
Soft Monotonic Constraint Support Vector Regression

Sapan Shah, Avadhut Sardeshmukh,

Shuaib Ahmed, Sreedhar Reddy

Tata Research Development and Design Center,

Tata Consultancy Services Limited,

Pune 411013

India

{sapan.hs, avadhut.sardeshmukh, s.ahmed2, sreedhar.reddy}@tcs.com

Abstract

This paper proposes a model for learning

soft-monotonic regression functions in the

presence of imperfect domain knowledge. It

proposes an extension to support vector

regression (SVR) wherein a new hardness

parameter is introduced to configure the

degree of monotonicity. The model supports

multiple monotonicity constraints over

multiple input dimensions simultaneously.

The proposed model has been validated on

synthetic datasets as well as on benchmark

datasets obtained from real world problems.

The results show that our model has better

extrapolation capabilities than SVR. The

results also demonstrate the ability of the

model to generalize over multiple input

dimensions.

1. Introduction

In machine learning, prior domain knowledge

improves the quality of the model learnt, especially

when data is scant or noisy. A common class of such

prior knowledge is monotonicity constraints. For

example, in credit rating, the chances of getting a loan

increase with income, provided other variables are

same [1]. The price of houses increases with better

characteristics of houses such as the number of rooms

[2]. It is reasonable to expect a machine learning

algorithm to capture such knowledge in the model

learnt, but that depends on the quantity and quality of

the data available. Data inadequacy is a common

problem in many domains. For instance, in materials

engineering, process-structure-property relations

play a key role in the design process. However, this

data is hard to come by. In such cases, incorporating

prior domain knowledge into a machine learning

algorithm can improve the quality of the model learnt.

For instance, in a carburization process, an increase

in carbon potential increases the hardness of the

material. This information can be leveraged by a

learning algorithm to improve the model for a heat-

treatment process.

Monotonic regression on a data set of 𝑛 1-

dimensional pairs {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑛 can be defined as

follows:

𝑓(𝑥) = argmin
𝑓

∑(𝑦𝑖 − 𝑓(𝑥𝑖))
2

𝑛

𝑖=1

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜
𝑥𝑖 ≽ 𝑥𝑗 ⇒ 𝑓(𝑥𝑖) ≥ 𝑓(𝑥𝑗);

∀𝑖, 𝑗; 1 ≤ 𝑖, 𝑗 ≤ 𝑛

 (1)

where 𝑓(𝑥𝑖) is the approximation of 𝑦𝑖; and ≽ is the

preorder relation that is reflexive and transitive on

input space X. Monotonically decreasing

approximation can be defined by replacing the

constraint as 𝑥𝑖 ≽ 𝑥𝑗 ⇒ 𝑓(𝑥𝑖) ≤ 𝑓(𝑥𝑗) in (1).

Several algorithms exist for solving the problem

defined in (1). One of the earliest algorithms is the

pool adjacent violator algorithm (PAVA), based on

which a lot of research has been reported [3]. These

are well summarized in [4,5]. However, these

methods are not applicable when the input space is 𝑑

dimensional i.e. X ⊆ ℝ𝑑, because they assume that the

input is a sequence i.e. 𝑥𝑖 < 𝑥𝑖+1, which cannot be

generalized to 𝑑 dimensions.

Also, domain knowledge is not always perfect. In

the credit rating example, the chances of getting a

loan may decrease with past record of defaulting

despite higher income. In house pricing example, a

flat with one room in a posh area may be costlier than

a house with three rooms in a rural area. To address

this, we use the notion of soft monotonic regression.

Soft monotonicity balances between the best fit

(𝑦 = 𝑓(𝑥)) and the monotonic fit (𝑦 = 𝑓(𝑥)). This

can be formally represented as,

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

International Conference on Management of Data

COMAD 2016, Pune, India, March 11-13, 2016
©Computer Society of India, 2016

𝑓(𝑥)𝜆 = argmin
𝑓

(

∑(𝑦𝑖 − 𝑓(𝑥𝑖))

2
𝑛

𝑖=1

+ 𝜆 ∗

∑∑𝒦(𝑥𝑖 , 𝑥𝑗 , 𝑓(𝑥𝑖), 𝑓(𝑥𝑗))

𝑛

𝑗=𝑖

𝑛

𝑖=1)

 (2)

𝑤ℎ𝑒𝑟𝑒 𝒦 (𝑥𝑖 , 𝑥𝑗 , 𝑓(𝑥𝑖), 𝑓(𝑥𝑗))

=

{

0

𝑖𝑓 𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐𝑎𝑙𝑙𝑦 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑎𝑛𝑑

{
𝑥𝑖 ≥ 𝑥𝑗 𝑎𝑛𝑑 𝑓(𝑥𝑖) ≥ 𝑓(𝑥𝑗) 𝑂𝑟

𝑥𝑗 ≥ 𝑥𝑖 𝑎𝑛𝑑 𝑓(𝑥𝑗) ≥ 𝑓(𝑥𝑖)

0

𝑖𝑓 𝑚𝑜𝑛𝑡𝑜𝑛𝑖𝑐𝑎𝑙𝑙𝑦 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑎𝑛𝑑

{
𝑥𝑖 ≥ 𝑥𝑗 𝑎𝑛𝑑 𝑓(𝑥𝑖) ≤ 𝑓(𝑥𝑗) 𝑂𝑟

𝑥𝑗 ≥ 𝑥𝑖 𝑎𝑛𝑑 𝑓(𝑥𝑗) ≤ 𝑓(𝑥𝑖)

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Here, 𝜆 is the penalty parameter which penalizes the

pair that violates the monotonicity constraint. Setting

𝜆 to 0 yields the best fit solution. As 𝜆 → ∞, the

solution approaches strictly monotonic for the

problem defined in (1). This kind of problem has

recently been addressed in [6] using a modified

version of PAVA. However, in line with the original

version, it too focuses on one dimensional input data

represented as a sequence.

In this paper, we propose a solution for soft

monotonic regression for multidimensional input i.e.

X ⊆ ℝ𝑑. More precisely, we propose an extension to

SVR called monotonic constraint support vector

regression (MC-SVR) and present its formulation.

The proposed method has been validated with

numerical experiments. The capability of MC-SVR to

impose different monotonic constraints (increasing,

decreasing, or none) at different input variables is

studied. The effect of softness of the constraint is

discussed. Results pertaining to the extrapolation

capability of MC-SVR, and generalization capability

over multiple input dimensions are also presented.

2. Monotonic Constraint Support Vector

Regression

Support vector regression (SVR) basically takes the

form [7,8]

 𝑓(x) = 〈w, x〉 + 𝑏

𝑤𝑖𝑡ℎ w, x ∈ ℝ𝑑 𝑎𝑛𝑑 𝑏 ∈ ℝ

(3)

where 〈. , . 〉 denotes the dot product. w is determined

by solving the following convex optimization

problem,

min
𝑤,𝑏,𝜉𝑖,𝜉𝑖̂

(
1

2
‖w‖2 + 𝐶∑(𝜉𝑖 + 𝜉𝑖̂)

𝑛

𝑖=1

)

𝑠𝑢𝑏. 𝑡𝑜 {

(〈w, x𝑖〉 + 𝑏) − 𝑦𝑖 ≤ 𝜖 + 𝜉𝑖 ; ∀𝑖

𝑦𝑖 − (〈w, x𝑖〉 + 𝑏) ≤ 𝜖 + 𝜉𝑖̂; ∀𝑖

𝜉𝑖 , 𝜉𝑖̂ ≥ 0; ∀𝑖

 (4)

where, 𝜉𝑖 , 𝜉𝑖̂ are slack variables for soft margin to

accommodate infeasible optimization that may arise

due to noisy input variables.

2.1 Monotonicity Constraints

To incorporate monotonicity in SVR, additional

constraints have to be formulated. The monotonicity

constraint proposed in this paper is based on the

following assumption,

𝑓(x + δx) + 𝜁 ≥ 𝑓(x); which simplifies to,

〈w, s〉 − 〈w, x〉 ≥ − 𝜁 𝑤ℎ𝑒𝑟𝑒 s = x + δx
 (5)

The above equation can be interpreted as: a

fraction of addition to the input should lead to a

solution that is either increasing or stays the same. It

should be noted that δ is a vector {𝛿}𝑖=1
𝑑 where each

component can be set differently for different input

dimensions. If 𝛿(𝑖) is positive, the function is

monotonically increasing in 𝑖𝑡ℎ dimension; if 𝛿(𝑖) is

negative, it is monotonically decreasing; and if 𝛿(𝑖) =
0, no monotonic constraint is imposed. Since the prior

domain knowledge is imperfect, some violation in the

constraint is allowed. Variable 𝜁 introduced in (5)

accounts for this violation. When 𝜁 is zero, the

function is strictly monotonic. The new variable s =
x + δx ensures that the function 𝑓 is monotonic

around x. s is computed once for entire input data x.
It should be noted that we only need to compute the

value of s and not 𝑓(𝑠).

2 .2 Incorporating mo no to nic i ty co nstra int s

in SVR

The variable 𝜁 in (5) can be incorporated in MC-SVR

similar to the slack variables 𝜉𝑖 in standard SVR

optimization as given in (4). Considering the above

formulation of constraint to implement the MC-SVR,

the optimization problem of SVR given in (4)

becomes,

min
𝑤,𝑏,𝜉𝑖,𝜉𝑖̂,𝜁𝑖

1

2
‖w‖2 + 𝐶∑(𝜉𝑖 + 𝜉𝑖̂)

𝑛

𝑖=1

+ 𝐷∑𝜁𝑖

𝑛

𝑖=1

𝑠𝑢𝑏. 𝑡𝑜
(〈w, x𝑖〉 + 𝑏) − 𝑦𝑖 ≤ 𝜖 + 𝜉𝑖 , ∀𝑖;

𝑦𝑖 − (〈w, x𝑖〉 + 𝑏) ≤ 𝜖 + 𝜉𝑖̂, ∀𝑖;
〈w, x𝑖〉 − 〈w, s𝑖〉

𝜉𝑖 , 𝜉𝑖̂, 𝜁𝑖

≤
≥

𝜁𝑖 , ∀𝑖: s𝑖 = x𝑖 + δx𝑖
0

 (6)

where 𝐷 is the hardness parameter. It represents the

amount of margin allowed to violate the monotonicity

constraint. When 𝐷 is large, the penalty for violating

the constraint is high. This results in a strict

monotonic solution. Conversely, when 𝐷 = 0,

monotonicity is not guaranteed.

The quadratic optimization problem in (6) can be

solved by the method of Lagrangian multipliers

similar to the standard SVR [7,8]. The primal

Lagrangian for (6) is as given in (7) below:

ℒ𝑝 =
1

2
‖w‖2 + 𝐶∑ (𝜉𝑖 + 𝜉𝑖̂)

𝑛

𝑖=1
+ 𝐷∑ 𝜁𝑖

𝑛

𝑖=1

 −∑ 𝛼𝑖(−(〈w, x𝑖〉 + 𝑏) + 𝑦𝑖 + 𝜖 + 𝜉𝑖)
𝑛

𝑖=1

 −∑ 𝛼𝑖̂ ((〈w, x𝑖〉 + 𝑏) − 𝑦𝑖 + 𝜖 + 𝜉𝑖̂)
𝑛

𝑖=1

 −∑ 𝛽𝑖(𝜁𝑖 − (〈w, x𝑖〉 − 〈w, s𝑖〉))
𝑛

𝑖=1

 −∑ 𝜇𝑖𝜉𝑖
𝑛

𝑖=1
−∑ 𝜇𝑖̂𝜉𝑖̂

𝑛

𝑖=1
−∑ 𝜆𝑖𝜁𝑖

𝑛

𝑖=1

 𝑠𝑢𝑏. 𝑡𝑜: 𝛼𝑖 , 𝛼𝑖̂, 𝛽𝑖 , 𝜇𝑖, 𝜇𝑖̂, 𝜆𝑖 ≥ 0

 (7)

Following the saddle point condition, the partial

derivatives of ℒ𝑝 with respect to primal variables

(w, b, 𝜉𝑖 , 𝜉𝑖̂, 𝜁𝑖) should vanish for optimality. The

partial derivatives are,

𝜕ℒ𝑝

𝜕𝑤
= 𝑤 −∑(𝛼𝑖̂ − 𝛼𝑖)𝑥𝑖

𝑛

𝑖=1

+∑𝛽𝑖(𝑥𝑖 − 𝑠𝑖)

𝑛

𝑖=1

= 0

𝜕ℒ𝑝

𝜕𝑏
=∑(𝛼𝑖̂ − 𝛼𝑖)

𝑛

𝑖=1

= 0

𝜕ℒ𝑝

𝜕𝜉𝑖
= 𝐶 − 𝛼𝑖 − 𝜇𝑖 = 0

𝜕ℒ𝑝

𝜕𝜉𝑖̂
= 𝐶 − 𝛼𝑖̂ − 𝜇𝑖̂ = 0

𝜕ℒ𝑝

𝜕𝜁𝑖
= 𝐷 − 𝛽𝑖 − 𝜆𝑖 = 0

 (8)

Substituting (8) in (7) yields the dual optimization

problem as follows.

ℒ𝐷 = max
𝛼,𝛼̂,𝛽

{

 −

1

2
∑∑(𝛼𝑖̂ − 𝛼𝑖)(𝛼𝑗̂ − 𝛼𝑗)〈x𝑖 , x𝑗〉

𝑛

𝑗=1

𝑛

𝑖=1

−
1

2
∑∑𝛽𝑖𝛽𝑗〈x𝑖 − s𝑖, x𝑗 − s𝑗〉

𝑛

𝑗=1

𝑛

𝑖=1

+
1

2
∑∑(𝛼𝑖̂ − 𝛼𝑖)𝛽𝑗〈x𝑖, x𝑗 − s𝑗〉

𝑛

𝑗=1

𝑛

𝑖=1

+
1

2
∑∑𝛽𝑖(𝛼𝑗̂ − 𝛼𝑗)〈x𝑖 − s𝑖 , x𝑗〉

𝑛

𝑗=1

𝑛

𝑖=1

+∑(𝛼𝑖̂ − 𝛼𝑖)𝑦𝑖

𝑛

𝑖=1

− 𝜖∑(𝛼𝑖̂ + 𝛼𝑖)

𝑛

𝑖=1

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:
∑(𝛼𝑖̂ − 𝛼𝑖)

𝑛

𝑖=1

= 0;

0 ≤ 𝛼𝑖̂, 𝛼𝑖 ≤ 𝐶 ∀𝑖;
0 ≤ 𝛽𝑖 ≤ 𝐷 ∀𝑖

 (9)

The problem in (9) is convex and hence, it forms a

standard quadratic optimization problem. This fact is

proved in theorem 1.

In order to represent the dual in standard quadratic

form, the dot products in (9) can be rewritten as,

𝑋𝑖𝑋𝑗 = 〈𝑥𝑖 , 𝑥𝑗〉; 𝑆𝑖𝑆𝑗 = 〈𝑠𝑖 , 𝑠𝑗〉

𝑋𝑖𝑆𝑗 = 〈𝑥𝑖 , 𝑠𝑗〉; 𝑆𝑖𝑋𝑗 = 〈𝑠𝑖 , 𝑥𝑗〉 = 𝑋𝑗𝑆𝑖
𝑇}∀𝑖, 𝑗 (10)

The quadratic term is no longer a 2𝑛 × 2𝑛 matrix as

in conventional linear ε-insensitive loss SVR.

Instead, it is a 3𝑛 × 3𝑛 matrix composed of variables

𝛼̂, 𝛼 𝑎𝑛𝑑 𝛽 as shown below,

min
𝛼,𝛼̂,𝛽

1

2
[𝛼̂ 𝛼 𝛽] 𝐻 [

𝛼̂
𝛼
𝛽
] + 𝐶𝑇 [

𝛼̂
𝛼
𝛽
]

𝑤ℎ𝑒𝑟𝑒,

𝐻 =

[

𝑋𝑋 −𝑋𝑋 −(𝑋𝑋 − 𝑋𝑆)

−𝑋𝑋 𝑋𝑋 (𝑋𝑋 − 𝑋𝑆)

−(𝑋𝑋 − 𝑋𝑆)𝑇 (𝑋𝑋 − 𝑋𝑆)𝑇
(𝑋𝑋 − 𝑆𝑆 −

(𝑋𝑆 + 𝑋𝑆𝑇))]

𝐶 = (𝜖 [
1
1
0
] − [

𝑦
−𝑦
0
])

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜,
[
−1
1
0
]

𝑇

[
𝛼̂
𝛼
𝛽
] ≤ 0;

0 ≤ 𝛼̂, 𝛼 ≤ 𝐶; 0 ≤ 𝛽 ≤ 𝐷;

 (11)

Theorem 1: The problem of MC-SVR defined in
(9) is convex.

Proof: For the problem in (9) to be convex, the
quadratic term should be necessarily positive
semi-definite. The quadratic term in ℒ𝐷 while
minimizing is,

1

2
∑ ∑ (𝛼𝑖̂ − 𝛼𝑖)(𝛼𝑗̂ − 𝛼𝑗)〈x𝑖 , x𝑗〉

𝑛

𝑗=1

𝑛

𝑖=1

 +
1

2
∑ ∑ 𝛽𝑖𝛽𝑗〈x𝑖 − s𝑖, x𝑗 − s𝑗〉

𝑛

𝑗=1

𝑛

𝑖=1

 −
1

2
∑ ∑ (𝛼𝑖̂ − 𝛼𝑖)𝛽𝑗〈x𝑖 , x𝑗 − s𝑗〉

𝑛

𝑗=1

𝑛

𝑖=1

 −
1

2
∑ ∑ 𝛽𝑖(𝛼𝑗̂ − 𝛼𝑗)〈x𝑖 − s𝑖 , x𝑗〉

𝑛

𝑗=1

𝑛

𝑖=1

=
1

2
⟨∑ (𝛼𝑖̂ − 𝛼𝑖)x𝑖

𝑖
−∑ 𝛽𝑖(x𝑖 − s𝑖)

𝑖
 ,

 ∑ (𝛼𝑗̂ − 𝛼𝑗)x𝑗
𝑗

−∑ 𝛽𝑗(x𝑗 − s𝑗)
𝑗

⟩

=
1

2
‖∑ (𝛼𝑖̂ − 𝛼𝑖)x𝑖

𝑖
−∑ 𝛽𝑗(x𝑗 − s𝑗)

𝑗
‖

2

≥ 0

Thus, the quadratic term is positive semi-
definite. Hence, (9) is convex.

In order to solve the MC-SVR problem, it is

important to find the parameters of interest i.e. w and

𝑏. Using the partial derivatives of the primal

Lagrangian, variable w can be written as,

w =∑ (𝛼𝑖̂ − 𝛼𝑖)x𝑖
𝑛

𝑖=1
−∑ 𝛽𝑖(x𝑖 − s𝑖)

𝑛

𝑖=1
 (12)

It is possible to describe w completely in terms of

training data x𝑖 (since, s𝑖 is derived from x𝑖) even for

MC-SVR. Substituting (12) in (3) yields,

𝑓(𝑥) =∑(𝛼𝑖̂ − 𝛼𝑖)〈𝑥𝑖 , 𝑥〉

𝑛

𝑖=1

 −∑𝛽𝑖(〈𝑥𝑖 , 𝑥〉 − 〈𝑠𝑖 , 𝑥〉)

𝑛

𝑖=1

− 𝑏

 (13)

The variable 𝑏 can be found following the Karush-

Kuhn-Tucker (KKT) conditions [8] which state that at

optimality, the product of dual variable and the

constraint should vanish. Thus, b can be identified as,

𝑏 =
1

𝑛
∑ (𝑦𝑖 − (∑ (𝛼𝑗̂ − 𝛼𝑗)〈x𝑗, x𝑖〉

𝑛

𝑗=1

𝑛

𝑖=1

−∑ 𝛽𝑗(〈x𝑗 , x𝑖〉
𝑛

𝑗=1

− 〈s𝑗, x𝑖〉)) − 𝜖)

(14)

It is important to note that in (9) to (14), instead of

dot product, a kernel expansion can also be applied,

which will lead to non-linear MC-SVR. Standard

kernels for SVR (such as, Linear, Polynomial,

Gaussian, and so on) can be effectively applied.

The hardness parameter, 𝐷, bounds the extra

variable 𝛽 in (9). Hence, when 𝐷 is sufficiently small,

then 𝛽 ≪ 𝛼, and there will not be any significant

effect of monotonicity constraint. Conversely when 𝐷

is sufficiently large, then 𝛽 ≫ 𝛼, and the effect of

monotonicity will be dominant. For the sake of

brevity, the MC-SVR formulation in (6) uses the same

parameter 𝐷 for all monotonicity constraints. Similarly,

it uses the same slack variable 𝜁𝑖 for all monotonicity

constraints. The formulation in (6) can be easily

extended to support separate 𝐷 and 𝜁𝑖 for each

monotonicity constraint. In this case, the parameter 𝐷

will be a vector. The components of 𝐷 will specify

hardness for each constraint. Similarly, there will be

a separate set of slack variables 𝜁𝑖
𝐶 for each

constraint.

2.3 Degree of Monotonicity

To assess the degree of monotonicity, we use Kendall

correlation metric [9]. Let (𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛 , 𝑦𝑛)
be a set of observations of variables 𝑋 and 𝑌 respectively.

Any pair of observations (𝑥𝑖 , 𝑦𝑖) and (𝑥𝑗 , 𝑦𝑗) are said to

be concordant if the ranks for both elements agree (i.e.

𝑥𝑖 > 𝑥𝑗 𝑎𝑛𝑑 𝑦𝑖 > 𝑦𝑗 𝑂𝑅 𝑥𝑖 < 𝑥𝑗 𝑎𝑛𝑑 𝑦𝑖 < 𝑦𝑗). They are

discordant if 𝑥𝑖 > 𝑥𝑗 𝑎𝑛𝑑 𝑦𝑖 < 𝑦𝑗 𝑂𝑅 𝑥𝑖 < 𝑥𝑗 𝑎𝑛𝑑 𝑦𝑖 >

𝑦𝑗. The Kendall correlation metric is then defined as,

𝐾𝑒𝑛𝑑𝑎𝑙𝑙(𝑋, 𝑌)

=
#𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠 − #𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠

1
2
𝑛(𝑛 − 1)

 (15)

If the target variable is a monotonically increasing

function of input then Kendall correlation is 1; while for

a monotonically decreasing function, it is -1.

We define degree of monotonicity as follows,

𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐𝑖𝑡𝑦(𝑋, 𝑌)

=
(𝐾𝑒𝑛𝑑𝑎𝑙𝑙(𝑋, 𝑌) ∗ 𝑠𝑖𝑔𝑛 + 1)

2
𝑤ℎ𝑒𝑟𝑒,

𝑠𝑖𝑔𝑛 =
1 ;

𝑌 𝑖𝑠 𝑎 𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐𝑎𝑙𝑙𝑦
𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑋

−1 ;
𝑌 𝑖𝑠 𝑎 𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐𝑎𝑙𝑙𝑦
𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑋

 (16)

This measure is in the range of 0 to 1 and it normalizes

Kendall correlation such that for a perfect monotonic

function (increasing or decreasing), it reaches the value

of 1. We define the degree of monotonicity of a model

with respect to a pair of variables as the degree of

monotonicity that would be expected to be observed

between the variables when data is generated randomly

from the model. It is related to the hardness parameter 𝐷

in the following sense:

𝐷1 > 𝐷2 => degree of monotonicity of a model learnt

with 𝐷1 is greater than the degree of monotonicity of a

model learnt with 𝐷2.

Thus we can increase or decrease the degree of

monotonicity of a model by increasing or decreasing 𝐷.

Degree of monotonicity is a more intuitive parameter

for a domain expert to specify. A value of 1 specifies that

the model is completely monotonic; a value of 0.8

specifies that 80% of the data is expected to be

monotonic, while 20% may be contrarian, and so on. It

is possible to convert degree of monotonicity into an

appropriate value of 𝐷 by writing a wrapper function that

internally searches for a value of 𝐷 that gives the desired

degree of monotonicity.

3. Experimental Results

We have carried out two sets of experiments to

validate MC-SVR: one set with synthetic models and

the other with real-life datasets.

3.1 Experiments with synthetic models

Our objective in using synthetic models is to study

how the MC-SVR behaves under various controlled

experimental conditions, such as dimensionality of

input data, degree of the true function, effect of noise

in data, etc.

These experiments use the following scheme:

A true model of a chosen degree and dimensionality

is constructed. Data is generated from this model. To

simulate the effect of noise in observed data, we add

random sinusoidal noise (with amplitude drawn from

Gaussian distribution) to the generated data. To study

the effect of degree of monotonicity, we add an

additional term to the true model to introduce regions

where monotonicity is violated. We then compare the

learnt models with the true model. The output of

MC-SVR for constraint violation region is analysed.

Softness in MC-SVR is controlled by the degree

parameter. The effect of softness on the learnt model

is also analysed.

In all experiments we first learn the SVR model

using a Gaussian kernel and optimize the hyper

parameters 𝛾 and 𝐶 using 10-fold cross validation. We

then use the same hyper parameters for MC-SVR and

set the monotonicity parameters (i.e. monotonicity

constraint and degree of monotonicity) as required.

Both SVR and MC-SVR are implemented in octave

3.8 using PR_LOQO [10] as the QP solver.

3.1.1 Comparison between SVR and hard MC-

SVR (degree of monotonicity =1)

In this experiment we choose a simple linear function

with one input. The true model and the data

generation model with noise term are as given in (17)

below,

True model: 𝑦 = x

Data model: 𝑦 = 𝑥 +𝒩(0.08,0.04) ∗ sin(25 ∗ 𝑥)
 (17)

The amplitude of the noise is drawn from a Gaussian

distribution with an arbitrary mean 0.08 and standard

deviation 0.04. We generated 200 data points in the range

0 to 1. Figure 1 shows the true model as well as the

observed data points. As mentioned in section 2.1, the

sign (δ(i) > 0 𝑜𝑟 δ(i) < 0) determines whether the

constraint is monotonically increasing or decreasing.

As the true function is monotonically increasing in x, we

set the monotonicity constraint as δ = {0.1}. This

corresponds to 10% of the normalized data range,

specifying that the monotonicity constraint should

hold with data points that are within this range of an

input data point.

An SVR with Gaussian kernel is optimized for

minimizing the root mean squared error (RMSE). The

best parameters found are 𝛾 = 2−4 𝑎𝑛𝑑 𝐶 = 10. MC-

SVR is learnt using the same hyper-parameters. As the

true model is monotonic in the full input range, we set

the degree of monotonicity to 1 (hard MC-SVR). The

results are shown in Figure 1. It can be observed from the

figure that MC-SVR learns a better fit to the true model

than SVR. The RMSE of MC-SVR and SVR are 0.0430

and 0.0545 respectively, showing that MC-SVR

performs significantly better than SVR (approximately

20% improvement).

Next we study the behaviour of hard MC-SVR for a

non-linear function. The true model in this case is a

simple quadratic function viz. 𝑦 = 𝑥2. Similar to the

linear case, the data generation model adds noise terms

with amplitude drawn from a Gaussian distribution (with

mean = 0.08 and standard deviation = 0.04). 200 data

points are generated in the range 0 to 1. Figure 2 shows

the true model and the observed data points. As the

function is monotonically increasing in x, the

monotonicity constraint is set as δ = {0.1}. An SVR

with Gaussian kernel is optimized to find the best

parameter setting (𝛾 = 2−3 𝑎𝑛𝑑 𝐶 = 10). MC-SVR is

learnt with the same hyper-parameters. The degree of

monotonicity is set to 1 as the true model is

monotonic in the full input range. Again, as can be

observed from Figure 2, MC-SVR learns a better

model compared to SVR. The RMSE of MC-SVR and

SVR are 0.0387 and 0.0523 (approximately 26%

improvement over SVR).

Figure 1: Comparison of SVR and Hard MC-SVR

(degree = 1) for 1 dimensional linear function

Figure 2: Comparison of SVR and Hard MC-SVR

(degree = 1) for 1 dimensional quadratic function

We have also studied the behaviour of hard MC-SVR

for multidimensional input. Similar to the one

dimensional case, we set up a two dimensional

experiment using an arbitrary linear function with two

inputs. The true model and the data generation model

with noise are as given in (18) below,

True model: 𝑧 = 0.7 ∗ 𝑥 − 0.5 ∗ 𝑦
Data model: 𝑧 = 0.7 ∗ 𝑥 − 0.5 ∗ 𝑦

 +𝒩(0.05,0.025) ∗ sin(25 ∗ 𝑥)

 + 𝒩(0.05,0.025) ∗ sin(25 ∗ 𝑦)

 (18)

The data model adds noise to both the input dimensions.

We choose 300 data points randomly from a set of 1156

generated data points (a two dimensional grid with

spacing 0.03) in the range 0 to 1. The true model in (18)

is monotonically increasing in x and decreasing in y.

Hence we set the constraint as δ = {0.1, −0.1}.
Similar to the one-dimensional case, an SVR with

Gaussian kernel is used to minimize the root mean

squared error. The best parameters found are 𝛾 =
2−2 𝑎𝑛𝑑 𝐶 = 32768. MC-SVR is learnt using the

same hyper-parameters. The degree of monotonicity

is set to 1 as the true model has perfect monotonic

behaviour in both dimensions (increasing in the first

and decreasing in the second). Once again, it has been

observed that MC-SVR produces a better fit to the

true model than SVR. MC-SVR achieves a significant

improvement in RMSE over SVR – from 0.0607 for SVR

to 0.0428 for MC-SVR, an improvement of around 30%.

This experiment shows that MC-SVR can learn different

monotonicity relations in different dimensions, and the

model incorporating these relations performs better than

SVR.

The experiments in this section suggests that the

difference between MC-SVR and SVR becomes more

significant as the complexity (degree or dimensionality)

of the problem increases.

3.1.2 Softness capability of MC-SVR

In order to evaluate the softness capability of MC-SVR,

we modify the true model of (17) by imposing

monotonically decreasing behaviour in input x for

approximately 10% of the data. If we think of this data

as coming from a real-life process, the monotonically

decreasing part represents exceptions to the generally

expected behaviour. We show that MC-SVR with an

appropriately defined degree of monotonicity (which can

be set by a domain expert) has the capacity to model this

behaviour and is capable of achieving better accuracy

than both SVR and hard MC-SVR.

The true model and the data generation model for this

experiment are as follows,

True model: 𝑦 = x − 0.4 ∗ 𝑒−(
𝑥−0.5
0.07

)
2

Data model: 𝑦 = x − 0.4 ∗ 𝑒
−(
𝑥−0.5
0.07

)
2

+𝒩(0.08,0.04) ∗ sin(25 ∗ 𝑥)

 (19)

The exponential term adds monotonically decreasing

behaviour around 0.5 to an otherwise monotonically

increasing true model. As before, the data model adds

noise to the data points before they are observed. We

generated 200 data points in the range 0 to 1. Figure 3

shows the true model as well as the observed data points.

This function is studied with monotonically increasing

constraint i.e. δ = {0.1}.
Again, an SVR with Gaussian kernel is optimized

(𝛾 = 2−4 𝑎𝑛𝑑 𝐶 = 10) for minimizing the root mean

squared error. MC-SVR is learnt using the same hyper-

parameters. The target variable in (19) is a monotonically

increasing function of input. However, approximately

10% data in the true model has opposite behaviour. To

account for this, we incorporate softness in MC-SVR by

specifying the degree of monotonicity as 0.9. We also

learn hard MC-SVR (i.e. degree of monotonicity = 1). As

observed from Figure 3, soft MC-SVR produces a better

fit compared to hard MC-SVR. This is due to the fact that

hard MC-SVR does not use the information that 10% of

data has opposite behaviour and builds a model that is

monotonic in the full input range. The model leant using

SVR captures this behaviour. However, it also learns the

noise present in the observed data. The model learnt

using soft MC-SVR provides a balance between SVR

and hard MC-SVR. Table 1 shows the RMSE values

obtained for these three models. Soft MC-SVR achieves

significantly better RMSE compared to both SVR and

hard MC-SVR.

Next we study the softness capability of MC-SVR on

a non-linear function. The true model and the data

generation model with noise are as given below,

Figure 3: Comparison of Soft MC-SVR with SVR and

Hard MC-SVR on linear soft monotonic function

Table 1: RMSE for synthetic 1-dimensional linear

data – monotonically increasing function with

opposite behavior in approximately 10% data

Function RMSE

𝑆𝑉𝑅 0.0522

𝑠𝑜𝑓𝑡 𝑀𝐶 − 𝑆𝑉𝑅 (𝑑𝑒𝑔𝑟𝑒𝑒 = 0.9) 0.0441

ℎ𝑎𝑟𝑑 𝑀𝐶 − 𝑆𝑉𝑅 (𝑑𝑒𝑔𝑟𝑒𝑒 = 1) 0.0595

True model: 𝑦 = x2 − 0.4 ∗ 𝑒
−(
𝑥2−0.4
0.1

)
2

Data model: 𝑦 = x2 − 0.4 ∗ 𝑒
−(
𝑥2−0.4
0.1

)
2

+𝒩(0.08,0.04) ∗ sin(30 ∗ 𝑥)

 (20)

The model adds contrarian behaviour around 0.4 to an

otherwise monotonically increasing function. 200 data

points are generated in the range 0 to 1. Figure 4 shows

the true model and the observed data points. As the

function is monotonically increasing in x for the most

part, the constraint is set as δ = {0.1}.
As before, an SVR with Gaussian kernel is

optimized to find the best parameter setting (𝛾 =
2−3 𝑎𝑛𝑑 𝐶 = 250). MC-SVR is also learnt with the

same hyper-parameters. The degree of monotonicity

is set to 0.9 for soft MC-SVR as approximately 10%

of data exhibits the opposite behaviour. Hard MC-

SVR is also learnt to compare the effect of softness.

Figure 4 shows the results. As can be seen, here also

soft MC-SVR produces a better fit than SVR and hard

MC-SVR. Table 2 reports the RMSE for the three

models. As expected, soft MC-SVR performs

significantly better than both SVR and hard MC-SVR.

We also studied the effect of softness on the learnt

models for multidimensional input. The true model and

the data generation model are as given below,

True model:

 z = 0.7 ∗ x − 0.5 ∗ y − 0.5 ∗ 𝑒−(
𝑥−0.5
0.09

)
2

Data Model:

 𝑧 = 0.7 ∗ 𝑥 − 0.5 ∗ 𝑦 − 0.5 ∗ 𝑒−(
𝑥−0.5
0.09

)
2

 +𝒩(0.05,0.025) ∗ sin(25 ∗ 𝑥)

 + 𝒩(0.05,0.025) ∗ sin(25 ∗ 𝑦)

 (21)

The model is the same as that used in (18), except that,

here, the true model has a monotonically decreasing

behaviour in x for approximately 10% of the data.

Here again, an SVR with Gaussian kernel is

optimized for minimizing root mean squared error (𝛾 =
2−3 𝑎𝑛𝑑 𝐶 = 10). The same hyper-parameters are

then used for MC-SVR. Since approximately 10% of

the data exhibits opposite behaviour, we set the

degree of monotonicity to 0.9. We also learn hard

MC-SVR (degree of monotonicity = 1). Once again,

as expected, soft MC-SVR produces a better fit to the

true model than SVR and hard MC-SVR. A

comparison of RMSE obtained with all these three

approaches is shown in Table 3. It can clearly be

observed that MC-SVR, with the additional knowledge

about degree of monotonicity (as opposed to just the

knowledge about monotonicity) outperforms both SVR

and hard MC-SVR.

We have also studied the effect of softness on

multidimensional non-linear functions using 𝑥2 − 𝑦2 as

the true model with 10% contrarian behaviour. Once

again soft MC-SVR performed significantly better than

both SVR and hard MC-SVR.

3.2 Experiments on Real world Datasets

3.2.1 Extrapolation capability of MC-SVR

In this section, global warming dataset has been

considered which is first studied in [11]. Recently,

Tibshirani et. al. developed a nearly monotonic

regression using modified PAVA for this dataset [6].

The dataset contains annual temperature anomalies

from 1856 to 1999, relative to the 1961-1990 mean. It

has 150 data points. It can be observed from Figure 5

that the actual data is monotonically increasing with

respect to year, with possible decrease around 1900.

An SVR with Gaussian kernel is optimized (𝛾 =
2−2 𝑎𝑛𝑑 𝐶 = 250) for minimizing the root mean

squared error. Figure 5 shows the models produced by

SVR, hard MC-SVR (degree of monotonicity = 1) and

soft MC-SVR (degree of monotonicity = 0.83). It can

be observed that SVR misses the monotonically

increasing characteristic and learns a model that has

decreasing behaviour at multiple places. On the other

hand, hard MC-SVR learns a model that is increasing

in the full input range. Soft MC-SVR produces a fit

Figure 4: Comparison of Soft MC-SVR with SVR and

Hard MC-SVR on quadratic soft monotonic function

Table 2: RMSE for synthetic 1-dimensional quadratic

data – monotonically increasing function with

opposite behavior in approximately 10% data

Function RMSE

𝑆𝑉𝑅 0.0535

𝑠𝑜𝑓𝑡 𝑀𝐶 − 𝑆𝑉𝑅 (𝑑𝑒𝑔𝑟𝑒𝑒 = 0.9) 0.0445

ℎ𝑎𝑟𝑑 𝑀𝐶 − 𝑆𝑉𝑅 (𝑑𝑒𝑔𝑟𝑒𝑒 = 1) 0.0543

Table 3: RMSE for synthetic 2-dimensional data –

monotonically increasing function with opposite

behavior in approximately 10% data

Function RMSE

𝑆𝑉𝑅 0.1746

𝑠𝑜𝑓𝑡 𝑀𝐶 − 𝑆𝑉𝑅 (𝑑𝑒𝑔𝑟𝑒𝑒 = 0.9) 0.0486

ℎ𝑎𝑟𝑑 𝑀𝐶 − 𝑆𝑉𝑅 (𝑑𝑒𝑔𝑟𝑒𝑒 = 1) 0.0810

that captures the decreasing behaviour around year

1900 but is monotonically increasing otherwise.

In order to study the extrapolation capability of

MC-SVR, the dataset is partitioned into 10 equally

spaced bins. At a time, 9 bins have been used for

training and the remaining for evaluation. This

process has been continued for all the 10 bins. It has

been observed that soft MC-SVR has produced a

significantly better RMSE than standard SVR and full

monotonic approximation as given in Table 4.

Considering that the RMSE is reported on normalized

data, soft MC-SVR improves SVR and hard MC-SVR

by 17% and 10% respectively. The results are also

portrayed in Figure 6. It can be observed that the

extrapolation at the beginning as well as at the end is

better for soft MC-SVR than for SVR and hard

MC-SVR. Similar results have been observed by

changing the number of bins to 5 and 20.

3.2.2 Generalization capability of MC-SVR over

multiple input dimensions

In order to study monotonicity for multidimensional

input, Cars dataset has been considered. This dataset

has been studied in [12,13]. It contains 4 input

attributes of cars viz. displacement, engine output in

horsepower, weight and time to accelerate from 0 to

60 mph (acceleration time); the output is the

prediction of fuel efficiency in miles per gallon. The

first 3 input attributes have monotonically decreasing

relation with the output attribute while the last

attribute, acceleration time, has monotonically

increasing relation. The dataset contains 392

instances.

The quantitative performance on RMSE has been

assessed by performing 10-fold cross validation on

normalized data. The constraint has been set as

monotonically decreasing for displacement, engine

output and weight while monotonically increasing for

acceleration time. Grid search is performed to find

the hyper- parameters (𝛾 𝑎𝑛𝑑 𝐶) that minimize root

mean squared error for SVR. The same hyper-

parameters are then used for MC-SVR. The degree of

monotonicity is varied to incorporate softness in MC-

SVR.

Table 5 reports RMSE for various experiments.

The first experiment uses all four input attributes and

accordingly the constraint is set as 𝛿 = { −0.1, −0.1,
−0.1, 0.1}. As can be noticed from Table 5, MC-SVR

(soft as well as hard constraints) gives better results

than SVR (approximately 10% improvement). The

second experiment uses a 2-dimensional input –

displacement and acceleration time. Once again,

Table 5: Cars dataset: RMSE for SVR and Soft MC-SVR and Hard MC-SVR for multiple input dimensions

Input Va r ia b le s SVR Ha rd

M C-SVR

So f t

M C-SVR

Disp lace me nt , En gi ne Outp u t ,

We igh t , Acce le r a t io n Time

0 .1 0 37 0 .0 9 30 0 .0 9 29

Disp lace me nt , Acce le r a t io n t i me 0 .1 2 90 0 .1 2 29 0 .1 2 28

Figure 6: Results on extrapolation capability of SVR,

Soft MC-SVR and Hard MC-SVR on Global

Warming dataset

Table 4: RMSE for Global Warming dataset

Function RMSE

𝑆𝑉𝑅 0.1193

𝑆𝑜𝑓𝑡 𝑀𝐶 − 𝑆𝑉𝑅 (𝑑𝑒𝑔𝑟𝑒𝑒 = 0.83) 0.0988

𝐻𝑎𝑟𝑑 𝑀𝐶 − 𝑆𝑉𝑅 (𝑑𝑒𝑔𝑟𝑒𝑒 = 1) 0.1101

Figure 5: Results of SVR, Soft MC-SVR and Hard

MC-SVR on Global Warming dataset

MC-SVR performs better than SVR (approximately

5% improvement).

The results show that MC-SVR leverages the

monotonicity information present in multiple input

dimensions. It can also be noticed that the difference

between MC-SVR and SVR seems to become more

significant as the dimensionality of the problem

increases.

5. Related Work

Monotonic function learning has been extensively

studied in literature for both classification as well as

regression problems. Classification of ordered classes

is often assumed to be monotonic with respect to

input features. Hence, incorporating monotonicity for

ordinal classification was investigated by many

researchers. Neural networks is one of the well-

studied algorithms in this direction. [14,15]

approached monotonicity in neural networks by

enforcing constraints on the weights and architecture

of the network. An additional error term called

monotonicity error, was implemented in neural

network to ensure monotonicity in [16]. Makino et.

al. [17] proposed classification trees with

monotonicity constraint for binary classification. This

was extended for multiclass decision trees in [2] as

quasi-monotone decision trees. An instance based

method for ordinal classification called ordinal

stochastic dominance learner was proposed in [18].

Decision rules and ensemble of decision rules were

also proposed for ordinal classification using

monotonicity constraint [19]. Apart from modifying

the classical learning algorithms, a method of altering

the training data such that they are consistent with

monotonicity definition was also proposed in [20].

Many real world applications were investigated using

ordinal classification. These include liver disorder

diagnosis [16], house pricing [2], internet content

filtering [21] and breast cancer diagnosis [22]. The

methods discussed above have been reported to

perform well for ordinal classification. However, they

cannot be directly extended to problems with

continuous variables.

In order to implement monotonic regression, a

smoothing method based on constraints was proposed

in [12]. The capability of smoothing method was

demonstrated on a few real world datasets such as

cars and onion. In [23], monotonic regression was

modelled using Gaussian process. Monotonicity was

incorporated by virtual training examples that are

generated from derivatives of actual data. This

method was shown to improve performance on a

synthetic dataset. Incorporating prior knowledge in

the form of equality and inequality constraints was

extensively discussed in [24,25], where linear

programming formulation was used for support vector

regression. Quadratic programming based learning

with monotonicity of sequential data was studied in

[26]. In this method, the input data are one

dimensional and are assumed to be in sequence and

cannot be used for multidimensional dataset. All the

methods discussed above assume perfect prior

domain knowledge about monotonicity. They also do

not support monotonicity across multiple input

dimensions. The solution proposed in this paper

addresses these short comings. It provides a way of

specifying partial a priori knowledge in the form of

degree of monotonicity. The solution can be applied to

multiple input dimensions where the monotonicity

constraints can be increasing or decreasing in each

individual dimension.

6. Conclusion

This paper addresses the problem of learning soft-

monotonic regression functions in the presence of

imperfect domain knowledge. A novel monotonicity

constraint based support vector regression has been

proposed. A new hardness parameter, 𝐷, is introduced

in order to configure the degree of monotonicity

required. The working of MC-SVR has been validated

using datasets obtained from linear and non-linear

synthetic functions. Our experiments on global

warming dataset show that MC-SVR with soft

constraint has better extrapolation capability than

standard SVR. The experiment on Cars dataset shows

the generalization capability of MC-SVR over

multiple input dimensions. The formulation presented

can also be extended to support soft convex

constraints [6] and soft positive constraint SVR [13].

Though the results seem encouraging, more

theoretical investigations are required to study its

generalization properties.

References

1 Chen, Chih-Chuan and Li, Sheng-Tun. Credit

Rating with a Monotonicity-Constrained Support

Vector Machine Model. Expert Syst. Appl., 41, 16

(2014), 7235-7247.

2 Potharst, Rob and Feelders, Adrianus Johannes.

Classification Trees for Problems with

Monotonicity Constraints. ACM SIGKDD

Explorations Newsletter, 4, 1 (2002), 1-10.

3 Brunk, H. D. Maximum Likelihood Estimates of

Monotone Parameters. Ann. Math. Statist., 26, 4

(1955), 607-616.

4 Barlow, R. E.and Bartholomew, D., Bremner, J.

M., and Brunk, H. D. Statistical Inference under

Order Restrictions; The Theory and Application of

Isotonic Regression. Wiley, New York, 1972.

5 Jan, de Leeuw, Mair, Patrick, and Hornik, Kurt.

Isotone Optimization in R: Pool-Adjacent-Violators

Algorithm (PAVA) and Active Set Methods. J stat

soft, 32, 5 (2009), 1-24.

6 Tibshirani, J., Ryan, Hoefling, Holger, and

Tibshirani, Robert. Nearly--Isotonic Regression.

Technometrics, 53, 1 (2011), 54-61.

7 Smola, Alex J and Sch. A Tutorial on Support

Vector Regression. Stat. comput., 14, 3 (2004),

199-222.

8 Vapnik, Vladimir Naumovich and Vapnik,

Vlamimir. Statistical Learning Theory. Wiley New

York, 1998.

9 Kendall, Maurice G. A New Measure of Rank

Correlation. Biometrika (1938), 81-93.

10 Vanderbai, Robert J. LOQO: an interior point code

for quadratic programming. Optimization Methods

and Software, 11, 1 (1999), 451-484.

11 Wu, Wei Biao, Woodroofe, Michael, and Mentz,

Graciela. Isotonic Regression: Another Look at the

Changepoint Problem. Biometrika, 88, 3 (2001),

793-804.

12 Mammen, E., Marron, J. S., Turlach, B. A., and

Wand, M. P. A General Projection Framework for

Constrained Smoothing. Statistical Science: a

Review Journal, 16, 3 (2001), 232-248.

13 Ichiro, Takeuchi, Quoc, V. Le, Timothy, D. Sears,

and Alexander, J. Smola. Nonparametric Quantile

Estimation. JMLR, 1231-1264.

14 Wang, S. Neural Network Techniques for

Monotonic Nonlinear Models. Computers & OR,

21 (1994), 143-154.

15 Daniels, H. and Kamp, B. Application of MLP

Networks to Bond Rating and House Pricing.

Neural Comput. Appl., 8 (1999), 226-234.

16 Sill, Joseph and Abu-Mostafa, Yaser S.

Monotonicity Hints. Adv. Neural Inf. Process. Syst.

(1997), 634-640.

17 K. Makino, T. Suda, H. Ono and Ibaraki, T. Data

Analysis by Positive Decision Trees. IEICE

Transations on Information and Systems, E82-D

(1999), 76-88.

18 Cao-Van, Kim and De Baets, Bernard. Growing

decision trees in an ordinal setting. Int. J..Intell.

Syst., 18, 7 (2003), 733-750.

19 Dembczy, Kot, and S. Ensemble of Decision Rules

for Ordinal Classification with Monotonicity

Constraints. In Rough Sets and Knowledge

Technology. Springer, 2008.

20 Horv, Eckhardt, Alan, Buza, Kriszti, Vojtas, P, and

Schmidt-Thieme, Lars. Value-Transformation for

Monotone Prediction by Approximating Fuzzy

Membership Functions. In IEEE CINTI 2011 (

2011), 367-372.

21 Jacob, Varghese S, Krishnan, Ramayya, and Ryu,

Young U. Internet Content Filtering using Isotonic

Separation on Content Category Ratings. ACM

TOIT, 7, 1 (2007), 1.

22 Ryu, Young U, Chandrasekaran, Ramaswamy, and

Jacob, Varghese S. Breast Cancer Prediction using

the Isotonic Separation Technique. Eur. J. Oper.

Res., 181, 2 (2007), 842-854.

23 Riihim and Vehtari, Aki. Gaussian Processes with

Monotonicity Information. In International

Conference on Artificial Intelligence and Statistics

(2010), 645-652.

24 Fabien, Lauer and Gerard, Bloch. Incorporating

Prior Knowledge in Support Vector Regression.

Mach. Learn., 70, 1 (2008), 89-118.

25 Olvi, L. Mangasarian, Jude, W. Shavlik, and

Edward, W. Wild. Knowledge--Based Kernel

Approximation. JMLR, 5 (2004), 1127-1141.

26 Gamarnik, David. Efficient Learning of Monotone

Concepts via Quadratic Optimization. Proceedings

of the Eleventh Annual Conference on

Computational Learning Theory (1998.), 134-143.

