline
itself, i.e., there may exist a point u 2 S0

(⌦

✏

) such that u /2 S(⌦).
Figure 2 shows such a situation. The point v is not an actual skyline
as it is dominated by t. It is also a grid representative, i.e., v 2

6

6

P (⌦). However, since t /2 P (⌦), and there is no other point that
dominates v, v 2 S0

(⌦

✏

).
Unfortunately, the guarantees for the values of such falsely re-

ported range-constrained skylines are not very strict. Along some
of the dimensions, the values can be arbitrarily bad as compared to
an actual range-constrained skyline point. However, the next the-
orem shows that it can still be guaranteed that the values of such
falsely reported range-constrained skylines cannot be bad in all the
dimensions.

THEOREM 2. For any u 2 S0
(⌦

✏

), there does not exist any
s 2 S(⌦) such that 8i, u

i

> (1 + ✏)s
i

.

PROOF. We prove by contradiction. Suppose such a point s 2
S(⌦) exists, such that 8i, u

i

> (1 + ✏)s
i

. From Theorem 1, there
must exist t 2 S0

(⌦

✏

) that ✏-covers s, i.e., 8i, t
i

 (1 + ✏)s
i

.
Together, this implies that, 8i, t

i

< u
i

, i.e., t � u. Since t 2
S0
(⌦

✏

), therefore, u /2 S0
(⌦

✏

), which is a contradiction.

In Figure 2, even though the value of v is very large in the x-
dimension as compared to the skyline point u, it is not worse than
a ratio of (1 + ✏) in the y-dimension as well.

For real-life applications such as online hotel deals, assuming a
value of ✏ = 0.05, this implies that if there is an actual skyline hotel
with cost 100 units and distance 2 units, no hotel is reported in the
SkyCover set that has both cost more than 105 units and distance
more than 2.1 units.

4.3 Expected Number of Representative Points
In this section, we analyze the expected number of representative

grid points for the SkyCover framework. For the sake of compari-
son, we do the analysis for both uniform and non-uniform grids.

We assume that the points are generated independently and the
values are independently and uniformly distributed along the di-
mensions across the data space.

There are two types of grid cells, empty and non-empty. Since
no data point hashes to an empty grid cell, there is no representative
for such cells. For non-empty cells, however, even if there are more
points, exactly one point is chosen as the representative. Thus, we
essentially need to calculate the number of non-empty grid cells to
get an estimate of m.

4.3.1 Uniform Grids
For uniform grids, there are a total of gd grid cells having the

same volume. Hence, the probability that a point lies in a particular
grid cell is

P
point

= g�d. (6)

The probability that the cell remains empty is equivalent to the
probability that none of the n points lie in it. Since the points are
generated independently, this is equal to

P
empty

= (1� P
point

)

n

= (1� g�d

)

n. (7)

Thus, the expected number of empty cells is

E[empty] =
X

8cells

P
empty

= gd(1� g�d

)

n. (8)

The estimate for the total number of non-empty grid cells for
uniform grid partitions is, therefore,

m
u

= gd � gd(1� g�d

)

n. (9)

Expressing Eq. (9) using binomial expansion, we get

m
u

= gd � gd
✓

1� n.g�d

+

n(n� 1)

2

.g�2d � . . .

◆

) m
u

n
= 1� n� 1

2

g�d

+ . . . (10)

When n < gd, the later terms can be ignored, and therefore,
with increasing n, the ratio m

u

/n decreases. On the other hand,
when n � gd, since m is constrained to be at most gd, the ratio
will decrease when n increases. Thus, with increasing number of
points and fixed number of grid cells, the proportion of representa-
tive points decreases.

When n is fixed, and gd is increased, the proportion m
u

/n in-
creases as intuitively there are more options for a point to lie in,
and consequently, more representative points are preserved. When
gd � n, the ratio will saturate to 1.

4.3.2 Non-Uniform Grids
The analysis for non-uniform grid partitions is not so straightfor-

ward as the grid cells have different volumes. Hence, the probabil-
ity of a cell being empty depends on its location.

The volume of a grid cell x = (x
0

, . . . , x
d�1

) where 0 x
i

g � 1 is the grid index along dimension i is

v(x) =
d�1

Y

i=0

⇥

(1 + ✏)xi

+1 � (1 + ✏)xi

⇤

= ✏d(1 + ✏)
P

d�1
i=0 x

i

= ✏d(1 + ✏)�x (11)

where �
x

denotes the sum
P

d�1

i=0

x
i

for a cell x.
Since the total volume of the data space is (R � 1)

d, the proba-
bility that a point lies in the grid cell x is P

point

= v(x)/(R�1)

d.
The probability that it remains empty when n points are generated
independently is, therefore,

P
empty

= (1� P
point

)

n

=

✓

1� v(x)
(R� 1)

d

◆

n

=

1�
✓

✏
R� 1

◆

d

(1 + ✏)�x

!

n

. (12)

Thus, the expected number of empty cells is

E[empty] =
X

8cells

P
empty

=

X

8x

⇣

1� ⌧d

(1 + ✏)�x

⌘

n

(13)

=

X

8x

"

n

X

j=0

(�1)j

n
j

!

⇣

⌧d

(1 + ✏)�x

⌘

j

#

=

n

X

j=0

"

(�1)j

n
j

!

⌧ jd

X

8x

(1 + ✏)j�x

#

. (14)

where ⌧ denotes the ratio ✏/(R� 1).
To simplify the above equation, we denote (1+ ✏)j as ↵. For the

first term, i.e., when j = 0, the sum
P

8x(1 + ✏)j�x is simply the
total number of cells, which is gd. For other terms, the summation
can be computed by unrolling one dimension at a time. Thus,

X

8x

↵�

x

=

X

8x

↵
P

d�1
i=0 x

i

=

X

8i=0,...,d�1;8x
i

=0,...,g�1

⇣

↵
P

d�1
i=0 x

i

⌘

7

7

Table 2: Values of � and m for different combinations.

g d gd ✏ n � m
est

50 3 125000 0.01 10000 0.16 9588

20 4 160000 0.05 10000 0.34 9594

10 5 100000 0.05 10000 0.28 9471

7 6 117649 0.05 10000 0.19 9564

=

X

8i=1,...,d�1;8x
i

=0,...,g�1

"

X

x0=0,...,g�1

⇣

↵
P

d�1
i=1 x

i .↵x0

⌘

#

=

X

8i=1,...,d�1;8x
i

=0,...,g�1

"

⇣

↵
P

d�1
i=1 x

i

⌘

.
X

x0=0,...,g�1

↵x0

#

=

X

8i=1,...,d�1;8x
i

=0,...,g�1

⇣

↵
P

d�1
i=1 x

i

⌘

.

✓

↵g � 1

↵� 1

◆�

=

✓

↵g � 1

↵� 1

◆

X

8i=1,...,d�1;8x
i

=0,...,g�1

⇣

↵
P

d�1
i=1 x

i

⌘

= · · · =
✓

↵g � 1

↵� 1

◆

d

. (15)

Using Eq. (15) in Eq. (14), and since (1 + ✏)g = R, we get

E[empty] = gd +

n

X

j=1

(�1)j

n
j

!

⌧ jd

✓

(1 + ✏)jg � 1

(1 + ✏)j � 1

◆

d

= gd +

n

X

j=1

(�1)j

n
j

!

⌧ jd

✓

Rj � 1

(1 + ✏)j � 1

◆

d

. (16)

The computation of the exact value of the above expression is in-
feasible due to large n. However, if the expression �

x

= n(⌧d

(1+

✏)�x

) ⌧ 1 for all cells x (from Eq. (12)), then the binomial series
converges rapidly and can be bounded with very low error using
only the first few terms. For example, the second term, (i.e., for
j = 1) is simply n. Thus, a very crude estimate for the number of
empty cells is E[empty] = gd � n.

Assume that � = max8x �x

denotes the maximum value all
among the grid cells, i.e., � = n(⌧d

(1+✏)max8x

�

x

). When � < 1,
the series can be cut-off before any positive term to get a lower
bound. Thus, for example, by retaining only four terms (i.e., from
j = 0 to 3), the estimate for the expected number of empty cells is
at least

E[empty] > gd +

3

X

j=1

(�1)j

n
j

!

⌧ jd

✓

Rj � 1

(1 + ✏)j � 1

◆

d

= gd � n+

n
2

!

⌧2d

✓

R2 � 1

(1 + ✏)2 � 1

◆

d

�

n
3

!

⌧3d

✓

R3 � 1

(1 + ✏)3 � 1

◆

d

. (17)

This translates to an upper bound on the estimate of the expected
number of representative points:

m
nu

= gd �E[empty]

/ n�
3

X

j=2

(�1)j

n
j

!

⌧ jd

✓

Rj � 1

(1 + ✏)j � 1

◆

d

. (18)

where / signifies less than or equivalent.
Even if � 6< 1, the number of empty cells can be approximated

Table 3: Estimates of m using Eq. (19) and their empirical coun-
terparts; k denotes the number of terms after which m converges
(� = 1.5⇥ 10

�6 ⇥ n, g = 8, d = 7, ✏ = 0.05, gd = 2097152).

n k m
est

m
emp

1⇥ 10

4

3 9975 9977

5⇥ 10

4

4 49357 49354

1⇥ 10

5

5 97449 97463

5⇥ 10

5

7 440688 440592

1⇥ 10

6

10 782406 782116

5⇥ 10

6

23 1857515 1857442

1⇥ 10

7

40 2059755 2059738

by the first k terms of the binomial expansion:

E[empty] ' gd +

k

X

j=1

(�1)j

n
j

!

⌧ jd

✓

Rj � 1

(1 + ✏)j � 1

◆

d

. (19)

An appropriate estimate of m
nu

can then be obtained.
Table 3 shows that even when � > 1, the series converges within

a few iterations and the estimates thus obtained are quite close to
the empirical ones.

Since the maximum �
x

for any cell is (g � 1)d, the condition
under which � < 1 is n(⌧d

(1 + ✏)(g�1)d

) < 1. Note that eval-
uating Eq. (13) is computationally inefficient when the number of
cells, i.e., gd is too high. Hence, the approximation using Eq. (17)
is needed for only such cases. Table 2 shows that � < 1 for typical
values of d, g, ✏ and n when gd is high. It also lists the correspond-
ing estimates for m.

Similar to the case of uniform grids, when the number of grid
cells is fixed, but the number of points n is increased, the ratio
m

nu

/n decreases. Again, this happens as more points now hash
to the same cell. The ratio increases when number of grid cells is
increased keeping n fixed.

The more interesting observation is when the error parameter ✏ is
changed, keeping all the other parameters fixed. When ✏ increases,
the ratio of the largest grid cell to the overall volume increases and
that of the smallest decreases. In other words, the distribution of
the volume becomes more skewed. Thus, more points are likely to
lie on a smaller number of cells, thereby increasing the expected
number of empty cells. Hence, the ratio m

nu

/n decreases with
increasing ✏.

5. QUALITY METRICS
In this section, we describe the various metrics that can be used

to assess the quality of an approximate or reduced skyline set.
The first metric, proposed in [32], is the maximum Jaccard simi-

larity between any two sets of points dominated by a pair of skyline
points. The lesser the Jaccard similarity, the more diverse the two
skyline points are. For a particular size k, the more diverse the
reduced skyline set is, the better.

The second measure, proposed in [23], is the ratio of points dom-
inated by a subset of size k to the total number of points. The more
this ratio is, the better.

5.1 Covering Factor
In this paper, we introduce two more quality metrics based on

covering factor. Intutively, the covering factor is the ratio by which
a skyline needs to be stretched in order to be dominated by a re-
turned point in SkyCover. Hence. if s 2 S0, cf

s

= 1. Otherwise,
it is the (maximum) approximation ratio over all dimensions, max-

8

8

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

2 3 4 6 8 10 12 15 20 No

Ti
m

e
(m

s)

Number of partitions, g

Time for FC

Entropy+Hashing
Sorting
Skyline

Figure 3: Running times for real data (FC).

imized over all the points t 2 S0:

cf
s

= min

t2S

0

n

max

i

(t
i

/s
i

)

o

(20)

Thus, the covering factor essentially captures how well a skyline
point s 2 S is covered by an approximate skyline point t 2 S0.

5.2 Metrics Based on Covering Factor
Based on the covering factor, we propose two quality metrics:

1. Worst Covering Factor (WCF), is the maximum covering fac-
tor of all the skylines.

2. Cumulative Covering Factor (CCF), is the area under the
curve of the cumulative distribution function (cdf) of the cov-
ering factors of all the skyline points.

Lower values of WCF indicate better quality of the solution. On
the other hand, higher values of CCF signify that the covering fac-
tors attain their highest values earlier and are, thus, preferred.

6. EXPERIMENTAL RESULTS
In this section, we report in detail the results of experimenting

with both real and synthetic datasets. All the experiments were
done in Java on an Intel Core i7 CPU 870 @ 2.93 GHz machine
with 8 GB RAM running Ubuntu Linux 12.04 LTS (64-bit).

For our empirical evaluation, we assume the worst case scenario
of the query range ⌦, i.e., ⌦ = [1, R)

d. Hence, D(⌦) = D,
S(⌦) = S, and S0

(⌦

✏

) = S0.

6.1 Real Dataset
The real dataset was the Forest Covertype (FC) dataset, contain-

ing different attributes of forest cover types, available from http:
//archive.ics.uci.edu/ml/datasets/Covertype. The size of the dataset
is n = 581012. Similar to [32], only the first d = 5 attributes were
considered. All the attributes were normalized to [1, 2] space. The
number of skylines is s = 1356.

6.1.1 Running Time
Figure 3 shows the running times when the number of grid par-

titions, g, is varied. It also includes the no-grid scheme. The total
time is broken down into three components. The first is for grid par-
titioning (and entropy computation), the second is for sorting the m
representatives, and the third is for the skyline computation routine.
When g increases, m increases, thereby increasing the second and
third components as well. As expected, the difference in skyline
computation time is the main source of difference in the running

time. When no grids are employed (i.e., the basic SFS method),
the sorting and skyline finding times are too large. Overall, the
SkyCover method runs 3-9 times faster.

6.1.2 Cardinality
Table 4 shows the statistics of the cardinality of skylines for the

real dataset over the same range of g values. When m is low due
to low g, a lot of actual skylines can be missed; however, a large
proportion of them (the ratio w/s0) always have an approximate
skyline from the same grid cell. For high values of ✏, k0 approaches
s. In this case, the number of skylines falsely reported (v = k�k0)
is low as well.

6.1.3 Quality
The last set of experiments on real data measures the quality of

the three methods, SkyDiver, k-RSP and our SkyCover, on the four
quality metrics. Using a particular value of g, we first used our
method to derive the SkyCover set. Assume that the cardinality is
k. We then reduce the actual skyline set using SkyDiver and k-RSP
to the same number k.

Figure 4 shows the covering factor metrics of the three methods.
Expectedly, SkyCover is the best. Although the differences do not
look significantly large, for the same k, while we ensure the WCF
to be within (1+✏), SkyDiver and k-RSP routinely violate it. Thus,
for these methods, no multiplicative error ratio can be guaranteed.

We also conducted a second set of experiments where we took
a particular SkyCover set and reduced it to a subset of lower size,
f , using the MH method of SkyDiver and the FM method of k-
RSP. The skyline set is also reduced to the same size, f , using
both SkyDiver and k-RSP. We then quantized all the four quality
measures for varying f . We do it for g = 8 that produces k = 333.

Figure 5 shows the results. The MH method produces much bet-
ter Jaccard similarity measures. However, very interestingly, when
f is very small, using MH on SkyCover produces a better Jaccard
measure than on SkyDiver. This shows that the SkyCover repre-
sentation of the skyline set is extremely useful not only for the cov-
ering measures but also for other quality metrics. Similarly, FM
produces better domination ratios and using FM on SkyCover is
almost as good as k-RSP.

6.2 Synthetic Datasets
The synthetic datasets were generated using the code available

from http://pgfoundry.org/projects/randdataset/. The parameters ba-
sed on which the experiments were done are: (1) number of grid
partitions per dimension, g, (2) error parameter, ✏, (3) dataset car-
dinality, n, (4) dimensionality, d, and (5) type of dataset. While
experimenting, we varied one parameter at a time while fixing the
others to understand the effect of that single parameter better.

In the graphs, “NU” represents non-uniform grid partitioning,
“Uni” represents uniform grid partitioning, and “No” represents the
base method of computing the skylines without using grids.

6.2.1 Effect of Number of Grid Partitions
The first set of experiments (Figure 6a) measures the effect of

number of grid partitions, g. For low values of g (till 5), the number
of grid cells is so low (gd = 5

4

= 625) that the ratio of the number
of representative points m to the total number of points n is negli-
gible. Consequently, the cardinality of the approximate skyline is
very low as well and the entire method runs very fast. For medium
values of g (= 10), when the number of grid cells (gd = 10

4) is
comparable to (but still less than) n(= 50000), m ! gd. In other
words, almost all the grid cells are occupied. The running times
are still lower than the base non-grid method. For high values of g

http://archive.ics.uci.edu/ml/datasets/Covertype
9

9

http://archive.ics.uci.edu/ml/datasets/Covertype
http://pgfoundry.org/projects/randdataset/

Table 4: Statistics of approximate skylines for the FC dataset: n = 581012, s = |S| = 1356, d = 5, R = 2.

Partitions Grid SkyCover Skylines Skylines Skylines Covered by Coveredper Error representatives size truly falsely falsely skyline otherwisedimension reported reported missed in same cell
g ✏ m = |P | k = |S0| k0 v = k � k0 s0 = s� k0 w t = s0 � w
2 0.414214 32 13 1 12 1355 1276 79
3 0.259921 172 30 11 19 1345 811 534
4 0.189207 515 87 45 42 1311 1102 209
6 0.122462 2086 173 108 65 1248 558 690
8 0.090508 5481 333 252 81 1104 651 453

10 0.071773 12014 427 285 142 1071 545 526
12 0.059463 22015 638 483 155 873 513 360
15 0.047294 44740 783 693 90 663 412 251
20 0.035265 103734 975 869 106 487 271 216

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

S
kyD

ive
r

K
-R

S
P

S
kyC

o
ve

r

S
kyD

ive
r

K
-R

S
P

S
kyC

o
ve

r

S
kyD

ive
r

K
-R

S
P

S
kyC

o
ve

r

S
kyD

ive
r

K
-R

S
P

S
kyC

o
ve

r

S
kyD

ive
r

K
-R

S
P

S
kyC

o
ve

r

S
kyD

ive
r

K
-R

S
P

S
kyC

o
ve

r

S
kyD

ive
r

K
-R

S
P

S
kyC

o
ve

r

S
kyD

ive
r

K
-R

S
P

S
kyC

o
ve

r

W
C

F

Number of partitions, g

Worst covering factor for FC

g=20g=15g=12g=10g=8g=6g=4g=3

(a) Worst covering factor.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

S
kyD

ive
r

K
-R

S
P

S
kyC

o
ve

r

S
kyD

ive
r

K
-R

S
P

S
kyC

o
ve

r

S
kyD

ive
r

K
-R

S
P

S
kyC

o
ve

r

S
kyD

ive
r

K
-R

S
P

S
kyC

o
ve

r

S
kyD

ive
r

K
-R

S
P

S
kyC

o
ve

r

S
kyD

ive
r

K
-R

S
P

S
kyC

o
ve

r

S
kyD

ive
r

K
-R

S
P

S
kyC

o
ve

r

S
kyD

ive
r

K
-R

S
P

S
kyC

o
ve

r

C
C

F

Number of partitions, g

Cumulative covering factor for FC

g=20g=15g=12g=10g=8g=6g=4g=3

(b) Cumulative covering factor.

Figure 4: Variation of quality with number of partitions, g.

(= 25), the number of grid cells is much larger (⇡ 4 ⇥ 10

5) com-
pared to n and consequently, almost all the points lie in a separate
grid cell by itself. As a result, m ! n. The running times for the
grid-based mechanisms become worse due to the additional over-
head of hashing, etc. There is little to choose between uniform and
non-uniform grids as far as running time is concerned.

6.2.2 Effect of Error Parameter
For a fixed R, the error parameter ✏ is complementary to g. When

g increases, ✏ decreases. Hence, the effect of ✏ is the reverse of g.

6.2.3 Effect of Dataset Cardinality
We next show how the algorithms scale with increasing size of

dataset (Figure 6b). The cardinality is varied from 10

4 to 10

7 with
gd = 8

7 ⇡ 2 ⇥ 10

6 grid cells. Interestingly, the ratio of skyline
points to n, i.e., s/n decreases with increasing n (but not the ab-
solute number). When n is small compared to gd, m/n ! 1, and
there is no gain either in running time or otherwise. (Note that both
the scales in the figure are logarithmic.) When n approaches gd

(e.g., for n = 5 ⇥ 10

5, i.e., when n/gd ⇡ 1/4), the ratio m/n
starts falling off, and an appreciable difference in the running time
between using the grids and otherwise starts showing up. When n
is larger than gd, the ratio of m/n is quite low, and consequently,
the grid-based mechanisms exhibit much better running times. At
high n (= 10

7), the grid-based mechanisms are faster by a factor
of more than 3. Also, since the hashing functions for the uniform
case (which are division operations) are simpler than that for the
non-uniform case (logarithms), the difference becomes significant
at large n as there are n.d such operations.

6.2.4 Effect of Dimensionality
Figure 7a shows the effect of dimensionality, d. For independent

datasets, the number of skylines grows exponentially with d. The
running times follow the same behavior (note that the y-axis is log-
arithmic). At high d (from 10 onward), m ! n due to too many
grid cells (gd ⇠ 10

7). Consequently, there is no gain in the running
time by employing grids. For medium to low values of d (7), the
running times are much better as both m and k are lower.

6.2.5 Effect of Type of Data
The last set of experiments is to gauge the effect of the type of

the data. We generated three standard data types, independent, cor-
related and anti-correlated. For correlated data, the number of sky-
lines is low as one point is likely to dominate many points. In an
anti-correlated dataset, the skyline cardinality is high as it is un-
likely that a point dominates another.

Interestingly enough, the number of representative grid cells, m,
decreases for both correlated and anti-correlated datasets in relation
to the independent one. The reason is that the data is not spread
over the entire space uniformly, but is concentrated along certain
directions. The correlated dataset is spread along the main diago-
nal; hence, many points fall on the largest grid (g � 1, . . . , g � 1)

and m is lower. The anti-correlated dataset is spread along the main
anti-diagonal and, hence, m is significantly larger than that of the
correlated one but still lower than the independent distribution.

The running time for the anti-correlated dataset is much greater
than independent though (Figure 7b). This is due to the fact that the
high number of skylines makes the comparison step in SFS of an

10

10

 0

 0.2

 0.4

 0.6

 0.8

 1

S
kyD

ive
r

K
-R

S
P

S
kyC

o
ve

rM
H

S
kyC

o
ve

rF
M

S
kyD

ive
r

K
-R

S
P

S
kyC

o
ve

rM
H

S
kyC

o
ve

rF
M

S
kyD

ive
r

K
-R

S
P

S
kyC

o
ve

rM
H

S
kyC

o
ve

rF
M

S
kyD

ive
r

K
-R

S
P

S
kyC

o
ve

rM
H

S
kyC

o
ve

rF
M

S
kyD

ive
r

K
-R

S
P

S
kyC

o
ve

rM
H

S
kyC

o
ve

rF
M

S
kyD

ive
r

K
-R

S
P

S
kyC

o
ve

rM
H

S
kyC

o
ve

rF
M

S
kyD

ive
r

K
-R

S
P

S
kyC

o
ve

rM
H

S
kyC

o
ve

rF
M

Ja
cc

a
rd

 s
im

ila
ri
ty

Size of representative set, f

Jaccard similarity for FC

f=200f=100f=50f=25f=15f=10f=5

(a) Jaccard similarity.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

S
kyD

ive
r

K
-R

S
P

S
kyC

o
ve

rM
H

S
kyC

o
ve

rF
M

S
kyD

ive
r

K
-R

S
P

S
kyC

o
ve

rM
H

S
kyC

o
ve

rF
M

S
kyD

ive
r

K
-R

S
P

S
kyC

o
ve

rM
H

S
kyC

o
ve

rF
M

S
kyD

ive
r

K
-R

S
P

S
kyC

o
ve

rM
H

S
kyC

o
ve

rF
M

S
kyD

ive
r

K
-R

S
P

S
kyC

o
ve

rM
H

S
kyC

o
ve

rF
M

S
kyD

ive
r

K
-R

S
P

S
kyC

o
ve

rM
H

S
kyC

o
ve

rF
M

S
kyD

ive
r

K
-R

S
P

S
kyC

o
ve

rM
H

S
kyC

o
ve

rF
M

D
o

m
in

a
tio

n
 r

a
tio

Size of representative set, f

Domination ratio for FC

f=200f=100f=50f=25f=15f=10f=5

(b) Domination ratio.

Figure 5: Variation of quality with size of representative set, f .

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 5 10 15 20 25

Ti
m

e
(m

s)

No. of Grid Partitions, g

Total Time: n=50k, d=4, ε=0.05, Ind.

No
NU
Uni

(a) Number of partitions, g.

 100

 1000

 10000

 100000

 10000 100000 1e+06 1e+07

Ti
m

e
(m

s)

Dataset Cardinality, n

Total Time: d=7, g=8, ε=0.05, Ind.

No
NU
Uni

(b) Dataset cardinality, n.

Figure 6: Effect of g and n for synthetic data.

object against the current skylines much less efficient as the win-
dow size is larger. The gain in running times over the base method
is the least for the independent dataset.

6.3 Summary of Experiments
We can summarize the empirical observations obtained from the

experiments on synthetic data as follows. If all the other parameters
are fixed, it is better to increase ✏ up to the factor that the applica-
tion can tolerate. When gd is much larger than n, then m! n and
the grid-based mechanisms are not beneficial. On the other hand,
if gd is much less than n, then m is constrained by gd and the
number of approximate skylines retrieved is much lower than the
actual skyline cardinality. The SkyCover guarantees of bounded
multiplicative errors still holds, though. In general, the uniform
grid-based partitioning method is faster than the non-uniform coun-
terpart although it provides no guarantees. Finally, the number of
grid representatives is the largest when the data dimensions are in-
dependently distributed, and our method works better for correlated
and anti-correlated datasets.

7. CONCLUSIONS AND FUTURE WORK
Range-constrained skyline queries retrieve skyline points over a

query range and is a generalization of the skyline query. In spite
of having several applications, range-constrained skyline queries
have not received much research attention. The reason is that even

with a constrained range, the size of the skyline set can be imprac-
tically large. To address the above, in this paper, we introduced
the concept of approximate range-constrained skyline queries, and
proposed the SkyCover framework for efficiently computing them.
The framework employs a hashing scheme based on non-uniform
grid partitioning. The hashing itself guarantees the approximation
bound on the desired skyline set, thus avoiding any separate ap-
proximate skyline computation technique. The hashing also signif-
icantly contributes towards efficiency.

We also proposed two new metrics that can be used to measure
the quality of an approximate skyline set. Empirical evaluation of
our framework shows that it is significantly faster than the compet-
ing techniques, and yields solutions with high quality.

The grid-based hashing mechanism is generic enough to capture
other kinds of errors including additive errors and no errors. More
importantly, this framework can be applied in various settings such
as data streams, and distributed environments. Detailed experimen-
tation and analysis of such schemes remain a future work.

8. REFERENCES
[1] F. N. Afrati, P. Koutris, D. Suciu, and J. D. Ullman. Parallel

skyline queries. In ICDT, pages 274–284, 2012.
[2] J. L. Bentley, H. Kung, M. Schkolnick, and C. D. Thompson.

On the average number of maxima in a set of vectors and
applications. J. ACM (JACM), 25(4):536–543, 1978.

11

11

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12 14

Ti
m

e
(m

s)

Dimensionality, d

Total Time: n=50k, g=5, ε=0.05, Ind.

No
NU
Uni

(a) Dimensionality, d.

 200

 400

 600

 800

 1000

 1200

 1400

 1600

I C A

Ti
m

e
(m

s)

Type of Dataset

Total Time: n=50k, d=5, g=10, ε=0.05

No
NU
Uni

(b) Type of dataset.

Figure 7: Effect of d and type of dataset on synthetic data.

[3] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline
operator. In ICDE, pages 421–430, 2001.

[4] C. Brando, M. Goncalves, and V. González. Evaluating top-k
skyline queries over relational databases. In DEXA, pages
254–263. Springer, 2007.

[5] A. Z. Broder, M. Charikar, A. M. Frieze, and
M. Mitzenmacher. Min-wise independent permutations. In
STOC, pages 327–336, 1998.

[6] C.-Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H. Tung, and
Z. Zhang. Finding k-dominant skylines in high dimensional
space. In SIGMOD, pages 503–514, 2006.

[7] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with
presorting. In ICDE, pages 717–719, 2003.

[8] A. Cosgaya-Lozano, A. Rau-Chaplin, and N. Zeh. Parallel
computation of skyline queries. In HPCS, page 12, 2007.

[9] A. Das Sarma, A. Lall, D. Nanongkai, R. J. Lipton, and
J. Xu. Representative skylines using threshold-based
preference distributions. In ICDE, pages 387–398, 2011.

[10] E. Dellis, A. Vlachou, I. Vladimirskiy, B. Seeger, and
Y. Theodoridis. Constrained subspace skyline computation.
In CIKM, pages 415–424. ACM, 2006.

[11] H. Eder. On extending PostgreSQL with the skyline operator.
Master’s thesis, Vienna University of Technology, 2009.

[12] P. Flajolet and G. Nigel Martin. Probabilistic counting
algorithms for database applications. J. Computer and
System Sciences, 31(2):182–209, 1985.

[13] Y. Gao, J. Hu, G. Chen, and C. Chen. Finding the most
desirable skyline objects. In DASFAA, pages 116–122, 2010.

[14] Z. Huang, Y. Xiang, and Z. Lin. l-SkyDiv query: Effectively
improve the usefulness of skylines. SCIENCE CHINA
Information Sciences, 53(9):1785–1799, 2010.

[15] P. Indyk and R. Motwani. Approximate nearest neighbors:
Towards removing the curse of dimensionality. In STOC,
pages 604–613, 1998.

[16] W. Jin, J. Han, and M. Ester. Mining thick skylines over large
databases. In PKDD, pages 255–266, 2004.

[17] A. K. Kalavagattu, A. S. Das, K. Kothapalli, and
K. Srinathan. On finding skyline points for range queries in
plane. In CCCG, 2011.

[18] V. Koltun and C. H. Papadimitriou. Approximately
dominating representatives. Theor. Comput. Sci.,
371(3):148–154, 2007.

[19] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in the

sky: an online algorithm for skyline queries. In VLDB, pages
275–286, 2002.

[20] H. T. Kung, F. Luccio, and F. P. Preparata. On finding the
maxima of a set of vectors. J. ACM, 22(4):469–476, 1975.

[21] H. Li, Q. Tan, and W.-C. Lee. Efficient progressive
processing of skyline queries in peer-to-peer systems. In
InfoScale, 2006.

[22] Z. Li, Z. Peng, J. Yan, and T. Li. Continuous dynamic
skyline queries over data stream. J. Computer Research and
Development, 1:014, 2011.

[23] X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang. Selecting stars:
The k most representative skyline operator. In ICDE, pages
86–95, 2007.

[24] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal and
progressive algorithm for skyline queries. In SIGMOD,
pages 467–478, 2003.

[25] C. Rhee, S. K. Dhall, and S. Lakshmivarahan. An optimal
parallel algorithm for the maximal element problem
(abstract). In CSC, page 435, 1990.

[26] J. B. Rocha-Junior, A. Vlachou, C. Doulkeridis, and
K. Nørvåg. Agids: A grid-based strategy for distributed
skyline query processing. In Int. Conf. Data Management in
Grid and Peer-to-Peer Systems (Globe), pages 12–23, 2009.

[27] J. Selke and W.-T. Balke. Skymap: a trie-based index
structure for high-performance skyline query processing. In
DEXA, pages 350–365, 2011.

[28] L. Su, P. Zou, and Y. Jia. Adaptive mining the approximate
skyline over data stream. In ICCS, pages 742–745, 2007.

[29] K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient progressive
skyline computation. In VLDB, pages 301–310, 2001.

[30] Y. Tao, L. Ding, X. Lin, and J. Pei. Distance-based
representative skyline. In ICDE, pages 892–903, 2009.

[31] Y. Tao, X. Xiao, and J. Pei. Efficient skyline and top-k
retrieval in subspaces. TKDE, 19(8):1072–1088, 2007.

[32] G. Valkanas, A. N. Papadopoulos, and D. Gunopulos.
Skydiver: a framework for skyline diversification. In EDBT,
pages 406–417, 2013.

[33] P. Wu, C. Zhang, Y. Feng, B. Y. Zhao, D. Agrawal, and
A. El Abbadi. Parallelizing skyline queries for scalable
distribution. In EDBT, pages 112–130, 2006.

[34] T. Xia, D. Zhang, and Y. Tao. On skylining with flexible
dominance relation. In ICDE, pages 1397–1399, 2008.

12

12

Short Text Matching in Performance Management

Manoj Apte

Tata Consultancy Services

manoj.apte@tcs.com

Sachin Pawar

⇤

Tata Consultancy Services

sachin7.p@tcs.com

Sangameshwar Patil

†

Tata Consultancy Services

sangameshwar.patil@tcs.com

Sriram Baskaran

Tata Consultancy Services

sriram.baskaran@tcs.com

Apoorv Shrivastava

Tata Consultancy Services

apoorv.shrivastava@tcs.com

Girish K. Palshikar

Tata Consultancy Services

gk.palshikar@tcs.com

ABSTRACT
In “Role” based Performance Appraisal process the evalu-
ation of Individuals is done based on the meeting of target
for “Goals” given to that individual in the specified time pe-
riod. Standardization of goals with the help of a pre defined
“template” is important for completeness and correctness
of role definition and comparing two individuals. Since a
goal is a short textual description of expected activity we
pose this as a matching problem and explore two di↵erent
approaches that use minimal human supervision. First ap-
proach is based on co-training framework which uses goal
description and available additional information in the form
of self comments. The second approach uses semantic sim-
ilarity using weak supervision framework. We demonstrate
superior performance of the two approaches as compared to
multiple baselines. First approach gives better recall while
second approach scores better in precision. Based on the
objective of the end application any of the approaches can
be used.

1. INTRODUCTION
Quality, utilization and productivity of the workforce are

very important factors to be considered by Human Resource
(HR) Department of an organization. Performance Appraisal
(PA) of the workforce focusses on the Quality factor and is
used for identifying Top Performers and laggards in the or-
ganization. As organizations become larger it becomes dif-
ficult for the HR to measure each individuals performance
and so process oriented approach needs to be followed. One
approach followed by large organizations in this direction is
to move to Role based Performance Management. In Role
based Performance Management, each person is mapped to
certain Role based on the expected Responsibilities and Ac-
tivities to be performed. The responsibilities and activities
for each role have to be defined in such a way that they rep-

⇤Doctoral research scholar at Dept. of CSE, IIT Bombay
†Doctoral research scholar at Dept. of CSE, IIT Madras

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 21st International Conference on Management of Data.
COMAD, March 11-13, 2016, Pune.
Copyright 2016 Computer Society of India (CSI).

resent a large amount of tasks done by the workforce in the
specified role. Once the Role, Responsibilities and Activi-
ties are identified it is important to set Goals with specified
targets over a particular time period and then measure the
performance based on the inputs given by the individual as
well as the supervisor. Recently with the emergence of An-
alytic tools the PA process is also tracked for improvements
based on process parameters. The results of this analysis
also drive the process changes in the PA process.

We have worked on analyzing the PA process of a large
Information Technology (IT) company employing more than
324, 000 associates and has a robust Performance Appraisal
Process defined. The process involves the following:

1. Role is assigned for each person. A Goal template is
associated with each Role. This goal template contains
a list of standardized goals based on the role definition.

2. Supervisor sets the goals for each time period along
with targets. This is known as Goal Setting Process.
Here, the supervisor has to set at least 5 goals from
the Goal Template for the corresponding role of the
individual. These goals are known as Template Goals.

3. At the end of each time period, the individual writes
the achievements and the remarks about the work-
ing environment from his/her perspective in Self Com-
ments for each goal.

4. Based on the Self Comments, the Supervisor writes
his/her opinion on the achievements of the individual
and shortcomings if any.

5. The supervisor scores the individual based on the per-
formance.

In the goal setting process, supervisors expect some free-
dom to assign goals which are not exactly fitting the Goal
Template based on the activities the individual is expected
to perform. As a result the supervisors are given freedom to
set goals manually in addition to the template goals.

In our sample we have 156, 904 confirmed employees across
869 roles. The total number of Goals assigned is 2, 176, 974
out of which template goals are 863, 465 (39.66%) and man-
ually created goals are 1313509. The Role representing the
largest number of individuals is ’Developer’ (46, 476 Individ-
uals). The key statistics of the dataset of the Role ’Devel-
oper’ are given in Table 1 below.

We find that supervisors have used their freedom to as-
sign goals outside the template and assigned lot of manually

13

13

#Individuals 46,476
#Goals 638,301
#Template Goals assigned 324,036
#Manually created goals assigned 314,265
#Manually created goals 46,853
Size of Goal Template 41

Table 1: Details for the role “Developer”

created goals. Some of these goals are likely to be very sim-
ilar to one of the template goals. For example, following
manually created goals are very similar to the template goal
Number of Certifications:

1. # Certifications

2. No. of certification taken

3. No of certifications obtained

4. Domain Certification

High number of manually created goals poses the following
problems :

1. Completeness and correctness of Role Definition - If
unusually high number of manually created goals that
are not similar to any of the template goal are as-
signed, then the Role definition should be reviewed to
see whether some of the responsibilities and activities
for the Role as expected by the supervisors should be
added. Similarly,

2. Comparison of two individuals based on Goal assign-
ment - Generally organizations follow the method of
ranking the individuals and forced distribution where
the individuals are compared with each other. In such
a scenario, it is important that the expectations from
the individuals are comparable. Such a comparison of
expectations can be done by comparing the goals set
for the individuals. It is not possible unless the goals
are mapped against a standard.

To solve the above problems it is important to standardize
individual collection of goals. It can be achieved by match-
ing each manually created goal to its equivalent template
goal. The manually created goals which are not equivalent
to any of the template goals should be kept separate.
There are 3 types of inputs available which help in de-

termining whether a goal description is matching with one
of the template goals : (i) Template Goal description, (ii)
Description of manually created goal and (iii) Self Com-
ments written by individuals for the goal. For the matching
of manually created goals with the template goals, we ex-
plore two di↵erent classification based approaches. The first
approach uses a well-known co-training [3] framework and
the second one uses semantic similarity using weak super-
vision [22] framework. The former approach uses all the 3
available inputs but no human-in-the-loop. The latter uses
the goal descriptions along with human feedback and uses
active learning to minimize human intervention.
The rest of the paper is organized as follows. Section 2

covers the related literature and its limitations for applying
in our domain. Our co-training based approach is described
section 3 and weak supervision based approach is described

in section 4. We have compared our approaches with dif-
ferent baseline implementations and we present the detailed
results in section 5. Finally, we conclude in section 6 with
some discussion on future work.

2. RELATED WORK
In performance appraisal systems, generally supervisors

set crisp, direct and objective goals. Therefore, most of the
goal descriptions are quite short having average length of 10
words. Classification of short documents has been an area
of active research in the natural language processing and in-
formation retrieval communities. Tweet classification is an
increasingly important variant of the short text classifica-
tion problem. Tweet classification to improve information
filtering has been investigated in [26, 25]. They have fo-
cused on extracting tweet specific features (such as user call
out, shortening of words, presence of time-event phrases,
opinionated words etc.) and used standard supervised ma-
chine learning approach with naive Bayes algorithm as the
learner. Another kind of short text is seen the textual sur-
vey responses. Classifying the short text documents seen in
survey responses has been tackled by Giorgetti et al [11].
For this type of short documents, Giorgetti et al. observed
that supervised learning methods outperform the dictionary
based approach. Li and Yamanishi [14] use frequent pat-
terns and association rule mining for classifying short text
in automobile survey. Sun [27] proposed a simple, scalable
and non-parametric approach for short text classification. It
first selects representative query words using bag of words
and Clarity score and then searches for a small set of labelled
short texts best matching the query words. The predicted
category label is the majority vote for the search results.
Lu and Li [17] proposed a deep architecture for matching
short texts for addressing various matching tasks like find-
ing relevant answers to a given question. Other approaches
for short text classification are proposed by Zelikovitz and
Hirsh [30], Bobicev and Sokolova [4] and Chen et al. [6].

Due to scarcity of labelled data and high cost involved
in construction of it, semi-supervised learning approaches
are used. Zhu [31] surveys various semi-supervised learn-
ing approaches such as self-training, co-training, Expecta-
tion Maximization (EM) and di↵erent graph based methods.
Nigam et al. [20] proposed an approach for semi-supervised
text classification from labelled and unlabelled documents
using EM. Co-training [3] is a popular semi-supervised ap-
proach for training a classifier using both labelled and un-
labelled data. Co-training requires two mutually indepen-
dent feature views where each individual view is su�cient
for classification. Two models are trained with initial la-
belled data, each using one of the feature views. They are
then used to classify the remaining unlabelled records and
very high confidence predictions by either of the model, are
added to the labelled data. The models are re-trained us-
ing the additional labelled data and the process is repeated.
Short text with side information can be easily mapped to
two separate feature views - i) Features derived from short
text itself; and ii) Features derived from the side informa-
tion. Hence, co-training is one of the natural choices for
addressing the problem of short text matching with side
information. Nigam and Ghani [19] proposed a hybrid algo-
rithm namely co-EM which is a combination of co-training
and EM. Like co-training, it uses two feature views and like
EM, it probabilistically labels all the unlabelled data. An-

14

14

other approach by Ghani [10] proposes a framework to incor-
porate unlabelled data in Error-Correcting Output Coding
(ECOC) by decomposing multiclass problem into multiple
binary problems and then using co-training to learn the in-
dividual binary classification problems. This was designed
to scale up for multi-class classification with large number
of classes.

There are special techniques designed for classification
when labelled data is available only for positive class. Li
and Liu [15] and Liu et al. [16] consider this problem of text
classification with only one class of labelled documents and a
set of unlabelled documents. Classifier is built in two steps.
First step just identifies a reliable set of negative instances
from the set of unlabelled instances. Second step iteratively
builds a classifier using algorithms like EM. Fung et al. [9]
and Elkan and Noto [7] also propose di↵erent approaches
which use only positive data for learning.

3. METHOD 1: GOAL DESCRIPTION CLAS-
SIFICATION USING CO-TRAINING

Wemodel the problem of matching manually created goals
to template goals as a classification problem. We opt for a
semi-supervised learning based approach for two main rea-
sons : i) Initial labelled data is limited in size and ii) unla-
belled data is easily available.

Initial labelled data is constructed automatically by us-
ing the set of template goals where each template goal is
assigned a distinct class label. Optionally, we can manually
assign same class label to multiple template goals which are
“semantically” similar. In addition to class labels covering
the template goals, there is a special class label NONE which
indicates that none of the template goals are matching.

We propose to use co-training framework [3] for semi-
supervised learning. The major motivation for opting for
co-training framework was that there is a natural separa-
tion of information used for classification of manually cre-
ated goals. There are 2 di↵erent views of each goal (template
goal as well as manually created goal):

1. V1: Goal description itself

2. V2: Self comments written for the goal

The intuition behind using V2 is that similar goals are un-
derstood by the individuals in similar way and hence the
corresponding self comments tend to be similar.

Two di↵erent classifiers are trained, each using features
generated from only one of the views. We use Maximum
Entropy Classifier with real-valued features.

3.1 Classifier C1: Using Goal Descriptions
Classifier C1 is trained using features generated only from

the goal descriptions. For each goal description, various fea-
tures are generated as follows:

1. Root-word of each word in the goal description be-
comes a feature. The value of the feature is set to �i

where 0 < � < 1 and i is the index of the correspond-
ing word. The intuition is that value corresponding to
a word feature is lower if that word appears later in
the goal description. In practice, the value of � equal
to 0.95 is used.

2. If a goal description contains any two words such that
both the words occur in a single “template” goal de-

scription, then such a combination of two words be-
comes a feature with a fixed weight of 1.5. Since the
goal descriptions are generally short, we expect such
pair of words to capture its essence in a better way.

3.2 Classifier C2: Using Self Comments
Classifier C2 is trained using features generated only from

the self comments. For each goal description, various fea-
tures are generated as follows:

1. A set of self comments is associated with each goal
description. Root-words of all the words used in these
self comments become features.

2. A bag-of-words is created for each goal description
by using the set of associated self comments. This
bag-of-words can be viewed as a large document. Fol-
lowing the Information Retrieval (IR) literature, TF-
IDF (Term Frequency - Inverse Document Frequency)
scores are computed for each word. For each word fea-
ture, its value is nothing but the corresponding TF-
IDF score.

3.3 Challenge of Negative Instances
Our initial labelled data is constructed automatically us-

ing the set of template goals. This process does not label
any goal with negative label, i.e. NONE. We cannot charac-
terize the NONE class using a finite set of labelled examples.
Hence, manually labelling examples of NONE class is not suf-
ficient. This poses a challenge to train a classifier with just
positive examples. We deal with this challenge in following
way:

1. Identifying candidate negative goals: For each
goal, we associate two word vectors which are vector-
space representations using the views V1 and V2. For
each manually created goal, we find its similarity with
all the template goals. Both the views are considered
and cosine similarity between the word vectors is used
as a similarity measure. All those manually created
goals having the highest similarity with any template
goal, lower than a pre-defined threshold, are identified
as “candidate negative” goals. Algorithm 1 describes
the detailed procedure.

2. Co-Training: The “candidate” negative goals identi-
fied in the previous step are not considered as a part
of unlabelled goals during the Co-Training iterations.

3. Disagreement between two views: After the ter-
mination of Co-Training process, the “candidate” neg-
ative goals are classified using both the classifiers. If
two classifiers predict di↵erent class labels for any “can-
didate” negative goal and none of it is very confident
about its classification, then such goals get the final
class label as NONE.

3.4 Challenge of Class Imbalance
In each iteration of co-training, the unlabelled instances

which are classified with high confidence are added to the
labelled data along with the predicted label. As a template
goal corresponds to a class label in our case, depending on
the variation in the manually created goals belonging to a
particular template goal, the confidence values assigned for

15

15

Data: T (Set of template goals), N (Set of manually
created goals), ↵ (Weight given to V1, lies
between 0 and 1 with default value = 0.6), ✓
(Similarity threshold on cosine similarity with
default value = 0.2)

Result: N
neg

(Set of manually created goals which are
candidates for negative (NONE) class)

1 WV1 := []; /* Empty mappings with key = goal and

value = word vector using V1 */

2 WV2 := []; /* Empty mappings with key = goal and

value = word vector using V2 */

3 foreach g 2 T [N do

4 WV1[g] := TF-IDF word vector using goal
description of g;

5 WV2[g] := TF-IDF word vector using self comments
for g;

6 end

7 foreach g 2 N do

8 S
max

:= 0;
9 foreach g0 2 T do

10 sim1 := CosineSim(WV1[g],WV1[g
0]);

11 sim2 := CosineSim(WV2[g],WV2[g
0]);

12 sim := ↵ · sim1 + (1� ↵) · sim2;
13 if sim > S

max

then S
max

:= sim

14 end

15 if S
max

< ✓ then N
neg

:= N
neg

[g

16 end

17 return N
neg

;
Algorithm 1: Algorithm GetNegativeCandidates to deter-
mine candidates for negative (NONE) class

each class may vary. If the only criteria for adding instances
to the labelled set is to check whether the classification prob-
ability is more than some threshold, then some class imbal-
ance may get introduced in the labelled set in each iteration.
Figures 1 and 2 show the skewed class distribution in the
first iteration of co-training algorithm if a fixed threshold is
used to select instances to add. In order to prevent this, our
algorithm enforces a constraint on maximum and minimum
number of instances of any class to be added to the labelled
set in each iteration. This ensures that all classes get a fair
representation in the labelled data.

3.5 Classification using Co-training framework
Algorithm 2 describes our co-training based approach in

detail. The overview of this approach is as follows:

1. The initial labelled data is automatically created by
labelling each template goals with di↵erent class label.
All the manually created goals constitute the initial
set of unlabelled goals.

2. A set of “candidate” negative instances is identified
(line 3) and these instances do not participate in co-
training iterations.

3. Two classifiers are trained using the labelled data :
(i) C1 using the goal descriptions view, V1 and (ii) C2

using self comments view, V2 (lines 6-7).

4. All the unlabelled goals which are not candidates for
“negative” class are classified using both C1 and C2.
The predictions along with classification confidence are
recorded (lines 9-17).

Figure 1: Class Distribution of instances classified

by C1 with confidence more than some threshold in

the first iteration

Figure 2: Class Distribution of instances classified

by C2 with confidence more than some threshold in

the first iteration

5. For each classifier, for each class label, unlabelled in-
stances predicted with high confidence are added to
the set of labelled instances such that the constraints
on minimum and maximum number of additions are
complied with (lines 19-36).

6. The steps 3 to 5 are repeated till number of iterations
reaches the specified limit or no new additions take
place.

7. After co-training iterations, all the remaining unla-
belled instances (including “candidate” negative in-
stances) are classified using both the classifiers. If at
least one classifier predicts a class label with the con-
fidence greater than the defined thresholds, then the
identified class label is assigned (lines 41-46). Rest
of the instances are labelled as NONE (lines 47-48).

4. METHOD 2: GOAL DESCRIPTION CLAS-
SIFICATION USING WEAK SUPERVI-
SION

As discussed in earlier section, there are basically three
types of inputs which help in determining whether a de-
scription of a manually created goal is similar to one of the
available goals in the “template of goals” for a given role.

16

16

Data: T (Set of template goals), N (Set of manually created goals), I (Maximum number of co-training iterations),
ADD

max

, ADD
min

(Maximum and minimum number of unlabelled goals per class in each iteration for each
classifier), ⌘1, ⌘2 (Confidence thresholds for two classifiers), ⌘0

1, ⌘
0
2 (Lenient confidence thresholds for two

classifiers), ⌘a, ⌘f

1 , ⌘
f

2 (Confidence thresholds used for final predictions)
Result: Set of tuples of the form (goal,label) where goal is from N and label is the matching template goal in T and

NONE if none of the template goals match.
1 L := T ; /* Initialize to set of tuples (template goal, class label) */

2 U := N ; /* Initialize to set of manually created goals */

3 N
neg

:= GetNegativeCandidates(T,N, 0.6, 0.2) ; /* N
neg

⇢ N */

4 iter := 0;
5 while iter < I do

6 C1 := MaxEnt Classifier trained using goal descriptions in L;
7 C2 := MaxEnt Classifier trained using self comments for each goal in L;
8 GC1 := [];GC2 := [] ; /* Empty two-level mappings with key1 = label, key2 = goal, value = confidence */

9 foreach g 2 U do

10 if g 2 L or g 2 N
neg

then continue;
11 (l1, pr1) := Classify g using C1; (l2, pr2) := Classify g using C2;
12 if iter < J and l1 = l2 then /* Agreement of classifiers is checked for first J(< I) iterations */

13 GC1[l1][g] = pr1; GC2[l2][g] = pr2;
14 else if iter � J then

15 GC1[l1][g] = pr1; GC2[l2][g] = pr2;
16 end

17 end

18 N := 0 ; /* Overall number of unlabelled goals added to L in current iteration */

19 foreach label 2 GC1.keys do

20 N
label

:= 0 ; /* No. of unlabelled goals added by C1 to L with label in current iteration */

21 foreach (g, pr) 2 GC1[label] do /* selected in descending order of pr for the given label */

22 if (N
label

< ADD
max

and pr > ⌘1) or (N
label

< ADD
min

and pr > (⌘0
1 + (iter ⇤ 0.05))) then

23 L := L [(g, label); N
label

:= N
label

+ 1; N := N + 1;
24 end

25 if N
label

> ADD
max

then break;

26 end

27 end

28 foreach label 2 GC2.keys do

29 N
label

:= 0 ; /* No. of unlabelled goals added by C2 to L with label in current iteration */

30 foreach (g, pr) 2 GC2[label] do /* selected in descending order of pr for the given label */

31 if (N
label

< ADD
max

and pr > ⌘2) or (N
label

< ADD
min

and pr > (⌘0
2 + (iter ⇤ 0.05))) then

32 L := L [(g, label); N
label

:= N
label

+ 1; N := N + 1;
33 end

34 if N
label

> ADD
max

then break;

35 end

36 end

37 if N = 0 then break;
38 end

39 foreach g 2 U do

40 (l1, pr1) := Classify g using C1; (l2, pr2) := Classify g using C2;
41 if l1 = l2 and

1
2 (pr2 + pr2) > ⌘a

then

42 L := L [(g, l1);

43 else if pr1 > ⌘f

1 then

44 L := L [(g, l1);

45 else if pr2 > ⌘f

2 then

46 L := L [(g, l2);
47 else

48 L := L [(g,NONE);
49 end

50 end

51 return L;
Algorithm 2: Method 1 : Our Co-training based approach

17

17

The three types of inputs are: (i) the textual description
of a goal in the set of “template goals” (i.e., the goals to
be used as set of classes/categories in classification process),
(ii) the textual description of a manually created goal whose
similarity with one of the existing “template goals” is to
be determined, and (iii) the text of comments (also called
self-comments made by an appraisee in support of his/her
achievements corresponding to the goal (i.e. the input goal
in previous item (ii)).

Apart from the co-training based approach for classifica-
tion mentioned in another section (which mainly uses the
input goal description and self-comments as features), we
propose to measure the similarity between the textual de-
scription of a “template goal” and the manually created
goals to be classified. We note that often the goal descrip-
tions are written more like phrase based text snippets and
do not have complete sentence structure. In many ways the
textual goal descriptions are similar to short text snippets
observed in product review comments or textual responses
to open-ended survey questions. Hence, we use the algo-
rithm 3 which is a variant of the short text classification
algorithms described in [22, 21] and adapt it to the current
problem of manually created goal classification for the em-
ployee performance management problem. This algorithm
uses weak supervision to minimize the human e↵ort required
to create labeled training data. We use a two stage iterative
method in which we carry out first level classification using
the similarity between the “template goal” description and
the manually created goal without any human supervision
(i.e., without use of labeled training data). The output of
this stage is then passed through a weakly supervised learn-
ing stage. We use active learning paradigm for weak su-
pervision to minimize the amount of feedback sought from
human expert.

4.1 Stage I - Semantic text similarity based
classification

We first compute semantic similarity between the “tem-
plate goal” description and manually created goals to be
classified. For this purpose, we represent each word/phrase
in the textual description of “template goal” (i.e., class) us-
ing its WordNet [8] synset ids to capture the expected mean-
ing of each word. Further, we assign a numeric weight to
measure the relative importance of this word/phrase within
the “template goal”. For determining expected meaning of
a word/phrase, we make use of unsupervised word sense dis-
ambiguation techniques [18, 12]. For a given word, this en-
ables us to find out synonyms, antonyms as well as other re-
lated words (hypernyms, hyponyms etc.). To estimate rela-
tive importance of a word/phrase within the “template goal”
description, we use the numeric weight assignment as de-
scribed in [22]. We then find out word/phrase level overlap
between the semantically enriched representation of “tem-
plate goal” and the input textual description of manually
created goal whose similarity with the “template goal” is to
be computed. For the set of common words/phrases, the
numeric weight signifying their relative importance is com-
bined together. To compute the aggregate value of these
possibly multiple relative importance values, we use the cer-
tainty factor algebra (CFA) [5]. If this aggregate value is
above a pre-determined threshold, the manually created goal
is deemed to be similar to the “template goal” and classified
accordingly.

Data: T (Set of template goals), N (Set of manually
created goals), I (Maximum number of
iterations)

Result: Set of tuples of the form (goal, set of labels)
where goal is from N and set of labels is the
set of matching template goals in T and
NONE if none of the template goals match

1 while iter I do

2 Stage-I:
3 foreach t 2 T do

4 L
t

= ;
5 Let (w1, w2, . . . , wt

) be the sequence of words in
the textual goal description of template goal t.

6 Let t0 = (w0
1, w

0
2, . . . , w

0
t

) be new semantically
enriched representation of t; where w0

i

= set of
estimated word senses and corresponding related
words (synonym, derivationally related words)
of w

i

determined by using unsupervised WSD
techniques [18] as well as considering the
feedback received in the weak supervision stage.

7 foreach n 2 N do

8 c
nt

0 = n \ t0

9 If the combined IDF-based relative
importance of words in c

nt

0 is above a
threshold ✓, then L

t

= L
t

[n (i.e., assign t
to n).

10 end

11 end

12 Stage-II:
13 foreach t 2 T do

14 C
t

= Output of Clustering(L
t

)
15 foreach c 2 C

t

do

16 Seek human feedback about correctness of
assignment of t to medoid of cluster c

17 Update t0 based on feedback.
18 end

19 end

20 iter++;
21 end

22 return {(t, L
t

)|t 2 T}
Algorithm 3: Method 2: Goal description classification
using semantic similarity and weak supervision

4.2 Stage II - Weak Supervision using Active
Learning

The classification carried out in the stage-I is vetted us-
ing human supervision. To minimize the human involvement
and to use the weak supervision machine learning paradigm,
we use active learning [24]. The most informative examples
from the output of stage-I are selected using the active learn-
ing informativeness criteria. These examples are then pre-
sented to a human expert to ascertain whether the classifica-
tion is correct. We cluster the manually created goals which
have been deemed similar with a given “template goal” and
then select a representative example for each cluster which
is then queried to the human expert. To estimate the num-
ber of clusters, silhouette coe�cient [28, 13, 23] is used.
Silhouette Coe�cient (ShC) is a practically useful measure
to compare the trade-o↵ between intra-cluster cohesiveness
and inter-cluster separation. Silhouette coe�cient for ith

data point is given by ShC
i

= bi�ai
max(ai,bi)

, where a
i

is the

18

18

average distance between ith data point and other points
in the same cluster; and b

i

is average distance between ith

data point and all other points in the next nearest cluster.
Silhouette Coe�cient for a given clustering of data-points
is average of individual ShC

i

values. At run-time, multiple
clusterings are tried out and the clustering having highest
silhouette coe�cient among the explored is chosen as the
final clustering. A representative example from each cluster
is chosen as the query to be posed to the human expert.
The label verification by human expert is used for updated
classification in the next iteration. The specific and detailed
description of the technique is given in the algorithm pseu-
docode.

5. EXPERIMENTAL ANALYSIS
To demonstrate e↵ectiveness of our approaches, we have

compared it with classification using standard similarity mea-
sures like Cosine, Jaccard and Dice similarities with a de-
fined threshold for each and o↵ the shelf implementation of
Nave Bayes and Maximum Entropy classifiers. Before we
define the experiment setup we describe the datasets.

5.1 Dataset for Baseline Algorithms
We have used the performance appraisal dataset of an or-

ganization for one year. We have taken the goals that are set
for the given year to all the associates. Since we are doing
the analysis role-wise, we have identified the most frequently
assigned role in the organization and run the di↵erent algo-
rithms for that role.

The data for the algorithms contains original goal texts.
We perform cleaning of the original goal text to get a cleaned
goal text. The cleaning process starts with POS Tagging
where each word of the text is tagged with the Part of
Speech. We have used both Open NLP [1] and Stanford
POS tagger [29] for POS Tagging. The choice of the POS
Tagger didn’t make a significant di↵erence in the final clas-
sification results.

The goal names are very short and noisy text. They are
bound to have spelling mistakes and human errors. We do
a spell check of the goal names based on a corpus of valid
words that are highly frequent in the given domain. We
used Jazzy [2] for spell check and used the first suggestion
(if present) as the valid word. Based on domain knowledge,
we also replace known acronyms with their expansions. For
example, all occurrences of CSI are replaced with Client

Satisfaction Index.
The cleaning process removes all the punctuation marks

and converts all upper case to lower case characters. It re-
moves a set of stop words from the given goal name. Along
with the general stop words like and, the, on etc., we also
remove domain-specific stop words like number, percentage,
project, etc. Based on domain knowledge, we replaced cer-
tain words in the goal text with their synonyms. For exam-
ple, both the words customer and client (which are syn-
onyms) are quite frequently used and we replace all occur-
rences of customer with client. We also performed lemma-
tization of the remaining words in the goal names to identify
the root words based on their POS Tagging. For example, all
the verbs like training, trains, trained are replaced with
their root word train. Also, all the nouns like trainings

and training are replaced with their root word training.

5.2 Dataset for Co-training based Approach
The dataset for the baseline algorithm will be used as

training data for one of the classifiers. Apart from the goal
names dataset created above, the co-training uses another
view for the second classifier. The dataset for this view
is taken from self comments written by the associates. For
every goal we take a list of corresponding self comments and
process them to form a TF-IDF based word vector.

5.3 Validation
We have performed all the experiments for the role “De-

veloper”. The Goal Template for this role contains 41 goals.
We grouped “semantically” similar goals with the template
so that they get the same class label. This resulted into 21
distinct class labels for the 41 template goals. For valida-
tion, we annotated 1000 manually created goals with one of
the 21 newly defined class labels or NONE for the role “De-
veloper”. Henceforth in the paper we will call it as Gold
Standard.

Our gold standard dataset consists of 1000 distinct goals
where each goal can be assigned to multiple individuals. To-
tal number of assignments for these 1000 distinct goals is
2, 010, 627. From academic point of view, validation of clas-
sifiers is generally done on distinct records (goals). But in
the industrial scenario, the validation in terms of number
of assignments is more meaningful. Hence, we report the
results on both distinct goals as well as total assignments.

We measure coverage 1, precision, recall, accuracy and
f-measure for both the cases and compare them across dif-
ferent algorithms.

5.4 Evaluation Measures
Our classification algorithms predict one of the K positive

classes or 1 negative class (NONE). The predictions of various
algorithms on gold-standard dataset are compared with the
manual annotations and a (K+1)⇥(K+1) confusion matrix
C is defined as follows. The rows of this matrix correspond
to the actual labels whereas the columns correspond to the
predicted labels. Without loss of generality, we assume that
the 0th row and column correspond to the NONE label. Any
cell C

ij

of this matrix represents number of goals having
ith true label and jth predicted label. Using this confusion
matrix C, we compute following measures.

1. True Positives (TP): Number of goals having the
predicted non-NONE label same as the gold-standard
label.

TP =
KX

i=1

C
ii

2. False Positives (FP): Number of goals having dif-
ferent gold-standard label than the predicted non-NONE

1Fraction of goals which are not classified as NONE

19

19

label.

FP =
KX

j=1

C0j +
KX

i=1

KX

j=1
j 6=i

C
ij

3. False Negatives (FN): Number of goals having dif-
ferent predicted label than the non-NONE gold-standard
label.

FN =
KX

i=1

C
i0 +

KX

i=1

KX

j=1
j 6=i

C
ij

4. Fraction Correct (FC): Fraction of goals having the
predicted label same as the gold-standard label, in-
cluding NONE.

FC =

P
K

i=0 CiiP
K

i=0

P
K

j=0 Cij

Using above measures, we calculate micro-averaged
precision, recall and F-measure.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F �measure =
2 · Precision ·Recall

Precision+Recall

Similar set of measures (TP, FP, FN, FC, Precision,Recall
and F �measure) are defined considering number of assign-
ments instead of distinct goals.

5.5 Baseline Experiments
We compare our algorithms with basic similarity measures

with given thresholds. We compare it with classifiers based
on standard similarities like Cosine, Dice and Jaccard. Mod-
ified “Developer” template with 21 distinct class labels is fed
as the training data for the di↵erent baseline experiments.
Cosine Similarity: Each goal description is represented
with a TF-IDF based word vector. Similarity between any
two goal descriptions g1 and g2 is computed as follows:

CosineSimilarity(g1, g2) =
~wv1 · ~wv2

k ~wv1kk ~wv2k

where ~wv1 and ~wv2 are word vector representations of g1
and g2, respectively.
Dice & Jaccard Similarity: Each goal description is ini-
tially cleaned as explained earlier in the section 5.1 and rep-
resented with a set of words contained in the clean descrip-
tion.

DiceSimilarity(g1, g2) =
2 · |S1 \ S2|
|S1|+ |S2|

JaccardSimilarity(g1, g2) =
|S1 \ S2|
|S1 [S2|

where S1 and S2 are set of words representing g1 and g2,
respectively.

For the similarity based classifiers, we compare the every
manually created goal with each template goal and assign

the corresponding class label of the most similar template
goal. We define thresholds �

cosine

, �
dice

and �
jaccard

for
assigning class labels to only highly similar goals. All the
manually created having the maximum similarity lower than
the threshold, are assigned the NONE class. This increases
the precision of the classifier when validated with the Gold
Standard dataset.

For completeness of our baseline implementations, we have
also used two o↵ the shelf classifiers, Nave Bayes and Max-
imum Entropy classifiers. Since the Nave Bayes builds on
word probabilities and occurrences, we consider all the words
when calculating the TF-IDF for the words and thereafter
the word vectors. This pre-processing of data is provided
so the model for the classes during training phase is built
based on the entire corpus rather than the considering the
limited set of words in the modified “Developer” template.
We use the implementation present in Weka [?] to train and
predict the classes for the manually created goals.

5.6 Results
We compare our approaches with various baselines by

computing the evaluation measures defined in the section 5.4.
It can be seen in the Table 2 shows that our approaches
have clearly outperformed the baseline methods. The best
F-measure is reported by the method 2 whereas method 1 re-
ports the best recall among all the methods. Our methods
report significantly better results when number of assign-
ments are considered as shown in the Table 3.

Approach Precision Recall F1 FC

Dice 0.55 0.53 0.54 0.45
Jaccard 0.56 0.53 0.54 0.45
Cosine 0.59 0.52 0.56 0.47

Nave Bayes 0.58 0.50 0.54 0.42
Max-Ent 0.54 0.56 0.55 0.44
Method 1 0.73 0.67 0.70 0.61
Method 2 0.86 0.60 0.71 0.70

Table 2: Comparative Performance of all approaches

considering distinct goals in the Gold-standard

dataset

Approach Precision Recall F1 FC

Dice 0.71 0.68 0.69 0.58
Jaccard 0.71 0.68 0.69 0.58
Cosine 0.70 0.65 0.66 0.56

Nave Bayes 0.58 0.52 0.55 0.45
Max-Ent 0.53 0.49 0.51 0.40
Method 1 0.91 0.95 0.93 0.88

Method 2 0.94 0.78 0.85 0.81

Table 3: Comparative Performance of all approaches

considering number of goal assignments in the Gold-

standard dataset

5.7 Discussion
Method 1 based on Co-training framework achieves more

recall and coverage. Unlike method 2, it requires no supervi-
sion and makes use of additional information from self com-
ments. Consider the goal description: Effort in process

improvement initiatives. Method 1 is able to match it
correctly to the template goal Re-engineering saves even

20

20

Template Goal Matched Manually Created Goal

of Process / Technical / Domain Related

Competencies required for the Role

On the track learning of relevant technologies(as

applicable like:Flex,Drool,Java.ETL,Tibco,SQL)

Contribution to Focus Groups Time spent in implementing account level

initiatives per quarter

Number of Consulting Engagements/ New Project Wins

thru Innovative Ideas

No. of unsolicited proposals leading to the

revenue growth

% SLA compliance/ Remedy Compliance Root Causes in TTs as per Incident Mgmt SOP. Drive

for self and onsite and offshore team.

Number of Consulting Engagements/ New Project Wins

thru Innovative Ideas

Number of Demand or Bid Management or Pre- Sales

Support (Demos, RFPs) participated and contributed

effectively

Succession/ Fluidity Planning Number of working Backup groomed & cross

transitiion achieved with resource optimization

Table 4: Examples of manually created Goals matched with their most suitable Template Goals

though there are no explicit keywords for this template goal
in the goal description. Self comments provide the knowl-
edge that process improvement is semantically similar to
Re-engineering saves. Likewise, more keywords are from
self comments which results in better recall and coverage.

Method 2 achieves better precision and F-measure (dis-
tinct) as compared to method 1 as it uses semantic similarity
and weak supervision based on active learning. Consider the
goal description: Contribution of articles, discussions

to Knowledge sharing platform. Method 2 matches it cor-
rectly to the template goal No. of reusable components

developed/ deployed whereas method 1 makes an incor-
rect match to the template goal Contribution to Focus

Groups. This is because self comments may introduce some
noise which may mislead method 1 in making a wrong pre-
diction.

Table 4 shows some examples of manually created goals
for various roles in the organization that are matched to
relevant template goals. It can be observed that in spite of
not having exact word match with the template goals, our
methods were successful in matching manually created goals
with appropriate template goals. We have got the results
validated from HR domain experts.

5.8 Tuning of Parameters for Method 1 (Co-
Training Approach)

Since the co-training based approach has a large number
of parameters, it is important to empirically determine the
best set of parameter values. For this, we randomly divide
the gold standard dataset into 5 parts of 200 goals each. Any
one of these parts is treated as a “validation” dataset and a
set of parameters leading to the best performance in terms
of F-measure (distinct) is chosen. Then the classification
performance using the same of parameters is measured on
the remaining 800 goals. This is repeated for each part of
200 goals identified as “validation” and all the performance
measures reported are averaged.

We have tuned the following parameters (in the Algo-
rithm 2) using the above mentioned tuning process.

1. I : The co-training process stops if no new additions
in labelled data happens in any iteration. To limit the
training time, a limit I on number of iterations is used.

2. J : In the initial iterations of co-training, it is undesir-
able to add incorrect predictions to the labelled data.

In the initial J iterations where J < I, we update
the labelled data with the classified data point only if
both the classifiers predict the same class label with
confidences greater than the respective thresholds, ⌘1,
⌘2.

3. ⌘1, ⌘2 : These are the confidence thresholds for clas-
sifiers C1 and C2 respectively to add goals into the
labelled data during co-training.

4. ADD
max

, ADD
min

: These are used to address the
problem of Class Imbalance as described in the sec-
tion 3.4.

5. ⌘0
1, ⌘

0
2 : During co-training, if the condition of ADD

min

is not satisfied, we reduce the original confidence thresh-
olds to ⌘0

1 and ⌘0
2.

6. ⌘a, ⌘f

1 , ⌘
f

2 : After co-training, the final predictions for
the unlabelled goals are determined using these thresh-
olds.

The best combination of parameters after tuning is : I =
5, J = 3, ⌘1 = 0.8, ⌘2 = 0.8, ADD

max

= 10, ADD
min

=
1, ⌘0

1 = 0.3, ⌘0
2 = 0.4, ⌘a = 0.2, ⌘f

1 = 0.4, ⌘f

2 = 0.5
The number of iterations are chosen arbitrarily. We have

done empirical analysis to identify a correct threshold for
the Maximum number of iterations required. We have no-
ticed that the increasing the maximum number of iterations
for training has actually classified more goals. But this re-
duces the F1-Measure of Distinct Goals significantly. The
more number of iterations aren’t improving the accuracy.
but lower iterations will result in poor coverage. Figure 3
shows change in F-measure (distinct) by varying I and set-
ting values of all other parameters to the identified best
combination. Empirical results show that I = 5 provides a
balance between the trade o↵ parameters.

The limits on the number of goals per class (ADD
min

and
ADD

max

) that can be added reduces the class imbalance
that might be introduced in the training iterations. We have
performed experiments by increasing the maximum number
of goals that can be added to a class in each iteration. This
will increase the fraction of goals that are bound to be classi-
fied, but this increase is at the cost of reduction in precision
and recall. Figure 4 shows change in F-measure (distinct) by
varying ADD

max

and setting values of all other parameters

21

21

Figure 3: Change in F-measure (distinct) for var-

ious values of I (Maximum number of co-training

iterations)

Figure 4: Change in F-measure (distinct) for various

values of ADD
max

to the identified best combination. It can be seen that the F-
measure (distinct) achieves the maximum at ADD

max

= 10
and tends to decrease thereafter.

6. CONCLUSION AND FUTURE WORK
We highlighted the need for standardization of goals in the

Performance Appraisal process. We posed this problem as
a multi-class classification problem and explored two di↵er-
ent approaches with minimal human supervision. The first
approach, based on Co-training framework achieves better
recall and coverage. This is due to the use of additional
knowledge acquired from the self comments. The second
approach uses semantic similarity and weak supervision us-
ing active learning. It achieves the best precision and F-
measure (distinct) as compared to other methods. Both the
approaches clearly outperform multiple baseline methods.

From domain perspective, it is important to classify maxi-
mum number of manually created goals resulting higher level
of standardization of goals. Hence, we also calculated the
performance measures based on number of assignments of
each goal.

In future, we plan to extend this work to propose new
goals to be added to the template by grouping “semanti-
cally” similar goals which are not matched to any of the
existing template goals.

7. REFERENCES
[1] Apache opennlp. https://opennlp.apache.org/.
[2] Jazzy : The java open source spell checker.

http://jazzy.sourceforge.net/.
[3] Avrim Blum and Tom Mitchell. Combining labeled

and unlabeled data with co-training. In Proceedings of
the eleventh annual conference on Computational
learning theory, pages 92–100. ACM, 1998.

[4] Victoria Bobicev and Marina Sokolova. An e↵ective
and robust method for short text classification. In
AAAI, pages 1444–1445, 2008.

[5] B.G. Buchanan and E.H. Shortli↵e. Rule Based Expert
Systems: The MYCIN Experiments of the Stanford
Heuristic Programming Project. Addison-Wesley,
Reading, MA, 1984. ISBN 978-0-201-10172-0.

[6] Mengen Chen, Xiaoming Jin, and Dou Shen. Short
text classification improved by learning
multi-granularity topics. In IJCAI, pages 1776–1781.
Citeseer, 2011.

[7] Charles Elkan and Keith Noto. Learning classifiers
from only positive and unlabeled data. In Proceedings
of the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 213–220.
ACM, 2008.

[8] Christiane Fellbaum. WordNet: An Electronic Lexical
Database. MIT Press, 1998 (ed.).

[9] Gabriel Pui Cheong Fung, Je↵rey X Yu, Hongjun Lu,
and Philip S Yu. Text classification without negative
examples revisit. Knowledge and Data Engineering,
IEEE Transactions on, 18(1):6–20, 2006.

[10] Rayid Ghani. Combining labeled and unlabeled data
for multiclass text categorization. In ICML, volume 2,
pages 8–12, 2002.

[11] D. Giorgetti and F. Sebastiani. Automating survey
coding by multiclass text categorization techniques.
Journal of the American Society for Information
Science and Technology, 54(12):1269–1277, 2003.

[12] Daniel Jurafsky and James Martin. Speech and
Natural Language Processing: An Introduction to
Natural Language Processing, Computational
Linguistics, and Speech Recognition. Pearson
Education Inc., 2009. ISBN 9780131873216.

[13] L. Kaufman and P. J. Rousseeuw. Finding groups in
data: An introduction to cluster analysis. Wiley series
in Probability and Statistics. John Wiley and Sons,
New York, 1990.

[14] Hang Li and Kenji Yamanishi. Mining from open
answers in questionnaire data. In Proceedings of
Seventh ACM SIGKDD, 2001.

[15] Xiaoli Li and Bing Liu. Learning to classify texts
using positive and unlabeled data. In IJCAI,
volume 3, pages 587–592, 2003.

[16] Bing Liu, Yang Dai, Xiaoli Li, Wee Sun Lee, and
Philip S Yu. Building text classifiers using positive
and unlabeled examples. In Data Mining, 2003. ICDM
2003. Third IEEE International Conference on, pages
179–186. IEEE, 2003.

[17] Zhengdong Lu and Hang Li. A deep architecture for
matching short texts. In Advances in Neural
Information Processing Systems, pages 1367–1375,
2013.

[18] Roberto Navigli. Word sense disambiguation: A

22

22

survey. ACM Computing Surveys (CSUR), 41(2):10,
2009.

[19] Kamal Nigam and Rayid Ghani. Analyzing the
e↵ectiveness and applicability of co-training. In
Proceedings of the ninth international conference on
Information and knowledge management, pages 86–93.
ACM, 2000.

[20] Kamal Nigam, Andrew Kachites McCallum, Sebastian
Thrun, and Tom Mitchell. Text classification from
labeled and unlabeled documents using EM. Machine
learning, 39(2-3):103–134, 2000.

[21] S. Patil and G. K. Palshikar. Surveycoder: A system
for classification of survey responses. In Proceedings of
the 18th International Conference on Application of
Natural Language to Information Systems (NLDB
2013), LNCS 7934. Springer-Verlag, 2013.

[22] S. Patil and B. Ravindran. Active learning based weak
supervision for textual survey response classification.
In In Proceedings of 16th International Conference on
Intelligent Text Processing and Computational
Linguistics (CICLing), Part II, LNCS 9042. Springer,
2015.

[23] P. J. Rousseeuw. Silhouettes: a graphical aid to the
interpretation and validation of cluster analysis.
Journal of Computational and Applied Mathematics,
20:53–65, 1987.

[24] B. Settles. Active Learning. Morgan Claypool,
Synthesis Lectures on AI and ML, 2012.

[25] Bharath Sriram. Short text classification in Twitter to
improve information filtering. PhD thesis, The Ohio
State University, 2010.

[26] Bharath Sriram, Dave Fuhry, Engin Demir, Hakan
Ferhatosmanoglu, and Murat Demirbas. Short text
classification in twitter to improve information
filtering. In Proceedings of the 33rd international ACM
SIGIR conference on Research and development in
information retrieval, pages 841–842. ACM, 2010.

[27] Aixin Sun. Short text classification using very few
words. In Proceedings of the 35th international ACM
SIGIR conference on Research and development in
information retrieval, pages 1145–1146. ACM, 2012.

[28] P. N. Tan, M. Steinbach, and V. Kumar. Introduction
to Data Mining. Addison-Wesley, Upper Saddle River,
NJ, 2005.

[29] Kristina Toutanova, Dan Klein, Christopher D
Manning, and Yoram Singer. Feature-rich
part-of-speech tagging with a cyclic dependency
network. In Proceedings of the 2003 Conference of the
North American Chapter of the Association for
Computational Linguistics on Human Language
Technology-Volume 1, pages 173–180. Association for
Computational Linguistics, 2003.

[30] Sarah Zelikovitz and Haym Hirsh. Improving short
text classification using unlabeled background
knowledge to assess document similarity. In
Proceedings of the seventeenth international conference
on machine learning, volume 2000, pages 1183–1190,
2000.

[31] Xiaojin Zhu. Semi-supervised learning literature
survey. 2005.

23

23

An Architecture-Oriented Data Warehouse Testing
Approach

Neveen ElGamal

Information Systems Department
Faculty of Computers and

Information
Cairo University

Egypt
n.elgamal@fci-cu.edu.eg

Ali El-Bastawissy
Information Systems Department

Faculty of Computers and
Information

Cairo University
Egypt

aelbastawissy@msa.eun.eg

Galal Galal-Edeen
Information Systems Department

Faculty of Computers and
Information

Cairo University
Egypt

galal@acm.org

Abstract

In the past few years, the data warehouse (DW) has
regained experts’ interest due to the paradigm shift from
data storages to data analysis. During the development of
DWs data passes through a number of transformations
and are staged in multiple storages which might lead to
data corruption and/or manipulation. Hence, testing DWs
is a vital stage in the DW development life cycle. In this
paper, we will present a DW testing approach that is
adjustable to fit multiple DW architectures and will
present its applicability on three case studies to outline
the flexibility and generality of the proposed approach.

1. Introduction
The topic of data warehousing encompasses application
tools, architectures, information service, and
communication infrastructure to synthesize useful
information for decision making from distributed
heterogeneous data sources. For this reason, vendors
agree that DWs cannot be off-the shelf products but must
be designed and optimized with great attention to the
customer’s situation [20]. Multiple DW life cycle
approaches were presented in the literature to discuss
how DW systems are built [21, 23]. In those approaches,
the architectural design was one of the early and key
stages in developing DW systems. On the other hand,
testing was not considered in any of the proposed life
cycle approaches given that it was always considered in
all well-known life cycle approaches like the waterfall
and the spiral models. [4, 27]

DW architectural patterns vary from one DW system to
another based on user requirements [14]. However, The
most common idea in all DW projects is that data is
available in one or more data sources and this data needs
to be integrated in order to give useful information to
assist decision makers to base their decisions on
historical behavior of their systems [17].

In the beginning, the data stored in the Data Sources
(DS) are extracted, transformed, and loaded in the so
called Data Warehouse (DW). Sometimes this DW is
then specialized into a group of business area specific
structures each of which contains data that target a
specific business area which are called Data Marts
(DM).

Data passes through several transformations and
integration stages before they are loaded from the DSs to
the DW or DMs which in most cases force the DW
developers to use an intermediary data storage called
Data Staging Area (DSA); where all the data is
transferred to it then transformed and loaded to the DW.

From another perspective, the DW consists of historical
data that accumulates years of operational data in one
place. Preparing this type of information requires some
time, that’s why the data stored in the DW are not up to
date or even close to that. In some decision making
situations, the decision makers want rapid information
about data that is not historical, for example; data that is
one or two days old. However, they want this type of
information to be accumulated from all DSs just like the
ones stored in the DW but with less historical dimension.
If this type of information is expected to be frequently
asked by the decision makers then an Operational Data
Store (ODS) is required to be part of the DW selected
architecture.

Figure 1 shows the most generic and detailed DW
architecture that includes most commonly used
components and transformations in a DW project. This
architecture was proposed under the name of “Kim-mon
Architecture” which refers to the representation of both
Ralph Kimball and Bill Inmon’s architectures combined
[1]. Data is wrapped from the DSs to the DSA then it

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Articles from this
volume were invited to present their results at The 21st International
Conference on Management of Data.
COMAD, March 11-13, 2016, Pune.
Copyright 2016 Computer Society of India (CSI).

24

24

travels to the ODS then to the DW then it is specialized
into domain specific DMs then finally it reaches the
user/decision maker through User Interfaces (UI) for
example; OLAP reports, Analysis, and/or DSS tools.

Figure 1. DW Generic Architecture (adapted from [1])

The DW architecture differs from one project to the other
based on the specific business requirements. However,
the basic component that is available in all DW projects
is the DSs. Any other component is included or excluded
in the DW project according to the need for it [14].
Variations from the above architecture have been
proposed in [19, 14, 21]. These DW architectural patterns
simply eliminate or duplicate one of the existing
components that are discussed in the Kim-mon
architecture. Table 1 summarizes the architectural
patterns, discussed in [14], and shows participating
components in each.

Table 1. DW Architectural Patterns

Architectural
Pattern Name

Architectural Pattern
Components

One Layer DSsÆUI

Two Layer DSsÆDWÆUI

Independent Data
Marts

DSsÆDMsÆUI

Bus DSsÆDMsÆUI

Three Layer DSsÆODSÆDWÆUI

Drill-through DSsÆODSÆDWÆDMÆUI

 UI

Hub and Spoke DSsÆODSÆDMÆUI

Centralized DSsÆDSAÆDWÆUI

Federated DSsÆDMsÆIL1ÆUI

Kim-mon (Generic) DSsÆDSAÆODSÆDWÆ DMÆUI

Regardless of the architecture of the DW project, data
passes through a long way of Extract, Transform, and
Load (ETL) processes from its origin in the DSs till it is
transformed into information by the UI applications.
During this journey data is wrapped, integrated,

1 IL refers to Integration Layer either Physical or Logical

aggregated, cleansed, loaded, and accumulated which
could highly affect the quality of information delivered
to the decision makers. Therefore, DW testing is a critical
stage in the DW development life cycle which gained
multiple researchers’ attention to propose a testing
technique that is suitable for use in DW projects and
provide implementation mechanisms for testing
technique to speed the process of testing.

This paper tackles the DW testing from a different
perspective. Instead of proposing a testing technique that
is suitable for use with a specific DW architecture, this
paper proposes a generic DW testing approach and
provides an accomodation mechanism that adapts the
proposed DW testing approach according to the DW
used architecture.

The remainder of this paper will be organized as follows;
Section 2 presents a survey on DW testing showing the
influence of architectural variations on the DW testing
process. Section 3 introduces the generic testing
approach that is adequate for use with the Kim-mon
architecture. Section 4 describes the technique used to
accommodate the proposed testing approach to be
adequate for use with other architectures. Section 5
briefly states the implementation details of the
accommodation technique. Section 6 discusses findings
from applying the proposed technique on several case
studies and presents an overall evaluation of the
proposed technique. Finally, we conclude our work in
section 7.

2. Related Work
Testing DW systems had been studied in literature from
various perspectives. Some attempts customized the
Software testing strategies to be adequate for use in DW
testing [2, 3, 5, 18, 24] while others concentrated on
addressing the ETL testing since most of the work is done
in the ETL process [7, 35, 22, 26]. A broader view of the
DW testing process was studied to address the problem
from various perspectives and present to the DW field an
integrated solution for DW testing [13, 16, 15, 30, 29, 31,
32, 36, 37, 39, 38]. These approaches were previously
studied from the test routine coverage point of view in
[11, 10] and it was concluded that none of the existing
approaches fully cover the DW testing process. In this
paper, we are more concerned with the architectural
diversities between the existing approaches and the
possibility of generalizing any of the existing approaches
to suite several architectures.

 By exploring the various DW testing approaches
mentioned above, we uncovered considerable diversities
between approaches with respect to the architectures that
these testing approaches target. From the other
perspective, there are many DW architectures defined in
literature that needs a DW testing technique to be used in
conjunction with them when they are put into operation
and yet none of the existing approaches supported these
architectures.

25

25

Table 2 presents a brief comparison allocating existing
DW testing approaches to their specified or inferred
architectures. The first column displays different
architectural patterns, discussed in Table 1, and the
second column presents the DW testing approaches
along with their architectures that each approach used
while describing the DW testing process.

Table 2. Architectural Coverage of DW Testing
Approaches

Architecture Name DW Testing Approaches and
Their

Used Architectures
One Layer N/A

Two Layer [2, 7, 35] DSÆDW
[24] DSÆDWÆDMÆUI
[26] DSÆDWÆUI

Independent Data
Marts N/A

Bus N/A

Three Layer [3] DSÆODSÆDWÆDM2Æ UI
[5] DS ÆODSÆDWÆUI

Drill-through N/A

Hub and Spoke [15] DSÆDSAÆDMÆUI

Centralized [22] DSÆDSAÆDWÆDMÆUI
[29] DSÆDSAÆDW/DMÆDDB3ÆUI

Federated N/A

Kim-mon (Generic) [36] DSÆDSAÆODSÆDWÆ UI

By comparing the architectural components in Table 1
and the architectures in Table 2, we noticed that, few
architectures proposed in literature were addressed by the
DW testing approaches without further modifications.
All the proposed approaches used variations of the
defined architectural patterns and customized their DW
testing approach based on these variation. It is also
shown that some architectures were not addressed by any
testing approach like Independent Data Marts, Bus and
Federated architectures

What could be concluded from the comparison matrix in
Table 2 is that each DW testing approach was defined
targeting specific architecture and is therefore adequate
for use on DW projects that use the same architecture. If
a different architecture is used, then this testing approach
will not be adequate for use as it is. Some sort of
customization should take place to extend this testing
approach to fit the new architecture. This customization
could not take place by a testing expert nor a DW expert
alone. It is a joint process that should take place
benefiting from both experts’ knowledge, which is not
possible in most cases due to time and budget constraints.

To overcome the weaknesses in the existing approaches,
we considered defining a testing approach that is generic
enough to be used in multiple DW projects and provide
a customization mechanism that is able to accommodate

2 Italic data warehouse components in Table 2 refer to components
in the data warehouse architecture that are defined in the proposing
approach but not tested.

the proposed testing approach to different DW
architectures.
Each DW testing approach consists of a group of test
routines that describe how this approach tests the DW to
improve the quality of the output product. The next
section will discuss the group of test routines of the
proposed generic DW testing approach.

3. A generic DW testing approach
Test routines defined for DWs are diverse and on
different levels of detail, as previously discussed in [10].
To develop a generic DW testing approach that works
with different DW architectures, we need to
comprehensively determine and describe the complete
set of test routines that cover all DW components and
transformations. It should also be taken into
consideration that these descriptions should be done on a
low level of detail to allow later customization for
different architectures. For this reason, the Kim-mon
architecture presented in Figure 1 will be used for
defining DW test routines as it contains all DW
components that are most commonly used in all DW
architectures.

3.1 Test routine list

Our proposed set of test routines, presented in Table 3, is
a refinement of the set of test routines previously
presented in [10] when it was used to evaluate and
compare the available DW testing approaches. This set
of test routines was categorized according to the layer
that each test routine targets, the level of detail that this
test involves, and when this test takes place. It is worth
mentioning that the User Interface layer (DMÆUI) will
not be part of our proposed solution. The refinements
took place to come up with a uniform and consistent set
of test routines. These refinements are as follows:

1. Unifying synonymous test routines like Field
mapping, Data type compatibility, and Data Layout
Format.

2. Removing the Overall test routines and define them
redundantly on each layer.

As shown in Table 3, the rows represent the layers of the
Kim-mon architecture, the columns represent the level of
detail that each test routine involves, and test routine
periodicity is represented by italicizing test routines that
are conducted after system development. The underlined
test routines are the ones that are redundant on several
layers. Introducing redundant test routine came from the
need to support multiple architectures. When a different
architecture is under test the proposed approach will
customize the Table 3 to fit the new architecture.
After identifying the set of test routines that are suitable
for use in DW projects, it is mandatory to provide the
tested with descriptions of these test routines to assist
him/her during the testing process. The next section

3 DDB refers to Dimensional Database

26

26

presents the description scheme that we introduced and
used to provide descriptions for all test routines inclosed
in the test routine list.

Table 3. Proposed DW Test Routines
 Schema Data Operation

DSÆ
DSA

1. User requirements
2. Field mapping

a. Field naming,
b. Data types match,
c. Field size match,

3. Correct data selection

1. Record counts
2. Threshold test
3. Data boundaries
4. Data profiling
5. Random record

comparison
6. Field to field comparison

1. Rejected records
2. Data access
3. Security

DSA
Æ

O
DS

1. Schema Design
2. Field mapping

a. Field naming,
b. Data types match,
c. Field size match,
d. Data type constraints

3. Aspects of transformation
rules
a. Captured
b. Formula syntax
c. Transformation Logic

1. Record counts
2. Data integrity

a. Identity integrity
b. Referential integrity
c. Cardinal integrity
d. Inheritance integrity
e. Domain integrity
f. Relationship

dependency integrity
g. Attribute

dependency integrity
3. Parent-child relationship
4. Duplicate detection
5. Threshold test
6. Data boundaries
7. Data profiling
8. Random record

comparison
9. Field to Field

Comparison
10. Surrogate keys

a. Correctness
b. Integrity

1. Review job
procedures

2. Error logging
3. Performance
4. Rejected record
5. Data access
6. Forced Error test
7. Stress test
8. Security

O
DSÆ

DW

1. User requirements
coverage

2. DW conceptual schema:
a. Conformed hierarchy
b. Understandability
c. Usability
d. Mapping to logical

model
3. DW logical model:

a. Mapping to physical
model

b. Functionality
c. Performance

(comply with MDNF)
4. Integrity constraints
5. Hierarchy level integrity
6. Granularity
7. Derived attributes

checking
8. Field mapping

a. Field naming,
b. Data types match,
c. Field size match,
d. Data type constraints

1. Record counts
2. Data integrity

a. Identity integrity
b. Referential integrity
c. Cardinal integrity
d. Inheritance integrity
e. Domain integrity
f. Relationship

dependency integrity
g. Attribute

dependency integrity
3. Parent-child

relationship
4. Duplicate detection
5. Threshold Test
6. Data boundaries
7. Data profiling
8. Random Record

Comparison
9. Field to field

comparison
10. No constants loaded
11. No Null records

loaded
12. Simulate data loading
13. Data aggregation
14. Reversibility of data

from DW to DS
15. Confirm all fields

loaded
16. Data freshness

1. Review ETL
documentation

2. ETL test
a. ETL activity

ordering
b. ETL

recoverability
c. Job sequence
d. Error

propagation
through jobs

e. Job resetting
f. Batch failure

propagation
g. Batch reset in

case of failure
3. Scalability
4. Initial load
5. Incremental load
6. Data access
7. Rejected record
8. Performance
9. Error logging
10. Forced error test
11. Stress test
12. Security
13. HW and SW

configuration

DW
Æ

DM

1. Schema Design
2. Calculated members
3. Irregular hierarchies
4. Correct data filters
5. Additivity guards

1. Measure
Aggregation

1. Security
2. HW and SW

configuration

3.2 Test routine description scheme

Test routines listed in Table 3 are a group of test routines
that are refined and few of them were introduced to the
DW testing process. To be able to use these test routines
they need to be fully described. The full description will
not appear in this section. However, The description
scheme that we introduced to broadly describe all test
routines is as follows:

1. Name: The common name used in testing field
for this test routine.

2. Layer: Which layer of the Kim-mon
architecture does this test routine take place?

3. Level: What is being tested in this test routine?
(Schema/Data/Operation)

4. Objective(s): a textual description of the test
routine showing its objective(s).

5. Type: The type of the test routine:
(Verification/Validation)

6. Severity: The importance of this test routine
(Mandatory, Recommended, Optional)

7. Periodicity: How often does this test routine
take place? (Schema Change/Data Load)

8. Part Under Test: which part of the component
under test is being tested (ex: Schema, Table,
Attribute, etc…)

9. Input(s): Required documents that need to be
available to conduct this test routine (if any).

10. Testing Scenario: The detailed description of
how this test routine is conducted.

11. Automation: the possibility of automating this
test routine and the type of automatic assistance
required, (Testing Tool, Data Generation Tool,
Test Case Generation Tool)

Each test routine was described using the above scheme.
Required information about each test routine was
gathered from existing testing approaches and few of
them were defined from scratch. For example; the test
routine named Duplicate Detection is described in Table
4 using the aforementioned scheme.

Table 4. Duplicate Detection Test Routine Description

All test routines displayed in Table 3 were described
using the same scheme, used in Table 4, to provide the
testers with some sort of instruction manual for DW

Name: Duplicate Detection
Layer: DSAÆODS
Level: Data
Objective(s): Confirm that no duplicate records exist in the ODS
Type: Verification
Severity: Mandatory
Periodicity: Data Loads
Part Under Test: Every Table in the Destination
Input(s): None
Testing Scenario:

There are two types of duplicated that needs to be
detected and resolved:

I. Duplicates resulting from incorrect data
transformation procedure.

II. Duplicates resulting from integrating data
from different data sources.

This first type of duplicates could be detected as follows:
1. Run a query on each destination table to

retrieve duplicates. An example of this query
could be as follows:

Select *
From <TableName>
Group by <AllAtributes>
Having count(*) >1.

2. If this query returns any results, it means that
there are duplicate records in this table and
these duplicates are a result of an incorrect
transformation process

The second type of duplicates could be detected by
applying one of the duplicate detection techniques that
have been severely studied in science to solve the
problem of duplicate detection and resolution in
integrated data. [12]

Automation: Testing Tool is required

27

27

testers, available at [8, 9], supplying them with any
required information regarding the process of DW
testing. However, this test routine description is adequate
for use with the Kim-mon architecture only. If another
architecture is used in a DW project, these test routines
need to be adapted to be adequate for use with the used
architecture. This paper proposes a customization
mechanism in the next section.

4. Multiple architectural accomodation
As it was previously discussed in section 1, DW
components are the interrelated parts of the DW
architecture that are connected together to transform data
in DSs into information. Moreover, by studying the
available architectural patterns discussed in literature, it
was notable that all the architectural components are
always used in the same order (DS, DSA, ODS, DW,
DM) if they are part of the selected architecture.

Since we are concerned with testing DWs with different
architectures, then the above mentioned set of test
routines that are defined on the Kim-mon architecture
need to be customized in a way to fit different
architectures.

Each test routine stated in Table 3 is mapped to a specific
DW layer. Each layer consequently relates this test
routine to two DW components (source and destination
components). For example, the test routine “Duplicate
Detection” presented in Table 4 is defined on the
DSAÆODS layer, hence, relates this test routine to both
layers the DSA and ODS. However, this test is concerned
with detecting duplicates that exist between the ODS
records and it is not concerned with the DSA by any
means. On the Contrary, the test routine “Record
Counts”, defined on the DSÆDSA layer in Table 3,
requires the participation of both the DS and the DSA in
the test routine in order to compare record counts and
confirm that they are matching.

So, relating test routines to DW layers only will not help
in the process of test routine customization to multiple
architectural patterns because each test is not related
explicitly to each DW component. For this reason,
adding more descriptive attributes to the test routine
description scheme discussed in the previous section is
needed to include in the test routine description the
prerequisite components that this test routine involves or
requires.

Two prerequisite attributes need be specified for each
test routine; one is a source prerequisite and the other is
a destination prerequisite. Depending on the objective of
each test routine and the role of the DW component with
respect to the test routine. Whether it is the source of the
data being transformed, or the component that receives
the data. These two attributes are not mandatory to all
test routines. Some test routines might require both
attributes to be specified like the Record Counts test
routine discussed above because its objective is to
compare results between the source and destination.
While another test routine requires only one prerequisite,

either the source or the destination, because they check
one component’s consistency or its validity with respect
to some other parameter like user requirements or
business rules. Example for these test routines is the
“Duplicate Detection” and “User Requirements”. The
two attribute templates are as follows:

Prerequisite(s):

x Source: <ComponentName>

x Destination: <ComponentName>
From another perspective, Test routines stated in Table 3
could be clustered according to the purpose of each.
Some of them are concerned with the successful
transformation of data from the data sources through all
the DW system data storages till it reaches the user.
Examples of these test routines are Record Counts,
Duplicate Detection, Data Boundaries, Error Logging,
etc. While others are concerned to experiment a specific
functionality that is served by a specific DW component.
For example, DW conceptual schema, DW Logical
Schema, and Measure Aggregation. This type of
clustering needs to be taken into consideration while
defining each test routine, because when a DW
component is not part of the architecture used, then these
test routines need not be considered in the proposed test
routine list. For this reason, an extra attribute named
“Single Layer Test (SLT)” is assigned the value 1 for test
routines that experiment specific functionalities to be
able to differentiate between the purpose of each test
routine. The template of the SLT attribute is as follows:

SLT: <Binary>
Till this point, all test routines have been mapped to its
proper components and all desired information about
each test routine is available in the test routine
description over the Kim-mon architecture. But, when
the architecture under test is a different architecture, a
mapping technique needs to be defined to re-direct the
test routines that refer to a DW component that is not part
of the architecture under test to another component that
is present in the given architecture. This technique is
defined as follows;

Using the extra two attributes that define the
prerequisites, each test routine is related to one or more
DW component each of which acts as a source or
destination prerequisite. When the test routine is related
to a prerequisite DW component that is not part of the
architecture under test, alternative component needs to
take over the place of the absent component and this test
routine will be conducted on the alternative component
instead to guarantee a proper transformation of data
between participating DW components. This rule does
not apply to test routines whose attribute SLT takes the
value 1 since these test routines are testing a specific
functionality of the prerequisite component that is
currently not part of the architecture used. Therefore, no

28

28

alternative component will perform this specific
functionality and consequently the test routines testing it
need not be taken into consideration.

Choosing the suitable alternative component is a decision
that is taken based on the type of the absent component,
whether it was a source or destination prerequisite with
respect to the test routine. If it was a source prerequisite,
the preceding alternative needs to be chosen as the absent
component’s replacement, and if it was a destination
prerequisite, the succeeding alternative will be chosen.
Figure 2 presents the succeeding and preceding
alternatives for all possible DW components.

Figure 2. DW Component Alternatives

It is quite common in the architectures discussed earlier
in section 1 that more than one consecutive component
could be absent from the DW architecture with respect to
the generic (Kim-mon) architecture presented in Figure
1. To find a suitable alternative for test routine’s
prerequisites, transitivity is applied on the alternative
relationship defined above. The relationship is transitive
in the sense that if an absent component is a preceding or
a succeeding alternative of another absent component,
then find the alternative component’s alternative to
replace it and assign it to the specified test routine.

To determine the alternatives for each absent prerequisite
the following steps will take place:

1. For each test routine that is not a Single Layer
Test, determine whether its prerequisites are
absent or present components. Since Single Layer
Tests need not be mapped on any other layers
because they target functionalities that are
specific to their prerequisites and when these
prerequisites are not part of the architecture under
test, these test routines will not be part of the
customized test routine list.

2. For each absent prerequisite, determine its
preceding or succeeding alternative components,
depending on the type of the prerequisite relation
whether this component is a source or a
destination prerequisite to this test routine.

3. For each preceding alternative component, if it is
also an absent component, then get its preceding
alternative. Repeat this sequence until the
transitivity rule leads to an alternative that is not
an absent component.

4. For each succeeding alternative component, if it
is also an absent component, then get its
succeeding alternative. Repeat this sequence until
the transitivity rule leads to an alternative that is
not an absent component.

This technique will assign test routines to DW
components that are part of the architecture under test to
be able to test it properly.

4.1 Example
If the architecture used for the DW is the Two Layer
architecture, presented in Table 1, which consists of DSs,
DW, and DMs. Then the two components DSA and ODS
are considered absent components with respect to the
generic (Kim-mon) architecture presented in Figure 1.

By applying the test routine customization on the test
routines presented in Table 3 and re-directing test
routines to their suitable prerequisite alternatives as
discussed previously the outcome of this process will
result in the set of test routines presented in Table 5 that
was customized to the Two Layer architecture not by
removing the two layers DSÆDSA and DSAÆODS but
redirecting their test routines to the appropriate
alternative layers.

Table 5. Test Routines for the Two-Layer Architecture

 Schema Data Operation

DSÆ
DW

1. User requirements
2. Field mapping

a. Field naming,
b. Data types match,
c. Field size match,
d. Data type constraints

3. Correct data selection
4. Schema Design
5. Aspects of transformation

rules
a. Captured
b. Formula syntax
c. Transformation Logic

6. User requirements
coverage

7. DW conceptual schema:
a. Conformed hierarchy
b. Understandability
c. Usability
d. Mapping to logical

model
8. DW logical model:

a. Mapping to physical
model

b. Functionality
c. Performance (comply

with MDNF)
9. Integrity constraints
10. Hierarchy level integrity
11. Granularity
12. Derived attributes

checking

1. Record counts
2. Threshold test
3. Data boundaries
4. Data profiling
5. Field to field comparison
6. Random record

comparison
7. Parent-child relationship
8. Duplicate detection
9. Surrogate keys

a. Correctness
b. Integrity

10. Data integrity
a. Identity integrity
b. Referential integrity
c. Cardinal integrity
d. Inheritance integrity
e. Domain integrity
f. Relationship

dependency integrity
g. Attribute dependency

integrity
11. No constants loaded
12. No null records loaded
13. Simulate data loading
14. Data aggregation
15. Reversibility of data

from DW to DS
16. Confirm all fields loaded
17. Data freshness

1. Rejected records
2. Data Access
3. Security
4. Review job procedures
5. Error logging
6. Performance
7. Forced Error test
8. Stress test
9. Review ETL

documentation
10. ETL test

a. ETL activity
ordering

b. ETL recoverability
(Robustness)

c. Job sequence
d. Error propagation

through jobs
e. Job resetting
f. Batch failure

propagation
g. Batch reset in case

of failure
11. Scalability
12. Initial load
13. Incremental load
14. HW and SW

configuration

DW
Æ

DM

1. Schema Design
2. Calculated members
3. Irregular hierarchies
4. Correct data filters
5. Additivity guards

1. Data Aggregation

1. Security
2. HW and SW

configuration

5. Implementation
To structure and keep track of this large amount of
information required for test routines and the
relationships between test routines and their prerequisite
components, It was mandatory to store these details in a
structured yet flexible format to accommodate any future
changes that might take place; like adding test routines,
modifying test routine descriptions, and/or deleting
unnecessary test routines.

29

29

The proposed test routine description and customization
mechanisms were implemented using the graph database
Neo4j [25]. We chose the graph database because of its
flexible structure that could evolve through time without
affecting stored information. It is also distinguished to
have a very simple yet powerful querying language
called Cypher that is used as both data definition and
data manipulation language.

Using Cypher query, we have prepared a data definition
script that fully defines and fills the graph database with
all test routine definitions and relationships. Another
Cypher query template was defined to accommodate the
graph database according to the architecture under test.
Finally, a third Cypher query was defined to generate
from the customized graph database a detailed test
routine list clustered according to levels and layers as the
one displayed in tables Table 3 or Table 5 when the
architecture under test is the Kim-mon architecture or the
Two-Layer Architecture, respectively.

6. Case studies and evaluation
The proposed approach claims to provide a testing
technique that is adjustable according to the architecture
of the DW system under test. For this reason, it was
mandatory to experiment with it using different case
studies with different DW architectures.

The experimentation mechanism we used to apply the
proposed customization technique was getting access to
abstract information about the DW under test, proposing
the set of test routines adequate for the given architecture,
and getting the feedback from the DW testers regarding
the proposed test routine list. On the other hand, we
considered studying the testing technique used in the DW
under test (if available) and compared it with our
proposed test routine list.

During the selection of the case studies, we were keen to
find case studies with different architectures and to
choose companies in different sizes. The proposed
approach was applied to three case studies from three
different sized companies;

1. CentriVision: a small sized Egyptian company,
founded in 2003, whose development services
involves business intelligence solutions.[6]

2. SMSMT: a medium sized Australian company,
founded in 1986, that provides testing as one of its
services.[28]

3. Teradata: a large sized American company,
founded in 1979, that sells analytic data platforms,
applications and related services. [34]

Each of these companies was using a different DW
architecture in the DW project they supplied us with,
except for Teradata since it uses a generic architecture
for all its projects. The architectures of the three case
studies are displayed in Figure 3.
The results concluded from applying the proposed
accommodation mechanism to customize a test routine
list for each case study is presented separately in the
following three sections. Each section will present a

comment on the adequacy of the proposed approach
when applied to one of the case studies.

6.1 CentriVision
According to the DW development/testing team at
CentriVision, testing in this DW project was conducted
using team members’ experiences. There was no
standard testing technique used. However, a set of tests
takes place at different levels of detail to guarantee the
quality of the DW under development. The
categorization of CentriVision’s undocumented testing
activities is displayed in Table 6 categorized by layers
and levels they apply to with respect to the DW
architecture used.

Table 6: CentriVision Test Routine Categorization
 Level
Layer

Schema Data Operation

DSÆDM

x User Requirements
Coverage

x DM Schema Design
x Field mapping in

Transformation rules

x Record Counts
x Data Aggregation
x Calculated members
x No null measures exists
x Duplicate detection
x Simulate data loading
x Data freshness

x HW and SW
configuration

x Scalability of data
x Performance Test
x Review Job

Procedures

DMÆUI x User requirements
coverage - -

By communicating the proposed test routine list with a
project manager at CentriVision the feedback was as
follows:

1. Most recommended test routines that were
proposed in the test routine list are usually
conducted either directly by snooping for
mismatches in the migrated data or indirectly
during the process of defect tracking.

2. Supplying them with the customized test routine list
is of great help to give them ideas about what needs
to be tested and how these tests could be conducted
rather than depending on tester’s experience and
jeopardize the DW quality.

3. Regarding the test routines they did not support,
their feedback was that it would highly increase the
quality of their output products if taken into
consideration during the testing process.

From our point of view, depending on the tester’s
experience in testing the system is not a reliable way of
finding errors. Having a consistent and well
documented testing strategy that could be used as an
instruction manual for the tester to follow during the
testing process could highly assist the tester in knowing
the possible vulnerabilities that could take place in the
DW and testing the system to prevent it against
possible threats. Applying the testing technique that is
defect oriented; where the tester follows defects to fix
the errors, is not the best way to find and fix errors. It
could be possible that errors exist in the system, but the
right test was not conducted to reveal them.

30

30

Centrivision’s Architecture

SMSMT’s Architecture

Teradata’s Architecture

Figure 3. Architectures of the Case Studies

6.2 SMSMT

According to a Testing and Quality Assurance
consultant at SMSMT, the company agreed to use a
set of test routines in their current project of
developing a DW for a Legacy system. Table 7
presents the test routines used in this case study. The
set of test routines used in this case study are mostly
data tests which involve simulating and comparing
data transformations between different data storages.

Table 7. SMSMT Test Routine Categorization
 Level
Layer Schema Data Operation

DSÆDSA
Field Mapping

x Not nullable fields
x Record counts
x Field to field comparison
x Simulate data loading

Delta load test

DSAÆODS x Field mapping
x Transformation

rules test

x Record counts
x Field to field comparison
x Simulate data loading
x Domain Key Metric test

Delta load test

ODSÆDW x Field mapping
x Transformatio

n rules test

x Record counts
x Field to field comparison
x Simulate data loading
x Domain Key Metric test

x Initial load test
x Incremental load

test

DWÆUI - x Result comparison
across data sources -

By communicating the proposed set of test routines
customized for the SMSMT case study, the feedback
of the test and quality assurance consultant was as
follows:

1. The proposed set of test routines is quite
comprehensive for a one-time load, however,
it misses the tests for delta loads on several
layers.

2. Some test routines that we proposed needs to
be conducted on different layers like the
performance and stress tests needs to take
place between DS and DW not only ODS and
DW.

3. The proposed set of test routines lacks the
consideration of timeliness of test routines to
guard against the execution of test routines that
might cause conflicts in the data if run at the
same time.

The comparison between the proposed and the used
set of test routines showed that 90% of the test
routines used in SMSMT case study are included in
the proposed set of test routines which confirms the

soundness of the proposed approach and proves its
adjustability to a different architecture.

6.3 Teradata

According to the interview conducted with the test
manager at Teradata Egypt, there exists a
documented, well defined, and formulated testing
strategy that is used in all DW projects in Teradata,
yet it is still in the editing phase [33]. The basic
modules of tests were interpreted from the testing
strategy and was categorized according to layers and
levels of the DW architecture. Table 8 presents the test
routines introduced in the Teradata testing strategy.

As it is shown in Table 8, all test routines used by
Teradata are tests that take place before system
delivery. Any post delivery tests are conducted by the
quality assurance team based on the customer’s
reporting of errors or inconsistencies on the output
data. The Teradata testing strategy is also notable for
its coverage on all three testing levels (Data, Schema,
and Operation), which highly enriches the quality of
their DW products.

Table 8. Teradata Test Routine Categorization
 Level
Layer

Schema Data Operation

DSÆ DSA x User
Requirements

x Data types
x Columns order

x Record counts
x Pattern counts
x Data profiling
x Random record

comparison

x All sources are
loaded

x Rejected records

DSAÆDW x Field mapping
x Review Logical

schema for
customizations

x Naming
Conventions

x Record Counts
x Field to field comparison
x Random record

comparison
x Primary key index integrity
x Surrogate keys integrity

and correctness
x Referential integrity
x Domain integrity
x History integrity

o Reverse History
o History Overlap
o Null History
o History Gap
o Open end History

x

x Rejected records
x Performance test
x ETL Scheduling

DWÆDM x Schema Design

x Record counts
x Field to field comparison
x Data aggregation
x Business Rules Integrity

x Security
x HW and SW

configuration

DMÆUI x User
Requirements
Coverage

x Business logic testing
-

31

31

A comparison took place between the Teradata testing
strategy and the proposed test routine list customized
on the Teradata architecture. Table 9 presents a
numerical reference, for the number of test routines
that Teradata testing strategy takes into account from
the proposed test routine list. For example, On the
DSAÆDW layer at the Data level, the Teradata
testing strategy considers 8 of the proposed 17 test
routines and applies an extra 5 test routines to test this
layer of the DW.
This comparison revealed that, in general, the
proposed test routine list agrees with the Teradata
testing strategy in 40% of the proposed test routines.
This is because the proposed set of test routines
contains all possible test routines that could be used
to test any DW, however; the proposed test routines
should not be all conducted on any system. Some of
them are alternative to each other which leaves to the
tester the option of choosing among them.
Table 9. Teradata Vs Proposed Testing Strategy
 Level
Layer

Schema Data Operation

DSÆ DSA 1/4 3/6 +1 1/3 +1

DSAÆDW 2/9 +1 8/17 +5 7/14 +1

DWÆDM 1/5 1/1 +1 1/2

According to the analysis abstracted in Table 9, it is
clear that the Teradata testing strategy agrees with the
proposed test plan to a great extent on the data level
comparisons. On the schema level, however, the
Teradata testing strategy lacks the support of most of
these types of tests. This was due to their reliance on
the data tests that will reveal any possible schema or
structural problems or inconsistencies.
What Table 9 revealed as well was that the tests on
the operational level like scalability, security, or
stress were not conducted on a project basis. This is
because they use the Teradata Database Management
System which is extensively tested from these
perspectives and results are guaranteed if proper HW
and SW configurations took place.
On the other hand, to fairly compare the two testing
strategies, Table 9 shows that on certain levels and
layers the Teradata testing strategy supported some
test routines that were not part of the proposed test
routine list. These test routines are Italicized in Table
8. By studying these test routines we see that
including these test routines in our proposed testing
technique would be a good addition to it.
From a different angle, after communicating the
proposed detailed test routine list with the Test Lead
and a Testing Developer at Teradata Egypt, we were
able to get their feedback regarding the proposed set
of test routines. Their comments were as follows:

1. The proposed set of test routines could be
considered as the standard suite of tests
required for system test a DW solution.

2. It is satisfactory for the technical
requirements of testing a DW solution.

From their point of view, what lacks the proposed
testing strategy is reference to commercial tools that
could be used to automate each test routine, showing
stakeholders involvement in each test routine and
absence of the test routines supported by Teradata and
not included in the proposed testing strategy as
discussed previously.
In spite of the above drawbacks, due to the flexibility
of the graph database, they could be easily overcome
by introducing the required modifications on the
graph database with minimal change in the Cypher
query graph creator script.

6.4 Overall evaluation
As discussed previously in section 02 the main
drawback of existing testing approaches was their
rigidity with respect to the architecture of the DW.
Each approach assumed that the architecture used in
their approach is the DW architecture mostly used and
proposed a testing strategy for it. What distinguishes
our proposed approach is its flexibility of adapting the
test routines according to the architecture under test
unlike other approaches.
Table 10 presents possible architectures that the
proposed test routine list could be customized for. The
proposed approach was the first approach that covers
testing DWs with different architectures and not only
supported well-known architecture types discussed in
the literature, but also supported other DW
architectures that are sometimes used but it was not
named in the literature.

Table 10. Proposed Framework Architectural
Coverage

Architectural Pattern
 Name

Proposed
Approach’s
Coverage

One Layer X
Two Layer �
Independent Data Marts �
Bus �
Three Layer �
Drill-through �
Hub and Spoke �
Centralized �
Federated X
Kim-mon (Generic) �
DSÆDSAÆDWÆDM �
DSÆDSAÆDM �

Architectures not supported in the proposed approach
are the ones that involve a special nature layer which
is not commonly used in DWs. For example, the
Single Layer architecture integrates data virtually
through a group of on-the-fly transformation rules.
Neither integrated data are stored nor are historic data
available for any decision making processes. This
type of DWs requires a custom made test plan that
could not be provided given the proposed test routine
list. The same rule applies for the Federated

32

32

architecture, where the Integration Layer is a special
layer that needs a custom made testing technique.
However, our proposed test routine list is adequate for
testing the transformation of data from the DSs to the
federated DMs smoothly.
What needs to be clarified regarding the architectural
coverage is that the proposed approach does not
present test routines that targets the layer of the UI
which is a drawback that affects all supported
architectures. However, The UI Layer testing were
beyond our scope and excluding it was based on
expert’s recommendation because there are different
means of UIs like reports, charts, DSS tools, and
Analytical tools; where, each of which required a
different testing technique for their verification and
validation.

7. Conclusion and future work
What distinguishes this study from any other
proposed solution for the issue of DW testing is the
comprehensiveness of the description scheme that
was used to describe all test routines, studying DW
architectures to interpret means of relating
architectural components in order to fulfill the aim of
providing the DW testers with a generic solution for
DW testing adequate for use in multiple projects with
different architectures, benefiting from other people’s
work by integrating the proposed solution with their
work to come up with a detailed technique for DW
testing with minimum effort and maximum gain, and
finally, considering future system modifications by
using a graph database to store the test routine
descriptions to be easily extended to contain various
system additions or changes.
Future work in this area could be categorizing test
routines according to the well known software testing
phases, namely; Unit testing, Integration testing,
System testing, and User Acceptance testing. Since it
has been widely agreed upon that the testing phase is
categorized into the aforementioned test phases, it
would be of great help to the testing team to suggest
for them test routines given in the categorization
scheme they are familiar with.
Another possible extension to the proposed work
could be including the group of test routines targeting
the layer of User Interfaces since it has been skipped,
though our research.
Test routines suggested in this paper are all possible
test routines. Not all of them need to be conducted on
any DW to test it. Consequently, testers are given the
opportunity to choose the proper set of test routines to
conduct on their DW. Hence, providing the testers
with enough information about relationships between
test routines and possible dependencies that might
take place between them might help them choose the
proper set of test routines without sacrificing their
system’s quality.

In the end, we would like to conclude that the
proposed architecture-oriented testing approach may
not be the ultimate solution for DW testing, however,
it has gained multiple user’s trust. It is powerful for
its flexibility and might be adequate for use by small
to medium sized DW development companies that do
not have standardized or comprehensive DW Testing
frameworks.

8. Acknowledgements
We would like to thank the companies who supported
us with time and resources to be able to experiment
with the proposed architecture-oriented DW testing
approach (Teradata Egypt, Centrivision, and
SMSMT).

9. REFERENCES

[1] R. Abellera, Data Warehouse Architectures:

Overview of the Corporate Information Factory
and the Dimensional Modeling, The Data
Warehouse Institute, 2010.

[2] C. Bateman, Where are the Articles on Data
Warehouse Testing and Validation Strategy?,
Information Management, 2002.

[3] S. Bhat, Data Warehouse Testing - Practical,
Stick Minds, 2007.

[4] B. Boehm, A Spiral Model of Software
Development and Enhancement, 21 (1988), pp.
61-72.

[5] K. Brahmkshatriya, Data Warehouse Testing,
Stick Minds, 2007.

[6] CentriVision, www.Cenrivision.com, 2003.
[7] R. Cooper and S. Arbuckle, How to Thoroughly

Test a Data Warehouse, Software Testing
Analysis and Review (STAREAST'02), Orlando,
Florida, 2002.

[8] N. ElGamal, Data Warehouse Test Routine
Descriptions, Technical Report,
www.researchgate.net/publication/289729988_D
ata_Warehouse_Test_Routine_Descriptions,
2016.

[9] N. ElGamal, Data Warehouse Testing, PhD.
Thesis, Faculty of Computers and Information,
Cairo University, 2015, Appendix B, pp. 193-
228.

[10] N. ElGamal, A. ElBastawissy and G. Galal-
Edeen, Data Warehouse Testing, Proceedings of
the Joint EDBT/ICDT PhD Workshop, ACM,
Genoa, Italy, 2013.

[11] N. ElGamal, A. ElBastawissy and G. Galal-
Edeen, Towards a Data Warehouse Testing
Framework, Proceedings of the 9th International
Conference on ICT and Knowledge Engineering
(ICT&KE'11), IEEE, Bangkok, Thailand, 2011,
pp. 67-71.

[12] A. K. Elmagarmid, P. G. Ipeirotis and V. S.
Verykios, Duplicate Record Detection: A Survey,
IEEE Transactions on Knowledge and Data
Engineering, 19 (2007), pp. 1-16.

http://www.cenrivision.com/
33

33

http://www.researchgate.net/publication/289729988_Data_Warehouse_Test_Routine_Descriptions
http://www.researchgate.net/publication/289729988_Data_Warehouse_Test_Routine_Descriptions

[13] M. Golfarelli and S. Rizzi, A Comprehensive
Approach to Data Warehouse Testing,
Proceedings of the ACM 12th international
workshop on Data warehousing and OLAP
(DOLAP'09), ACM, Hong Kong, China, 2009,
pp. 17-24.

[14] M. Golfarelli and S. Rizzi, Data Warehouse
Design: Modern Principles and Methodologies,
McGraw Hill, 2009.

[15] M. Golfarelli and S. Rizzi, Data Warehouse
Testing, International Journal of Data
Warehousing and Mining, 7 (2011), pp. 26-43.

[16] M. Golfarelli and S. Rizzi, Data Warehouse
Testing: A prototype-based methodology,
Information and Software Technology, 53 (2011),
pp. 1183-1198.

[17] J. Guerra and D. Andrews, Why You Need a Data
Warehouse, www.rapiddecisions.net, Copyright
Andrews Consulting Group, Inc., 2011.

[18] S. L. Gupta, P. Pahwa and S. Mathur,
Classification of Data Warehouse Testing
Approaches, International Journal of Computers
and Technology, 3 (2012), pp. 381-386.

[19] W. H. Inmon, Building the Data Warehouse,
Wiley Comp., 1996.

[20] M. Jarke, M. Lenzerini, Y. Vassiliou and P.
Vassiliadis, Fundamentals of Data Warehouses,
Springer-Verlag New York, Inc., 2001.

[21] R. Kimball, L. Reeves, W. Thornthwaite and M.
Ross, The Data Warehouse Lifecycle Toolkit:
Expert Methods for Designing, Developing and
Deploying Data Warehouses, John Wiley \&
Sons, Inc., 1998.

[22] M. P. Mathen, Data Warehouse Testing, Infosys
Technologies Limited, 2010.

[23] R. Mattison, The Data Warehousing Handbook,
XiT Press, Oakwood Hills, Illinois-USA, 2006.

[24] A. Munshi, Testing a Data Warehouse
Application, Wipro Technologies, 2003.

[25] Neo4j, Neo4j Graph Database, 2013.
[26] V. Rainardi, Testing your Data Warehouse,

Building a Data Warehouse with Examples in
SQL Server, Apress, 2008.

[27] W. W. Royce, Managing the development of
large software systems: concepts and Techniques,
Proceedings of the 9th International Conference
on Software Engineering (ICSE'87), Monterey,
California, USA, 1987, pp. 328-338.

[28] SMSMT, SMS Management and Technology
www.smsmt.com, 1986.

[29] P. Tanuška, O. Moravčík, P. Važan and F. Miksa,
The Proposal of Data Warehouse Testing
Activities, Proceedings of 20th Central European
conference on Information and Intelligent
Systems, Varaždin, Croatia, 2009, pp. 7-11.

[30] P. Tanuška, O. Moravčík, P. Važan and F. Miksa,
The Proposal of the Essential Strategies of Data
Warehouse Testing, Proceedings of 19th Central
European Conference on Information and
Intelligent Systems (CECIIS'08), 2008, pp. 63-67.

[31] P. Tanuška, P. Schreiber and J. Zeman, The
Realization of Data Warehouse Testing Scenario,

proizvodstvo obrazovanii. (Infokit-3) Part II: 3
meždunarodnaja nature-techničeskaja
konferencija., Stavropol, Russia, 2008.

[32] P. Tanuška, W. Verschelde and M. Kopček, The
proposal of Data Warehouse Test Scenario,
Proceedings of European conference on the use
of Modern Information and Communication
Technologies (ECUMICT'08), Gent, Belgium,
2008.

[33] Teradata, Teradata Testing Strategy, 2014.
[34] Teradata, www.teradata.com, 1980.
[35] J. Theobald, Strategies for Testing Data

Warehouse Applications, Information
Management, 2007.

[36] D. Vucevic and W. Yaddow, Testing the Data
Warehouse Practicum - Assuring Data Content,
Data Structures and Quality, Trafford, 2012.

[37] D. Vucevic and M. J. Zhang, Testing Data
Warehouse Applications, Trafford Publishing,
2011.

[38] W. Yaddow, Conducting end-to-end testing and
quality assurance for data warehouses, IBM Data
Magazine, 2013.

[39] W. Yaddow, Enriching data warehouse testing
with Checklists, IBM Data Magazine, 2013.

http://www.rapiddecisions.net/
34

34

http://www.smsmt.com/
http://www.teradata.com/

Supervised Learning in Matrix Completion Framework for
Recommender System Design

Anupriya Gogna, Angshul Majumdar

IIIT-Delhi, Delhi
INDIA

anupriyag@iiit.ac.in, angshul@iiitd.ac.in

Abstract
Recommender systems primarily utilize the,
highly sparse, explicit rating information to make
relevant predictions. This data scarcity places a
limit on the accuracy of prediction. In this work
we attempt to alleviate the problem of data
sparsity by using secondary information. Most
existing works incorporate auxiliary information
in a (bi-linear) matrix factorization setup; whilst
our model is based on a (convex) matrix
completion framework. In this work, we use
auxiliary information about users and items to
impose additional constraints on the recovered
rating values; adopting ideas from supervised
learning. Alongside, we also propose a method to
utilize the information map extracted from
supervised learning approach to handle the cold
start problem. Most works that address the cold
start problem are focused on users with very few
ratings - this is not the pure cold-start problem.
However, in this work we target new users and
items which have no ratings available for them;
and only has the associated metadata. We
propose an algorithm using split Bregman
technique for solving our formulations.
Comparison of our design with existing state of
the art methods for RS design on the movie
recommender systems clearly indicate the
superiority of our formulation over existing
methods.

1. Introduction
Today recommender systems (RS) [1,2] are the
workhorse behind all Business-to-Client eCommerce
portals. To facilitate the user, a recommender system
predicts the user’s choices and suggests a handful of
items; if the prediction is good the user buys it. The
importance of accurate recommendation and hence the
focus on building efficient RS is very clear - better the
prediction, more is the revenue for the portal.

RS largely rely on some form of feedback provided by
users on a subset of items, such as purchase information,
like/dislike options or explicit rating data, to predict the
ratings on yet unrated items. Gathering this information
involves a user’s active participation, either by means of
purchase or some form of interviewing process (like
seeking user’s rating on a selected set of items), which is
not always a plausible scenario. Lack of this preference
information, especially in case of new users registering on
the system can be major bottleneck in improving
customer satisfaction. It is essential for RS to provide
satisfactory suggestions to such (new) users as well,
failing in which can cause potential loss of customers and
revenue.

In absence of any explicit predilection information,
the rating prediction for new users (user cold start
problem) can be based on available secondary data like
user’s demographics. Consider for example distribution
based on age grouping; children in age group of 1-10 will
most likely have affinity for animation movies; similarly,
young adults (say 20-30 years) can have affinity for
action/thriller. Similarly, women may have in general
affinity for rom-com or family genres whereas males
might be more inclined towards action. On similar lines,
metadata for new items (such as their category
information) can be used to gauge user’s interest in them;
thereby solving the item cold start problem. For example,
a user who liked comedies in past will most likely enjoy
comic recommendations. Thus, auxiliary data can prove
to be a valuable source of information in RS; idea being
exploited in several works [3,4]. Despite the difficulty in

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a
fee. Articles from this volume were invited to present their results
at The 21st International Conference on Management of Data.
COMAD, March 11-13, 2016, Pune.
Copyright 2016 Computer Society of India (CSI).

35

35

garnering collaborative information for new users or
items, most existing works [5,6] handling the cold start
problem work with users and/or items which have small
number of ratings available for them i.e. solve the partial
cold start problem. Several works rely on building
interviewing process [7,8] to collect (new) user’s ratings
on few selected items, which might not be convenient in
all scenarios outside the academia. For example, e-
retailers such as amazon or alibaba does not gather such
information from new users and sites garnering such
information are becoming increasingly rare.

 The metadata used for prediction to solve the cold
start problem can also be used to augment the rating
dataset for warm start users. The explicit rating data (from
users) is much more reliable than implicitly gathered
information but suffer from extreme data sparsity. To
alleviate this data sparsity, user/item auxiliary information
can be exploited.

Traditionally, collaborative filtering (CF) [9,10]
techniques have been used as de-facto approach to
harness the explicit rating data for rating prediction. In
recent past, researchers have proposed models based on
CF schemes to assimilate user/ item metadata as well.
This additional data has been used to augment the explicit
rating data in either a memory based setup [4,11] or in
latent factor framework [12,13].

Neighborhood based models [14] although easy to
implement, do not always yield the best of results [15];
latent factor models [16] being more powerful. These
models assume that user’s choices on items are
determined by very few factors. The user has an affinity
towards these factors whereas the items possesses these
factors to a lesser or greater extent. Thus both the users
and items can be characterized as vectors of latent factors;
user’s rating on an item expressed as an inner product
between the user and item latent factor vectors.

In light of the arguments presented above, in this
work, we aim to use auxiliary data in a latent factor
framework to improve prediction accuracy for both warm
start and pure cold start scenarios. The highlight of our
approach is that the proposed method to solve the cold
start problem for new users/items is a direct increment of
the model proposed for improving prediction accuracy for
existing users; thereby handling both the major problems
without increased resource requirement or complexity.
Such a comprehensive model has not been proposed.

Another highlight of our model is use of matrix
completion formulation, instead of more commonly
employed matrix factorization (MF) [17], which attempts
to recover the rating matrix as a product of two matrices –
user’s latent factor and item’s latent factor matrix. Matrix
factorization is computationally fast, but unfortunately it
is bilinear and hence non-convex. Recently, researchers in
signal processing showed that, instead of formulating the
latent factor model as a matrix factorization problem, it
can be recast as a low-rank matrix completion problem
(LRMC) - a convex formulation [18,19]. As discussed

above, latent factor model assumes that an item’s rating is
a function of a handful of features (latent factors). As, the
entire rating matrix is a result of interaction amongst the
latent factor vectors of users and items, its structure is
governed by the small number of factors only. This results
in the low rank nature of the rating matrix enabling use of
LRMC techniques for rating prediction. We formulate our
proposition as an augmented matrix completion problem
(with additional regularization terms) – which enjoys the
benefit of a convex formulation, deriving ideas from
supervised learning.

In addition, unlike most recent works, which use
user’s social profile or trust network as additional data
source [13], we use user’s demography and item category
information to supplement the rating database. It is
difficult for RS to acquire social relation data for user;
limiting the applicability of models using the same. Most
RS maintain a database of item genre/category (for
example an online book store will always have books
categorized as per genre). Also, usually users are required
to fill up some basic information (like age, gender etc.)
while registering on an online portal. Hence, this
information is readily available and at no extra cost,
enabling a wider applicability of our model.

The novelty of our approach lies in the use of easily
and widely available data (user demography and item
genres) in a supervised learning environment to generate
effective recommendations. We group together (label)
users based on their demographic information – age,
gender and occupation. The rating prediction is done
under the additional constraint of maintaining label
consistency. Similar strategy is adopted for items as well
by using the genres as classification labels. Use of
additional information (as constraints) to augment the
matrix completion model reduces the problem search
(solution) space, making the problem less
underdetermined. There are few works [4,12] that
incorporate demographic data of users, however none of
them follow the principles of supervised learning
followed in our work. Also, as indicated in results section;
ours is a far superior formulation.

We extend our supervised learning based model to
mitigate the cold start problem as well. The label
consistency model is used to derive a relation between a
user’s and/or item’s class labeling and their rating pattern.
This information is used to predict the ratings and make
effective recommendations for new users (or new items)
for which secondary information is available. When a new
user enters a system, their record is updated and so is the
case with a new item (say movie) made available at an
online portal. Thus, in absence of any rating data for such
cold start conditions, this information makes effective
recommendations plausible. We also design an algorithm
based on split Bregman technique for our formulations.

36

36

2. Related Work

2.1 Matrix Factorization Framework for Latent
Factor Model

The explicit rating provided by a user (,i jR , user i on item
j) can be viewed as a combination of two factors –
baseline estimate and interaction component. The baseline
constitutes user and item biases. There are some users
who are overtly critical and tend to rate everything on the
lower side of the scale – they have negative bias;
similarly, there are some movies which are always rated
on the higher side – they have positive bias. The
'interaction' part models a user’s affinity for an item.

Usually baseline is computed offline by solving (2)
via stochastic gradient descent algorithm [17].

� �2 2 2
, 22 2, , _

min
i j

i j j i j ib b i j avail rat

R b b b bP G
�

� � � � �¦ (2)

where, P is the global mean; ib is ith the user bias and jb

is the item bias of jth item; � �i jb bP � � is the baseline
component; G is the regularization parameter.

The interaction (Y) between the user and the item
� �, ,i j i j j iY R b b P � � � is modelled in terms of latent
factors. Consider the case of movie ratings; choice of a
movie is determined by very few factors - genre, director,
cast, music etc. Each movie possesses these factors to a
certain extent, and each user has affinity towards these
factors. Based on this model one can represent a user (i)
by a vector iU and an item (j) by a vector jV
corresponding to latent factors. The 'interaction' can hence
be expressed as inner product of two ,i jU V .

The problem in CF is that all the user ratings are not
available; a typical user will only rate a small percentage
of all the items. Thus, if we consider the interaction
matrix (Y), it is incomplete. The problem in CF is to
predict all the missing ratings - i.e. fill in the rating
matrix. This can be expressed as an inverse problem
[14]; ()Y M UV , where M is a binary mask having
1's in place of available ratings and 0 elsewhere.

This problem is solved via the following optimization:

� �2 2 2

,
min ()

F F FU V
Y M UV U VO� � � (3)

This problem is non-convex in U and V, owing to the
bi-linearity. Thus there is no convergence guarantee.

2.2 Matrix Completion

If, we consider all the users and the items, the interaction
matrix will be represented as Z UV ; Z � �K NZ u� is
complete interaction matrix with K users and N items.

Traditionally latent factor models formulated the
interaction component as a matrix factorization problem.
However, if we concentrate on rating prediction (only the

interaction Z), we do not need to solve for the user (U)
and the item (V) factor matrices separately, as long as we
can estimate Z. Recent studies proposed estimating Z
directly, by solving the inverse problem Y M Z .

This is an under-determined inverse problem with
infinitely many solutions. In order to find a reasonable
solution, one needs some prior assumption regarding Z.
Even though Z is a very large matrix (hundreds of
thousands of users and items), it has a very low-rank; the
rank being the same as the number of latent factors. Thus
predicting the missing interactions turns out to be a
Matrix Completion problem (4)

2

*
min

FZ
Y M Z ZO� � (4)

The nuclear norm penalty promotes a low-rank
solution [20]. In this section, we review few LRMC
algorithms briefly.

Toh, & Yun [21] proposed Accelerated Proximal
Gradient (APG) algorithm for LRMC. It employs
Proximal Gradient (PG) [22] method with an appropriate
step size and an extra interpolation step to achieve faster
convergence. The iterative algorithm can be summarized
as follows

� �

� � � �� �

� � � �

� �

1
1

1

2

1 1

1

1 1 4
;

2
. . ;

k

k
k k k k

k

k k k T k

k

k k k

tW X X X
t

G W A A W b

X S G t

s t b vec Y A : block diag form ofM

W

W

W

�
�

�

� �

�
 � �

 � �

� �

 (5)

Authors in [23] proposed a method for low-rank
matrix recovery using the Iterative Least Square (IRLS)
technique. It aims at minimizing the weighted Frobenius

norm, � �1/2 2
pW X F of matrix, X. A low rank matrix (X)

results if weighting matrix pW is chosen appropriately.
IRLS algorithm for nuclear norm minimization consists of
following iterates

� � � �^ `
� � � �� �

1

12

arg min :k k T
p

p
Tk k k k

p

X Tr W X X A X b

W X X IJ

�

�

 �
 (6)

Most of the existing methods for LRMC require large
number of iterations for convergence on large datasets.
We propose an algorithm for our augmented matrix
completion formulation based on split Bregman technique
[24]. Use of split Bregman helps achieve faster
convergence and improved recovery accuracy.

2.3 Use of Auxiliary Information

To augment the (sparse) explicit rating dataset several
researchers have utilized available secondary data. In this
section we review some of the techniques for the same.

37

37

Authors in [25] proposed a similarity measure
� �modsim to determine nearest neighbours based on both
rating data and demographic information (7).

mod dem rat ratsim sim sim sim u � (7)
where, demsim is similarity computed using demographics
and ratsim is computed using explicit rating data.

Rating data is augmented with geo-spatial
information, in a neighbourhood based model, for
photograph recommendation in [26]. They used
geographical tag data to group photographs into clusters
and propagate ratings amongst the members of the same
cluster. Thus, a dense rating matrix is obtained which is
used as input to neighbourhood based CF algorithm.

Authors in [12] used graph regularization to augment
the matrix factorization model. User and item graphs were
constructed by utilizing user’s demographic and social
profile data and item’s genre classification.

� � � �� �
� �� �

2

,V
min T

luFU

T
lv

Y M UV Tr U G U

Tr V G V

O

J

� �

�
 (8)

where, luG and lvG are the graph Laplacians for user and
item graphs respectively.

In [27] social network information and ratings are
used in a PMF (Probabilistic Matrix Factorization)
framework. Standard PMF models latent factor vectors as
independent Gaussian priors. In [12] PMF is modified to
allow for correlation between these Gaussian priors,
incorporating similarity amongst items/users.

Most Existing works, as discussed above, augment the
conventional matrix factorization framework with
secondary data. Also, they mainly rely on grouping of
users and/or items and promoting similarity amongst
latent factor vector of similar (grouped) users and/or
items. Though, authors in [28] augmented matrix
completion model, their model is also based on grouping
together similar users. They minimized the rating
variation amongst similar users (9). They do not exploit
item metadata in their framework

� �2

*
min () varG gFZ G Groups g G

Y A Z Z RO P
� �

§ ·
� � � ¨ ¸

© ¹
¦ ¦ (9)

In this work, we build up on the (convex) matrix
completion model incorporating user/item metadata
(demographic information and item categorization) in a
label consistent (supervised learning) framework. Also,
our formulation can exploit both item and user metadata.
Use of label consistency model helps us derive linear
maps from rating space to item/user label domain. This
assists in solving the rating prediction problem for new
users and new items (cold start). None of prior art targets
both warm and cold start users together.

2.4 Cold Start Poblem

The problem of providing effective suggestions to new
users or recommending new items to existing users – the
cold start problem, is a big challenge in RS design. We
review some of prior art in the area.

 In [29] used a trust based measure to determine
similar users instead of rating based similarity for cases
where very few ratings are available. They argued that
because trust propagates, there can be many more similar
users than if (very few) ratings are considered, making
predictions better. Authors in [6] used social tags as a
means of relating users to items. The predictions are
based on the frequency of tags and the semantic
relationships between tags and items.

Works like [30] use small amount of rating
information alone to target partial cold start problem.
They based their predictions on a new similarity measure
that also consider the frequency and count of co-rated
items to remove disparity between users with highly
varied rating patterns.

Authors in [31] used user’s demographics to model an
alpha-community space model. Once a new user’s
communities are defined, one recommendation list per
community is generated based on adhoc level of
agreement recommendation process.

Most works, as highlighted above, solve the cold start
problem for cases where some rating information is
available. We, in this work attempt to solve the pure cold
start problem. Also, unlike existing methods which
attempt to separately solve the cold start problem, our
framework is a cohesive model aiming for improvements
in accuracy for existing users and mitigating the cold start
problem.

3. Proposed Formulation
In this section, we describe our proposed formulation

for design of a RS incorporating user-item metadata to
improve prediction accuracy. The design is also extended
to solve the pure cold start problem. The novelty of our
work lies in formulating a matrix completion based model
for exploiting user (demographic profile) metadata and
item categories along with the ratings. We augment the
LRMC model with label consistent constraints, derived
from user/item metadata, imposed on the rating matrix.
Also, the highlight of our design is that we put forth a
comprehensive model to handle two major problems
afflicting the RS – improving quality of prediction and the
cold start problem.

3.1 Problem Formulation

3.1.1 Low Rank nature of rating matrix

As discussed above, we perform offline baseline
estimation and work with interaction component alone.
Once the complete interaction matrix (Z) is recovered
(using proposed formulation) the baseline estimates are

38

38

added back.
Latent factor model states that the interaction between

users and items is governed by a small number of factors
– the latent factors; say, for books the latent factors may
be author and genre; for movies director, genre, cast etc.
As the interaction matrix is a function of very few
variables (~40-50) as compared to matrix dimensions
(hundreds of thousands of users and items), the matrix is
fairly low rank. The low-rank property of Z can be used to
predict the missing ratings using LRMC framework.
Thus predicting the missing interactions turns out to be a
Matrix Completion problem (10).

2

*
min ()

FZ
Y A Z ZO� � (10)

where, A is a binary mask, which is 1’s in place of
available rating values and 0 otherwise; Z is the
completely filled matrix of interaction component; Y
interaction component of available ratings.

3.1.2 Incorporating Metadata

Nuclear norm minimization (10) requires that for a rank r
matrix of size n nu , at least � �6 5n r r� samples be
available [20]. For the case of RS design, size of matrix is
at least1000 1000u , thereby requiring around 23% of the
ratings to be available for reasonable reconstruction
accuracy (assuming rank to be 40). However, in real
world datasets, the available information is less than 10%,
in some cases even as low as 1%.

Hence, there is considerable need for additional
information, which can alleviate data sparsity to improve
prediction accuracy. In this paper, we make use of user’s
demographic data and item genre information to augment
the rating data for a movie recommender system. Often,
during the process of sign up users are required to enter
their basic demographic data. Also, all portals maintain a
database of their item categories. Thus, collecting this
information invites no additional cost. Even for new users
and new items, this metadata is readily available; even if
collaborative information is missing.

Our model utilizes a label information data (matrix)
defining relations between users and/or items and the
class they belong to. For users, classes are defined on the
basis of age, gender and their occupation; for items,
multiple genres form the distinct classes. Our framework
can make use of any additional available information as

well for classification purpose. We incorporate label data
into the matrix completion framework by modifying (10)
to include additional label consistent regularization terms.

Considering user metadata, we define multiple classes
based on gender, age brackets and different occupational
profiles; user can simultaneously belong to multiple
classes. Using this label information a user-class label
matrix � �uL is defined, such that � �, 1uL i c if user i
belongs to class c else 0. Let us consider an example
wherein we form 2 distinct gender (M/F) groups, P
distinct non-overlapping age groups (say 1-17, 18-24 and
so on) and Q distinct occupational categories. The label
matrix � �uL will have a row corresponding to each user
and columns corresponding to (2+P+Q) classes as shown
in fig. 1. Let us consider a user (User 1), who is a male in
age group of 18-24 and a lawyer by profession. The
classification information of this user can be used to fill
up first row of uL . Similarly, for a female in age group of
60+ and an artist by profession, corresponding row will be
as shown in row 2 and so on.

This class label matrix provides additional data to help
predict the missing values in the rating matrix. The ratings
are predicted under the add-on constraint of maintaining
label consistency (appended as a regularization term) as

� � 2 2

*,W
min

u
u u u FFZ

Y A Z Z L ZWO O� � � � (11)

where, uW is the linear map from user-item rating space to
user-class space. It defines relation between a user’s class
and their ratings; uO is the regularization parameter
governing the relative importance given to rating data and
the demographic information.

Similar model is built for items as well; establishing a
relation between the item genre and the ratings given to
them by users. Each item (movie, in this case) may belong
to several classes (genres). A class-item label matrix � �vL

is constructed such that � �, 1vL c j if item j belongs to
class c else 0. Similar to formulation discussed in (12) we
propose item metadata based framework (12)

� � 2 2

*,W
min

v
v v v FFZ

Y A Z Z L W ZO O� � � � (12)

where, vW is the linear map (to be estimated) from user-
item rating space to class-item space and vO is the

 G
en

de
r 1

(M

)

G
en

de
r 2

(F

)

A
ge

 1

(1
-1

7)

A
ge

 2

(1
8-

24
)

…
.

A
ge

 P

(6
0+

)

O
cc

. 1

(T
ec

h.
)

O
cc

. 2

(A
rti

st
)

…
.

O
cc

. Q

(L
aw

ye
r)

User 1 1 0 0 1 0 0 0 0 0 1
User 2 0 1 0 0 0 1 0 1 0 0
..
User |U| 1 0 0 1 0 0 1 0 0 0

Figure 1. Construction of label matrix

39

39

regularization parameter.
We also club together both formulations to exploit both
item and user metadata simultaneously as shown in (13).

� � 2

*, ,

2 2

min
v u FZ W W

v v v u u uF F

Y A Z Z

L W Z L ZW

O

O O

� �

� � � �
 (13)

Equation (13) illustrates our final formulation for
supplementing the matrix completion model with item
and user metadata. Use of additional information helps
improve the robustness and accuracy of our recommender
system by making the problem less underdetermined.

3.1.3 Alleviating Cold Start Problem

For new users or items there are no ratings; making rating
prediction a challenge. We propose to use the information
map (vW and uW) extracted from solving (13), almost as a
by-product, to solve the pure cold start problem.

First let us consider, the information map uW i.e. one
generated using user metadata. It is a map from rating
information to user label (classification) space. The map
primarily correlates the ratings or user’s choice with the
demographic profile of a user. Consider a new user newU
entering a system. As he/she signs up on the portal, their
demographic information is captured. Thus, a vector
� �coldstartU defining class labelling of the said user

� �1 2
.

cunew c new c new cU U U� � �ª º¬ ¼ can be constructed,

where cu is the number of classes considered for users.
From solution top (13), we have the deciphered map uW .
The new user’s demographic information (label vector)
and the deciphered map can be related as

� � � � � �

� � � �

� �

1 1

11 12 13

21 22

. . . .

.

. .

. . . .

. . .

cu N

N cu

new c new c new i new i

u u u

u u

u i c

U U Z Z

W W W

W W

W

� � � �ª º ª º ¬ ¼ ¬ ¼
ª º
« »
« »

u« »
« »
« »
¬ ¼

 (14)

where, � �1
. .

Ncoldstart new i new iZ Z Z� �ª º ¬ ¼ is the vector

defining the new user’s rating (interaction components)
for each item in the database (total number of items, N).
Equation (14) can be written as set of linear equation (15)

coldstart coldstart uU Z W (15)
Predicted interaction part for new user, coldstartZ , can be

obtained by solving (15) using any conjugate gradient
type algorithm.

Similar approach can be followed for item cold start
problem as well by utilizing the genre information of new
item � �newV and the information map vW . As a new item
(say movie in our case) is added to the system, its genre
information is easily available. The information map, vW ,

establishes a relation between the rating data and the
genre of items i.e. it captures information relating user’s
choice of an item to its genre content. This information
map is used to determine user’s preference for a new item.

Similar to equation constructed above for users, we
can formulate item cold start problem as

� � � �

� �

� �

1 1

2 2

11 12

21

. .

. . .

.
. . .

cv Kcv K

v vnew c new u

vnew c new u

new c new uv c u

W WV Z
WV Z

V ZW

� �

� �

� �

ª ºª º ª º
« »« » « »
« »« » « » « »« » « »
« »« » « »
« »« » « »¬ ¼¬ ¼ ¬ ¼

 (16)

where,
1

. .
cv

T

coldstart new c new cV V V� �ª º ¬ ¼ is the class label
vector for the new item (cv: number of distinct classes);

1
. .

K

T

coldstart new u new uZ Z Z� �ª º ¬ ¼ defines interaction
component of ratings by all existing users for new item.

Equation (16) can be compactly written as in (17) and
solved using a conjugate gradient solver.

coldstart v coldstartV W Z (17)
Hence, our model can be used to mitigate both user

and item end (pure) cold start problem, as an extension of
our label consistent model, without significant
computational burden.

3.2 Algorithm Design

In this section, we present the algorithm for our proposed
formulation (13) using split Bregman technique.

Use of split Bregman technique [24] aids in faster
convergence and lower recovery errors, as no cooling of
regularization parameter is required and thus optimal
values of regularization parameters for each of the sub
problem can be set.

Firstly, in order to enable splitting of multiple norm
terms, we introduce proxy variables (P and Q) in our
formulation (13) as in (18).

� � 2 2

*, , , ,

2 2 2

min

1 2
v v

v v v FFZ W W P Q

u u u v uF F F

Y A Z Z L W P

L QW P Z B Q Z B

O O

O P P

� � � � �

� � � � � � �
 (18)

where, 1B and 2B are the Bregman variables.
Use of Bregman variables ensures that the equality

between original and proxy variables need not be strictly
enforced from the start. Updation of Bregman variables
helps add back the error thus making the algorithm self-
correcting and also helps in faster convergence.

We split our formulation into simpler sub problems
using Alternating Direction method of Multipliers.
Sub Problem 1

� � 2

*

2 2

min

1 2

FZ

v uF F

Y A Z Z

P Z B Q Z B

O

P P

� �

� � � � � �
 (19)

Sub Problem 2
2 2min 1v v v vF FP

L W P P X BO P� � � � (20)

40

40

Sub Problem 3
2 2min 2u u u uF FQ

L QW Q X BO P� � � � (21)

Sub Problem 4
2min

v
v v FW

L W P� (22)

Sub Problem 5
2min

u
u u FW

L QW� (23)

Now, focusing on sub problem 1, it can be recast as

� �
� �

2

*
1min

2
v v

Z

u u F

Y A

P B I Z Z

Q B I

P P O

P P

§ · § ·
¨ ¸ ¨ ¸

� � �¨ ¸ ¨ ¸
¨ ¸ ¨ ¸¨ ¸ ¨ ¸�© ¹ © ¹

 (24)

Equation (24) can be solved by soft thresholding of
singular values [32] as follows

� �

� �
� �

 ,
2

1 1

2

T

v v v

u u u

Z Soft Singular value T

A Y A

I P B IT Z Z

I Q B I

O
D

P P P
D

P P P

§ ·m ¨ ¸
© ¹
§ ·§ ·§ · § · § ·
¨ ¸¨ ¸¨ ¸ ¨ ¸ ¨ ¸
¨ ¸� � �¨ ¸¨ ¸ ¨ ¸ ¨ ¸
¨ ¸¨ ¸¨ ¸ ¨ ¸ ¨ ¸¨ ¸ ¨ ¸ ¨ ¸¨ ¸¨ ¸�© ¹ © ¹ © ¹© ¹© ¹

(25

where, � � � � � � , max 0,Soft t u sign t t u � and

max

T

v v

u u

A A

g Iei I

I I

P P

P P

D

§ · § ·
¨ ¸ ¨ ¸
¨ ¸ ¨ ¸
¨ ¸ ¨

§ ·
¨ ¸
¨ ¸t
¨ ¸
¨ ¸
© ¹

¸¨ ¸ ¨ ¸
© ¹ © ¹

.

2nd subproblem can be cast as a least square expression as

� �

2

min
1

v v v v

P
v v F

L W
P

X B I

O O

P P

§ · § ·
¨ ¸ ¨ ¸�
¨ ¸ ¨ ¸�© ¹ © ¹

 (26)

Similarly, sub problem 3 can be recast as follows

� �

2

min
2

u u v u

Q
u u F

L W
Q

X B I

O O

P P

§ · § ·
¨ ¸ ¨ ¸�
¨ ¸ ¨ ¸�© ¹ © ¹

 (27)

Equation (22), (23), (26) and (27), are simple least
square expressions which can be efficiently solved using
any conjugate gradient type solver. In each iteration
Bregman variables are updated as follows

2 2B B Z Q � � (28)
1 1B B Z P � � (29)

The iterations continue till convergence. The complete
algorithm (LCMC-Label consistent matrix Completion) is
given in fig 2.

4. Experiment and Results
We demonstrate the performance of our algorithm for a
movie recommender system. We conducted experiments
on 100K and 1M Movielens datasets
(http://grouplens.org/datasets/movielens/). To the best of

our knowledge, these are the only public datasets which
provide relevant user and item metadata with ratings.

4.1 Description of Datasets

Both the datasets contain ratings on a scale of 1-5. 100K
dataset contains 100K ratings given by 943 users on 1682
movies and 1M dataset has 1M ratings on around 3952
movies given by 6040 users. Both datasets have less than
5% of the ratings available and hence the improvement
achieved by using metadata can be adequately gauged.

For users 30 groups are constructed – 2 for gender
(M/F), 7 for multiple age-brackets (1-17, 18-24, 25-34,
35-44, 45-49, 50-55 and 56+) and 21 for various
occupations. For items, 19 groups are formed, each
representing a different genre. This information is used to
construct label matrices � �,u vL L as discussed in section 3.

4.2 Experimental Setup and Evaluation Criteria

We conducted 5-fold cross validation on both the
datasets; 80% of the ratings forming the train set and
remaining 20% used for testing. The simulations are
carried out on system with i7-3770S CPU @3.10GHz
with 8GB RAM. For cold start testing, 80% of users
(items) were kept as part of training data and test done on
remaining 20% users (items).

For offline baseline estimation, value of G in (2) is set
as 1 3e� . The value of regularization parameters for our
formulation (18) is selected using greedy L-curve
technique [33]. The values for both 100K and 1M dataset
are 1 1eO � , 1 1u eO � , 1 1v eO � , 1uP , 1vP .
The overall accuracy of our model is evaluated using
MAE (Mean absolute error) (30) and RMSE (root mean

� �

� �

/ / Z; ,
2

/ /

 ,
 ;

 P;
1

/ / Q

v v v v

v v

Solve for Z Soft

Initialize variables
Set regularization parameters max_iter
while not conver

Singular value T

L W
Solve for Solve P

X B

gence

I

Solve for

O
D

O O

P P

§ ·m ¨ ¸
© ¹

§ · § ·
¨ ¸ ¨ ¸
¨ ¸ ¨ ¸�© ¹ © ¹

� �
2

2

;

2

/ / ; min

/ / ; min

/ / ;
2 2 ; 1 1

v

u

u u v u

u u

v v v FW

u u u FW

L W
Solve Q

X B I

Solve for W Solve L W P

Solve for W Solve L QW

Update Bregman Variable
B B
end whi

Z Q B
e

Z
l

B P

O O

P P

§ · § ·
¨ ¸ ¨ ¸
¨ ¸ ¨ ¸�© ¹ © ¹

�

�

 � � � �

Figure 2. Algorithm - LCMC

41

41

square error) (31).

, ,
,

ˆ
i j i j

i j

R R
MAE

R

�

¦

 (30)

� � 2
, ,

,

ˆ
i j i j

i j

R R
RMSE

R

�

¦

 (31)

where, R

and R̂ are the actual and predicted ratings and

R is the cardinality of the rating matrix R .
The relevance of recommendations for each user is

measured in terms of precision (32) and recall (33) [34]
for top-N recommendations. The values depicted in the
results are the average of values computed for each user.
Precision and recall curves are plotted for varying number
of recommendations.

#
#

p

p p

t
Precision

t f

�
 (32)

#
#

p

p n

t
Recall

t f

�
 (33)

Here, pt denotes true positive (item relevant and
recommended), pf denotes false positive (item irrelevant
and recommended) and nf denotes false negative (item
relevant and not recommended). An item is marked
relevant if it’s rated as above 3 else irrelevant.

4.3 Analyzing impact of metadata

In this section we present the results of our proposed
formulations – Label consistent matrix completion with
user metadata (LCMC-U) (11), Label consistent matrix
completion with item metadata (LCMC-I) (12), Label
consistent matrix completion with user and item metadata
(LCMC-UI) (13).

We compare the result of our work with state of the art
matrix completion and matrix factorization algorithms –
Accelerated Proximal gradient (APG) [21], Block Co-
ordinate descent based Non negative matrix factorization
(BCD-NMF) [35], Factored item similarity model (FISM)
[36] and Probabilistic matrix factorization (PMF) [37].

To further highlight the contribution of user/item
metadata in improving recommendation accuracy, we also
show the results for following two (sub) formulations:

1. MC: Formulation exploiting just the rating data
in a nuclear norm minimization framework i.e. user/item
metadata is not utilized (34).

2

*
min ()

FZ
Y A Z ZO� � (34)

For solving (34) we adopt split Bregman technique,
similar to one used for our formulation, to maintain
consistency of algorithm efficiency and highlight the
contribution of our model (13).

2. LC: Formulation exploiting only the label
consistency constraints i.e. without the low rank nature of
rating matrix being taken into consideration (35).

� � 2 2 2

, ,
min

v v
v v v u u uF FFZ W W

Y A Z L W Z L ZWO O� � � � � (35)

Equation (35) is a least squares formulation which can
be easily solved.

TABLE 1. ERROR MEASURES

 100K Dataset 1M Dataset
Algorithm MAE RMSE MAE RMSE
LCMC-U 0.7230 0.9207 0.6767 0.8634
LCMC-I 0.7224 0.9216 0.6766 0.8612

LCMC-UI 0.7193 0.9145 0.6731 0.8559
MC 0.7351 0.9319 0.6813 0.8711
LC 0.7481 0.9473 0.7186 0.9094

APG 0.8847 3.7076 0.9782 3.8109
PMF 0.7564 0.9639 0.7241 0.9127

BCD-NMF 0.7582 0.9816 0.6863 0.8790
FISM 0.7432 0.9439 0.7196 0.9102

Table 1 illustrates the MAE and RMSE values for the

100K and 1M datasets for various algorithms. The results
obtained for nuclear norm minimization algorithm using
split Bregman technique (MC) indicate that it gives
around 3% lower MAE and 3.5% lower RMSE value than
the next best latent factor model based MF algorithm i.e.
PMF. Also, MC is superior than the neighborhood
inspired factor model (FISM) and achieves a 1.5% lower
MAE than the latter. This demonstrates the efficiency of
our algorithm using split Bregman technique over other
methods.

Also, our formulation using only the metadata (label
consistency) constraints also yields fairly good results.
We are able to outperform the existing matrix
factorization algorithm as well (i.e. PMF and BCD-NMF)
by around 1.7%. It gives results quite close (MAE 0.7481)
to those obtained using FISM (MAE 0.7432). Thus, both
our individual formulations, one including rating
information and other involving metadata give good
results. Then the obvious next step is to combine both
information sources to get improved prediction accuracy,
as in our combined formulation LCMC.

Comparison of our formulations incorporating
user/item metadata (LCMC) with one using just the rating
data (MC) corroborate our claim that use of secondary
information indeed improves recovery accuracy. Our
proposed formulations are able to better the MAE and
RMSE values by around 2% over the MC algorithm.
Using both user and item metadata yields slightly better
result than each of them individually.

For 1M dataset also MC formulation outperforms
existing MC/MF algorithms. Use of secondary data is

42

42

able to achieve a reduction of around 1.5% in error measures over formulations just exploiting rating data.

Figure 3. Precision Curve (100K dataset)

Figure 4. Recall Curve (100K dataset)

Figure 5. Precision Curve (1M dataset)

Figure 6. Recall Curve (1M dataset)

The precision and recall curves for all the algorithms

for 100K and 1M dataset are given in figures 3-6. Here
also, our formulations (LCMC) show better performance
than the algorithms compared against. However, there
isn’t much difference between the precision and recall
values for LCMC formulation using either individual user
or item metadata or a combination of both. Also, the
improvement using our algorithm is more pronounced for
the 1M dataset.

4.4 Comparison with existing techniques

In this section we showcase the superiority of our
supervised learning based approach for assimilating
user/item metadata over other methods utilizing similar
information. We compare the performance of our
formulation against a neighbourhood based method
(KNN) proposed in [25] and against a latent factor MF
based formulation (Graph Reg) using graph regularization
[12]. We also compared our work against two other works
- a semi supervised learning based non negative matrix
factorization (SSNMF) technique proposed in [38] and

matrix completion framework with user metadata (MCAI)
proposed in [28].

TABLE 2. ERROR MEASURES

 100K Dataset 1M Dataset
Algorithm MAE RMSE MAE RMSE
LCMC-UI 0.7193 0.9145 0.6739 0.8559

KNN 0.8302 1.0467 0.8198 0.9989
SSNMF 0.7723 1.0112 0.7285 0.9401

Graph Reg 0.7577 0.9616 0.7233 0.9139
MCAI 0.7206 0.9187 0.6749 0.8622

Table 2 shows the comparison of error measures for

100K and 1M datasets. Amongst all the algorithms for
both the datasets KNN gives the poorest results. This is
owing to the fact that neighbourhood based methods are
simple heuristic measures which perform worse than
latent factor models. On comparison to latent factor
formulation – Graph Reg – our method yields more than

43

43

Figure 7. Precision Curve (100K dataset)

Figure 8. Recall Curve (100K dataset)

Figure 9. Precision Curve (1M dataset)

Figure 10. Recall Curve (1M dataset)

5% lower MAE and RMSE values. Also, as compared to
semi-supervised learning approach adopted in [38] our
label consistent formulation is much better at capturing
the metadata information. We are able to get ~8%
reduction in MAE and RMSE values. It is also partly
contributed by use of our algorithm designed using split
Bregman approach. Comparison to another matrix
completion based approach (MCAI) also indicates that
our formulation is able to achieve a reduction in both
MAE and RMSE. It can be contributed to use of our novel
label consistent formulation that enables use of both user
and item metadata. Thus, it validates our claim that our
label consistent formulation is able to better capture the
correlation amongst users and items based on their
associated metadata.

The precision and recall curves for these methods are
given in figure 7-10. On this measure also, it’s clear that
our method performs better or at least comparable than
the other two compared against. The improvement is more
significant for 1M dataset, owing to higher sparsity of the
rating dataset.

4.5 Cold Start Problem

In this section we present our results for both the user and
item (pure) cold start problem (U-CS and I-CS). For
evaluation of our algorithm, we compute MAE and

RMSE values. None of the existing works report results
on both (user and item) cold start problems and hence we
compare against different works. For comparison, we
report the results indicated in the recent works. Table 3
gives results for our algorithm for item and user cold start
condition for 100K and 1M datasets.

TABLE 3. ERROR MEASURES FOR COLD START

Algorithm MAE RMSE
User Cold Start - 100K 0.7275 0.9217
Item Cold Start - 100K 0.7271 0.9214
User Cold Start - 100K 0.7100 0.8984
Item Cold Start - 100K 0.7099 0.8983

From the above data it can be observed that our design

methodology for solving the cold start problem gives
fairly good results. The MAE and RMSE values for cold
start (users or items) is sufficiently close to those obtained
for existing (warm start) users and items; as shown in
results discussed in section 4.4.

Results shown in previous works are very limited with
most of the works solving the user end cold start problem.
In [39] authors solved new user cold start problem by
proposing a hybrid system based on SCOAL. They

44

44

segregate users into groups based on available
information and design separate prediction model for each
group. The new user, based on this demographic profile,
is assigned to closest group and his ratings predicted
accordingly. They reported a MAE of 0.93 for the 100K
dataset, 29% higher than our MAE (0.73).

In [11] authors used known classification algorithms
in combination with similarity techniques (similarity
computed based on demographic information) and
prediction mechanisms to retrieve recommendations.
They conducted experiment on Movielens 1M dataset and
reported an MAE of 0.75 and RMSE of 0.95. Our
corresponding values for 1M dataset are 0.71 and 0.89.

Thus our algorithm significantly outperforms existing,
state of the art, works for mitigating the cold start
problem.

5. Conclusion
In this work, we propose a formulation to incorporate
user-item metadata in a supervised learning augmented
matrix completion framework. Our design targets
accuracy improvement for new users and rating prediction
for new users and items. Most existing works incorporate
secondary information in a matrix factorization
framework. However, MF being bi-linear and hence non-
convex formulation does not provide convergence
guarantees. We augment the convex matrix completion
framework to include available metadata.

We defined multiple classes for both users and items
based on available secondary information. Using this
information, label matrices were constructed and used as
additional information source. The rating values were
predicted under the additional constraint of maintaining
this label consistency. Use of add-on constraint helps
reduce solution search space; in effect reducing the
underdetermined nature of the problem. We also propose
an algorithm using split Bregman technique for our
proposed formulation.

Our design for cold start problem also uses
information generated using the proposed label consistent
model and hence proves efficient in terms of
computational load. Most existing works focus on cases
where a few ratings are available, whereas in this paper
we solve a more challenging, pure cold start problem.

We illustrated the efficiency of our algorithm structure
by comparing a basic matrix completion framework using
split Bregman with existing MF/MC methods. We find
that we are able to achieve better results than state of the
art techniques in low-rank matrix completion. Secondly,
we demonstrate the improvement obtained using the base
MC formulation by augmenting it with label consistent
information. Comparison with existing methods using
metadata also shows the superiority of our design. In case
of cold start problem, our framework is able to generate
far superior results than the existing state of the art
methods for both new user and new items. In the future,

we would like to extend our design for other
recommender system as well as for simultaneous new
user-new item cold start problem.

References
[1] Bobadilla, Jesús, Fernando Ortega, Antonio

Hernando, and Abraham Gutiérrez. "Recommender
systems survey." Knowledge-Based Systems 46
(2013): 109-132.

[2] Park, Deuk Hee, Hyea Kyeong Kim, Il Young Choi,
and Jae Kyeong Kim. "A literature review and
classification of recommender systems research."
Expert Systems with Applications 39, no. 11 (2012):
10059-10072

[3] Melville, P., Mooney, R. J., & Nagarajan, R. (2002,
July). Content-boosted collaborative filtering for
improved recommendations. In AAAI/IAAI (pp. 187-
192).

[4] Vozalis, M. G., & Margaritis, K. G. (2007). Using
SVD and demographic data for the enhancement of
generalized collaborative filtering. Information
Sciences, 177(15), 3017-3037.

[5] Victor, Patricia, Martine De Cock, Chris Cornelis,
and A. Teredesai. "Getting cold start users connected
in a recommender system’s trust network."
Computational Intelligence in Decision and Control 1
(2008): 877-882.

[6] Zhang, Zi-Ke, Chuang Liu, Yi-Cheng Zhang, and
Tao Zhou. "Solving the cold-start problem in
recommender systems with social tags." EPL
(Europhysics Letters) 92, no. 2 (2010): 28002

[7] Zhou, K., Yang, S. H., & Zha, H. (2011, July).
Functional matrix factorizations for cold-start
recommendation. In Proceedings of the 34th
international ACM SIGIR conference on Research
and development in Information Retrieval (pp. 315-
324). ACM.

[8] Houlsby, N., Hernandez-lobato, J. M., &
Ghahramani, Z. (2014). Cold-start active learning
with robust ordinal matrix factorization. In
Proceedings of the 31st International Conference on
Machine Learning (ICML-14) (pp. 766-774).

[9] Schafer, J. Ben, Dan Frankowski, Jon Herlocker, and
Shilad Sen. "Collaborative filtering recommender
systems." In The adaptive web, pp. 291-324. Springer
Berlin Heidelberg, 2007

[10] Cacheda, Fidel, Víctor Carneiro, Diego Fernández,
and Vreixo Formoso. "Comparison of collaborative
filtering algorithms: Limitations of current techniques
and proposals for scalable, high-performance
recommender systems." ACM Transactions on the
Web (TWEB) 5, no. 1 (2011): 2

[11] Lika, Blerina, Kostas Kolomvatsos, and Stathes
Hadjiefthymiades. "Facing the cold start problem in
recommender systems." Expert Systems with
Applications 41, no. 4 (2014): 2065-2073.

45

45

[12] Gu, Quanquan, Jie Zhou, and Chris HQ Ding.
"Collaborative Filtering: Weighted Nonnegative
Matrix Factorization Incorporating User and Item
Graphs." In SDM, pp. 199-210. 2010.

[13] Zhang, Y., Chen, W., & Yin, Z. (2013). Collaborative
filtering with social regularization for TV program
recommendation. Knowledge-Based Systems,54,
310-317

[14] Wang, Jun, Arjen P. De Vries, and Marcel JT
Reinders. "Unifying user-based and item-based
collaborative filtering approaches by similarity
fusion." In Proceedings of the 29th annual
international ACM SIGIR conference on Research
and development in information retrieval, pp. 501-
508. ACM, 2006.

[15] Adomavicius, Gediminas, and Alexander Tuzhilin.
"Toward the next generation of recommender
systems: A survey of the state-of-the-art and possible
extensions." Knowledge and Data Engineering, IEEE
Transactions on 17, no. 6 (2005): 734-749

[16] Hofmann, Thomas. "Latent semantic models for
collaborative filtering." ACM Transactions on
Information Systems (TOIS) 22, no. 1 (2004): 89-115

[17] Koren, Yehuda, Robert Bell, and Chris Volinsky.
"Matrix factorization techniques for recommender
systems." Computer 8 (2009): 30-37

[18] Jaggi, Martin, and Marek Sulovsk. "A simple
algorithm for nuclear norm regularized problems." In
Proceedings of the 27th International Conference on
Machine Learning (ICML-10), pp. 471-478. 2010

[19] Shamir, Ohad, and Shai Shalev-Shwartz.
"Collaborative filtering with the trace norm:
Learning, bounding, and transducing." (2011

[20] Candès, Emmanuel J., and Benjamin Recht. "Exact
matrix completion via convex optimization."
Foundations of Computational mathematics 9, no. 6
(2009): 717-772.

[21] Toh, K. C., & Yun, S. (2010). An accelerated
proximal gradient algorithm for nuclear norm
regularized linear least squares problems. Pacific
Journal of Optimization, 6(615-640), 15.

[22] Nesterov, Y., & Nesterov, I. E. (2004). Introductory
lectures on convex optimization: A basic course (Vol.
87). Springer.

[23] Mohan, K., & Fazel, M. (2012). Iterative reweighted
algorithms for matrix rank minimization. The Journal
of Machine Learning Research, 13(1), 3441-3473.

[24] Goldstein, T., & Osher, S. (2009). The split Bregman
method for L1-regularized problems. SIAM Journal
on Imaging Sciences, 2(2), 323-343.

[25] Vozalis, M., & Margaritis, K. G. (2004, August).
Collaborative filtering enhanced by demographic
correlation. In AIAI Symposium on Professional
Practice in AI, of the 18th World Computer Congress

[26] Ostrikov, Alexander, Lior Rokach, and Bracha
Shapira. "Using geospatial metadata to boost
collaborative filtering." In Proceedings of the 7th

ACM conference on Recommender systems, pp. 423-
426. ACM, 2013

[27] Zhou, Tinghui, Hanhuai Shan, Arindam Banerjee,
and Guillermo Sapiro. "Kernelized Probabilistic
Matrix Factorization: Exploiting Graphs and Side
Information." In SDM, vol. 12, pp. 403-414. 2012

[28] Gogna, Anupriya, and Angshul Majumdar. "Matrix
completion incorporating auxiliary information for
recommender system design." Expert Systems with
Applications 42, no. 14 (2015): 5789-5799.

[29] Massa, Paolo, and Paolo Avesani. "Trust-aware
recommender systems." In Proceedings of the 2007
ACM conference on Recommender systems, pp. 17-
24. ACM, 2007.

[30] Bobadilla, JesúS, Fernando Ortega, Antonio
Hernando, and JesúS Bernal. "A collaborative
filtering approach to mitigate the new user cold start
problem." Knowledge-Based Systems 26 (2012):
225-238

[31] Nguyen, An-Te, Nathalie Denos, and Catherine
Berrut. "Improving new user recommendations with
rule-based induction on cold user data." In
Proceedings of the 2007 ACM conference on
Recommender systems, pp. 121-128. ACM, 2007

[32] Mohan, K., & Fazel, M. (2010, June). Reweighted
nuclear norm minimization with application to
system identification. In American Control
Conference (ACC), 2010 (pp. 2953-2959). IEEE.

[33] Lawson, C. L., & Hanson, R. J. (1974). Solving least
squares problems (Vol. 161). Englewood Cliffs, NJ:
Prentice-hall

[34] Shani, G., & Gunawardana, A. (2011). Evaluating
recommendation systems. In Recommender systems
handbook (pp. 257-297). Springer US.

[35] Xu, Y., & Yin, W. (2013). A block coordinate
descent method for regularized multiconvex
optimization with applications to nonnegative tensor
factorization and completion. SIAM Journal on
Imaging Sciences, 6(3), 1758-1789

[36] Kabbur, S., Ning, X., & Karypis, G. (2013, August).
Fism: factored item similarity models for top-n
recommender systems. In Proceedings of the 19th
ACM SIGKDD international conference on
Knowledge discovery and data mining (pp. 659-667).
ACM

[37] Mnih, A., & Salakhutdinov, R. (2007). Probabilistic
matrix factorization. InAdvances in neural
information processing systems (pp. 1257-1264).

[38] Lee, Hyekyoung, Jiho Yoo, and Seungjin Choi.
"Semi-supervised nonnegative matrix factorization."
Signal Processing Letters, IEEE 17, no. 1 (2010): 4-7.

[39] Pereira, Andre Luiz Vizine, and Eduardo Raul
Hruschka. "Simultaneous co-clustering and learning
to address the cold start problem in recommender
systems." Knowledge-Based Systems 82 (2015): 11-
19

46

46

BaSE(Byte addressable Storage Engine) Transaction Manager

Sathyanarayanan Manamohan
Hewlett-Packard Enterprise

sathya@hpe.com

Ravi Sarveswara
Hewlett-Packard Enterprise

ravi.s@hpe.com

Krishnaprasad Shastry
Hewlett-Packard Enterprise

krishnaprasad.shastry@hpe.com

Kirk Bresniker
Hewlett-Packard Laboratories

kirk.bresniker@hpe.com

Shine Mathew
Hewlett Packard Enterprise

shine.mathew@hpe.com

Goetz Graefe
Hewlett-Packard Laboratories

goetz.graefe@hpe.com

Abstract
Non-Volatile Memory (NVM) is an emerging
memory technology that combines the best
properties of current hard disks and main
memories by providing non-volatility, high
density, high speed, and byte addressability. This
provides an opportunity to redesign systems and
their software stacks to improve performance and
to reduce the complexity. Present-day database
systems are designed and optimized for
traditional disks and memory hierarchies. They
are very complex because they handle varying
levels of storage latencies, from CPU caches to
hard disks. Our intention is to build a prototype
storage engine that is optimized for NVM and
which takes advantage of the collapsed memory
hierarchy. We are developing this storage engine
in an incremental way. In this paper, we describe
a novel approach to optimize write-ahead
logging (WAL) for NVM based systems.

Most database systems use ARIES-style
write-ahead logging to implement transactions.
ARIES techniques are optimized for disk based
systems and tuned for the sequential write
performance of disks. We leverage the high
speed, byte-addressable random access of NVM
to design a high-performance logging
mechanism. We discuss the bottlenecks of
sequential logging, identify the challenges of
distributed logging and propose a novel solution.
We show that NVM-optimized logging improves

performance 8-15 times over default
MariaDB/XtraDB for log-intensive workloads.

1. Introduction
Transactions are an essential part of OLTP data

management systems. Strong transactional support is
crucial for supporting the operational activities of all
businesses. A significant amount of research effort is
dedicated to the design of efficient, reliable and scalable
transactions. A key research focus area in transaction
processing systems is the support of ACID properties. The
transaction systems use write-ahead logging or shadow
copy and concurrency control techniques to support ACID
properties. Traditional database systems, which support
strong ACID compliance most commonly use write-ahead
logging. The non-relational data management systems,
also popularly called as NoSQL, support eventual
consistency properties based on CAP theorem [15] and
commonly use shadow copy.

Traditional database storage engines can be divided
into four important modules based on functionality. They
are Access methods, Log manager, Lock manager and
Buffer pool. These four modules account for about 80%
of CPU cycles when the database system runs entirely in
memory [1].

Most of the transaction processing system
implementations rely on DRAM for performance and
disks for persistent storage. The data structures and the
algorithms are optimized for this type of memory
hierarchy. The advent of NVM provides opportunity to
redesign and optimize the data structures and algorithms
to use a single layer of flat memory. We evaluate various
properties of NVM and the opportunity it provides to
redesign the transaction management systems that are
used in relational databases.

The reminder of the paper is organized as follows.
The next few sub-sections provide the background on
NVM, transaction management system components and a
specific implementation in an open source RDBMS,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Articles from this volume
were invited to present their results at The 21st International Conference
on Management of Data.
COMAD, March 11-13, 2016, Pune.
Copyright 2016 Computer Society of India (CSI).

47

47

MariaDB [13]. Section 2 captures some of the related
work to optimize the transaction systems. Section 3
discusses the implementation of write ahead logging on
NVM and its benefits. Section 4 mentions the prototype
implementation and the results. The final section contains
our summary and conclusions.

1.1. Non-volatile memory

Non-Volatile Memory (NVM) is an emerging
memory technology that combines best properties of
today’s hard disks and main memories. It offers non-
volatility, high speed and byte addressability [19]. There
are many different forms of NVM technologies such as
Phase Change Memory (PCM) [16], Spin-Transfer
Torque RAM (STT-RAM) [17] and Memristor [18] that
are being developed actively. Each of these uses a
different underlying technology. They exhibit different
characteristics in terms of read/write latency, endurance,
energy efficiency etc.

However all these NVM technologies offer byte-
addressability, high speed read/write access that is
comparable to DRAM and storage capacities that is
comparable to HDD or SSD.

We design our solution based on these generic
properties. We are not dependent on any specific NVM
implementation. It is a conscious attempt to make the
solution NVM-technology neutral.

Byte addressability provides an interesting
programming model as it allows programs to persist data
objects directly on NVM without converting them into
disk format. We leverage this aspect in our solution to
avoid maintaining multiple formats of data and having to
convert between them.

There are many different areas in which NVM can be
used in a system architecture. The straight-forward option
is to use NVM as a disk replacement, which maintains the
programming semantics and thus involves the least
amount of changes to the software layer. But, in general,
this approach does not work because it upsets the
optimization and fine tuning for hard disks. The next
option is to use NVM as fast cache in between disk and
DRAM. The third option is to use NVM alongside
DRAM in same address space. This is the most interesting
one because the CPU can use load and store operations to
access NVM directly. We develop our solution with the
assumption of a direct load/store model.

1.2. Transactional logging in relational and non-
relational systems

Transaction support is essential in all data
management systems for handling failures and reducing
the impact of failures on the system’s overall behavior.
We consider everything from file systems to complex
RDBMS in the scope of transactions for data
management. Several methods have been adopted to
handle failures ranging from protecting the metadata for

single operations, like it is done in file systems, to
complex multi-operation, multiple data entities in
RDBMS. There are also complex combination of
techniques that attempt to provide ACID properties to file
system operations [7][8].

Irrespective of the use case, the systems have to be
engineered from the ground up to support solid
transaction semantics and robust failure recovery.
RDMBS are built ground up with transaction semantics,
but these design choices made them very complex and
rigid. These, to some extent contributed to the
development of NonSQL solutions that are more flexible.
But they make other design choices that, in turn, make it
very difficult to support ACID properties. Hence,
flexibility and performance of the transaction
management system are essential design parameters for
any high-performance transaction manager. The
emergence of non-volatile memory gives us an
opportunity to re-design the transaction managers to
achieve these goals and make them suitable for the data
management systems of the future.

1.3. Limitations of WAL

Most database systems use ARIES [2] style write-
ahead logging (WAL) to implement transactions. ARIES
design decisions are made to get optimal performance for
disk based systems. ARIES adopts a centralized logging
and optimizes it to leverage the sequential write
performance of disks. To hide the performance difference
between DRAM and disks the log records are cached in
DRAM and forced to disk at the time of commit. This
creates a two-layered logging system.

The centralized logging with two-layered design
causes several bottlenecks. Aether [3] identifies four types
of delays that impact the logging performance: (a) IO
related delay; (b) excessive context switching; (c) log
induced lock contention; and (d) log buffer contention.

Several techniques have been developed to address
these problems on the traditional assumptions of slow
block oriented disk and byte-oriented DRAM. The NVM
technologies open up a new opportunity to optimize WAL
for byte-addressable persistent memory.

1.4. Logging in XtraDB

XtraDB [14] is a transactional storage engine for
MariaDB. A transactional storage engine, in MariaDB’s
context, is a pluggable software module that performs
various data management operations, such as create,
insert, update and delete, on the data that it manages in a
transactionally consistent manner. It uses the concept of
write ahead logging to manage transactions. XtraDB
maintains the transaction logs in DRAM as a circular
buffer and a persistent copy of the same content in a flat
file on disk. All database operations that are performed
by the storage engine to manipulate the database's pages
are logged in a Redo log prior to the actual execution. The

48

48

contents of the redo logs are flushed to disk before
transaction commit, in line with WAL semantics. The
redo log is used during system recovery. In XtraDB the
system recovery starts off by replaying the redo log on to
the buffer pool until all the database pages are recovered.
This replay starts from the last successful checkpoint.
Once this replay is over, the undo log is used to rollback
all partially complete transactions.

XtraDB maintains the undo log in memory and on
disk. The undo logs contain the before images of database
records that were modified by a transaction. The undo
logs in XtraDB are used to support transaction rollback,
database flush of dirty pages into disk and the concept of
MVCC to optimize read performance. The data itself is
maintained as a B-tree on disk and a hash table in an in-
memory buffer pool. The redo log and buffer pool are
flushed periodically flushed into the disk. We use XtraDB
as the vehicle to demonstrate the effect of design changes
as it is extensively used commercially and it is open
source. This allows us to run relevant benchmarks on the
solution and prove the solution on real-world applications.

2. Related work
Aether [3] identifies a set of challenges with WAL –

(a) I/O related delays, (b) log induced lock contention, (c)
excessive context switching and (d) log buffer contention.
The paper recommends a set of optimizations using a
combination of early lock release and flush pipelining.
Early lock release allows transactions to release their
locks as soon as the commit records have been made
durable. Flush pipelining helps to reduce the I/O delay
and log induced lock contention. The authors also
recommend redesigning of log buffer to enable better
parallelism.

Fung R. et al. [4] describe an approach to implement
WAL on storage class memory (SCM). They allocate log
records directly on SCM to reduce I/O related delays.
They avoid the techniques like group-commit. However,
they still write the log records sequentially.

MARS [5] moves most of the logging functionality to
hardware and eliminates the Log Sequence Number
(LSN) and log checkpointing. It accomplishes this by
allowing the storage array to maintain the ordering of
write at commit time instead of maintaining the LSN at a
software level. MARS also relies on hardware writes to
eliminate the need for log checkpointing.

There have been proposals to revisit the design of
logging in Flash and PCM based storage [9][10]. Sang-
won Lee et.al. propose a technique called in-page logging
(IPL) as a new storage model for flash based database
systems. To overcome the erase-before-write limitation of
flash memory, they propose the IPL technique to co-
locate the log and data pages. The IPL-P paper is an
extension of the in-page logging method and proposes
move the log storage to PCM based storage for better
performance.

Tianzheng Wang et al. [20] describe an approach for
distributed, NVM-backed logging. They evaluate the
performances of two log distribution schemes – one that is
distributed on a transaction level and another that is
distributed on a page level. They recommend distributing
on a transaction level. We show using a transaction level
distribution for the undo log and a page level distribution
for the redo log performs better.

Jian Huang et al. [21] show that they get the best
transactions per dollar rate by moving only the logging
subsystem to NVRAM, rather than replacing all disks
with NVRAM. In their implementation, they use a
circular log on NVRAM and chain the log entries using
pointers to enable recovery. However, this slows the
recovery process because the entire log chain must be
traversed to build the set of dirty pages. This approach to
page-level recovery is not efficient.

3. Our solution
We have designed a NVM-optimized logging system

that writes log records directly to NVM and have
implemented a prototype based on MariaDB/XtraDB.

In the context of our solution, we assume the NVM is
directly accessible by the database process using
load/store model. We treat it as a byte-addressable
persistent memory alongside DRAM memory.

Our design depends on system primitives and
programming APIs to read and write the NVM. These
APIs shall: (a) support namespaces for NVM; (b) support
dynamic memory management; and (c) support variable
length read/write operations in an atomic and durable
way. There are challenges in implementing variable
length atomic read/write operations. The implementation
has to take care of write ordering, cache flushes, fault
zones, fault containment in NVM etc. Our implementation
assumes these challenges will be abstracted and handled
by the NVM programming APIs. Atlas [19] is an example
of such an API that provides the necessary atomicity
guarantees and also handles the memory management.
We did not have access to this library at the time of this
work and so, we modeled NVM access using mmap files.

There are two main types of log records that are used
in traditional ARIES-style WAL: (a) undo log records,
which store information about how to undo a change; and
(b) redo log records, which store information about how
to reproduce a change. In traditional database systems, the
log records are cached in memory and persisted on disk as
a large sequential file. The log files are flushed to disk
before the transaction commits. Database systems employ
several optimizations to improve the performance of log
writing, such as group-commit [6], which aggregates
multiple log write requests into a single IO, and
asynchronous commit, which allows transactions to
commit without waiting for log IO requests to complete.

We write log records directly on NVM. This
eliminates the IO related to log records and also simplifies

49

49

log buffer management. XtraDB has separate memory
space in DRAM for redo and undo log records. The undo
log records are stored along with page data in the buffer
pool. The redo log records are stored in a separate circular
buffer. In our solution, we do not maintain any of the log
records on DRAM. We maintain two separate hash lists in
NVM for the redo and undo records. Figure 1 shows log
files representation on default MariaDB/XtraDB and our
NVM optimized log manager.

As writes to NVM are very fast, we write the log
records synchronously. Persisting of the redo data is
synchronous with the commit. We do not wait for a
separate thread to flush to disk before finishing the
commit operation. This reduces the extensive context
switching that occurs due to log-record related IO
operations in traditional systems.

Traditionally, log records are cached in DRAM using
an in-memory format and stored on disks in a block-
oriented format [22]. The log records are converted from
the memory format to the disk one while persisting them.
The disk format is converted to the memory format when
the log records are read for recovery. We avoid the
multiple formats and implement a single unified format of
log records on NVM. Thus we avoid the extra memory
copy and log record conversion complexity.

Synchronous write also allows our solution to
eliminate the group commit. This in turn reduces the log
induced lock contention.

To overcome the log-related contention, we have re-
designed the redo and undo logs. The operations on these
log files exhibit different degrees of parallelism. We have
designed them with different parallelism schemes after
taking their usage into account. The undo operations are
applicable for a transaction and hence can be parallelized
at transaction level. The redo operations are applicable for
a page and hence can be parallelized at page level. We
observe these parallelism needs of undo and redo
operations and design a customized distribution scheme.
We distribute undo log records based on transaction ID
and implement it as a linked list of undo records
belonging to a transaction. We implement a hash based
distribution of transaction IDs.

Figure 2 shows the structure of undo log records. The
information about transaction state and pointer to undo
log records are maintained in a hash table. The undo log
records, that contain undo number, page number, LSN

and undo operation details (called as payload) is
implemented as a linked list. This eliminates the
contention for writing undo log records from multiple
transactions. Only during the beginning of a transaction
we need to acquire a lock to get the corresponding hash
slot. Thus we improve the concurrency of undo log
operations.

Similarly we distribute the redo log records based on
page id. Figure 3 shows the structure of redo log records.
We store the details of page number, start and end LSN of
the page and pointer to redo chain in hash bucket header.
We store redo records that consists of transaction ID,
record type, LSN, record payload etc. as a linked list. This
reduces the redo log write contention across the pages.
Only the parallel transactions that operate on the same
page contend for the redo log chain. With this customized
distribution of redo and undo log records we can
implement more granular latches and increase the
parallelism in logging operations. This reduces the log
buffer contention and improves the performance.

ARIES recommends periodic checkpointing to
accelerate the recovery. The checkpointing flushes the log
records and dirty pages in buffer pool to disks. The
checkpoint log record holds information about active
transactions, its state and flushed LSN. Since the active
transactions and their states are directly written to NVM

Figure 2: Undo log record structure

Figure 3: Redo log structure

Figure 1: Logging on NVM

50

50

along with undo logging, the checkpoint log record has to
just write the flushed LSN. This improves the
checkpointing performance.

Our parallel hash based distribution of the redo and
undo log records opens up the opportunity to parallelize
recovery operations. ARIES recommends the recovery in
3 phases: (i) analysis phase – during which the algorithm
reads the flushed LSN information from checkpoint and
scans the log records sequentially to gather the required
redo and undo operation information, (ii) redo phase –
during which the redo operations are applied to bring the
database back to the state before the crash; and (iii) undo
phase – during which undo operations are applied to
reverse the effect of inflight transactions. Our distributed
redo log records enable parallelism in building and
applying redo operations. Distributed undo log records
enable parallelism in rolling back the inflight transactions.
Thus we improve the recovery performance. The benefits
of partitioning log records are explained in the following
sections.

3.1. Partitioning log structures

Partitioning of log structures addresses several
bottlenecks that are seen with sequential logs.

Centralized log structure is well suited for disk based
systems. In such systems, log records from multiple
transactions are logged into a centralized log structure.
These log records are persisted on disk using the
sequential IO. Optimizations like group-commit are done
to further improve the IO performance. But a centralized
log creates synchronization problem. Multiple
transactions that run in parallel will contend to get the
lock at the head of the log structure to write log records.
The contention increases with number of parallel
transactions and causes a concurrency limitation. Since
the threads have to wait for the lock they get context
switched. This also increases the number of context
switches and impacts the performance.

The centralized logging will also impact the
parallelism of recovery operation. To parallelize the
recovery operation, the recovery system has to process the
sequential log to extract the undo and redo information
into some partitioned structure. Typically the recovery
system does this during the initialization phase.
Otherwise, the system would be scanning and applying
the sequential logs one record at a time, which will
significantly increase the recovery time.

Our design avoids these problems by partitioning the
undo and redo logs in NVM. We use hash based
partitioning scheme. By hashing we break up the single
centralized log head into several streams equal to the
bucket size of hash table. This eliminates the bottleneck
on global log by parallelizing access to the logs. This will
enable several threads to write to the log records
simultaneously. Consequently, this reduces log induced
contention and context switching.

Also having to separate logs structures for undo and
redo logs allows us to partition the log in the most optimal
way based on the use case. Undo logs are closely
associated with a transaction hence we partition it based
on transaction Id. This allows us to create sufficiently
large hash buckets to the extent where we can completely
eliminate the need of synchronization constructs and
make the undo logging practically lock free. As an
example, if we optimize the system to handle 2K
concurrent transactions, we can create an undo log hash
table having more than 2K (closest prime number) bucket.
In this way every transactions will get its own exclusive
hash bucket there by eliminating the need to have a
synchronization construct to manage the undo log. This
also simplifies the search of undo logs during recovery
operation, as all the undo logs pertaining to individual
transaction that needs to be rolled back during recovery
are found grouped in the same hash bucket.

Similarly redo logs are partitioned on page ID that
allows several database threads to operate in parallel as
long as they don’t try to append redo log records on the
same page. Due this approach, optimizations like
grouping redo logs prior to append into the global logs are
no longer needed. Transactions can directly append the
logs into the log structure directly as and when they are
generated. This also simplifies the recovery operation.
During recovery multiple threads can be created to
recover the pages in parallel.

3.2. Benefits of undo and redo log optimizations

In this section, we explore the implications of the
design optimizations that we explained in the previous
section. The first implication is the simplification in the
process of releasing locks that were held by the
transaction. Transactions acquire locks to protect the data
that it is using, against possible corruption from
concurrent access. This ensures the isolation guarantee of
the database is maintained. Lock release happens at the
end of a transaction when the commit status of the
transaction is flushed into durable media. In traditional
systems, we have to wait for the flushing of commit
records to complete. This creates an I/O bottleneck.
Transactions are made to wait [3] [6] for the grouping of
log data to be sufficient enough to overcome the cost of a
doing a serial I/O to disk. Our solution eliminates this
completely because the logs are directly written to
persistent media in their native form. Our solution does
not maintain two distinct data structures, one where we
buffer the logs and the other that is used to do bulk I/O to
the disk. This approach also simplifies the code. Due to
this design attribute of our solution, locks can be released
as soon as the commit record is posted into the data
structure.

The second implication of our design is the reduced
context switching. Most modern databases are multi-
threaded to take advantage of the abundance of compute

51

51

cores available in state-of-the-art CPUs. However, even
though this is largely beneficial, due to I/O and
synchronization bottlenecks, much of the compute cycle
is wasted in context switching and spin locks. Our
solution addresses the context switching part of the
problem. The synchronization problem is tougher to
handle as it requires a complex redesign of XtraDB to
resolve synchronization bottlenecks. In our solution, the
persistence of log records is now reduced to a write
operation to a NVM resident data structure. This now can
be done in the same thread, without having to wait for I/O
operations, which are usually done by other I/O threads
[3]. This optimization allows us to drive the cores to do
more user work rather than waiting for I/O operations to
complete.

The third implication of the design is the elimination
of log multiplexing, which attempts to combine logs
records from various transactions to achieve optimal
volume to make flush operations efficient. On disk based
logging systems [2] [3] [6] it is used as a method to
reduce the I/O overhead for writing to the disk. In flash
based systems [9] [10] it is used as a method to reduce
erase-unit overheads. In both the systems it is quite
possible that the system writes more data than what was
actually updated. This arises due the block oriented nature
of writes on these systems. On disk based systems the
block is usually 4-16 KB and on flash based systems the
block size (erase unit size) is 128KB. Since our solution
relies on byte-addressability we write variable log data
without having to worry about block boundaries. This
results in faster commit time and better utilization of cores
to do more useful work.

3.3. Implications on checkpointing operation

In data management systems, a checkpoint can be
treated as a marker that indicates the extent to which state
information has been transferred to the secure persistent
storage. Modifications to data pages are not necessarily
flushed to disk in a synchronous manner for performance
reasons. Checkpointing is a costly operation and has
serious impact on the throughput of the system.
Checkpoints are classified into two categories: full
checkpoint and fuzzy checkpoint. In a full checkpoint, the
data management system writes all the dirty information
to the disk. The fuzzy checkpoint, which is commonly
used for performance reasons, writes only a certain
number of dirty pages. Fuzzy checkpoints are used in
XtraDB.

Checkpointing in NoSQL solutions, like HBase, are
more like full checkpoints where the entire of the old
version metadata and the logs are combined
synchronously on a standby node to a create the newer
version of the metadata that is then gradually transmitted
to all the active node servers in the system. What ever the
method used, the system will experience a drop in
performance for the duration of the checkpointing

operation. In our solution, due to NVM, the flush of the
redo logs is completely eliminated and the fuzzy
checkpoint needs to maintain only the state of the pages
that were flushed from the buffer pool. This also
simplifies page stealing because the logs are already
persisted and hence the buffer pool manager has the
freedom to pick up dirty pages on demand. This makes
the checkpoint process and page stealing simpler and
faster.

3.4. Implications on crash recovery operation

Recovery or crash recovery operation rebuilds the
internal data structures of the data management system to
a consistent state from which the storage engine can start
processing transactions again. The recovery process also
ensures that the overall consistency of the data is
maintained. In XtraDB, the recovery happens in several
steps. These steps are semantically similar for any data
management system which supports crash recovery. The
first task is to bring the data pages that were present in the
buffer pool without being flushed to persistent media,
back to a consistent state. This is done by applying the
redo log from the last checkpoint forward until all of the
redo log is exhausted. This process brings the buffer pool
up to the state just prior to the point of failure.

However the buffer pool also contains dirty data
pages that are part of incomplete transactions. These
transactions need to be rolled back. The undo logs are
used to perform this operation. There are several variants
in the recovery process based on the richness of the redo
and undo information stored by the system prior to crash.
In the case of file systems, the recovery is usually limited
to metadata. In more complex systems, higher levels, that
might include actual file data, are supported [7][8]. In
NoSQL systems, the recovery is only in the forward
direction as they typically do not store undo information.
These systems rely on replication and some variation of
voting to get the data to a consistent state eventually.
RDBMSes have richer information in their logs and
hence, can restore the database to the closest possible
state prior to the crash, when compared with all other data
management systems.

In our solution we support both undo and redo logs.
Hence our transaction manager can be used to perform
RDBMS-like recovery. The primary performance
bottleneck with recovery operations is the time spent in
doing lots of random IOs to get the buffer pool back to a
state where undo information can be used. Also,
processing and converting the block based redo logs on
disk to a format that is usable in DRAM impacts recovery
performance. It should also be noted that the system is not
available for transactions until the buffer pool is restored
by the redo log.

In our solution, hash partitioning the redo log on
PageID enables parallel recovery of pages. Instead of
reading a serial redo log, recovery threads are assigned to

52

52

process several hash buckets in parallel. Our solution also
has a single format in which the redo logs are stored
hence the cost of converting disk based structure to a
DRAM based structure is completely avoided. Also, undo
of in-flight transactions can be parallelized because the
undo log records are hash partitioned on TranasactionID.
These improvements can significantly reduce recovery
time of the system that uses our transaction manager.

4. Performance evaluation
We implemented the techniques described in section

3 on MariaDB/XtraDB storage engine. We used a
simulated NVM environment for the validation and
performance measurement.

Our prototype was built on a Linux machine with 16
GB of RAM running 8 CPU Xeon Processors with 2
cores. The system had separate disks for the host
operating system, and the data and log files used by
XtraDB. All disks were standard 7200 RPM 200 GB IDE
disks.

4.1. Storage engine development

We prototyped our log manager and integrated it with
MariaDB/XtraDB. MariaDB is a popular open source fork
of MySQL. We wanted to test our solution on a
commercial database software to get a better
understanding of the implications of a new log manager in
the real world operation environment.

We followed a modular design approach to develop
the new log manager. The interactions with the NVM
device and memory management functionalities were
developed as a pluggable component. This provides an
easy option to plug in different NVM technologies. We
isolated the creation, modification and management of
redo and undo log records into a separate module. We
defined a set of APIs to interact with the log manager.
The parallelization of undo and redo log records,
maintenance of hash structures are all contained in the log
manager code. The log manager is integrated with
XtraDB using the APIs. And the XtraDB code is modified
to write log records using the log manager interfaces. The
recovery module of XtraDB reads the log files from disk
and prepares an in-memory structure to parallelize the
recovery option. We bypassed this layer as the log records
are already partitioned according to their usage pattern.

We configured XtraDB data files and log files on
separate volumes. This helped us to understand the I/O
characteristics of the workload. Separation of the log
volume from the data volume helped us to understand the
characteristics of logging and make a good performance
comparison.

4.2. NVM simulation

At the time of prototyping, we did not have access to
a NVM device. We simulated the NVM using the Linux

file system. We used this NVM simulation to demonstrate
both the functionality and performance gains.

To demonstrate the parallel logging and recovery, we
implemented the log manager using mmap files. The redo
and undo log records are persisted on mmap-ed files. We
manually crashed the system to force the recovery
operation. During the recovery process, XtraDB reads the
log records from the mmap files to reconstruct the undo
and redo operations.

We implemented log records on mmap files from
tmpfs to demonstrate the performance gain with NVM.
Memory mapping tmpfs files avoids the IO operation.
This simulates the implementation of log records with
read/write access latencies of memory which is an
idealistic NVM environment. In reality there might be
different write/read speeds for NVM systems.

4.3. Performance test bed

We used the TPC-C [12] benchmark and a custom
built insert workload to evaluate performance of our
solution. The TPC-C benchmark is an online transaction
processing benchmark. It is based on an order-entry use
case with several complex transactions that simulate real-
life operations on a typical order-entry system.

We developed a custom built parallel insert program
to simulate logging intensive workloads. The program
inserts 2 million random records of 80 bytes length using
tunable number of concurrent threads.

We measured 3 dimensions of performance: a)
Elapsed time to complete a fixed number of inserts; b) the
CPU and I/O utilization characteristics for the inserts; and
c) End-to-End transactions per second on TPCC
workload. The results are discussed in the next section.

4.4. Results

We ran the insert program with 1, 2, 4, 8 and 16
parallel threads. We measured the overall time taken to
ingest 2 million records by the standard XtraDB program
and our modified XtraDB that has our log manager
(henceforth referred to as BTM.)

Figure 4 shows the execution time comparison for
this insert program on the standard XtraDB and our BTM.
We demonstrate 8-15 times improvement in performance.

Figure 4: Performance comparison of BTM and
default XtraDB

53

53

We also measured the CPU utilization. We get good CPU
utilization with BTM. We enable more processing by
eliminating IO and lock bottlenecks. This reduces the time
required to finish the work and results in higher
throughput. In the case of the default XtraDB code, the
CPU utilization does not go above 15%. The threads
spend most of the time waiting on either IO or on locks
for log records.

Figure 5a and Figure 5b show the IO operations on

both data and log volumes. Figure 5a indicates the
elimination of log IO in BTM. By eliminating wait times
and lock contentions, BTM is able deliver better
throughput and process more data. This is seen in Figure
5b.

Figure 6 shows the performance comparison for

TPC-C benchmark and the corresponding CPU and IO
utilization. Our implementation eliminates the log IO and
improves the CPU utilization. We get around 1.2-1.6
times improvement in the throughput. The improvement
is limited by the lock contention in other modules of
MariaDB. Similar to insert benchmark, we see good
reduction in CPU utilization with BTM log manager. This
is again attributed to the reduction in lock contention for
log records.

5. Conclusions
In conclusion, our design improves the performance

of transaction manger by eliminating disk I/O that is

needed for performing log operations. In the process, it
simplifies the code and reduces the path length due to
elimination of log I/O and synchronization code. It
improves throughput of the system by parallelizing access
to log data structures and eliminating single entry point
bottlenecks. It improves core utilization as now most of
the time is spent in doing useful work than waiting for I/O

completion or latches. It also eliminates the need for
techniques like flush pipelining, group commits and early
lock release. We have also shown that these optimizations
results in 8-15 times improvement in performance and
higher CPU utilization for doing useful work.

6. References
[1] Stavros Harizopoulos, Daniel J. Abadi, Samuel

Madden, Michael Stonebraker “OLTP Through the
Looking Glass, and What We Found There”
SIGMOD 2008

[2] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz. “Aries: a transaction recovery method
supporting fine-granularity locking and partial
rollbacks using write-ahead logging.” ACM Trans.
Database Syst., 17(1):94–162, 1992.

[3] R. Johnson, I. Pandis, R. Stoica, M. Athanassoulis,
and A. Ailamaki. “Aether: a scalable approach to
logging.” Proc. VLDB Endow, 3:681–692,
September 2010.

[4] Ru Fang, Hui-I Hsiao, Bin He, C. Mohan, Yun
Wang. “High performance database logging using
storage class memory.” ICDE, pp. 1221–1231, 2011.

[5] Joel Coburn, Trevor Bunker, Rajesh K. Gupta,
Steven Swanson. “From ARIES to MARS:
Transaction support for next-generation, solid-state
drives.” SOSP, pp. 197–212, 2013.

[6] P. Helland, H. Sammer, J. Lyon, R. Carr, and P.
Garrett. “Group Commit Timers and High-Volume
Transaction Systems.” In Proc. HPTS, 1987

[7] Wright, Charles P.; Spillane, Richard; Sivathanu,
Gopalan; Zadok, Erez; 2007; "Extending ACID

Figure 5a: Log IO comparison of BTM and default
XtraDB

Figure 6: TPCC performance comparison

Figure 5b: Data IO comparison of BTM and default
XtraDB

54

54

Semantics to the File System; ACM Transactions on
Storage

[8] Spillane, Richard; Gaikwad, Sachin; Chinni,
Manjunath; Zadok, Erez and Wright, Charles P.;
2009; "Enabling transactional file access via
lightweight kernel extensions"; Seventh USENIX

Conference on File and Storage Technologies (FAST
2009)

[9] Sang-Won Lee, Bongki Moon "Design of Flash-
Based DBMS: An In-Page Logging Approach"
SIGMOD '07 Proceedings of the 2007 ACM

SIGMOD international conference on Management
of data Pages 55-66

[10] Kang-Nyeon Kim, Sang-Won Lee, Bongki Moon,
Chanik Park, Joo-Young Hwang "IPL-P: In-Page
Logging with PCRAM" VLDB 2011

[11] Jim Gray and Andreas Reuter. Transaction
Processing: Concepts and Techniques. Morgan
Kaufmann, 1993.

[12] Transaction Processing Performance Council. “TPC -
C v5.5:On-Line Transaction Processing (OLTP)
Benchmark.”

[13] MariaDB. URL: https://mariadb.org/
[14] XtraDB. URL:

https://www.percona.com/software/mysql-
database/percona-server/xtradb

[15] Seth Gilbert and Nancy Lynch, “Brewer's conjecture
and the feasibility of consistent, available, partition-
tolerant web services”, ACM SIGACT News,
Volume 33 Issue 2 (2002), pg. 51-59

[16] M. J. Breitwisch. Phase change memory. Interconnect
Technology Conference, 2008. IITC 2008.
International, pages 219–221, June 2008.

[17] B. Dieny, R. Sousa, G. Prenat, and U. Ebels.
Spindependent phenomena and their implementation
in spintronic devices. VLSI Technology, Systems and

Applications, 2008. VLSI-TSA 2008. International
Symposium on, pages 70–71, April 2008.

[18] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S.
Williams. The missing memristor found. Nature,
(7191):80–83, 2008.

[19] Dhruva R. Chakrabarti, Hans-J. Boehm, Kumud
Bhandari. "Atlas: leveraging locks for non-volatile
memory consistency", Proceedings of the 2014 ACM
International Conference on Object Oriented
Programming Systems Languages & Applications,
pages 433-452.

[20] Tianzheng Wang, Ryan Johnson. "Scalable Logging
through Emerging Non-Volatile Memory,"
Proceedigns of the VLDB Endowment, Vol. 7, No.
10, pages 865-876.

[21] Jian Huang, Karsten Schwan, Moinuddin K. Qureshi.
"NVRAM-aware Logging in Transaction Systems,"
Proceedings of the VLDB Endowment, Vol. 8, No. 4,
pages 389-400.

[22] Jay Janssen. "The relationship between Innodb Log
checkpointing and dirty Buffer pool pages." URL:
https://www.percona.com/blog/2012/02/17/the-
relationship-between-innodb-log-checkpointing-and-
dirty-buffer-pool-pages/

https://mariadb.org/
55

55

https://www.percona.com/software/mysql-database/percona-server/xtradb
https://www.percona.com/software/mysql-database/percona-server/xtradb
https://www.percona.com/blog/2012/02/17/the-relationship-between-innodb-log-checkpointing-and-dirty-buffer-pool-pages/
https://www.percona.com/blog/2012/02/17/the-relationship-between-innodb-log-checkpointing-and-dirty-buffer-pool-pages/
https://www.percona.com/blog/2012/02/17/the-relationship-between-innodb-log-checkpointing-and-dirty-buffer-pool-pages/

Top-K High Utility Episode Mining from a Complex Event
Sequence

Sonam Rathore

IIIT-Delhi, India

sonam13108@iiitd.ac.in

Siddharth Dawar

IIIT-Delhi, India

siddharthd@iiitd.ac.in

Vikram Goyal

IIIT-Delhi, India

vikram@iiitd.ac.in

Dhaval Patel

IIT Roorkee, India

patelfec@iitr.ac.in

ABSTRACT
Utility episode mining has emerged as an interesting and
challenging research topic in data mining. It finds appli-
cations in anomaly detection, biomedical data analysis, pre-
dicting stock trends etc. The number of high-utility episodes
that can be extracted from a sequence depends upon the
value of minimum utility threshold. It is often di�cult for a
user to find a suitable threshold value which fits their pur-
pose. The sequence can generate many high-utility episodes
at low threshold value and very few episodes at higher thresh-
old values. In order to relieve the user from this tedious
task, we propose an algorithm for mining top-k high utility
episodes from a complex event sequence. The parameter k
can be set by the user according to his/her needs. We also
propose e↵ective strategies for raising the threshold value
in order to prune the search space e↵ectively. We conduct
extensive experiments on real and synthetic datasets and
the experimental results demonstrate the e↵ectiveness of our
proposed strategies in terms of total execution time and the
number of candidate episodes generated.

1. INTRODUCTION
Frequent pattern mining finds patterns from a database,

which have frequency no less than a given minimum support
threshold. Frequent pattern mining finds applications in
market-basket analysis, mining association rules [23], plagia-
rism detection and biomedical data analysis [30]. As types of
data vary from one application to another, researchers have
developed various frequent pattern mining algorithms. For
example, frequent itemset mining [16] deals with transaction
data, sequential pattern mining [27] operates on sequence
data, frequent episode mining [24] works on long event se-
quence, and frequent pattern mining in data streams [19].
The algorithms developed for mining frequent patterns have
mostly employed the monotone/anti-monotone property to
prune the exponential search space e↵ectively. The mono-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 21st International Conference on Management of Data.
COMAD, March 11-13, 2016, Pune.
Copyright 2016 Computer Society of India (CSI).

tone property states that the subsets of a frequent pattern
are also frequent and the anti-monotone property states that
the supersets of an infrequent pattern are also infrequent.

However, the frequent patterns extracted can be of low-
profit value. The concept of high-utility pattern mining was
introduced to capture the notion of utility, which has been
observed in real life. High-utility pattern mining finds pat-
terns from a database which have their utility value no less
than a given minimum utility-threshold. The utility func-
tion measures the importance of a pattern and varies ac-
cording to the application. For example, in a retail store
domain, a utility function can measure the profit made by
the store by selling the items in the itemset together over
a period of time. High-utility pattern mining has wide
range of applications in cross-marketing in retail stores [8,
20], web-click stream analysis [18], medicine [25] etc. High-
utility mining has also been applied with other mining tech-
niques like high-utility sequential pattern mining [34, 31],
high-utility pattern mining from a transaction database [5,
7, 10], mining high-utility patterns from a data stream [3],
mining utility-frequency skyline pattern [11] and high-utility
episode-pattern mining [32].

Mining high-utility episodes from a customer shopping se-
quence may discover patterns which may help in discovering
the purchasing behaviour of customers. In this scenario, the
items purchased by a customer in a transaction can be rep-
resented as events occurring at a time point. High-utility
episode mining can also be used for stock prediction or in-
vestment [21, 22]. Some algorithms [26, 14] have been pro-
posed to mine high-utility episodes from simple event se-
quences, where only one event occurs at a point in time.
However, complex event sequences often occur in real life
and has many applications as mentioned by Wu et al. [32].
Recently, Wu et al. [32] proposed an algorithm UP-Span to
mine high-utility episodes from a complex event sequence.
The number of high-utility episodes which can be extracted
depends upon the value of the chosen utility threshold and
the characteristics of the database. It is possible to ex-
tract many episodes at lower threshold values and very few
episodes at higher threshold values. The user must ana-
lyze the distribution of items, utility value and density of
the database in order to choose an appropriate utility value.
In summary, a user’s engagement while mining high-utility
episodes is not a desirable solution.

In this paper, we propose a solution for mining top-k high-
utility episodes from a complex event sequence. Our aim is

56

56

to relieve a user from the task of analyzing the database
and choosing a utility threshold, which is often a di�cult
task for any user. The parameter k is the number of high-
utility episodes to be extracted from the database. A naive
approach for extracting top-k high-utility episodes can be
to set the minimum utility threshold to zero and apply any
high-utility episode mining algorithm to find the complete
set of high-utility episodes. Top-k episodes can be then cho-
sen from the result set. However, this approach is computa-
tionally very ine�cient as the search space is exponential in
the number of di↵erent items. In order to improve the e�-
ciency, we propose e↵ective strategies to raise the minimum
utility threshold from zero as quickly as possible.

Our research contributions can be summarized as follows:

• We propose an algorithm to mine top-k high-utility
episodes from a complex event sequence.

• We develop e↵ective strategies to raise the minimum
utility threshold quickly during the mining process in
order to reduce the search space e↵ectively.

• We conduct extensive experiments on real as well as
synthetic datasets and the experiment results demon-
strate the e↵ectiveness of our approach.

The paper is organized as follows. Section 2 reviews the
related work and background knowledge is explained in Sec-
tion 3. We propose our algorithm and our strategies for
improving the performance in Section 4. The experimental
results are presented in Section 5 and Section 6 concludes
the paper.

2. RELATED WORK
In this section, we briefly discuss some related work done

in this field. We divide the work into two lines of research:

2.1 Frequent Episode Mining
Frequent Episode Mining (FEM) was first introduced by

Mannila et al. [24]. Two algorithms WINEPI and MINEPI
were proposed in this paper. In WINEPI, the events were
sampled regularly over a sequence of events. An episode was
considered interesting if it fits into a window width which is
defined by the user. The support was computed by counting
the number of sliding windows in which episode appeared.
However, the algorithm could not avoid the double counting
of occurrence of an episode. In order to resolve the issue, the
concept of minimal occurrence was introduced. The minimal
occurrence of an episode ↵ is a time interval [t

s

, t
e

] where
the episode ↵ occurs and it does not occur in any proper
subinterval of [t

s

, t
e

]. In order to find the support, the
algorithm counted the number of minimal occurrences of an
episode.
However, the algorithms generate a large of candidate

episodes. Several methods have been proposed to improve
the performance of existing FEM algorithms. However, a
majority of the studies are devoted towards mining frequent
episodes in simple event sequences [1, 2, 4, 6, 15]. Mining
frequent episodes from a complex event sequence were only
considered by Huang et al. [17].

2.2 Utility Episode Mining
The FEM framework assumes that all the events are of

same importance. Therefore, it may report many episodes

of low revenue and miss high revenue but low-frequency
episodes. For solving this issue, the concept of utility was in-
troduced in episode mining by Guo et al. [13]. However, this
paper only considered the external utility of an episode and
mining was performed in a simple event sequence. Wu et
al. [32] addressed this problem and proposed an algorithm
UP-Span to discover high utility episodes in the complex
event sequence. The events were associated with internal
utility (quantity) and external utility (profit). The authors
also proposed two strategies, namely Discarding Global un-
promising Events (DGE) and Discarding Local unpromising
Events (DLE), to discard unpromising events and reduce the
search space. To speed up the UP-Span algorithm, Guo et
al. [12] presented a prefix tree structure and tighter upper
bounds for candidate episodes utility.

From the above-related work, we can conclude that only
preliminary work is done in mining high utility episodes.
Many algorithms have been proposed for top-k high-utility
pattern mining from transaction [33, 29] and sequential
databases [35]. However, the existing top-k utility mining
algorithms cannot be directly applied to top-k high utility
episode mining on a very large complex event sequence. If
we try to transform a complex event sequence into a set
of transactions or a set of sequences to make a sequential
database, it is not straightforward. Further, this makes the
existing algorithms ine�cient for top-k utility episode min-
ing from a complex event sequence.

3. BACKGROUND
In this section, we present some definitions given in the

earlier works [32] and describe the problem statement for-
mally.

3.1 Episode Mining
Definition 1. (Event) An event is defined by the pair (e, t)
where e is the event type and t 2 N+ is the time at which
event occurs.

Definition 2. (Complex event sequence) A complex event
sequence CES = <(SE1, t1), (SE2, t2), . . . , (SEn

, t
n

)> is an
ordered sequence of simultaneous event sets, where each si-
multaneous event set is associated with a time point t 2 N+

and t
i

<t
j

, for all 1 i<j n.

Let us consider the complex event sequence as shown in
Figure 1. (h(D)i, 5) is an event which occurs at t5.

Figure 1: A Complex Event
Sequence

A B C D E F G

1 4 2 1 5 3 2

Table 1: External Utility

Definition 3. (Simultaneous event set) A simultaneous
event set is composed of a set of events, where each event
occurs at the same time point t.

For example, (h(DA)i, 5) is a simultaneous event set which
occurs at t5.

57

57

Definition 4. (Episode containing simultaneous event
sets) An episode
↵= <(SE1), (SE2), . . . , (SEn

)> is a non-empty totally or-
dered set of simultaneous events, where SE

i

appears before
SE

j

for all 1 i<j n.

For example, h(EC), (D)i is an episode.

Definition 5. (Occurrence) For an episode
↵= <(SE1, t1), (SE2, t2) ,. . . , (SE

n

, t
n

) >, the time inter-
val [T

s

, T
e

] is called the occurrence of episode if ↵ occurs
in [T

s

, T
e

] and the first simultaneous event SE1 of ↵ occurs
at time T

s

, while the last simultaneous event set SE
k

of ↵
occurs at time T

e

.

For example, the occurrence set of episode h(E), (D)i is
occ(h(E), (D)i) = [1, 3], [3, 3], [1, 5], [3, 5].

Definition 6. (Minimal Occurrence) The occurrence time
interval [T

s

, T
e

] of an episode is called a minimal occurrence
if there exists no sub-interval of [T

s

, T
e

] in occurrence of ↵.
Consider two time intervals [T

s

, T
e

] and [T
s

0 , T
e

0] , [T
s

0 , T
e

0]is the sub-interval of [T
s

, T
e

] if T
s

 T
s

0 and T
e

0

 T
e

.

For example, the minimal occurrence set of episode h(E), (D)i
is
minOcc(h(E), (D)i) = [1, 3], [3, 3], [3, 5].

Definition 7. (Support of an episode) The support of
an episode is defined as the number of minimal occurrences
of an episode.

For example, the support of episode h(E), (D)i is 3.

Definition 8. (Internal and External Utility) In min-
ing high utility episodes, each event e

i

is associated with a
positive number p(e

i

), called as the external utility. Each
event e

i

in a simultaneous event set SE
j

at the time point
t
j

is associated with a positive number q(e
i

, t
j

), called as
internal utility.

For example, the external utility of events is shown in
Table 1.

Definition 9. (Utility of an event at a time point)
The utility of an event e

i

at a time point t
j

is u(e
i

, t
j

) =
p(e

i

, CES)⇥ q(e
i

, t
j

).

For example, the utility of event h(F)i at time t6 is 1⇥ 3
= 3.

Definition 10. (Utility of a simultaneous event set
at a time point) The utility of a simultaneous event set
SE = h(e1, t1), (e2, t2), (e3, t3), . . . , (ek, tk)i at a time point
t
i

is defined as u(SE, t
i

) = ⌃k

i=1u(ei, ti).

For example, utility of simultaneous event h(GF)i = (2⇥
1) + (3⇥ 1) = 5.

Definition 11. (Utility value of an episode w.r.t. its
minimal occurrence) Let mo(↵) = [T

s

, T
e

] be a minimal
occurrence of the episode
↵ = h(SE1), (SE2), . . . , (SEn

)i, where each simultaneous
event set SE

i

2 ↵ is associated with a time point T
i

. The
utility of the episode ↵ w.r.t mo(↵) is defined as
u(↵,mo(↵)) = ⌃k

i=1u(SEj

, t
i

).

Definition 12. (Utility of an episode in a complex
event sequence) Let moSet(↵) = [TI1, T I2, . . . , T Ik] be the
set of all minimal occurrences of the episode ↵, where TI

i

is
a minimal occurrence of ↵ for 1 i k. The utility value
of the episode ↵ in a complex event sequence CS is defined
as uv(↵, CS) = ⌃k

i=1u(↵, T Ik).

For example, u(h(E), (D)i, [1, 3]) = 10 + 3 = 13, and
u(h(E),
(D)i, CES) = u(h(E), (D)i, [1, 3]) + u(h(E),
(D)i, [3, 3]) +u(h(E), (D)i, [3, 5]) = 13 + 13 + 11 = 37.

Definition 13. (High Utility Episode(HUE)) If the util-
ity of an episode is not less than the minimum utility thresh-
old, then it is called as a high utility episode.

Definition 14. (Maximum Time Duration) Maximum
Time Duration (abbreviated as MTD) is a user specified win-
dow. A minimal occurrence mo(↵) = [T

s

, T
e

] satisfies the
maximum time duration constraint i↵, (T

e

�T
s

+1) MTD.

Definition 15. (Simultaneous and Serial concatena-
tions) Let
↵ = h(SE1), (SE2), . . . , (SEx

)i and
� = h(SE0

1), (SE
0
2), . . . , (SE

0
y

)i be episodes. The simultane-
ous concatenation of ↵ and � is defined as:
simulconcat(↵,�) = h(SE1), (SE2), . . . , (SEx

S
SE0

1), (SE
0
2),-

. . . , (SE0
y

)i.
The serial concatenation of ↵ and � is defined as:
serialconcat(↵,�) = h(SE1), (SE2) , . . . , (SE

x

), (SE0
1),

(SE0
2), . . . , (SE

0
y

)i.

For example, Let ↵ = (h(B)i, [4, 4]) and � = (h(D)i, [5, 5]).
The new episode formed by serial concatenation of ↵ and �
is � = h(B), (D)i, [4, 5]. Let now ↵ = (h(A)i, [5, 5]). The
simultaneous concatenation of � and ↵ is h(B), (DA)i, [4, 5].

Since downward closure property doesn’t hold in utility min-
ing, the authors [32] proposed the concept of Episode-weighted
Utilization (EWU). The EWU satisfies the downward clo-
sure property i.e. if the EWU of an episode is less than the
minimum utility threshold, all its super episodes will have
low utility.

Definition 16. (Episode-Weighted Utilization of an
episode w.r.t a minimal occurrence) Let mo

j

(↵) = [T
s

, T
e

]
be a minimal occurrence of the episode
↵ = h(SE1), (SE2), . . . , (SEx

)i, where each simultaneous
event set SE

i

2 ↵ is associated with a time point T
i

(1 i
k) and mo

j

(↵) satisfies MTD. The episode-weighted uti-
lization of ↵ w.r.t mo(↵) is defined as EWU(↵,moj(↵)) =
⌃k�1

i=1 u(SEi

, t
i

) + ⌃s+MTD�1
i=e

u(tSE
i

, t
i

) where tSE
i

is the
simultaneous event set occurring at time point T

i

in CES.

Definition 17. (Episode-Weighted Utilization of an
episode) Let moSet(↵)
= [TI1, T I2, . . . , T Ik] be a set of minimal occurrences of the
episode ↵ = h(SE1), (SE2), . . . ,
(SE

x

)i, where each simultaneous event set SE
i

2 ↵ is as-
sociated with a time point T

i

(1 i k) and mo
j

(↵) satis-
fies MTD. The episode weighted utilization of ↵ in complex
event sequence CES is defined as EWU(↵) = ⌃k

i=1u(↵, T Ii).

For example, let the MTD set by the user be 3.The EWU
of h(E), (D)i w.r.t a minimal occurrence is
EWU(h(E), (D)i, [1, 3]) = 10 + 13 = 23.

58

58

The EWU of h(E), (D)i in the CES is EWU(h(E), (D)i) =
[EWU(h(E), (D)i), [1, 3]]+[EWU(h(E), (D)i), [3, 5]] = 23+
13 = 36.

Definition 18. (High Weighted Utilization Episode
(HWUE)) An episode is called High Weighted Utilization
Episode its EWU is no less than the minimum utility thresh-
old min utility.

4. EFFICIENT MINING OF TOP-K HIGH
UTILITY EPISODES

In this section, we present our proposed algorithm, TUP-
Basic (Top-k Utility episode mining), for mining top-k high
utility episode mining in a complex event sequence. First,
we propose a basic algorithm to find the top-k high utility
episodes. Then, we propose some strategies to e↵ectively
raise the minimum utility threshold during the mining pro-
cess.

4.1 TUP-Basic
In this subsection, we present a basic algorithm for dis-

covering top-k high-utility episodes from a complex event
sequence (See Algorithm 1). The algorithm takes as input
a complex event sequence and a parameter k. The algo-
rithm maintains a sorted list of size K dynamically, which
contains the top-k high-utility episodes. The minimum util-
ity threshold (min utility) stores the utility of the current
kth episode. The minimum utility threshold is initialized to
zero before the start of mining process as the top-k bu↵er is
empty.

First, the database is scanned once to find all 1-length
episodes (Line 1). The minimal occurrence, utility and EWU
of 1-length episodes are calculated. If the EWU of an episode
is greater than the minimum threshold (Line 4), the algo-
rithm explores the search space of high utility episodes with
the current episode as the prefix. The algorithm follows a
depth-first search strategy for finding new episodes.

To explore the search space, an episode is concatenated
simultaneously (Line 5) and serially (Line 7) to events. Let
the occurrence of an episode ↵ be [T

s

, T
e

]. The events occur-
ring at T

e

are simultaneously concatenated to the episode ↵.
While the events occurring between T

e

+1 to T
s

+MTD�1
are serially concatenated to episode ↵ according to the def-
inition 15.

Each new episode, �, formed by concatenation, calls
Insert Episode(.) which updates the list of Top-k episodes
(See Algorithm 2). The input episode is added to the list if
the size of the list is less than user-defined k or its EWU is no
less than the minimum utility threshold. Once k candidates
are discovered the minimum utility is raised to kth highest
utility in the list i.e. to the least utility in the list. Further,
only episodes satisfying minimum utility is inserted in the
list and the (k+1)th episode is removed from the bu↵er. Af-
ter the algorithm terminates, top-K list contains the desired
output of top-k high utility episode mining in the complex
event sequence.

The algorithm returns the correct result as if the EWU
of an episode is less than the utility of the current kth
episode, it is guaranteed that no super-set of that episode
can be in the top-k bu↵er due to downward closure property.
The top-k episodes for k=3 and MTD=2 is: {h(ED), (B)i :
29, h(E), (B)i : 26, h(EC), (C)i : 24}

Algorithm 1 TUP-Basic(CES,MTD, k)

Input: A complex event sequence CES,desired number of
episodes k
Output: The complete set of top-k high utility episodes

1: Scan CES to find all one length episodes
(oneLengthEpiSet).

2: min utility=0.
3: for episode epi in oneLengthEpiSet do
4: if EWU(epi) � min utility then
5: Simultaneous Concatenation(epi,minOcc(epi),
6: min utility, k).
7: Serial Concatenation(epi,minOcc(epi)
8: ,min utility, k).
9: end if
10: end for

Algorithm 2 Insert Episode(epi,min utility, k)

Input: an episode epi,minimum utility min utility, desired
number of episodes k
Output: Top-K List: Top-k high utility episodes among
the candidates

1: if size(Top�KList)<k then
2: Add epi to Top-k List.
3: else
4: if utility(epi)>min utility then
5: Remove kth high utility episode i.e. episode
6: having least utility.
7: Add epi to the List.
8: Sort the list in decreasing order of utility values

of episodes.
9: min utility = least utility in Top-K List.
10: end if
11: end if

4.2 Pre-insertion Strategy
The TUP-Basic algorithm generates many candidates since

the minimum threshold start from zero. We try to raise the
minimum threshold before mining high-utility episodes from
a complex event sequence. The idea is to pre-insert the si-
multaneous event sets, i.e. the event sets occurring at the
same time point, in the top-K list after the initial scan of the
database. We call this strategy as the pre-insertion strategy.
We will illustrate the e↵ectiveness of this approach with an
example.

Let us consider the example sequence as shown in Figure
1 and utility of events as per Table 1. Let the value of k be 3.
First, the event set, h(EC)i : 14, occurring at time point 1 is
inserted. Similarly, the utilities of other simultaneous event
sets are calculated and the event sets are inserted in the
top-k list.After the simultaneous event sets are inserted, the
top-k list is {h(B)i : 16, h(EC)i : 14, h(ED)i : 13}. As seen
from the example, the pre-insertion strategy increases the
minimum utility threshold from zero to 13 before starting
the mining process.

4.3 EWU Strategy
The EWU associated with every episode captures the fre-

quency as well as utility aspects nicely. The probability of an
episode to be of high-utility increases with its EWU value.
The idea is to start exploring those episodes first which have
higher EWU compared to others. We know that the min-

59

59

imum utility threshold in high-utility mining remains fixed
and the order in which paths are explored does not a↵ect
the e�ciency. But, in Top-k the order of path taken does
matter because the minimum utility threshold is dependent
on the candidates list. So in this strategy, we process those
episodes first which have a higher EWU compared to other
episodes. we sort the episodes w.r.t their EWU’s before
concatenating them serially or simultaneously with other
episodes. Our hypothesis is that the EWU strategy will
work better on dense datasets compared to sparse datasets
as dense datasets generate a lot of high EWU episodes.

We illustrate the working of EWU strategy with an ex-
ample. The EWU of single episodes is shown in Table 2.
Since episode (E) has the highest EWU, it is processed first.
Let the value of MTD and k be 2 and 3 respectively. The

E C D B A G F

53 47 37 19 8 5 5

Table 2: EWU of single episodes

simultaneous episode h(EC)i : 14 is generated and inserted
into the top-k bu↵er. Since no events can be simultaneously
concatenated with h(EC)i, the method for serial concate-
nation is called. The serial episode h(EC), (C)i : 24 with
utility 24 is generated and added to the top-k bu↵er. Since,
no episodes can be serially or simultaneously concatenated
with h(EC), (C)i, the execution returns to episode h(E)i
and the simultaneous episode h(ED)i : 13 is generated and
added to the bu↵er. The minimum utility threshold is set
to 13. If we randomly select a path or use lexicographi-
cal order the minimum utility threshold may not increase
so fast. For example, if we first process the episodes of
path starting with episode (A) then the minimum thresh-
old raises to value 3 as the Top-k list consists of episodes
{h(AD)i : 3, h(A,G)i : 4, h(A,F)i : 5} after traversing this
path. So, the strategy 2 helps in raising the minimum
threshold e�ciently and hence it prunes the search space
faster.

5. EXPERIMENTS AND RESULTS
In this section, we evaluate the e↵ectiveness of our pro-

posed strategies. We also study the performance of com-
bining pre-insertion and EWU strategies, which we refer as
TUP-Combined. We conduct experiments on various real
and synthetic datasets. The description of the real datasets
is shown in Table 3. A transaction database can be consid-
ered as a complex event sequence by considering each item
as an event and the items in a transaction as a simultaneous
event. We implemented all the algorithms in Java with JDK
1.7 on a Windows 8 platform.

Table 3: Characteristics of RealDatasets

Dataset #T x Avg. length #Items Type
ChainStore Small 10,000 7.2 46086 Sparse
Retail Small 10,000 5.2 16470 Sparse
Accidents Small 10,000 10 468 Dense
Mushroom 8,124 10 119 Dense

5 10 15 20 25 30

100

200

300

400

500

k

T
im

e(
se
c)

(a)Total Time(Retail Small)

TUP-Basic
TUP Pre-insertion

TUP-EWU
TUP-Combined

5 10 15 20 25 30

6,000

8,000

10,000

12,000

k

N
u
m
b
er

of
C
an

d
id
at
es

(b)Number of Candidates(Retail Small)

TUP-Basic
TUP Pre-insertion

TUP-EWU
TUP-Combined

5 10 15 20 25 30

200

250

300

350

400

k

T
im

e(
se
c)

(a)Total Time(ChainStore Small)

TUP-Basic
TUP Pre-insertion

TUP-EWU
TUP-Combined

5 10 15 20 25 30

8,000

10,000

12,000

14,000

16,000

18,000

k

N
u
m
b
er

of
C
an

d
id
at
es

(b)Number of Candidates (ChainStore Small)

TUP-Basic
TUP Pre-insertion

TUP-EWU
TUP-Combined

Figure 2: Performance Evaluation on Sparse Datasets

60

60

5 10 15 20 25 30
300

400

500

600

700

800

k

T
im

e(
se
c)

(a)Total Time(Mushroom)

TUP-Basic
TUP Pre-insertion

TUP-EWU
TUP-Combined

5 10 15 20 25 30

0

20,000

40,000

k

N
u
m
b
er

of
C
an

d
id
at
es

(b)Number of Candidates (Mushroom)

TUP-Basic
TUP Pre-insertion

TUP-EWU
TUP-Combined

2 4 6 8 10 12

2,000

3,000

4,000

5,000

k

T
im

e(
se
c)

(a)Total Time(Accidents Small)

TUP-Basic
TUP Pre-insertion

TUP-EWU
TUP-Combined

2 4 6 8 10 12

0

50,000

100,000

150,000

k

N
u
m
b
er

of
C
an

d
id
at
es

(b)Number of Candidates(Accidents small)

TUP-Basic
TUP Pre-insertion

TUP-EWU
TUP-Combined

Figure 3: Performance Evaluation on Dense Datasets

5 10 15 20 25 30

200

300

400

k

M
em

or
y
(M

B
’s
)

Memory(Retail Small)

TUP-Basic
TUP Pre-insertion

TUP-EWU
TUP-Combined

5 10 15 20 25 30

200

400

600

k

M
em

or
y
(M

B
’s
)

Memory(ChainStore Small)

TUP-Basic
TUP Pre-insertion

TUP-EWU
TUP-Combined

5 10 15 20 25 30
0

1,000

2,000

3,000

k

M
em

or
y
(M

B
’s
)

Memory(Mushroom)

TUP-Basic
TUP Pre-insertion

TUP-EWU
TUP-Combined

2 4 6 8 10 12

2,000

3,000

4,000

5,000

6,000

k

M
em

or
y
(M

B
’s
)

Memory(Accidents Small)

TUP-Basic
TUP Pre-insertion

TUP-EWU
TUP-Combined

Figure 4: Memory Consumption on Real Datasets

61

61

The experiments were performed on an Intel Xeon(R)
CPU=26500@2.00 GHz with 64 GB RAM. All real datasets
except ChainStore were obtained from FIMI Repository [9].
The ChainStore dataset was obtained from Nu-MineBench
2.0 repository [28]. The quantity information for items was
chosen randomly from 1 to 5. The external utility values
were generated between 1 to 1000 using log-normal distri-
bution.

We compared the performance of the algorithms on the
basis of total execution time as well as the number of can-
didates. For datasets except Mushroom, we only take the
first 10,000 transactions as it takes a lot of time to run ex-
periments on a bigger sequence. Only ChainStore dataset
has utility values associated with each item in the database.
For other datasets, the utility values are generated between
1 to 5 using log-normal distribution. The quantity values are
generated randomly between 1 to 5. We fix the maximum
time duration(MTD) parameter to 2 for our experiments.

The results on sparse datasets are shown in Figure 2.
The graphs show that pre-insertion strategy beats the other
strategies in terms of total execution time and number of
candidate episodes generated. The EWU strategy performs
the worst as sparse datasets usually generate few short high-
utility episodes.

The results on dense datasets are shown in Figure 3. The
result shows that the performance of TUP-EWU and TUP-
Combined strategy outperforms the performance of other
strategies. Processing those episodes first which have higher
EWU is e↵ective in dense datasets as the high-utility episodes
usually have high support value and are of longer length
compared to sparse datasets.

We further analyzed the memory consumption of the al-
gorithms. The results are shown in Figure 4. The results
show that TUP�EWU and TUP�Combined consume less
memory on dense datasets as they generate less number of
candidate episodes.

6. CONCLUSION
High-utility Episode mining in a complex event sequence

is an emerging topic in data mining and has many appli-
cations in real world. In this paper, we propose an e�cient
algorithm for mining top-k high utility episodes in a complex
event sequence. We further proposed e↵ective strategies to
prune the search space e↵ectively by raising the minimum
utility threshold. We conducted extensive experiments on
various datasets and the results demonstrate the e↵ective-
ness of our proposed strategies.

7. REFERENCES
[1] A. Achar, I. A, and P. S. Sastry. Editorial:

Pattern-growth based frequent serial episode
discovery. Data Knowl. Eng., 87:91–108, Sept. 2013.

[2] A. Achar, S. Laxman, and P. S. Sastry. A unified view
of the apriori-based algorithms for frequent episode
discovery. Knowl. Inf. Syst., 31(2):223–250, May 2012.

[3] C. F. Ahmed, S. K. Tanbeer, B.-S. Jeong, and H.-J.
Choi. Interactive mining of high utility patterns over
data streams. Expert Systems with Applications,
39(15):11979 – 11991, 2012.

[4] M. Atallah, W. Szpankowski, and R. Gwadera.
Detection of significant sets of episodes in event
sequences. In Data Mining, 2004. ICDM ’04. Fourth

IEEE International Conference on, pages 3–10, Nov
2004.

[5] R. Bansal, S. Dawar, and V. Goyal. An e�cient
algorithm for mining high-utility itemsets with
discount notion. In N. Kumar and V. Bhatnagar,
editors, Big Data Analytics, volume 9498 of Lecture
Notes in Computer Science, pages 84–98. Springer
International Publishing, 2015.

[6] G. Casas-Garriga. Discovering unbounded episodes in
sequential data. In N. Lavra, D. Gamberger,
L. Todorovski, and H. Blockeel, editors, Knowledge
Discovery in Databases: PKDD 2003, volume 2838 of
Lecture Notes in Computer Science, pages 83–94. 2003.

[7] S. Dawar and V. Goyal. Up-hist tree: An e�cient data
structure for mining high utility patterns from
transaction databases. In Proceedings of the 19th
International Database Engineering & Applications
Symposium, IDEAS ’15, pages 56–61, 2014.

[8] A. Erwin, R. Gopalan, and N. Achuthan. E�cient
mining of high utility itemsets from large datasets. In
T. Washio, E. Suzuki, K. Ting, and A. Inokuchi,
editors, Advances in Knowledge Discovery and Data
Mining, volume 5012 of Lecture Notes in Computer
Science, pages 554–561. 2008.

[9] B. Goethals and M. Zaki. the fimi repository, 2012.
[10] V. Goyal, S. Dawar, and A. Sureka. High utility rare

itemset mining over transaction databases. In W. Chu,
S. Kikuchi, and S. Bhalla, editors, Databases in
Networked Information Systems, volume 8999 of
Lecture Notes in Computer Science, pages 27–40. 2015.

[11] V. Goyal, A. Sureka, and D. Patel. E�cient skyline
itemsets mining. In Proceedings of the Eighth
International C* Conference on Computer Science &
Software Engineering, C3S2E ’15, pages 119–124,
2008.

[12] G. Guo, L. Zhang, Q. Liu, E. Chen, F. Zhu, and
C. Guan. High utility episode mining made practical
and fast. In X. Luo, J. Yu, and Z. Li, editors,
Advanced Data Mining and Applications, volume 8933
of Lecture Notes in Computer Science, pages 71–84.
2014.

[13] T. Guo, S. Lin, Y. Wang, and J. Qiao. A new
framework for detecting high-utility episodes in event
sequence. In IEEE International Conference on Oxide
Materials for Electronic Engineering (OMEE), pages
370–373, 2012.

[14] R. Gwadera, M. Atallah, and W. Szpankowski.
Reliable detection of episodes in event sequences. In
Data Mining, 2003. ICDM 2003. Third IEEE
International Conference on, pages 67–74, Nov 2003.

[15] R. Gwadera, M. J. Atallah, and W. Szpankowski.
Reliable detection of episodes in event sequences.
Knowl. Inf. Syst., 7(4):415–437, May 2005.

[16] J. Han, J. Pei, and Y. Yin. Mining frequent patterns
without candidate generation. SIGMOD Rec.,
29(2):1–12, May 2000.

[17] K.-Y. Huang and C.-H. Chang. E�cient mining of
frequent episodes from complex sequences.
Information Systems, 33(1):96 – 114, 2008.

[18] H.-F. Li, H.-Y. Huang, and S.-Y. Lee. Fast and
memory e�cient mining of high-utility itemsets from
data streams: with and without negative item profits.

62

62

Knowledge and Information Systems, 28(3):495–522,
2011.

[19] H.-F. Li and S.-Y. Lee. Mining frequent itemsets over
data streams using e�cient window sliding techniques.
Expert Systems with Applications, 36(2, Part 1):1466 –
1477, 2009.

[20] Y.-C. Li, J.-S. Yeh, and C.-C. Chang. Isolated items
discarding strategy for discovering high utility
itemsets. Data and Knowledge Engineering, 64(1):198
– 217, 2008.

[21] Y.-F. Lin, C.-F. Huang, and V. S. Tseng. A novel
episode mining methodology for stock investment.
Journal of Information Science and Engineering,
30(3):571–585, 2014.

[22] Y.-F. Lin, C.-W. Wu, C.-F. Huang, and V. S. Tseng.
Discovering utility-based episode rules in complex
event sequences. Expert Systems with Applications,
42(12):5303 – 5314, 2015.

[23] B. L. W. H. Y. Ma. Integrating classification and
association rule mining. In international Conference
on Knowledge Discovery and Data Mining, 1998.

[24] H. Mannila, H. Toivonen, and A. I. Verkamo.
Discovering frequent episodes in sequences (extended
abstract). In In 1st Conference on Knowledge
Discovery and Data Mining, pages 210–215, 1995.

[25] F. Medici, M. I. Hawa, A. Giorgini, A. Panelo, C. M.
Solfelix, R. Leslie, and P. Pozzilli. Antibodies to gad65
and a tyrosine phosphatase-like molecule ia-2ic in
filipino type 1 diabetic patients. Diabetes Care,
22(9):1458–1461, 1999.

[26] A. Ng and A.-c. Fu. Mining frequent episodes for
relating financial events and stock trends. In K.-Y.
Whang, J. Jeon, K. Shim, and J. Srivastava, editors,
Advances in Knowledge Discovery and Data Mining,
volume 2637 of Lecture Notes in Computer Science,
pages 27–39. 2003.

[27] J. Pei, J. Han, B. Mortazavi-asl, H. Pinto, Q. Chen,
U. Dayal, and M. chun Hsu. Prefixspan: Mining

sequential patterns e�ciently by prefix-projected
pattern growth. In icccn, pages 215–224, 2001.

[28] J. Pisharath, Y. Liu, W.-k. Liao, A. Choudhary,
G. Memik, and J. Parhi. Nu-minebench 2.0.
Department of Electrical and Computer Engineering,
Northwestern University, Tech. Rep, 2005.

[29] H. Ryang and U. Yun. Top-k high utility pattern
mining with e↵ective threshold raising strategies.
Knowledge-Based Systems, 76:109 – 126, 2015.

[30] W. Shi, F. K. Ngok, and D. R. Zusman. Cell density
regulates cellular reversal frequency in myxococcus
xanthus. Proceedings of the National Academy of
Sciences, 93(9):4142–4146, 1996.

[31] B.-E. Shie, H.-F. Hsiao, V. Tseng, and P. Yu. Mining
high utility mobile sequential patterns in mobile
commerce environments. In J. Yu, M. Kim, and
R. Unland, editors, Database Systems for Advanced
Applications, volume 6587 of Lecture Notes in
Computer Science, pages 224–238. 2011.

[32] C.-W. Wu, Y.-F. Lin, P. S. Yu, and V. S. Tseng.
Mining high utility episodes in complex event
sequences. In Proceedings of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, KDD ’13, pages 536–544, 2013.

[33] C. W. Wu, B.-E. Shie, V. S. Tseng, and P. S. Yu.
Mining top-k high utility itemsets. In Proceedings of
the 18th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’12,
pages 78–86, New York, NY, USA, 2012.

[34] J. Yin, Z. Zheng, and L. Cao. Uspan: An e�cient
algorithm for mining high utility sequential patterns.
In Proceedings of the 18th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, KDD ’12, pages 660–668, 2012.

[35] J. Yin, Z. Zheng, L. Cao, Y. Song, and W. Wei.
E�ciently mining top-k high utility sequential
patterns. In IEEE 13th International Conference on
Data Mining, pages 1259–1264, Dec 2013.

63

63

Soft Monotonic Constraint Support Vector Regression

Sapan Shah, Avadhut Sardeshmukh,
Shuaib Ahmed, Sreedhar Reddy

Tata Research Development and Design Center,
Tata Consultancy Services Limited,

Pune 411013
India

{sapan.hs, avadhut.sardeshmukh, s.ahmed2, sreedhar.reddy}@tcs.com

Abstract
This paper proposes a model for learning
soft-monotonic regression functions in the
presence of imperfect domain knowledge. It
proposes an extension to support vector
regression (SVR) wherein a new hardness
parameter is introduced to configure the
degree of monotonicity. The model supports
multiple monotonicity constraints over
multiple input dimensions simultaneously.
The proposed model has been validated on
synthetic datasets as well as on benchmark
datasets obtained from real world problems.
The results show that our model has better
extrapolation capabilities than SVR. The
results also demonstrate the ability of the
model to generalize over multiple input
dimensions.

1. Introduction
In machine learning, prior domain knowledge
improves the quality of the model learnt, especially
when data is scant or noisy. A common class of such
prior knowledge is monotonicity constraints. For
example, in credit rating, the chances of getting a loan
increase with income, provided other variables are
same [1]. The price of houses increases with better
characteristics of houses such as the number of rooms
[2]. It is reasonable to expect a machine learning
algorithm to capture such knowledge in the model
learnt, but that depends on the quantity and quality of
the data available. Data inadequacy is a common
problem in many domains. For instance, in materials
engineering, process-structure-property relations
play a key role in the design process. However, this

data is hard to come by. In such cases, incorporating
prior domain knowledge into a machine learning
algorithm can improve the quality of the model learnt.
For instance, in a carburization process, an increase
in carbon potential increases the hardness of the
material. This information can be leveraged by a
learning algorithm to improve the model for a heat-
treatment process.

Monotonic regression on a data set of 𝑛 1-
dimensional pairs {(𝑥𝑖, 𝑦𝑖)}𝑖=1𝑛 can be defined as
follows:

𝑓(𝑥) = argmin
𝑓

∑(𝑦𝑖 − 𝑓(𝑥𝑖))2
𝑛

𝑖=1

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥𝑖 ≽ 𝑥𝑗 ⇒ 𝑓(𝑥𝑖) ≥ 𝑓(𝑥𝑗);
∀𝑖, 𝑗; 1 ≤ 𝑖, 𝑗 ≤ 𝑛

 (1)

where 𝑓(𝑥𝑖) is the approximation of 𝑦𝑖; and ≽ is the
preorder relation that is reflexive and transitive on
input space X. Monotonically decreasing
approximation can be defined by replacing the
constraint as 𝑥𝑖 ≽ 𝑥𝑗 ⇒ 𝑓(𝑥𝑖) ≤ 𝑓(𝑥𝑗) in (1).

Several algorithms exist for solving the problem
defined in (1). One of the earliest algorithms is the
pool adjacent violator algorithm (PAVA), based on
which a lot of research has been reported [3]. These
are well summarized in [4,5]. However, these
methods are not applicable when the input space is 𝑑
dimensional i.e. X ⊆ ℝ𝑑, because they assume that the
input is a sequence i.e. 𝑥𝑖 < 𝑥𝑖+1, which cannot be
generalized to 𝑑 dimensions.

Also, domain knowledge is not always perfect. In
the credit rating example, the chances of getting a
loan may decrease with past record of defaulting
despite higher income. In house pricing example, a
flat with one room in a posh area may be costlier than
a house with three rooms in a rural area. To address
this, we use the notion of soft monotonic regression.
Soft monotonicity balances between the best fit
(𝑦 = 𝑓(𝑥)) and the monotonic fit (𝑦 = 𝑓(𝑥)). This
can be formally represented as,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
International Conference on Management of Data
COMAD 2016, Pune, India, March 11-13, 2016
©Computer Society of India, 2016

64

64

𝑓(𝑥)𝜆 = argmin
𝑓

(

∑(𝑦𝑖 − 𝑓(𝑥𝑖))

2
𝑛

𝑖=1

+ 𝜆 ∗

∑∑𝒦(𝑥𝑖, 𝑥𝑗, 𝑓(𝑥𝑖), 𝑓(𝑥𝑗))
𝑛

𝑗=𝑖

𝑛

𝑖=1)

 (2)

𝑤ℎ𝑒𝑟𝑒 𝒦 (𝑥𝑖, 𝑥𝑗, 𝑓(𝑥𝑖), 𝑓(𝑥𝑗))

=

{

0

𝑖𝑓 𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐𝑎𝑙𝑙𝑦 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑎𝑛𝑑

{
𝑥𝑖 ≥ 𝑥𝑗 𝑎𝑛𝑑 𝑓(𝑥𝑖) ≥ 𝑓(𝑥𝑗) 𝑂𝑟
𝑥𝑗 ≥ 𝑥𝑖 𝑎𝑛𝑑 𝑓(𝑥𝑗) ≥ 𝑓(𝑥𝑖)

0
𝑖𝑓 𝑚𝑜𝑛𝑡𝑜𝑛𝑖𝑐𝑎𝑙𝑙𝑦 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑎𝑛𝑑

{
𝑥𝑖 ≥ 𝑥𝑗 𝑎𝑛𝑑 𝑓(𝑥𝑖) ≤ 𝑓(𝑥𝑗) 𝑂𝑟
𝑥𝑗 ≥ 𝑥𝑖 𝑎𝑛𝑑 𝑓(𝑥𝑗) ≤ 𝑓(𝑥𝑖)

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Here, 𝜆 is the penalty parameter which penalizes the
pair that violates the monotonicity constraint. Setting
𝜆 to 0 yields the best fit solution. As 𝜆 → ∞, the
solution approaches strictly monotonic for the
problem defined in (1). This kind of problem has
recently been addressed in [6] using a modified
version of PAVA. However, in line with the original
version, it too focuses on one dimensional input data
represented as a sequence.

In this paper, we propose a solution for soft
monotonic regression for multidimensional input i.e.
X ⊆ ℝ𝑑. More precisely, we propose an extension to
SVR called monotonic constraint support vector
regression (MC-SVR) and present its formulation.
The proposed method has been validated with
numerical experiments. The capability of MC-SVR to
impose different monotonic constraints (increasing,
decreasing, or none) at different input variables is
studied. The effect of softness of the constraint is
discussed. Results pertaining to the extrapolation
capability of MC-SVR, and generalization capability
over multiple input dimensions are also presented.

2. Monotonic Constraint Support Vector
Regression

Support vector regression (SVR) basically takes the
form [7,8]

 𝑓(x) = 〈w, x〉 + 𝑏
𝑤𝑖𝑡ℎ w, x ∈ ℝ𝑑 𝑎𝑛𝑑 𝑏 ∈ ℝ

(3)

where 〈. , . 〉 denotes the dot product. w is determined
by solving the following convex optimization
problem,

min
𝑤,𝑏,𝜉𝑖,𝜉�̂�

(
1
2
‖w‖2 + 𝐶∑(𝜉𝑖 + 𝜉�̂�)

𝑛

𝑖=1

)

𝑠𝑢𝑏. 𝑡𝑜 {
(〈w, x𝑖〉 + 𝑏) − 𝑦𝑖 ≤ 𝜖 + 𝜉𝑖; ∀𝑖
𝑦𝑖 − (〈w, x𝑖〉 + 𝑏) ≤ 𝜖 + 𝜉�̂�; ∀𝑖
𝜉𝑖, 𝜉�̂� ≥ 0; ∀𝑖

 (4)

where, 𝜉𝑖, 𝜉�̂� are slack variables for soft margin to
accommodate infeasible optimization that may arise
due to noisy input variables.

2.1 Monotonicity Constraints

To incorporate monotonicity in SVR, additional
constraints have to be formulated. The monotonicity
constraint proposed in this paper is based on the
following assumption,

𝑓(x + δx) + 𝜁 ≥ 𝑓(x); which simplifies to,
〈w, s〉 − 〈w, x〉 ≥ − 𝜁 𝑤ℎ𝑒𝑟𝑒 s = x + δx (5)

The above equation can be interpreted as: a
fraction of addition to the input should lead to a
solution that is either increasing or stays the same. It
should be noted that δ is a vector {𝛿}𝑖=1𝑑 where each
component can be set differently for different input
dimensions. If 𝛿(𝑖) is positive, the function is
monotonically increasing in 𝑖𝑡ℎ dimension; if 𝛿(𝑖) is
negative, it is monotonically decreasing; and if 𝛿(𝑖) =
0, no monotonic constraint is imposed. Since the prior
domain knowledge is imperfect, some violation in the
constraint is allowed. Variable 𝜁 introduced in (5)
accounts for this violation. When 𝜁 is zero, the
function is strictly monotonic. The new variable s =
x + δx ensures that the function 𝑓 is monotonic
around x. s is computed once for entire input data x.
It should be noted that we only need to compute the
value of s and not 𝑓(𝑠).

2 .2 Incorporating mo no to nic i ty co nstra int s
in SVR

The variable 𝜁 in (5) can be incorporated in MC-SVR
similar to the slack variables 𝜉𝑖 in standard SVR
optimization as given in (4). Considering the above
formulation of constraint to implement the MC-SVR,
the optimization problem of SVR given in (4)
becomes,

min
𝑤,𝑏,𝜉𝑖,𝜉�̂�,𝜁𝑖

1
2
‖w‖2 + 𝐶∑(𝜉𝑖 + 𝜉�̂�)

𝑛

𝑖=1

+ 𝐷∑𝜁𝑖

𝑛

𝑖=1
𝑠𝑢𝑏. 𝑡𝑜
(〈w, x𝑖〉 + 𝑏) − 𝑦𝑖 ≤ 𝜖 + 𝜉𝑖, ∀𝑖;
𝑦𝑖 − (〈w, x𝑖〉 + 𝑏) ≤ 𝜖 + 𝜉�̂�, ∀𝑖;
〈w, x𝑖〉 − 〈w, s𝑖〉
𝜉𝑖, 𝜉�̂�, 𝜁𝑖

≤
≥

𝜁𝑖, ∀𝑖: s𝑖 = x𝑖 + δx𝑖
0

 (6)

where 𝐷 is the hardness parameter. It represents the
amount of margin allowed to violate the monotonicity
constraint. When 𝐷 is large, the penalty for violating
the constraint is high. This results in a strict
monotonic solution. Conversely, when 𝐷 = 0,
monotonicity is not guaranteed.

The quadratic optimization problem in (6) can be
solved by the method of Lagrangian multipliers

65

65

similar to the standard SVR [7,8]. The primal
Lagrangian for (6) is as given in (7) below:

ℒ𝑝 =
1
2
‖w‖2 + 𝐶∑ (𝜉𝑖 + 𝜉�̂�)

𝑛

𝑖=1
+ 𝐷∑ 𝜁𝑖

𝑛

𝑖=1

 −∑ 𝛼𝑖(−(〈w, x𝑖〉 + 𝑏) + 𝑦𝑖 + 𝜖 + 𝜉𝑖)
𝑛

𝑖=1

 −∑ 𝛼�̂� ((〈w, x𝑖〉 + 𝑏) − 𝑦𝑖 + 𝜖 + 𝜉�̂�)
𝑛

𝑖=1

 −∑ 𝛽𝑖(𝜁𝑖 − (〈w, x𝑖〉 − 〈w, s𝑖〉))
𝑛

𝑖=1

 −∑ 𝜇𝑖𝜉𝑖
𝑛

𝑖=1
−∑ 𝜇�̂�𝜉�̂�

𝑛

𝑖=1
−∑ 𝜆𝑖𝜁𝑖

𝑛

𝑖=1
 𝑠𝑢𝑏. 𝑡𝑜: 𝛼𝑖, 𝛼�̂�, 𝛽𝑖, 𝜇𝑖, 𝜇�̂�, 𝜆𝑖 ≥ 0

 (7)

Following the saddle point condition, the partial
derivatives of ℒ𝑝 with respect to primal variables
(w, b, 𝜉𝑖, 𝜉�̂�, 𝜁𝑖) should vanish for optimality. The
partial derivatives are,

𝜕ℒ𝑝
𝜕𝑤

= 𝑤 −∑(𝛼�̂� − 𝛼𝑖)𝑥𝑖

𝑛

𝑖=1

+∑𝛽𝑖(𝑥𝑖 − 𝑠𝑖)
𝑛

𝑖=1

= 0

𝜕ℒ𝑝
𝜕𝑏

=∑(𝛼�̂� − 𝛼𝑖)
𝑛

𝑖=1

= 0

𝜕ℒ𝑝
𝜕𝜉𝑖

= 𝐶 − 𝛼𝑖 − 𝜇𝑖 = 0

𝜕ℒ𝑝
𝜕𝜉�̂�

= 𝐶 − 𝛼�̂� − 𝜇�̂� = 0

𝜕ℒ𝑝
𝜕𝜁𝑖

= 𝐷 − 𝛽𝑖 − 𝜆𝑖 = 0

 (8)

Substituting (8) in (7) yields the dual optimization
problem as follows.

ℒ𝐷 = max𝛼,�̂�,𝛽

{

 −

1
2
∑∑(𝛼�̂� − 𝛼𝑖)(𝛼�̂� − 𝛼𝑗)〈x𝑖, x𝑗〉

𝑛

𝑗=1

𝑛

𝑖=1

−
1
2
∑∑𝛽𝑖𝛽𝑗〈x𝑖 − s𝑖, x𝑗 − s𝑗〉

𝑛

𝑗=1

𝑛

𝑖=1

+
1
2
∑∑(𝛼�̂� − 𝛼𝑖)𝛽𝑗〈x𝑖, x𝑗 − s𝑗〉

𝑛

𝑗=1

𝑛

𝑖=1

+
1
2
∑∑𝛽𝑖(𝛼�̂� − 𝛼𝑗)〈x𝑖 − s𝑖, x𝑗〉

𝑛

𝑗=1

𝑛

𝑖=1

+∑(𝛼�̂� − 𝛼𝑖)𝑦𝑖

𝑛

𝑖=1

− 𝜖∑(𝛼�̂� + 𝛼𝑖)
𝑛

𝑖=1

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:
∑(𝛼�̂� − 𝛼𝑖)
𝑛

𝑖=1

= 0;

0 ≤ 𝛼�̂�, 𝛼𝑖 ≤ 𝐶 ∀𝑖;
0 ≤ 𝛽𝑖 ≤ 𝐷 ∀𝑖

 (9)

The problem in (9) is convex and hence, it forms a
standard quadratic optimization problem. This fact is
proved in theorem 1.

In order to represent the dual in standard quadratic
form, the dot products in (9) can be rewritten as,

𝑋𝑖𝑋𝑗 = 〈𝑥𝑖, 𝑥𝑗〉; 𝑆𝑖𝑆𝑗 = 〈𝑠𝑖, 𝑠𝑗〉
𝑋𝑖𝑆𝑗 = 〈𝑥𝑖, 𝑠𝑗〉; 𝑆𝑖𝑋𝑗 = 〈𝑠𝑖, 𝑥𝑗〉 = 𝑋𝑗𝑆𝑖𝑇

} ∀𝑖, 𝑗 (10)

The quadratic term is no longer a 2𝑛 × 2𝑛 matrix as
in conventional linear ε-insensitive loss SVR.
Instead, it is a 3𝑛 × 3𝑛 matrix composed of variables
�̂�, 𝛼 𝑎𝑛𝑑 𝛽 as shown below,

min
𝛼,�̂�,𝛽

1
2
[�̂� 𝛼 𝛽] 𝐻 [

�̂�
𝛼
𝛽
] + 𝐶𝑇 [

�̂�
𝛼
𝛽
]

𝑤ℎ𝑒𝑟𝑒,

𝐻 =

[

𝑋𝑋 −𝑋𝑋 −(𝑋𝑋 − 𝑋𝑆)
−𝑋𝑋 𝑋𝑋 (𝑋𝑋 − 𝑋𝑆)

−(𝑋𝑋 − 𝑋𝑆)𝑇 (𝑋𝑋 − 𝑋𝑆)𝑇
(𝑋𝑋 − 𝑆𝑆 −
(𝑋𝑆 + 𝑋𝑆𝑇))]

𝐶 = (𝜖 [
1
1
0
] − [

𝑦
−𝑦
0
])

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜, [
−1
1
0
]
𝑇

[
�̂�
𝛼
𝛽
] ≤ 0;

0 ≤ �̂�, 𝛼 ≤ 𝐶; 0 ≤ 𝛽 ≤ 𝐷;

 (11)

Theorem 1: The problem of MC-SVR defined in
(9) is convex.

Proof: For the problem in (9) to be convex, the
quadratic term should be necessarily positive
semi-definite. The quadratic term in ℒ𝐷 while
minimizing is,
1
2
∑ ∑ (𝛼�̂� − 𝛼𝑖)(𝛼�̂� − 𝛼𝑗)〈x𝑖, x𝑗〉

𝑛

𝑗=1

𝑛

𝑖=1

 +
1
2
∑ ∑ 𝛽𝑖𝛽𝑗〈x𝑖 − s𝑖, x𝑗 − s𝑗〉

𝑛

𝑗=1

𝑛

𝑖=1

 −
1
2
∑ ∑ (𝛼�̂� − 𝛼𝑖)𝛽𝑗〈x𝑖, x𝑗 − s𝑗〉

𝑛

𝑗=1

𝑛

𝑖=1

 −
1
2
∑ ∑ 𝛽𝑖(𝛼�̂� − 𝛼𝑗)〈x𝑖 − s𝑖, x𝑗〉

𝑛

𝑗=1

𝑛

𝑖=1

=
1
2
⟨∑ (𝛼�̂� − 𝛼𝑖)x𝑖

𝑖
−∑ 𝛽𝑖(x𝑖 − s𝑖)

𝑖
 ,

 ∑ (𝛼�̂� − 𝛼𝑗)x𝑗
𝑗

−∑ 𝛽𝑗(x𝑗 − s𝑗)
𝑗

⟩

=
1
2
‖∑ (𝛼�̂� − 𝛼𝑖)x𝑖

𝑖
−∑ 𝛽𝑗(x𝑗 − s𝑗)

𝑗
‖
2

≥ 0

Thus, the quadratic term is positive semi-
definite. Hence, (9) is convex.

66

66

In order to solve the MC-SVR problem, it is
important to find the parameters of interest i.e. w and
𝑏. Using the partial derivatives of the primal
Lagrangian, variable w can be written as,

w =∑ (𝛼�̂� − 𝛼𝑖)x𝑖

𝑛

𝑖=1
−∑ 𝛽𝑖(x𝑖 − s𝑖)

𝑛

𝑖=1
 (12)

It is possible to describe w completely in terms of
training data x𝑖 (since, s𝑖 is derived from x𝑖) even for
MC-SVR. Substituting (12) in (3) yields,

𝑓(𝑥) =∑(𝛼�̂� − 𝛼𝑖)〈𝑥𝑖, 𝑥〉
𝑛

𝑖=1

 −∑𝛽𝑖(〈𝑥𝑖, 𝑥〉 − 〈𝑠𝑖, 𝑥〉)
𝑛

𝑖=1

− 𝑏

 (13)

The variable 𝑏 can be found following the Karush-
Kuhn-Tucker (KKT) conditions [8] which state that at
optimality, the product of dual variable and the
constraint should vanish. Thus, b can be identified as,

𝑏 =
1
𝑛
∑ (𝑦𝑖 − (∑ (𝛼�̂� − 𝛼𝑗)〈x𝑗, x𝑖〉

𝑛

𝑗=1

𝑛

𝑖=1

−∑ 𝛽𝑗(〈x𝑗, x𝑖〉
𝑛

𝑗=1

− 〈s𝑗, x𝑖〉)) − 𝜖)

(14)

It is important to note that in (9) to (14), instead of
dot product, a kernel expansion can also be applied,
which will lead to non-linear MC-SVR. Standard
kernels for SVR (such as, Linear, Polynomial,
Gaussian, and so on) can be effectively applied.

The hardness parameter, 𝐷, bounds the extra
variable 𝛽 in (9). Hence, when 𝐷 is sufficiently small,
then 𝛽 ≪ 𝛼, and there will not be any significant
effect of monotonicity constraint. Conversely when 𝐷
is sufficiently large, then 𝛽 ≫ 𝛼, and the effect of
monotonicity will be dominant. For the sake of
brevity, the MC-SVR formulation in (6) uses the same
parameter 𝐷 for all monotonicity constraints. Similarly,
it uses the same slack variable 𝜁𝑖 for all monotonicity
constraints. The formulation in (6) can be easily
extended to support separate 𝐷 and 𝜁𝑖 for each
monotonicity constraint. In this case, the parameter 𝐷
will be a vector. The components of 𝐷 will specify
hardness for each constraint. Similarly, there will be
a separate set of slack variables 𝜁𝑖𝐶 for each
constraint.

2.3 Degree of Monotonicity

To assess the degree of monotonicity, we use Kendall
correlation metric [9]. Let (𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛)
be a set of observations of variables 𝑋 and 𝑌 respectively.
Any pair of observations (𝑥𝑖, 𝑦𝑖) and (𝑥𝑗, 𝑦𝑗) are said to
be concordant if the ranks for both elements agree (i.e.
𝑥𝑖 > 𝑥𝑗 𝑎𝑛𝑑 𝑦𝑖 > 𝑦𝑗 𝑂𝑅 𝑥𝑖 < 𝑥𝑗 𝑎𝑛𝑑 𝑦𝑖 < 𝑦𝑗). They are

discordant if 𝑥𝑖 > 𝑥𝑗 𝑎𝑛𝑑 𝑦𝑖 < 𝑦𝑗 𝑂𝑅 𝑥𝑖 < 𝑥𝑗 𝑎𝑛𝑑 𝑦𝑖 >
𝑦𝑗. The Kendall correlation metric is then defined as,

𝐾𝑒𝑛𝑑𝑎𝑙𝑙(𝑋, 𝑌)

=
#𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠 − #𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠

1
2 𝑛(𝑛 − 1)

 (15)

If the target variable is a monotonically increasing
function of input then Kendall correlation is 1; while for
a monotonically decreasing function, it is -1.

We define degree of monotonicity as follows,

𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐𝑖𝑡𝑦(𝑋, 𝑌)

=
(𝐾𝑒𝑛𝑑𝑎𝑙𝑙(𝑋, 𝑌) ∗ 𝑠𝑖𝑔𝑛 + 1)

2
𝑤ℎ𝑒𝑟𝑒,

𝑠𝑖𝑔𝑛 =
1 ;

𝑌 𝑖𝑠 𝑎 𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐𝑎𝑙𝑙𝑦
𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑋

−1 ; 𝑌 𝑖𝑠 𝑎 𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐𝑎𝑙𝑙𝑦𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑋

 (16)

This measure is in the range of 0 to 1 and it normalizes
Kendall correlation such that for a perfect monotonic
function (increasing or decreasing), it reaches the value
of 1. We define the degree of monotonicity of a model
with respect to a pair of variables as the degree of
monotonicity that would be expected to be observed
between the variables when data is generated randomly
from the model. It is related to the hardness parameter 𝐷
in the following sense:

𝐷1 > 𝐷2 => degree of monotonicity of a model learnt
with 𝐷1 is greater than the degree of monotonicity of a
model learnt with 𝐷2.

Thus we can increase or decrease the degree of
monotonicity of a model by increasing or decreasing 𝐷.

Degree of monotonicity is a more intuitive parameter
for a domain expert to specify. A value of 1 specifies that
the model is completely monotonic; a value of 0.8
specifies that 80% of the data is expected to be
monotonic, while 20% may be contrarian, and so on. It
is possible to convert degree of monotonicity into an
appropriate value of 𝐷 by writing a wrapper function that
internally searches for a value of 𝐷 that gives the desired
degree of monotonicity.

3. Experimental Results
We have carried out two sets of experiments to
validate MC-SVR: one set with synthetic models and
the other with real-life datasets.

3.1 Experiments with synthetic models

Our objective in using synthetic models is to study
how the MC-SVR behaves under various controlled
experimental conditions, such as dimensionality of
input data, degree of the true function, effect of noise
in data, etc.

67

67

These experiments use the following scheme:
A true model of a chosen degree and dimensionality
is constructed. Data is generated from this model. To
simulate the effect of noise in observed data, we add
random sinusoidal noise (with amplitude drawn from
Gaussian distribution) to the generated data. To study
the effect of degree of monotonicity, we add an
additional term to the true model to introduce regions
where monotonicity is violated. We then compare the
learnt models with the true model. The output of
MC-SVR for constraint violation region is analysed.
Softness in MC-SVR is controlled by the degree
parameter. The effect of softness on the learnt model
is also analysed.

In all experiments we first learn the SVR model
using a Gaussian kernel and optimize the hyper
parameters 𝛾 and 𝐶 using 10-fold cross validation. We
then use the same hyper parameters for MC-SVR and
set the monotonicity parameters (i.e. monotonicity
constraint and degree of monotonicity) as required.
Both SVR and MC-SVR are implemented in octave
3.8 using PR_LOQO [10] as the QP solver.

3.1.1 Comparison between SVR and hard MC-
SVR (degree of monotonicity =1)

In this experiment we choose a simple linear function
with one input. The true model and the data
generation model with noise term are as given in (17)
below,

True model: 𝑦 = x
Data model: 𝑦 = 𝑥 +𝒩(0.08,0.04) ∗ sin(25 ∗ 𝑥) (17)

The amplitude of the noise is drawn from a Gaussian
distribution with an arbitrary mean 0.08 and standard
deviation 0.04. We generated 200 data points in the range
0 to 1. Figure 1 shows the true model as well as the
observed data points. As mentioned in section 2.1, the
sign (δ(i) > 0 𝑜𝑟 δ(i) < 0) determines whether the

constraint is monotonically increasing or decreasing.
As the true function is monotonically increasing in x, we
set the monotonicity constraint as δ = {0.1}. This
corresponds to 10% of the normalized data range,
specifying that the monotonicity constraint should
hold with data points that are within this range of an
input data point.

An SVR with Gaussian kernel is optimized for
minimizing the root mean squared error (RMSE). The
best parameters found are 𝛾 = 2−4 𝑎𝑛𝑑 𝐶 = 10. MC-
SVR is learnt using the same hyper-parameters. As the
true model is monotonic in the full input range, we set
the degree of monotonicity to 1 (hard MC-SVR). The
results are shown in Figure 1. It can be observed from the
figure that MC-SVR learns a better fit to the true model
than SVR. The RMSE of MC-SVR and SVR are 0.0430
and 0.0545 respectively, showing that MC-SVR
performs significantly better than SVR (approximately
20% improvement).

Next we study the behaviour of hard MC-SVR for a
non-linear function. The true model in this case is a
simple quadratic function viz. 𝑦 = 𝑥2. Similar to the
linear case, the data generation model adds noise terms
with amplitude drawn from a Gaussian distribution (with
mean = 0.08 and standard deviation = 0.04). 200 data
points are generated in the range 0 to 1. Figure 2 shows
the true model and the observed data points. As the
function is monotonically increasing in x, the
monotonicity constraint is set as δ = {0.1}. An SVR
with Gaussian kernel is optimized to find the best
parameter setting (𝛾 = 2−3 𝑎𝑛𝑑 𝐶 = 10). MC-SVR is
learnt with the same hyper-parameters. The degree of
monotonicity is set to 1 as the true model is
monotonic in the full input range. Again, as can be
observed from Figure 2, MC-SVR learns a better
model compared to SVR. The RMSE of MC-SVR and
SVR are 0.0387 and 0.0523 (approximately 26%
improvement over SVR).

Figure 1: Comparison of SVR and Hard MC-SVR
(degree = 1) for 1 dimensional linear function

Figure 2: Comparison of SVR and Hard MC-SVR
(degree = 1) for 1 dimensional quadratic function

68

68

We have also studied the behaviour of hard MC-SVR
for multidimensional input. Similar to the one
dimensional case, we set up a two dimensional
experiment using an arbitrary linear function with two
inputs. The true model and the data generation model
with noise are as given in (18) below,

True model: 𝑧 = 0.7 ∗ 𝑥 − 0.5 ∗ 𝑦
Data model: 𝑧 = 0.7 ∗ 𝑥 − 0.5 ∗ 𝑦
 +𝒩(0.05,0.025) ∗ sin(25 ∗ 𝑥)
 + 𝒩(0.05,0.025) ∗ sin(25 ∗ 𝑦)

 (18)

The data model adds noise to both the input dimensions.
We choose 300 data points randomly from a set of 1156
generated data points (a two dimensional grid with
spacing 0.03) in the range 0 to 1. The true model in (18)
is monotonically increasing in x and decreasing in y.
Hence we set the constraint as δ = {0.1, −0.1}.

Similar to the one-dimensional case, an SVR with
Gaussian kernel is used to minimize the root mean
squared error. The best parameters found are 𝛾 =
2−2 𝑎𝑛𝑑 𝐶 = 32768. MC-SVR is learnt using the
same hyper-parameters. The degree of monotonicity
is set to 1 as the true model has perfect monotonic
behaviour in both dimensions (increasing in the first
and decreasing in the second). Once again, it has been
observed that MC-SVR produces a better fit to the
true model than SVR. MC-SVR achieves a significant
improvement in RMSE over SVR – from 0.0607 for SVR
to 0.0428 for MC-SVR, an improvement of around 30%.
This experiment shows that MC-SVR can learn different
monotonicity relations in different dimensions, and the
model incorporating these relations performs better than
SVR.

The experiments in this section suggests that the
difference between MC-SVR and SVR becomes more
significant as the complexity (degree or dimensionality)
of the problem increases.

3.1.2 Softness capability of MC-SVR

In order to evaluate the softness capability of MC-SVR,
we modify the true model of (17) by imposing
monotonically decreasing behaviour in input x for
approximately 10% of the data. If we think of this data
as coming from a real-life process, the monotonically
decreasing part represents exceptions to the generally
expected behaviour. We show that MC-SVR with an
appropriately defined degree of monotonicity (which can
be set by a domain expert) has the capacity to model this
behaviour and is capable of achieving better accuracy
than both SVR and hard MC-SVR.

The true model and the data generation model for this
experiment are as follows,

True model: 𝑦 = x − 0.4 ∗ 𝑒−(
𝑥−0.5
0.07)

2

Data model: 𝑦 = x − 0.4 ∗ 𝑒
−(𝑥−0.50.07)

2

+𝒩(0.08,0.04) ∗ sin(25 ∗ 𝑥)

 (19)

The exponential term adds monotonically decreasing
behaviour around 0.5 to an otherwise monotonically
increasing true model. As before, the data model adds

noise to the data points before they are observed. We
generated 200 data points in the range 0 to 1. Figure 3
shows the true model as well as the observed data points.
This function is studied with monotonically increasing
constraint i.e. δ = {0.1}.

Again, an SVR with Gaussian kernel is optimized
(𝛾 = 2−4 𝑎𝑛𝑑 𝐶 = 10) for minimizing the root mean
squared error. MC-SVR is learnt using the same hyper-
parameters. The target variable in (19) is a monotonically
increasing function of input. However, approximately
10% data in the true model has opposite behaviour. To
account for this, we incorporate softness in MC-SVR by
specifying the degree of monotonicity as 0.9. We also
learn hard MC-SVR (i.e. degree of monotonicity = 1). As
observed from Figure 3, soft MC-SVR produces a better
fit compared to hard MC-SVR. This is due to the fact that
hard MC-SVR does not use the information that 10% of
data has opposite behaviour and builds a model that is
monotonic in the full input range. The model leant using
SVR captures this behaviour. However, it also learns the
noise present in the observed data. The model learnt
using soft MC-SVR provides a balance between SVR
and hard MC-SVR. Table 1 shows the RMSE values
obtained for these three models. Soft MC-SVR achieves
significantly better RMSE compared to both SVR and
hard MC-SVR.

Next we study the softness capability of MC-SVR on
a non-linear function. The true model and the data
generation model with noise are as given below,

Figure 3: Comparison of Soft MC-SVR with SVR and
Hard MC-SVR on linear soft monotonic function

Table 1: RMSE for synthetic 1-dimensional linear
data – monotonically increasing function with
opposite behavior in approximately 10% data

Function RMSE
𝑆𝑉𝑅 0.0522
𝑠𝑜𝑓𝑡 𝑀𝐶 − 𝑆𝑉𝑅 (𝑑𝑒𝑔𝑟𝑒𝑒 = 0.9) 0.0441
ℎ𝑎𝑟𝑑 𝑀𝐶 − 𝑆𝑉𝑅 (𝑑𝑒𝑔𝑟𝑒𝑒 = 1) 0.0595

69

69

True model: 𝑦 = x2 − 0.4 ∗ 𝑒−(
𝑥2−0.4
0.1)

2

Data model: 𝑦 = x2 − 0.4 ∗ 𝑒
−(𝑥

2−0.4
0.1)

2

+𝒩(0.08,0.04) ∗ sin(30 ∗ 𝑥)

 (20)

The model adds contrarian behaviour around 0.4 to an
otherwise monotonically increasing function. 200 data
points are generated in the range 0 to 1. Figure 4 shows
the true model and the observed data points. As the
function is monotonically increasing in x for the most
part, the constraint is set as δ = {0.1}.

As before, an SVR with Gaussian kernel is
optimized to find the best parameter setting (𝛾 =
2−3 𝑎𝑛𝑑 𝐶 = 250). MC-SVR is also learnt with the
same hyper-parameters. The degree of monotonicity
is set to 0.9 for soft MC-SVR as approximately 10%
of data exhibits the opposite behaviour. Hard MC-
SVR is also learnt to compare the effect of softness.
Figure 4 shows the results. As can be seen, here also
soft MC-SVR produces a better fit than SVR and hard

MC-SVR. Table 2 reports the RMSE for the three
models. As expected, soft MC-SVR performs
significantly better than both SVR and hard MC-SVR.

We also studied the effect of softness on the learnt
models for multidimensional input. The true model and
the data generation model are as given below,

True model:

 z = 0.7 ∗ x − 0.5 ∗ y − 0.5 ∗ 𝑒−(
𝑥−0.5
0.09)

2

Data Model:

 𝑧 = 0.7 ∗ 𝑥 − 0.5 ∗ 𝑦 − 0.5 ∗ 𝑒−(
𝑥−0.5
0.09)

2

 +𝒩(0.05,0.025) ∗ sin(25 ∗ 𝑥)
 + 𝒩(0.05,0.025) ∗ sin(25 ∗ 𝑦)

 (21)

The model is the same as that used in (18), except that,
here, the true model has a monotonically decreasing
behaviour in x for approximately 10% of the data.

Here again, an SVR with Gaussian kernel is
optimized for minimizing root mean squared error (𝛾 =
2−3 𝑎𝑛𝑑 𝐶 = 10). The same hyper-parameters are
then used for MC-SVR. Since approximately 10% of
the data exhibits opposite behaviour, we set the
degree of monotonicity to 0.9. We also learn hard
MC-SVR (degree of monotonicity = 1). Once again,
as expected, soft MC-SVR produces a better fit to the
true model than SVR and hard MC-SVR. A
comparison of RMSE obtained with all these three
approaches is shown in Table 3. It can clearly be
observed that MC-SVR, with the additional knowledge
about degree of monotonicity (as opposed to just the
knowledge about monotonicity) outperforms both SVR
and hard MC-SVR.

We have also studied the effect of softness on
multidimensional non-linear functions using 𝑥2 − 𝑦2 as
the true model with 10% contrarian behaviour. Once
again soft MC-SVR performed significantly better than
both SVR and hard MC-SVR.

3.2 Experiments on Real world Datasets

3.2.1 Extrapolation capability of MC-SVR

In this section, global warming dataset has been
considered which is first studied in [11]. Recently,
Tibshirani et. al. developed a nearly monotonic
regression using modified PAVA for this dataset [6].
The dataset contains annual temperature anomalies
from 1856 to 1999, relative to the 1961-1990 mean. It
has 150 data points. It can be observed from Figure 5
that the actual data is monotonically increasing with
respect to year, with possible decrease around 1900.

An SVR with Gaussian kernel is optimized (𝛾 =
2−2 𝑎𝑛𝑑 𝐶 = 250) for minimizing the root mean
squared error. Figure 5 shows the models produced by
SVR, hard MC-SVR (degree of monotonicity = 1) and
soft MC-SVR (degree of monotonicity = 0.83). It can
be observed that SVR misses the monotonically
increasing characteristic and learns a model that has
decreasing behaviour at multiple places. On the other
hand, hard MC-SVR learns a model that is increasing
in the full input range. Soft MC-SVR produces a fit

Figure 4: Comparison of Soft MC-SVR with SVR and
Hard MC-SVR on quadratic soft monotonic function

Table 2: RMSE for synthetic 1-dimensional quadratic
data – monotonically increasing function with
opposite behavior in approximately 10% data

Function RMSE
𝑆𝑉𝑅 0.0535
𝑠𝑜𝑓𝑡 𝑀𝐶 − 𝑆𝑉𝑅 (𝑑𝑒𝑔𝑟𝑒𝑒 = 0.9) 0.0445
ℎ𝑎𝑟𝑑 𝑀𝐶 − 𝑆𝑉𝑅 (𝑑𝑒𝑔𝑟𝑒𝑒 = 1) 0.0543

Table 3: RMSE for synthetic 2-dimensional data –
monotonically increasing function with opposite
behavior in approximately 10% data

Function RMSE
𝑆𝑉𝑅 0.1746
𝑠𝑜𝑓𝑡 𝑀𝐶 − 𝑆𝑉𝑅 (𝑑𝑒𝑔𝑟𝑒𝑒 = 0.9) 0.0486
ℎ𝑎𝑟𝑑 𝑀𝐶 − 𝑆𝑉𝑅 (𝑑𝑒𝑔𝑟𝑒𝑒 = 1) 0.0810

70

70

that captures the decreasing behaviour around year
1900 but is monotonically increasing otherwise.

In order to study the extrapolation capability of
MC-SVR, the dataset is partitioned into 10 equally
spaced bins. At a time, 9 bins have been used for
training and the remaining for evaluation. This
process has been continued for all the 10 bins. It has
been observed that soft MC-SVR has produced a
significantly better RMSE than standard SVR and full
monotonic approximation as given in Table 4.
Considering that the RMSE is reported on normalized
data, soft MC-SVR improves SVR and hard MC-SVR
by 17% and 10% respectively. The results are also
portrayed in Figure 6. It can be observed that the
extrapolation at the beginning as well as at the end is
better for soft MC-SVR than for SVR and hard
MC-SVR. Similar results have been observed by
changing the number of bins to 5 and 20.

3.2.2 Generalization capability of MC-SVR over
multiple input dimensions

In order to study monotonicity for multidimensional
input, Cars dataset has been considered. This dataset
has been studied in [12,13]. It contains 4 input
attributes of cars viz. displacement, engine output in
horsepower, weight and time to accelerate from 0 to
60 mph (acceleration time); the output is the
prediction of fuel efficiency in miles per gallon. The
first 3 input attributes have monotonically decreasing
relation with the output attribute while the last

attribute, acceleration time, has monotonically
increasing relation. The dataset contains 392
instances.

The quantitative performance on RMSE has been
assessed by performing 10-fold cross validation on
normalized data. The constraint has been set as
monotonically decreasing for displacement, engine
output and weight while monotonically increasing for
acceleration time. Grid search is performed to find
the hyper- parameters (𝛾 𝑎𝑛𝑑 𝐶) that minimize root
mean squared error for SVR. The same hyper-
parameters are then used for MC-SVR. The degree of
monotonicity is varied to incorporate softness in MC-
SVR.

Table 5 reports RMSE for various experiments.
The first experiment uses all four input attributes and
accordingly the constraint is set as 𝛿 = { −0.1, −0.1,
−0.1, 0.1}. As can be noticed from Table 5, MC-SVR
(soft as well as hard constraints) gives better results
than SVR (approximately 10% improvement). The
second experiment uses a 2-dimensional input –
displacement and acceleration time. Once again,

Table 5: Cars dataset: RMSE for SVR and Soft MC-SVR and Hard MC-SVR for multiple input dimensions

Input Va r ia b le s SVR Ha rd
M C-SVR

So f t
M C-SVR

Disp lace me nt , En gi ne Outp u t ,
Weigh t , Acce le r a t io n Time

0 .1 0 37 0 .0 9 30 0 .0 9 29

Disp lace me nt , Acce le r a t io n t i me 0 .1 2 90 0 .1 2 29 0 .1 2 28

Figure 6: Results on extrapolation capability of SVR,
Soft MC-SVR and Hard MC-SVR on Global
Warming dataset

Table 4: RMSE for Global Warming dataset

Function RMSE
𝑆𝑉𝑅 0.1193
𝑆𝑜𝑓𝑡 𝑀𝐶 − 𝑆𝑉𝑅 (𝑑𝑒𝑔𝑟𝑒𝑒 = 0.83) 0.0988
𝐻𝑎𝑟𝑑 𝑀𝐶 − 𝑆𝑉𝑅 (𝑑𝑒𝑔𝑟𝑒𝑒 = 1) 0.1101

Figure 5: Results of SVR, Soft MC-SVR and Hard
MC-SVR on Global Warming dataset

71

71

MC-SVR performs better than SVR (approximately
5% improvement).

The results show that MC-SVR leverages the
monotonicity information present in multiple input
dimensions. It can also be noticed that the difference
between MC-SVR and SVR seems to become more
significant as the dimensionality of the problem
increases.

5. Related Work
Monotonic function learning has been extensively
studied in literature for both classification as well as
regression problems. Classification of ordered classes
is often assumed to be monotonic with respect to
input features. Hence, incorporating monotonicity for
ordinal classification was investigated by many
researchers. Neural networks is one of the well-
studied algorithms in this direction. [14,15]
approached monotonicity in neural networks by
enforcing constraints on the weights and architecture
of the network. An additional error term called
monotonicity error, was implemented in neural
network to ensure monotonicity in [16]. Makino et.
al. [17] proposed classification trees with
monotonicity constraint for binary classification. This
was extended for multiclass decision trees in [2] as
quasi-monotone decision trees. An instance based
method for ordinal classification called ordinal
stochastic dominance learner was proposed in [18].
Decision rules and ensemble of decision rules were
also proposed for ordinal classification using
monotonicity constraint [19]. Apart from modifying
the classical learning algorithms, a method of altering
the training data such that they are consistent with
monotonicity definition was also proposed in [20].
Many real world applications were investigated using
ordinal classification. These include liver disorder
diagnosis [16], house pricing [2], internet content
filtering [21] and breast cancer diagnosis [22]. The
methods discussed above have been reported to
perform well for ordinal classification. However, they
cannot be directly extended to problems with
continuous variables.

In order to implement monotonic regression, a
smoothing method based on constraints was proposed
in [12]. The capability of smoothing method was
demonstrated on a few real world datasets such as
cars and onion. In [23], monotonic regression was
modelled using Gaussian process. Monotonicity was
incorporated by virtual training examples that are
generated from derivatives of actual data. This
method was shown to improve performance on a
synthetic dataset. Incorporating prior knowledge in
the form of equality and inequality constraints was
extensively discussed in [24,25], where linear
programming formulation was used for support vector
regression. Quadratic programming based learning
with monotonicity of sequential data was studied in
[26]. In this method, the input data are one
dimensional and are assumed to be in sequence and

cannot be used for multidimensional dataset. All the
methods discussed above assume perfect prior
domain knowledge about monotonicity. They also do
not support monotonicity across multiple input
dimensions. The solution proposed in this paper
addresses these short comings. It provides a way of
specifying partial a priori knowledge in the form of
degree of monotonicity. The solution can be applied to
multiple input dimensions where the monotonicity
constraints can be increasing or decreasing in each
individual dimension.

6. Conclusion
This paper addresses the problem of learning soft-
monotonic regression functions in the presence of
imperfect domain knowledge. A novel monotonicity
constraint based support vector regression has been
proposed. A new hardness parameter, 𝐷, is introduced
in order to configure the degree of monotonicity
required. The working of MC-SVR has been validated
using datasets obtained from linear and non-linear
synthetic functions. Our experiments on global
warming dataset show that MC-SVR with soft
constraint has better extrapolation capability than
standard SVR. The experiment on Cars dataset shows
the generalization capability of MC-SVR over
multiple input dimensions. The formulation presented
can also be extended to support soft convex
constraints [6] and soft positive constraint SVR [13].
Though the results seem encouraging, more
theoretical investigations are required to study its
generalization properties.

References
1 Chen, Chih-Chuan and Li, Sheng-Tun. Credit

Rating with a Monotonicity-Constrained Support
Vector Machine Model. Expert Syst. Appl., 41, 16
(2014), 7235-7247.

2 Potharst, Rob and Feelders, Adrianus Johannes.
Classification Trees for Problems with
Monotonicity Constraints. ACM SIGKDD
Explorations Newsletter, 4, 1 (2002), 1-10.

3 Brunk, H. D. Maximum Likelihood Estimates of
Monotone Parameters. Ann. Math. Statist., 26, 4
(1955), 607-616.

4 Barlow, R. E.and Bartholomew, D., Bremner, J.
M., and Brunk, H. D. Statistical Inference under
Order Restrictions; The Theory and Application of
Isotonic Regression. Wiley, New York, 1972.

5 Jan, de Leeuw, Mair, Patrick, and Hornik, Kurt.
Isotone Optimization in R: Pool-Adjacent-Violators
Algorithm (PAVA) and Active Set Methods. J stat
soft, 32, 5 (2009), 1-24.

6 Tibshirani, J., Ryan, Hoefling, Holger, and
Tibshirani, Robert. Nearly--Isotonic Regression.
Technometrics, 53, 1 (2011), 54-61.

72

72

7 Smola, Alex J and Sch. A Tutorial on Support
Vector Regression. Stat. comput., 14, 3 (2004),
199-222.

8 Vapnik, Vladimir Naumovich and Vapnik,
Vlamimir. Statistical Learning Theory. Wiley New
York, 1998.

9 Kendall, Maurice G. A New Measure of Rank
Correlation. Biometrika (1938), 81-93.

10 Vanderbai, Robert J. LOQO: an interior point code
for quadratic programming. Optimization Methods
and Software, 11, 1 (1999), 451-484.

11 Wu, Wei Biao, Woodroofe, Michael, and Mentz,
Graciela. Isotonic Regression: Another Look at the
Changepoint Problem. Biometrika, 88, 3 (2001),
793-804.

12 Mammen, E., Marron, J. S., Turlach, B. A., and
Wand, M. P. A General Projection Framework for
Constrained Smoothing. Statistical Science: a
Review Journal, 16, 3 (2001), 232-248.

13 Ichiro, Takeuchi, Quoc, V. Le, Timothy, D. Sears,
and Alexander, J. Smola. Nonparametric Quantile
Estimation. JMLR, 1231-1264.

14 Wang, S. Neural Network Techniques for
Monotonic Nonlinear Models. Computers & OR,
21 (1994), 143-154.

15 Daniels, H. and Kamp, B. Application of MLP
Networks to Bond Rating and House Pricing.
Neural Comput. Appl., 8 (1999), 226-234.

16 Sill, Joseph and Abu-Mostafa, Yaser S.
Monotonicity Hints. Adv. Neural Inf. Process. Syst.
(1997), 634-640.

17 K. Makino, T. Suda, H. Ono and Ibaraki, T. Data
Analysis by Positive Decision Trees. IEICE
Transations on Information and Systems, E82-D
(1999), 76-88.

18 Cao-Van, Kim and De Baets, Bernard. Growing
decision trees in an ordinal setting. Int. J..Intell.
Syst., 18, 7 (2003), 733-750.

19 Dembczy, Kot, and S. Ensemble of Decision Rules
for Ordinal Classification with Monotonicity
Constraints. In Rough Sets and Knowledge
Technology. Springer, 2008.

20 Horv, Eckhardt, Alan, Buza, Kriszti, Vojtas, P, and
Schmidt-Thieme, Lars. Value-Transformation for
Monotone Prediction by Approximating Fuzzy
Membership Functions. In IEEE CINTI 2011 (
2011), 367-372.

21 Jacob, Varghese S, Krishnan, Ramayya, and Ryu,
Young U. Internet Content Filtering using Isotonic
Separation on Content Category Ratings. ACM
TOIT, 7, 1 (2007), 1.

22 Ryu, Young U, Chandrasekaran, Ramaswamy, and
Jacob, Varghese S. Breast Cancer Prediction using
the Isotonic Separation Technique. Eur. J. Oper.
Res., 181, 2 (2007), 842-854.

23 Riihim and Vehtari, Aki. Gaussian Processes with
Monotonicity Information. In International

Conference on Artificial Intelligence and Statistics
(2010), 645-652.

24 Fabien, Lauer and Gerard, Bloch. Incorporating
Prior Knowledge in Support Vector Regression.
Mach. Learn., 70, 1 (2008), 89-118.

25 Olvi, L. Mangasarian, Jude, W. Shavlik, and
Edward, W. Wild. Knowledge--Based Kernel
Approximation. JMLR, 5 (2004), 1127-1141.

26 Gamarnik, David. Efficient Learning of Monotone
Concepts via Quadratic Optimization. Proceedings
of the Eleventh Annual Conference on
Computational Learning Theory (1998.), 134-143.

73

73

UCliDSS : An Unsupervised Clinical Decision Support

System for Text

(Demo Paper)

Tahir Dar

International Institute of

Information Technology

Bangalore, 560100

Karnataka, India

tahir.dar@iiitb.org

Sumant Kulkarni

International Institute of

Information Technology

Bangalore, 560100

Karnataka, India

sumant.k@iiitb.org

Srinath Srinivasa

International Institute of

Information Technology

Bangalore, 560100

Karnataka, India

sri@iiitb.ac.in

Ullas Nambiar

EMC Corporation

Bangalore, 560048

Karnataka, India

Ullas.Nambiar@emc.com

ABSTRACT
We present our tool UCliDSS, an Unsupervised Clinical De-
cision Support System for textual data. UCliDSS is aimed
at building a retrieval engine to retrieve documents from a
bio-medical data-set to provide decision support for medi-
cal professionals. In this work, we use a term co-occurrence
graph (TCG) based approach augmented with Solr to build
the document retrieval engine (UCliDSS). The TCG is built
from the documents of a given bio-medical data-set and is
used for query expansion using a variant of random walk
algorithm. The expanded query is given to Solr as input to
retrieve relevant documents.
Keywords : Unsupervised Clinical Decision Support, Bio-
medical document retrieval, Information retrieval

1. INTRODUCTION
Medical professionals (predominantly doctors) usually look

for decision support systems to help them in di↵erent task
of their daily routine like diagnosis, treatment, prescription
of relevant tests and prescription of relevant e↵ective medi-
cation. There can be di↵erent types of text documents like
earlier diagnosis reports, discharge summaries, conference
and journal papers which help the physician and specialist
doctors make decisions about the case at hand. However,
due to the sheer number of these documents, it has become
almost impossible for a medical professional to manually
search the relevant documents for a given problem. It be-
comes even more di�cult problem to filter the document
based on the aspects like diagnosis, treatment, test and so

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 21st International Conference on Management of Data.
COMAD, March 11-13, 2016, Pune.
Copyright 2016 Computer Society of India (CSI).

on. This puts forth an immediate need for building a infor-
mation retrieval system for medical data. UCliDSS is such
a system developed to serve the purpose of clinical decision
support.

The motive of UCliDSS is to retrieve relevant medical
documents from a large dataset, which help in answering
generic clinical questions about medical conditions of pa-
tients. UCliDSS also filters the retrieved medical documents
according to particular aspect (such as diagnosis, treatment,
symptoms). We assume that UCliDSS works on a large cor-
pus of medical text documents that contains information re-
lated to various medical and clinical cases. The input query
to UCliDSS is a medical text scenario about the case in
hand. The input query may narrate medical condition of a
patients, may describe the symptoms. Additionally, it also
mentions the aspect at which the user is interested. The
medical documents to be retrieved from the corpus should
be relevant to the input query in that aspect of the case.

For the information needs of physicians, the input queries
can be put according to the many common generic clini-
cal questions type. Some input query types are as in Ta-
ble 1. The type determines the kind of question we would
ask about the given case at hand.

Table 1: Some types of input queries.

Type Generic Clinical Question

Symptoms Symptoms of the disease ?
Diagnosis Diagnosis of a disease ?
Prescription Medicines prescribed to a disease ?

The input query is expected to be free text. It may con-
sists of a current case report, summary investigation, or his-
tory of patients condition. It’s type (aspect) is one of the
generic clinical question (like mentioned in table 1). We ex-
pect the relevant text documents retrieved from the corpus.

In this work, we describe our approach in section 3. The
section 4 describes the tool UCliDSS. Further, in section 5,
we discuss an use case of the tool, where we participated in

74

74

a clinical data challenge using UCliDSS. Finally the future
scope of work for UCliDSS is discussed in section 6.

2. RELATED WORK
There have been multiple approaches to information re-

trieval in medical domain. The most predominate ones are
listed below for the sake of completeness. Collen and Fla-
gle [1] proposed a primitive command line based medical in-
formation system which is based on a comprehensive database.
However, the most predominant systems appeared post 2000.
Mao and Chu [7] used phrase based vector space model to in-
dex and retrieve the medical documents. This problem suf-
fers with the same issue of scale and issues with dimension-
ality reduction. Liu and Chu [6] proposed a medical IR sys-
tem which used domain knowledge based query expansion.
Even though it looked similar to our approach, they used
human constructed thesaurus. It is a tedious task to build
such domain knowledge and thesaurus. Zuccon et.al [12]
came up with approach which exploited medical hierarchies
for information retrieval. However, this approach relies on
subsumption hierarchies which are very di�cult to build.
Holzinger et.al [2] presented a survey on the biomedical text
mining approaches.

Even though our approach also requires background knowl-
edge for medical information retrieval, the process of build-
ing the background knowledge is completely unsupervised.
Our approach depends on the co-occurrence graph based
text mining approaches [9, 5, 3, 8, 4].

3. THE METHOD
All the nouns are extracted from the given biomedical text

document and a term co-occurrence graph (TCG) is built
from these terms. The term co-occurrence graph represents
the knowledge of the system. The TCG is treated as the
background knowledge of the systems and is used for query
expansion of the input query.

The text in the biomedical documents is used to create
the term co-occurrence graph. We extract nouns from each
text document using statistical noun phrase extraction tech-
niques. For each paragraph having k unique nouns, we cre-
ate a clique of size k with the nouns as nodes and the edge
weight being one. These cliques are merged with each other
to create a single large TCG. The detailed explanation of
the TCG creation are in [9, 5]. We then convert it into a
generatability graph (as discussed in [9, 5]).

We use the TCG for query expansion of the input query.
Here, we expand the terms in the given input query to get
more relevant terms. From the text of the input query, the
nouns are extracted which are called input query terms. To
incorporate the aspect (like diagnosis, test, symptoms) of
the input query, we treat the term representing the type

also as a part of the input query terms.
For each of the input query term we get their degree in

TCG. We assume that a term with more neighbors is a com-
mon term and hence has lesser importance. Hence we calcu-
lated the importance score for term t as I(t) as the inverse
of the number of neighbours of t. The TCG is queried for
the semantic context of closure (SCC) of the given input

query term. The SCC of a terms on TCG returns the in-
duced sub-graph of all the first hop neighbors of the given
set of input terms. We run a variant of random walk algo-
rithm [10] on SCC. The random walk algorithm is explained

in algorithm 1. This algorithm, on stationary distribution,
leaves each node in SCC with some amount of cash. Once
we finish running the random-walk for all the terms in in-

put query terms, we add the cash for each unique term and
choose the top 20% nodes with most cash sum as the query
expansion. We assume that top twenty percent of the terms
represent eighty percent of the content importance. This
selection of smaller number of query terms also helps in re-
ducing noisy, unwanted query terms. To make sure that the
keywords in the aspect are not missed out due to lesser cash
sum, we append all the nouns extracted from the aspect to
this list of top 20% terms. We call these terms as expanded

query set.

Data: Generatability graph Gl, seed terms t, its
importance score s, a bound on the maximum
cash di↵erence between two consecutive
iterations in the random walk max cash dif

Result: Cash history H of all the terms in Gl

for all nodes i 2 Gl do

H[i] � 0; c[i] � 0;
end

c[t] � s;
while there exists a term m for which

abs(P [m]�H[m]) � max cash dif do

historysum � 0;
P � H;
for each node i picked at random from Gl do

H[i] � H[i] + c[i];
for each node j in N (i) and Gl do

c[j] � c[j] + (�i!j ⇥ c[i]);
end

historysum � historysum+H[i];
c[i] � 0;

end

for each node i in Gl do

H[i] � H[i]
historysum

;

end

end

// Stationary distribution reached

return H;
Algorithm 1: The Random walk algorithm runs random
walk starting from the given node t with seed cash s on the
given graph and produces the cash history H as the output.

To retrieve files from the dataset using the terms retrieved
from term co-occurrence graph after query expansion, the
approach is augmented with Solr a search engine1. Here,
the given text corpus is parsed and indexed into Solr. The
expanded query is given to Solr and relevant documents are
retrieved. The topmost documents are found to be more
relevant to the input query terms.

4. THE TOOL
UCliDSS is developed in ruby language and is a desk-

top application. The tool contains a parser which can ex-
tract text from html, xml or single column pdf file. The
terms(nouns) are extracted from the unstructured text doc-
uments using an algorithm which has extended features from
the rb-brill-tagger

2. UCliDSS is integrated with Solr as dis-
1http://lucene.apache.org/solr
2https://github.com/taf2/rb-brill-tagger.git

75

75

cussed in section 3.
The term co-occurrence graph is stored in Agama a graph

database3 where each term is a node and each directed edge
has a weight of generatability of the target term from source
term.

We have a command line interface where we can perform
basic operations. The co-occurrence graph can be created
from a given corpus as below.

$uclidss --tcg <folder-having-documents>

UCliDSS also takes the input query and the aspect to re-
trieve the set of relevant documents.

$uclidss --query <query> --aspect <aspect>

5. TREC CLINICAL DATA CHALLENGE
WITH UCLIDSS

We found that this framework was suitable to be applied
on TREC Clinical Decision Support Track (Trec-cds-2015
challenge4). Here the task was to retrieve documents which
can aid the medical experts in their daily routine tasks.

The dataset in Trec-cds contained seven lakh thirty three
thousand documents (journal articles) in nxml format. Each
document(journal article) describes a medical outcome. Many
of these articles are relevant to the medical experts in cer-
tain aspects like diagnosis, test prescription and treatment.
The task was to retrieve the most relevant of these journal
articles for a given input query (with aspect).

There were thirty input queries in an xml file. Each input
query (also known as topic) in Trec-cds challenge is of one
of three types (aspects) – Diagnosis, Treatment and Test.

As the document corpus was huge, it was practically im-
possible to create a TCG of all the journal articles. We how-
ever assumed that a TCG created using a significant number
of randomly sampled journal articles would be a good repre-
sentative of the complete corpus. We choose around 13000
random documents and generated the term co-occurrence
graph from it. This was the background knowledge for the
UCliDSS.

UCliDSS is augmented with Solr for retrieving the journal
articles. All journal articles were parsed and indexed into
Solr a search engine. Solr is used after performing query
expansion using random walk algorithm.

The experiments of UCliDSS were based on several fac-
tors so that we can retrieve and compare between multiple
results. The experiments were done on an i7 4th generation
intel machine with 30 gb ram. The execution time to get re-
sults for given 30 input queries (topics) was some 1.5 hours.
The following experiments were performed.

1. The Topic as shown below consists of topic Number,
type, description and summary.

<topic number="12" type="test">
<description>
A 44-year-old man was recently in an

automobile accident where he sustained

a skull fracture. In the emergency room,

he noted clear fluid dripping from his

nose. The following day he started

3https://github.com/arrac/agama.git
4http://www.trec-cds.org/2015.html

complaining of severe headache and fever.

Nuchal rigidity was found on physical

examination.

</description>
<summary>
A 44-year-old man complains of severe

headache and fever. Nuchal rigidity was

found on physical examination.

</summary>
</topic>

In the first experiment textual information in both
“description” and “summary” and extracted input query
terms from the same and also appended the type of
the topic . The sementic context of closure (SCC) for
the input query terms was itself a large induced sub
graph and it was heavy in terms of execution time.
Hence, we decided to choose only certain percentage C
of neighboring nodes with higher generatability (from
the given input query term) to build the SCC. Even
though there was no rational way of identifying what
would be the right percentage of nodes C to generate
SCC, we experimented with three values for C, 1%,
5% and 10%. Through the manual evaluation we re-
alized that results with C = 5% and C = 10% were
almost the same and were better than the results of
C = 1%. Hence, we chose C = 5% as the cuto↵ to
generate SCC.

2. In the second experiment we extracted terms only from
“description” only (and not the “summary”) and per-
formed the similar retrieval of documents as explained
in the first experiment. We chose C = 1%, C = 5%
and C = 10% to genrate the sementic context of clo-
sures (SSC). Once again we found out that C = 5%
was better due to its better quality of results even with
lower number of nodes in SCC.

3. In third experiment the similar experiment as second
was repeated extracted terms only from “summary”
only (and not the “description”) with value C = 5%.

4. The above was the task A of the Trec-CDS 2015. For,
Task B we were given an extra field called diagnosis.
It looked like,

<diagnosis>Bacterial Meningitis</diagnosis>

Here, In Fourth experiment in addition to the sum-
mary filed, we also appended the data in the diagnosis
filed and then preformed the query expansion. The
rest of the execution remained the same.

To perform the following experiments, we had to write a
small wrapper which understood the di↵erent fields in the
test cases given. The results of the experiment 3 and 4
were submitted for the competition. The results have been
evaluated by medical experts.

5.1 Results of TREC-CDS Challenge
The evaluation results of TREC-CDS is done based on

the paper [11] which describes two methods of large scale re-
trieval evaluation, infAP(inferred Average Precision) and in-
fAPNDCG(inferred Average Precision Normalised Discounted
Cumulative Gain). In addition for our results R-Precision

76

76

Table 2: tab: Evaluation Results of Trec-cds

Experiment
Number

Input Query Mean infAP Mean
infNDCG

Mean R-
precision

Mean Precision@10

1 Summary + De-
scription

0.0402 0.1929 0.1592 0.3000

2 Description 0.0322 0.1772 0.1445 0.2733
3 Summary 0.0277 0.1534 0.1169 0.2500
4 Summary with di-

agnosis
0.0450 0.2145 0.1577 0.3233

and Precision@10 is also calculated which are known mea-
sures of information retrieval evalvation. The table 2 shows
the measures calculated for our results on TREC-CDS data
and input queries. All the above measures for the infor-
mation retrieval are based on a ranked relevancy file which
contains ranked relevant document ids for each input query.
The relavancy file for TREC-CDS data has been provided
by NIST. Based on the relavancy file the measures in table
2 have been calculated.

6. FUTURE WORK
The future work is to develop an optimized algorithm

in terms of execution time to create a term co-occurrence
of all the documents in a large corpora. The document-
id of the document will be made to co-occur with all the
terms/concepts of the document in the co-occurrence graph.
The cash leaking random walk on the induced sub-graph of
the neighbours of the input terms will be applied. Once
the stationary distribution is achieved, system will identify
the journal-ids which have accumulated the most cash his-
tory and declares them as the relevant documents for input
query. Thus the role of Solr a search engine will be reduced.
We also intend to implement a distributed version of the
algorithm.

7. REFERENCES
[1] M. F. Collen and C. D. Flagle. Full-text medical

literature retrieval by computer: a pilot test. JAMA,
254(19):2768–2774, 1985.

[2] A. Holzinger, J. Schantl, M. Schroettner, C. Seifert,
and K. Verspoor. Biomedical text mining:
State-of-the-art, open problems and future challenges.
In Interactive Knowledge Discovery and Data Mining

in Biomedical Informatics, pages 271–300. Springer,
2014.

[3] S. Kulkarni and S. Srinivasa. Sortinghat: a deep
matching framework to match labeled concepts. In
Proceedings of the 20th International Conference on

Management of Data, pages 134–137. Computer
Society of India, 2014.

[4] S. Kulkarni, S. Srinivasa, and R. Arora. Topic
expansion using a term co-occurrence graph. Technical
report.

[5] S. Kulkarni, S. Srinivasa, J. N. Khasnabish, K. Nagal,
and S. G. Kurdagi. Sortinghat: A framework for deep
matching between classes of entities. In Data

Engineering Workshops (ICDEW), 2014 IEEE 30th

International Conference on, pages 90–93. IEEE, 2014.
[6] Z. Liu and W. W. Chu. Knowledge-based query

expansion to support scenario-specific retrieval of

medical free text. Information Retrieval,
10(2):173–202, 2007.

[7] W. Mao and W. W. Chu. The phrase-based vector
space model for automatic retrieval of free-text
medical documents. Data & Knowledge Engineering,
61(1):76–92, 2007.

[8] A. R. Rachakonda, S. Srinivasa, S. Kulkarni, and
M. Srinivasan. Mining analytic semantics from
unstructured text. Technical report.

[9] A. R. Rachakonda, S. Srinivasa, S. Kulkarni, and
M. Srinivasan. A generic framework and methodology
for extracting semantics from co-occurrences. Data &

Knowledge Engineering, 2014.
[10] M. Yazdani and A. Popescu-Belis. A random walk

framework to compute textual semantic similarity: a
unified model for three benchmark tasks. In Semantic

Computing (ICSC), 2010 IEEE Fourth International

Conference on, pages 424–429. IEEE, 2010.
[11] E. Yilmaz, E. Kanoulas, and J. A. Aslam. A simple

and e�cient sampling method for estimating ap and
ndcg. In Proceedings of the 31st Annual International

ACM SIGIR Conference on Research and

Development in Information Retrieval, SIGIR ’08,
pages 603–610, New York, NY, USA, 2008. ACM.

[12] G. Zuccon, B. Koopman, A. Nguyen, D. Vickers, and
L. Butt. Exploiting medical hierarchies for
concept-based information retrieval. In Proceedings of

the Seventeenth Australasian Document Computing

Symposium, pages 111–114. ACM, 2012.

77

77

Towards a General Framework for Data-Driven City

Comparison and Ranking

Vishalaksh Aggarwal

IBM Research - India

vishalaksh@in.ibm.com

Biplav Srivastava

IBM Research - India

sbiplav@in.ibm.com

Srikanth Tamilselvam

IBM Research - India

srikanth.tamilselvam@in.ibm.com

ABSTRACT
Knowing about cities that one lives in or wants to visit is of much
interest to citizens, tourists, businesses, investors and governments.
Open government data provides us this opportunity since data about
various domains like crime, traffic and health are being made avail-
able by the government. In this paper, we present our approach of
using open data from multiple agencies and domains in comparing
and ranking cities in a developing country. The framework relies
on vocabulary based data normalisation to overcome data collec-
tion noise and easily scales with new domains.

Keywords: City Comparison, Inconsistent Data, Data Preparation,
Open Data, Clustering, Visualization
Category of Submission: Demonstration
Demo URL: http://city-explorer.mybluemix.net/
Demo Status: Prototype ready

1. INTRODUCTION
A valuable piece of information for citizens, tourists, businesses,

investors and governments is to know how good a city is in itself
and in comparison with others can be valuable. The traditional
way to know this is by surveys. However, such results have many
problems like limitations of sample size and possibility of survey
bias.

This is where open data can help. Open data is the practice by or-
ganizations and governments to make their data amenable to reuse.
For cities, governments around the world are making data available
about various domains like crime, accident and health[1].

A number of data-driven approaches for exploring cities are com-
ing up. The approach of Global City Indicators (GCI) [2] is to
define a set of indicators grouped around themes like governance,
people and safety. The indicators are expressed using terms from an
ontology[3] and its quantitative values are calculated to help com-
pare cities. City Data[4] is a new initiative where data is collected
from mutliple sources and then organized for rapid discovery. Un-
fortunately, it works only for US cities and technical details are not
public.

In this paper, we present the City Explorer app which generates

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 21st International Conference on Management of Data.
COMAD, March 11-13, 2016, Pune.
Copyright 2016 Computer Society of India (CSI).

insights about cities and their comparison using open data. What
sets it apart from other approaches is that it works directly with
noisy data prevalent in developing countries when multiple decen-
tralized agencies produce data. The city data comes from multiple
domains (like crime, accidents and health), is organized by districts
and spans multiple years. We uses data cleaning and vocabulary
based normalization to prepare grounds for city exploration across
domains and cities.

Our contributions are that we:

1. formalize characteristics of Indian open data, a first in litera-
ture.

2. demonstrate multi-dimensional exploration of city performance
based on open data across domains and time

3. perform vocabulary-based city data normalization across do-
mains

4. demonstrate unprecedented multi-dimensional comparison of
all cities where data allows.

5. provide a scalable framework which will work for more do-
mains and data from more countries

The rest of the paper is organized as follows: we begin with a
background and formalization of Indian open city data and then
present our solution approach. We then discuss the salient points
with examples and give pointers to future work.

2. DATA CHARACTERISTICS
India has over half a million villages and hundreds of towns and

cities. However, the recognized unit of territory is a district. The
full list of districts in India along with their standard names and
unique identifier can be computed from the official controlled vo-
cabulary [5]. (The vocabulary itself has list of states and list of
districts for each state). We will refer to it as D

⇤ and call it Nor-
malized District Names (NDN). Its size is 721 (i.e., | D⇤ |).

We use data about Indian districts from India’s open data por-
tal[6]. They correspond to the domains of crime[7], accidents[8]
and health services[9]. The data is about districts and each city can
have 1 or more districts. We use the terms city and district inter-
changeably.

2.1 A Formalization of Data Used
The input data is a set S of 3-dimensional vectors V s. Each

vector Vi represents data of a domain i. We use the domains of
crime (Vc), accidents (Va) and health (Vh). The dimensions (x,y,z)
of Vi represent districts, domain attributes and year, respectively.

A reported data for a domain Vi is (xj , yk, zl). Here, xj 2 D

Vi .
We will use DVi to refer to the set of districts in a Vi and call them

78

78

Domain | DVi | | AVi | | Y Vi |
Crime (Vc) 807 30 12
Accident (Va) 50 4 1
Health (Vh) 629 5 1

Table 1: Statistics about data used.

Data District Names (DDN). The data for the domains come from
different agencies and do not use the normalized district names. yk
refers to a domain attribute from the set of attributes AVi which can
vary from domain to domain. zl refers to a year. The datasets may
have different range of years and we use Y

Vi to refer to years in
Vi.

2.2 Data Challenges
The challenges with the data are:

1. Inconsistent naming of districts across all datasets. We found
that DVi * D

⇤, for Vc, Va and Vh, as one would have ex-
pected, indicating district names are not in the master list.

2. Inconsistent availability of data for different districts across
domains.

3. Inconsistent availability of data for years. Even in the same
domain, data for different districts need not be for the same
years.

4. Inconsistent labeling of missing data with NA, - or blanks.

We overcome the inconsistent naming problem by using a stan-
dard district name vocabulary[5]. Since the data came from multi-
ple sources, there were disparity in districts,state names like ’Kolkata’,
’Calcutta’ and ’New Delhi’, ’Delhi’ to name a few. To resolve
them across datasets, we used heuristics[10] to arrive at potential
matches which were then manually verified. If any of the follow-
ing happens, it is a potential match: (1) If a district’s name was
contained in another’s name, (2) the similarity in names between
two districts is above 0.4 as measured by cosine similarity, (3) The
rest were then manually verified to resolve disparity. To handle in-
consistent data availability, we restrict comparison to only the cases
where districts and years are common.To tackle inconsistent label-
ing of missing data, we simply assumed all the data which could
not be parsed into numbers as missing data.

3. SOLUTION APPROACH
Our solution is a two step process where in the first step input

data Vi is normalized and filtered based on D

⇤. This offline pro-
cess is then followed by the online process where selected districts
X

Vi for the years Y Vi are pair-wise compared and displayed. We
also demonstrate that when data exists, we can also do all-pair com-
parison to gain meaningful insights about cities in India.

The resulting City Explorer system is shown in Figure 1. It is
cloud-based and available online[11].

3.1 Data Preparation
In this offline process, the controlled vocabulary services[4] is

accessed by REST API to get the latest state information, namely
unique state code and state name. Currently it has information on
all 36 Indian states and union territories. It is available in both XML
and JSON format. For our solution, we rely on JSON format. It
also exposes APIs to get district and taluk (another administrative
terriotrial unit) level information for each of the state. Our exper-
iments are based upon state and district level information alone.

Domain | Vi | | V 0
i |

Crime (Vc) 8597 6843
Accident (Va) 50 40
Health (Vh) 637 539

Table 2: Statistics about data filtered based on district name
analysis.

District level information are merged with its state details and this
we refer to as Normalized District Names (NDD) D⇤.

Each district name j in Vi (in S) is matched with D

⇤. Table
3 shows result of exact match comparison while Table 4 shows
substring match. The second approach increased matching values
substantially, but had errors that needed human intervention. For
example, substring match equated ’PATNA’ city with ’VISAKHA-
PATNAM’ and ’ASANSOL DURGAPUR’ with ’DURG’ though
they are not the same in reality. Such errors accounted for roughly
1% of the districts. Each matched records were analyzed by two
annotators to remove such wrong matches. We also found synony-
mous places with different spellings like ’Bengaluru’, ’Bglr’, ’Ban-
galore’ which we did not include in our current matching. Only
districts matching D

Vi are retained for further processing while the
rest are discarded. Table 2 shows details of domain wise retained
data D

Vi . (Vh originally had many synonymous districts).

3.2 Pair-wise City Comparison
Comparing a pair of cities (districts) c1 and c2 means one wants

to compare two corresponding vectors v

i
1(c1, i, j) and v

i
2(c2, i, j)

for each domain i and year j. The notation can be suitably modified
if a city is being compared to its own performance in a domain but
in a different year.

For each of the city chosen for comparison, its relative ranking
for each of attributes A

Vi of vector Vi is computed for the same
year Y Vi . The left side of Figure 1 shows barometer ranking of
both the compared districts which represents relative ranking of the
selected districts with respect to other districts on the two extremes
for each of the attribute, in this case highest and lowest number
for attribute murder. The positioning on the linear scale is based
on the relative number of crimes. Likewise, the color coding is
also based on relative number of crimes. The district with lowest
number of crime is marked in green color (lowest rank), while the
one with highest is marked in red (highest rank) and the one with
the average of two numbers in yellow is positioned in the middle.
The number of crimes are shown below the name of the district.
The selected district is written below the scale while the extremes
are written above the scale. The Figure in brackets signifies its
relative rank out of the total number of districts in scope for that
year and domain. (A minor note is that if a category, like health
facilities, is of reverse semantics (where more is better), the signs
of values are reversed before processing.) In the right hand side of
Figure 1, the line series chart displays the distribution of an attribute
for the years Y Vi .

To get a composite view of the two cities across all attributes
in a domain, we calculate a dominance score between the cities as
defined below with �

i
t. The score is asymmetric and measures the

percentage of times a city dominates the other with ✏ accounting
for the cases where their ranks are the same. Figure 2 shows the
scores calculated for two cities in the system for each domain.

�

i
t(c1, c2) =

#(rank(c1) � rank(c2)) ⇤ 100
| AVi � ✏ | (1)

We now calculate the overall dominance score across all domains
as defined below with �t. For the experiments, wi was 1, thus

79

79

Figure 1: A City Explorer View.

DatasetNamel # Total Records # Matches # Non Matches
Crime 807 485 302
Accident 50 35 15
Health 629 396 133

Table 3: Exact matches between DDNs and NDNs

DatasetNamel # Total Records # Matches # Non Matches
Crime 807 621 186
Accident 50 40 10
Health 629 544 85

Table 4: Partial matches between DDNs and NDNs

weighing all attributes equally across all the domains.

�t(c1, c2) =

P
i wi.�

i
t(c1, c2)P
i wi

(2)

We now define the dominance relation �t between two cities for
year t iff:

(c1 �t c2) =

(
true, if �t(c1, c2) � 50%

false, otherwise

In Figure 2, Chandigarh �t Patna and conveys that Chandigarh
broadly dominates Patna across the considered categories and their
attributes.

3.3 Comparing All Cities
Once we can compare a pair of cities, we also try to compare

all cities for which data is available. A problem we faced was that
not all cities (districts) release data for all the domains. Hence,
the analysis was restricted to only 17 districts that the data was
available and only for 2012.

In Figure 3, dominance relationship for all districts are shown,
where the district had published data for all the domains under
consideration, i.e., crime, accident and health. Here, an edge from
district A to district B represents the dominance of A over B. We
notice that Indore dominates all cities (source node) and Dhanbad
is dominated by all (sink node). Hence, they correspond to the best
and worst cities based on available data. We are not aware of any
prior work giving this insight.

Figure 2: Comparing a pair of cities.

4. DISCUSSION AND FUTURE WORK
We presented a general data-driven approach of comparing cities

using open data in a developing country. The data mining contribu-
tions relate to:

1. Data preparation - handling missing data and district normal-
ization

2. Clustering - coming up with a general city comparison frame-
work across categories and attributes

3. Interactive visualization - that can handle missing data and
time

The data is noisy and non-uniform. As a result, the insights pre-
sented are preliminary and likely to improve / change with better
data publishing practices. Specifically, we note a data-based lim-
itation of the current results. The tier-1 cities in India are: Delhi,
Mumbai, Kolkatta, Chennai, Bangalore and Hyderabad. However,
none of them figure in the list of 17 cities for all-city comparison.
The reason is that an official mapping of cities to districts is not
available and we must create one manually.

The work can be extended in many ways: (a) We presently looked
at simple weighted aggregation function for comparing cities but
many others can be considered. (b) The controlled vocabulary for
India has information for only districts. One can extend it to cities
and villages, and then report results at these level of granularities.
(c) For India, one can build a map between cities and the districts
they contain to support drill-down, roll-up of comparisons and re-
sults. (d) One can normalize city data based on their population to

80

80

Figure 3: Dominance relationship among districts based on 2012 crime, accident and health data.

provide a more balanced comparison. (e) One can extend to data
from more countries [12].

Apart from the general methods developed, we addressed a few
UI challenges in building the online system. We believe they are
important for any useful system in this space.

1. Making the selectable input options intuitive: We had to fetch
a unique list of districts from dataset and arrange them alpha-
betically so that the user can easily locate the desired district
in the dropdown. Also, once the district was selected, we had
to first find out the list of years for which data was available
for the selected district from the dataset and display it in the
second dropdown.

2. Responsiveness to user selections: we have to continuously
watch for any new selection of district or year that user makes
from the dropdown so that the charts are re-rendered upon the
selection.

3. Make the visualizations responsive: The visualizations should
not overlap each other upon the change of size of the browser
window. Upon decrease of width, the 2nd visualization comes
below the 1st one so that both of them are still visible and the
user only has to scroll downwards.

5. CONCLUSION
In this paper, we presented a general approach for comparing

and ranking cities using open data. We took India as the case study
and considered data from different domains from multiple agencies
and domains. The framework is general-purpose and can give novel
insights about a city with respect to its past, relative to its peers and
as a whole group.

6. REFERENCES
[1] “Open data barometer report, second edition 2015,”

http://barometer.opendataresearch.org/, accessed 6 May
2015.

[2] GCI, “Global city indicators,” in At
http://www.cityindicators.org/Deliverables/ListAccessed 6
May 2015, 2015.

[3] M. Fox, “Foundation ontologies requirements for global city
indicators,” in The AAAI 2014 Workshop on Semantic Cities:
Beyond Open Data to Models, Standards and Reasoning,
Quebec City, Canada, 2014.

[4] “City data,” http://www.city-data.com/, accessed 6 May
2015.

[5] “Controlled vocabulary services,” http://vocab.nic.in,
accessed 6 May 2015.

[6] “Indian open data,” http://data.gov.in, accessed 6 May 2015.
[7] “District-wise crime under various sections of indian penal

code (ipc) crimes,” https://data.gov.in/catalog/district-wise-
crimes-under-various-sections-indian-penal-code-ipc-crimes,
accessed 6 May 2015.

[8] “Road accidents profile of selected cities — open
government data (ogd) platform india,”
https://data.gov.in/catalog/road-accidents-profile-selected-
cities, accessed 6 May
2015.

[9] “District-wise availability of health centres in india,”
https://data.gov.in/catalog/district-wise-availability-health-
centres-india, accessed 6 May
2015.

[10] A. Singhal, “Modern information retrieval: A brief
overview,” IEEE Data Eng. Bull., vol. 24, no. 4, pp. 35–43,
2001.

[11] “City explorer,” http://city-explorer.mybluemix.net/,
accessed 9 July 2015.

[12] “Us open data,” http://data.gov, accessed 6 May 2015.

81

81

COMAD 2016 Sponsors
In association with

Gold Sponsors

Facility Sponsors

	Introduction
	Related Work
	Skylines
	Range-Constrained Skylines
	Approximate Skylines
	Comparison with SkyCover

	The SkyCover Framework
	Range-Constrained Skylines
	Skyline Cover
	Problem Statement
	Grid Partitioning
	Choosing Grid Cell Representative
	Query Processing
	The SkyCover Algorithm
	Analysis of Running Time
	SkyCover using Uniform Grids
	Extensions of SkyCover

	Properties of SkyCover
	Correctness
	Falsely Reported Skylines
	Expected Number of Representative Points
	Uniform Grids
	Non-Uniform Grids

	Quality Metrics
	Covering Factor
	Metrics Based on Covering Factor

	Experimental Results
	Real Dataset
	Running Time
	Cardinality
	Quality

	Synthetic Datasets
	Effect of Number of Grid Partitions
	Effect of Error Parameter
	Effect of Dataset Cardinality
	Effect of Dimensionality
	Effect of Type of Data

	Summary of Experiments

	Conclusions and Future Work
	References

