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Abstract 

This paper proposes a model for learning 

soft-monotonic regression functions in the 

presence of imperfect domain knowledge. It 

proposes an extension to support vector 

regression (SVR) wherein a new hardness 

parameter is introduced to configure the 

degree of monotonicity. The model supports 

multiple monotonicity constraints over 

multiple input dimensions simultaneously. 

The proposed model has been validated on 

synthetic datasets as well as on benchmark 

datasets obtained from real world problems. 

The results show that our model has better 

extrapolation capabilities than SVR. The 

results also demonstrate the ability of the 

model to generalize over multiple input 

dimensions. 

1. Introduction 

In machine learning, prior domain knowledge 

improves the quality of the model learnt, especially 

when data is scant or noisy. A common class of such 

prior knowledge is monotonicity constraints. For 

example, in credit rating, the chances of getting a loan 

increase with income, provided other variables are 

same [1]. The price of houses increases with better 

characteristics of houses such as the number of rooms 

[2]. It is reasonable to expect a machine learning 

algorithm to capture such knowledge in the model 

learnt, but that depends on the quantity and quality of 

the data available. Data inadequacy is a common 

problem in many domains. For instance, in materials 

engineering, process-structure-property relations 

play a key role in the design process. However, this 

data is hard to come by. In such cases, incorporating 

prior domain knowledge into a machine learning 

algorithm can improve the quality of the model learnt. 

For instance, in a carburization process, an increase 

in carbon potential increases the hardness of the 

material. This information can be leveraged by a 

learning algorithm to improve the model for a heat-

treatment process. 

Monotonic regression on a data set of 𝑛 1-

dimensional pairs {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑛  can be defined as 

follows: 

𝑓(𝑥) = argmin
𝑓

∑(𝑦𝑖 − 𝑓(𝑥𝑖))
2

𝑛

𝑖=1

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    
𝑥𝑖 ≽ 𝑥𝑗 ⇒ 𝑓(𝑥𝑖) ≥ 𝑓(𝑥𝑗);  

∀𝑖, 𝑗; 1 ≤ 𝑖, 𝑗 ≤ 𝑛
 

 (1) 

where 𝑓(𝑥𝑖) is the approximation of 𝑦𝑖; and ≽ is the 

preorder relation that is reflexive and transitive on 

input space X. Monotonically decreasing 

approximation can be defined by replacing the 

constraint as  𝑥𝑖 ≽ 𝑥𝑗 ⇒ 𝑓(𝑥𝑖) ≤ 𝑓(𝑥𝑗) in (1). 

Several algorithms exist for solving the problem 

defined in (1). One of the earliest algorithms is the 

pool adjacent violator algorithm (PAVA), based on 

which a lot of research has been reported [3]. These 

are well summarized in [4,5].  However, these 

methods are not applicable when the input space is 𝑑 

dimensional i.e. X ⊆ ℝ𝑑, because they assume that the 

input is a sequence i.e. 𝑥𝑖 < 𝑥𝑖+1, which cannot be 

generalized to 𝑑 dimensions. 

Also, domain knowledge is not always perfect. In 

the credit rating example, the chances of getting a 

loan may decrease with past record of defaulting 

despite higher income. In house pricing example, a 

flat with one room in a posh area may be costlier than 

a house with three rooms in a rural area.  To address 

this, we use the notion of soft monotonic regression. 

Soft monotonicity balances between the best fit 

(𝑦 = 𝑓(𝑥)) and the monotonic fit (𝑦 = 𝑓(𝑥)). This 

can be formally represented as, 
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𝑓(𝑥)𝜆 = argmin
𝑓

(

 
 
 
∑(𝑦𝑖 − 𝑓(𝑥𝑖))

2
𝑛

𝑖=1

+ 𝜆 ∗

∑∑𝒦(𝑥𝑖 , 𝑥𝑗 , 𝑓(𝑥𝑖), 𝑓(𝑥𝑗))

𝑛

𝑗=𝑖

𝑛

𝑖=1 )

 
 
 

 (2) 

𝑤ℎ𝑒𝑟𝑒 𝒦 (𝑥𝑖 , 𝑥𝑗 , 𝑓(𝑥𝑖), 𝑓(𝑥𝑗))

=

{
 
 
 

 
 
 
0

𝑖𝑓 𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐𝑎𝑙𝑙𝑦 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑎𝑛𝑑

{
𝑥𝑖 ≥ 𝑥𝑗  𝑎𝑛𝑑 𝑓(𝑥𝑖) ≥ 𝑓(𝑥𝑗) 𝑂𝑟

𝑥𝑗 ≥ 𝑥𝑖  𝑎𝑛𝑑 𝑓(𝑥𝑗) ≥ 𝑓(𝑥𝑖)

0

𝑖𝑓 𝑚𝑜𝑛𝑡𝑜𝑛𝑖𝑐𝑎𝑙𝑙𝑦 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑎𝑛𝑑 

{
𝑥𝑖 ≥ 𝑥𝑗  𝑎𝑛𝑑 𝑓(𝑥𝑖) ≤ 𝑓(𝑥𝑗) 𝑂𝑟

𝑥𝑗 ≥ 𝑥𝑖  𝑎𝑛𝑑 𝑓(𝑥𝑗) ≤ 𝑓(𝑥𝑖)

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Here, 𝜆 is the penalty parameter which penalizes the 

pair that violates the monotonicity constraint. Setting 

𝜆 to 0 yields the best fit solution. As 𝜆 → ∞, the 

solution approaches strictly monotonic for the 

problem defined in (1). This kind of problem has 

recently been addressed in [6] using a modified 

version of PAVA. However, in line with the original 

version, it too focuses on one dimensional input data 

represented as a sequence. 

In this paper, we propose a solution for soft 

monotonic regression for multidimensional input i.e. 

X ⊆ ℝ𝑑. More precisely, we propose an extension to 

SVR called monotonic constraint support vector 

regression (MC-SVR) and present its formulation. 

The proposed method has been validated with 

numerical experiments. The capability of MC-SVR to 

impose different monotonic constraints (increasing, 

decreasing, or none) at different input variables is 

studied. The effect of softness of the constraint is 

discussed. Results pertaining to the extrapolation 

capability of MC-SVR, and generalization capability 

over multiple input dimensions are also presented. 

2. Monotonic Constraint Support Vector 

Regression 

Support vector regression (SVR) basically takes the 

form [7,8] 

 𝑓(x) = 〈w, x〉 + 𝑏 

𝑤𝑖𝑡ℎ    w, x ∈  ℝ𝑑  𝑎𝑛𝑑 𝑏 ∈ ℝ
  

(3) 

where 〈. , . 〉 denotes the dot product. w is determined 

by solving the following convex optimization 

problem, 

 

min
𝑤,𝑏,𝜉𝑖,𝜉𝑖̂

(
1

2
‖w‖2 + 𝐶∑(𝜉𝑖 + 𝜉𝑖̂)

𝑛

𝑖=1

)

𝑠𝑢𝑏. 𝑡𝑜 {

(〈w, x𝑖〉 + 𝑏) − 𝑦𝑖 ≤ 𝜖 + 𝜉𝑖 ;   ∀𝑖

𝑦𝑖 − (〈w, x𝑖〉 + 𝑏) ≤ 𝜖 + 𝜉𝑖̂;   ∀𝑖

𝜉𝑖 , 𝜉𝑖̂ ≥ 0;  ∀𝑖

 (4) 

where, 𝜉𝑖 , 𝜉𝑖̂ are slack variables for soft margin to 

accommodate infeasible optimization that may arise 

due to noisy input variables. 

2.1 Monotonicity Constraints 

To incorporate monotonicity in SVR, additional 

constraints have to be formulated. The monotonicity 

constraint proposed in this paper is based on the 

following assumption, 

𝑓(x + δx) + 𝜁 ≥ 𝑓(x);    which simplifies to,

〈w, s〉 − 〈w, x〉 ≥ − 𝜁   𝑤ℎ𝑒𝑟𝑒   s = x + δx
 (5) 

The above equation can be interpreted as: a 

fraction of addition to the input should lead to a 

solution that is either increasing or stays the same. It 

should be noted that δ is a vector {𝛿}𝑖=1
𝑑  where each 

component can be set differently for different input 

dimensions. If 𝛿(𝑖) is positive, the function is 

monotonically increasing in 𝑖𝑡ℎ dimension; if 𝛿(𝑖) is 

negative, it is monotonically decreasing; and if 𝛿(𝑖) =
0, no monotonic constraint is imposed. Since the prior 

domain knowledge is imperfect, some violation in the 

constraint is allowed. Variable 𝜁 introduced in (5) 

accounts for this violation. When 𝜁 is zero, the 

function is strictly monotonic. The new variable s =
x + δx ensures that the function 𝑓 is monotonic 

around x. s is computed once for entire input data x. 
It should be noted that we only need to compute the 

value of s and not 𝑓(𝑠). 

2 .2  Incorporating mo no to nic i ty  co nstra int s  

in  SVR  

The variable 𝜁 in (5) can be incorporated in MC-SVR 

similar to the slack variables 𝜉𝑖 in standard SVR 

optimization as given in (4). Considering the above 

formulation of constraint to implement the MC-SVR, 

the optimization problem of SVR given in (4) 

becomes, 

min
𝑤,𝑏,𝜉𝑖,𝜉𝑖̂,𝜁𝑖

  
1

2
‖w‖2 + 𝐶∑(𝜉𝑖 + 𝜉𝑖̂)

𝑛

𝑖=1

+ 𝐷∑𝜁𝑖

𝑛

𝑖=1

𝑠𝑢𝑏.  𝑡𝑜
(〈w, x𝑖〉 + 𝑏) − 𝑦𝑖 ≤ 𝜖 + 𝜉𝑖 , ∀𝑖;

𝑦𝑖 − (〈w, x𝑖〉 + 𝑏) ≤ 𝜖 + 𝜉𝑖̂, ∀𝑖;
〈w, x𝑖〉 − 〈w, s𝑖〉

𝜉𝑖 , 𝜉𝑖̂, 𝜁𝑖

≤
≥

𝜁𝑖 , ∀𝑖: s𝑖 = x𝑖 + δx𝑖
0

 

 (6) 

where 𝐷 is the hardness parameter. It represents the 

amount of margin allowed to violate the monotonicity 

constraint. When 𝐷 is large, the penalty for violating 

the constraint is high. This results in a strict 

monotonic solution. Conversely, when  𝐷 = 0, 

monotonicity is not guaranteed. 

The quadratic optimization problem in (6) can be 

solved by the method of Lagrangian multipliers 



similar to the standard SVR [7,8]. The primal 

Lagrangian for (6) is as given in (7) below: 

ℒ𝑝 =
1

2
‖w‖2 + 𝐶∑ (𝜉𝑖 + 𝜉𝑖̂)

𝑛

𝑖=1
+ 𝐷∑ 𝜁𝑖

𝑛

𝑖=1

          −∑ 𝛼𝑖(−(〈w, x𝑖〉 + 𝑏) + 𝑦𝑖 + 𝜖 + 𝜉𝑖)
𝑛

𝑖=1

          −∑ 𝛼𝑖̂ ((〈w, x𝑖〉 + 𝑏) − 𝑦𝑖 + 𝜖 + 𝜉𝑖̂)
𝑛

𝑖=1

          −∑ 𝛽𝑖(𝜁𝑖 − (〈w, x𝑖〉 − 〈w, s𝑖〉))
𝑛

𝑖=1

          −∑ 𝜇𝑖𝜉𝑖
𝑛

𝑖=1
−∑ 𝜇𝑖̂𝜉𝑖̂

𝑛

𝑖=1
−∑ 𝜆𝑖𝜁𝑖

𝑛

𝑖=1

 𝑠𝑢𝑏. 𝑡𝑜:   𝛼𝑖 , 𝛼𝑖̂, 𝛽𝑖 , 𝜇𝑖, 𝜇𝑖̂, 𝜆𝑖 ≥ 0

 (7) 

Following the saddle point condition, the partial 

derivatives of ℒ𝑝 with respect to primal variables 

(w, b, 𝜉𝑖 , 𝜉𝑖̂, 𝜁𝑖) should vanish for optimality. The 

partial derivatives are,  

𝜕ℒ𝑝

𝜕𝑤
= 𝑤 −∑(𝛼𝑖̂ − 𝛼𝑖)𝑥𝑖

𝑛

𝑖=1

+∑𝛽𝑖(𝑥𝑖 − 𝑠𝑖)

𝑛

𝑖=1

= 0

𝜕ℒ𝑝

𝜕𝑏
=∑(𝛼𝑖̂ − 𝛼𝑖)

𝑛

𝑖=1

= 0

𝜕ℒ𝑝

𝜕𝜉𝑖
= 𝐶 − 𝛼𝑖 − 𝜇𝑖 = 0

𝜕ℒ𝑝

𝜕𝜉𝑖̂
= 𝐶 − 𝛼𝑖̂ − 𝜇𝑖̂ = 0

𝜕ℒ𝑝

𝜕𝜁𝑖
= 𝐷 − 𝛽𝑖 − 𝜆𝑖 = 0

 (8) 

Substituting (8) in (7) yields the dual optimization 

problem as follows. 

ℒ𝐷 = max
𝛼,𝛼̂,𝛽

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 −

1

2
∑∑(𝛼𝑖̂ − 𝛼𝑖)(𝛼𝑗̂ − 𝛼𝑗)〈x𝑖 , x𝑗〉

𝑛

𝑗=1

𝑛

𝑖=1

−
1

2
∑∑𝛽𝑖𝛽𝑗〈x𝑖 − s𝑖, x𝑗 − s𝑗〉

𝑛

𝑗=1

𝑛

𝑖=1

 

+
1

2
∑∑(𝛼𝑖̂ − 𝛼𝑖)𝛽𝑗〈x𝑖, x𝑗 − s𝑗〉

𝑛

𝑗=1

𝑛

𝑖=1

+
1

2
∑∑𝛽𝑖(𝛼𝑗̂ − 𝛼𝑗)〈x𝑖 − s𝑖 , x𝑗〉

𝑛

𝑗=1

𝑛

𝑖=1

+∑(𝛼𝑖̂ − 𝛼𝑖)𝑦𝑖

𝑛

𝑖=1

− 𝜖∑(𝛼𝑖̂ + 𝛼𝑖)

𝑛

𝑖=1

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 
∑(𝛼𝑖̂ − 𝛼𝑖)

𝑛

𝑖=1

= 0;

0 ≤ 𝛼𝑖̂, 𝛼𝑖 ≤ 𝐶  ∀𝑖;
0 ≤ 𝛽𝑖 ≤ 𝐷  ∀𝑖

 (9) 

The problem in (9) is convex and hence, it forms a 

standard quadratic optimization problem. This fact is 

proved in theorem 1. 

In order to represent the dual in standard quadratic 

form, the dot products in (9) can be rewritten as, 

𝑋𝑖𝑋𝑗 = 〈𝑥𝑖 , 𝑥𝑗〉; 𝑆𝑖𝑆𝑗 = 〈𝑠𝑖 , 𝑠𝑗〉

𝑋𝑖𝑆𝑗 = 〈𝑥𝑖 , 𝑠𝑗〉; 𝑆𝑖𝑋𝑗 = 〈𝑠𝑖 , 𝑥𝑗〉 = 𝑋𝑗𝑆𝑖
𝑇}∀𝑖, 𝑗 (10) 

The quadratic term is no longer a 2𝑛 × 2𝑛 matrix as 

in conventional linear ε-insensitive loss SVR. 

Instead, it is a 3𝑛 × 3𝑛 matrix composed of variables 

𝛼̂, 𝛼 𝑎𝑛𝑑 𝛽 as shown below, 

min
𝛼,𝛼̂,𝛽

   
1

2
[𝛼̂ 𝛼 𝛽] 𝐻 [

𝛼̂
𝛼
𝛽
] + 𝐶𝑇 [

𝛼̂
𝛼
𝛽
]

𝑤ℎ𝑒𝑟𝑒,

𝐻 =

[
 
 
 

𝑋𝑋 −𝑋𝑋 −(𝑋𝑋 − 𝑋𝑆)

−𝑋𝑋 𝑋𝑋 (𝑋𝑋 − 𝑋𝑆)

−(𝑋𝑋 − 𝑋𝑆)𝑇 (𝑋𝑋 − 𝑋𝑆)𝑇
(𝑋𝑋 − 𝑆𝑆 −

(𝑋𝑆 + 𝑋𝑆𝑇))]
 
 
 

𝐶 = (𝜖 [
1
1
0
] − [

𝑦
−𝑦
0
])

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜,
[
−1
1
0
]

𝑇

[
𝛼̂
𝛼
𝛽
] ≤ 0;

0 ≤ 𝛼̂, 𝛼 ≤ 𝐶; 0 ≤ 𝛽 ≤ 𝐷;

 (11) 

Theorem 1: The problem of MC-SVR defined in 
(9) is convex. 

Proof: For the problem in (9) to be convex, the 
quadratic term should be necessarily positive 
semi-definite. The quadratic term in ℒ𝐷 while 
minimizing is, 

1

2
∑ ∑ (𝛼𝑖̂ − 𝛼𝑖)(𝛼𝑗̂ − 𝛼𝑗)〈x𝑖 , x𝑗〉

𝑛

𝑗=1

𝑛

𝑖=1

         +
1

2
∑ ∑ 𝛽𝑖𝛽𝑗〈x𝑖 − s𝑖, x𝑗 − s𝑗〉

𝑛

𝑗=1

𝑛

𝑖=1

         −
1

2
∑ ∑ (𝛼𝑖̂ − 𝛼𝑖)𝛽𝑗〈x𝑖 , x𝑗 − s𝑗〉

𝑛

𝑗=1

𝑛

𝑖=1

         −
1

2
∑ ∑ 𝛽𝑖(𝛼𝑗̂ − 𝛼𝑗)〈x𝑖 − s𝑖 , x𝑗〉

𝑛

𝑗=1

𝑛

𝑖=1

=
1

2
⟨∑ (𝛼𝑖̂ − 𝛼𝑖)x𝑖

𝑖
−∑ 𝛽𝑖(x𝑖 − s𝑖)

𝑖
  ,

          ∑ (𝛼𝑗̂ − 𝛼𝑗)x𝑗
𝑗

−∑ 𝛽𝑗(x𝑗 − s𝑗)
𝑗

⟩

=
1

2
‖∑ (𝛼𝑖̂ − 𝛼𝑖)x𝑖

𝑖
−∑ 𝛽𝑗(x𝑗 − s𝑗)

𝑗
‖

2

≥ 0

 

Thus, the quadratic term is positive semi-
definite. Hence, (9) is convex. 

 



In order to solve the MC-SVR problem, it is 

important to find the parameters of interest i.e. w and 

𝑏. Using the partial derivatives of the primal 

Lagrangian, variable w can be written as, 

 

w =∑ (𝛼𝑖̂ − 𝛼𝑖)x𝑖
𝑛

𝑖=1
−∑ 𝛽𝑖(x𝑖 − s𝑖)

𝑛

𝑖=1
 (12) 

It is possible to describe w completely in terms of 

training data x𝑖 (since, s𝑖 is derived from x𝑖) even for 

MC-SVR. Substituting (12) in (3) yields, 

𝑓(𝑥) =∑(𝛼𝑖̂ − 𝛼𝑖)〈𝑥𝑖 , 𝑥〉

𝑛

𝑖=1

           −∑𝛽𝑖(〈𝑥𝑖 , 𝑥〉 − 〈𝑠𝑖 , 𝑥〉)

𝑛

𝑖=1

− 𝑏

 (13) 

The variable 𝑏 can be found following the Karush-

Kuhn-Tucker (KKT) conditions [8] which state that at 

optimality, the product of dual variable and the 

constraint should vanish. Thus, b can be identified as, 

𝑏 =
1

𝑛
∑ (𝑦𝑖 − (∑ (𝛼𝑗̂ − 𝛼𝑗)〈x𝑗, x𝑖〉

𝑛

𝑗=1

𝑛

𝑖=1

−∑ 𝛽𝑗(〈x𝑗 , x𝑖〉
𝑛

𝑗=1

− 〈s𝑗, x𝑖〉)) − 𝜖) 

(14) 

It is important to note that in (9) to (14), instead of 

dot product, a kernel expansion can also be applied, 

which will lead to non-linear MC-SVR. Standard 

kernels for SVR (such as, Linear, Polynomial, 

Gaussian, and so on) can be effectively applied. 

The hardness parameter, 𝐷, bounds the extra 

variable 𝛽 in (9). Hence, when 𝐷 is sufficiently small, 

then 𝛽 ≪ 𝛼, and there will not be any significant 

effect of monotonicity constraint. Conversely when 𝐷 

is sufficiently large, then 𝛽 ≫ 𝛼, and the effect of 

monotonicity will be dominant. For the sake of 

brevity, the MC-SVR formulation in (6) uses the same 

parameter 𝐷 for all monotonicity constraints. Similarly, 

it uses the same slack variable 𝜁𝑖  for all monotonicity 

constraints. The formulation in (6) can be easily 

extended to support separate 𝐷 and 𝜁𝑖  for each 

monotonicity constraint. In this case, the parameter 𝐷 

will be a vector. The components of 𝐷 will specify 

hardness for each constraint. Similarly, there will be 

a separate set of slack variables 𝜁𝑖
𝐶  for each 

constraint. 

2.3 Degree of Monotonicity 

To assess the degree of monotonicity, we use Kendall 

correlation metric [9]. Let (𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛 , 𝑦𝑛) 
be a set of observations of variables 𝑋 and 𝑌 respectively. 

Any pair of observations (𝑥𝑖 , 𝑦𝑖) and (𝑥𝑗 , 𝑦𝑗) are said to 

be concordant if the ranks for both elements agree (i.e. 

𝑥𝑖 > 𝑥𝑗  𝑎𝑛𝑑 𝑦𝑖 > 𝑦𝑗  𝑂𝑅 𝑥𝑖 < 𝑥𝑗  𝑎𝑛𝑑 𝑦𝑖 < 𝑦𝑗). They are 

discordant if 𝑥𝑖 > 𝑥𝑗  𝑎𝑛𝑑 𝑦𝑖 < 𝑦𝑗  𝑂𝑅 𝑥𝑖 < 𝑥𝑗  𝑎𝑛𝑑 𝑦𝑖 >

𝑦𝑗. The Kendall correlation metric is then defined as, 

𝐾𝑒𝑛𝑑𝑎𝑙𝑙(𝑋, 𝑌)

=
#𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠 − #𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠

1
2
𝑛(𝑛 − 1)

 (15) 

If the target variable is a monotonically increasing 

function of input then Kendall correlation is 1; while for 

a monotonically decreasing function, it is -1.  

We define degree of monotonicity as follows, 

𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐𝑖𝑡𝑦(𝑋, 𝑌)

=
(𝐾𝑒𝑛𝑑𝑎𝑙𝑙(𝑋, 𝑌) ∗ 𝑠𝑖𝑔𝑛 + 1)

2
𝑤ℎ𝑒𝑟𝑒,

𝑠𝑖𝑔𝑛 =
1 ;

𝑌 𝑖𝑠 𝑎 𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐𝑎𝑙𝑙𝑦
𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔  𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑋 

−1 ;
𝑌 𝑖𝑠 𝑎 𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐𝑎𝑙𝑙𝑦
𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔  𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑋 

 

 (16) 

This measure is in the range of 0 to 1 and it normalizes 

Kendall correlation such that for a perfect monotonic 

function (increasing or decreasing), it reaches the value 

of 1. We define the degree of monotonicity of a model 

with respect to a pair of variables as the degree of 

monotonicity that would be expected to be observed 

between the variables when data is generated randomly 

from the model. It is related to the hardness parameter 𝐷 

in the following sense: 

𝐷1 > 𝐷2 => degree of monotonicity of a model learnt 

with 𝐷1 is greater than the degree of monotonicity of a 

model learnt with 𝐷2. 

Thus we can increase or decrease the degree of 

monotonicity of a model by increasing or decreasing 𝐷.  

Degree of monotonicity is a more intuitive parameter 

for a domain expert to specify. A value of 1 specifies that 

the model is completely monotonic; a value of 0.8 

specifies that 80% of the data is expected to be 

monotonic, while 20% may be contrarian, and so on. It 

is possible to convert degree of monotonicity into an 

appropriate value of 𝐷 by writing a wrapper function that 

internally searches for a value of 𝐷 that gives the desired 

degree of monotonicity.  

3. Experimental Results 

We have carried out two sets of experiments to 

validate MC-SVR: one set with synthetic models and 

the other with real-life datasets. 

3.1 Experiments with synthetic models 

Our objective in using synthetic models is to study 

how the MC-SVR behaves under various controlled 

experimental conditions, such as dimensionality of 

input data, degree of the true function, effect of noise 

in data, etc.  



These experiments use the following scheme:  

A true model of a chosen degree and dimensionality 

is constructed. Data is generated from this model.  To 

simulate the effect of noise in observed data, we add 

random sinusoidal noise (with amplitude drawn from 

Gaussian distribution) to the generated data. To study 

the effect of degree of monotonicity, we add an 

additional term to the true model to introduce regions 

where monotonicity is violated. We then compare the 

learnt models with the true model. The output of 

MC-SVR for constraint violation region is analysed. 

Softness in MC-SVR is controlled by the degree 

parameter. The effect of softness on the learnt model 

is also analysed. 

In all experiments we first learn the SVR model 

using a Gaussian kernel and optimize the hyper 

parameters 𝛾 and 𝐶 using 10-fold cross validation. We 

then use the same hyper parameters for MC-SVR and 

set the monotonicity parameters (i.e. monotonicity 

constraint and degree of monotonicity) as required. 

Both SVR and MC-SVR are implemented in octave 

3.8 using PR_LOQO [10] as the QP solver.   

3.1.1 Comparison between SVR and hard MC-

SVR (degree of monotonicity =1) 

In this experiment we choose a simple linear function 

with one input. The true model and the data 

generation model with noise term are as given in (17) 

below, 

True model: 𝑦 = x

Data model: 𝑦 = 𝑥 +𝒩(0.08,0.04) ∗ sin(25 ∗ 𝑥)
 (17) 

The amplitude of the noise is drawn from a Gaussian 

distribution with an arbitrary mean 0.08 and standard 

deviation 0.04. We generated 200 data points in the range 

0 to 1. Figure 1 shows the true model as well as the 

observed data points. As mentioned in section 2.1, the 

sign  (δ(i) >  0 𝑜𝑟 δ(i) <  0) determines whether the 

constraint is monotonically increasing or decreasing. 

As the true function is monotonically increasing in x, we 

set the monotonicity constraint as δ = {0.1}. This 

corresponds to 10% of the normalized data range, 

specifying that the monotonicity constraint should 

hold with data points that are within this range of an 

input data point.  

An SVR with Gaussian kernel is optimized for 

minimizing the root mean squared error (RMSE). The 

best parameters found are 𝛾 = 2−4 𝑎𝑛𝑑 𝐶 = 10. MC-

SVR is learnt using the same hyper-parameters.  As the 

true model is monotonic in the full input range, we set 

the degree of monotonicity to 1 (hard MC-SVR). The 

results are shown in Figure 1. It can be observed from the 

figure that MC-SVR learns a better fit to the true model 

than SVR. The RMSE of MC-SVR and SVR are 0.0430 

and 0.0545 respectively, showing that MC-SVR 

performs significantly better than SVR (approximately 

20% improvement). 

Next we study the behaviour of hard MC-SVR for a 

non-linear function. The true model in this case is a 

simple quadratic function viz. 𝑦 = 𝑥2. Similar to the 

linear case, the data generation model adds noise terms 

with amplitude drawn from a Gaussian distribution (with 

mean = 0.08 and standard deviation = 0.04). 200 data 

points are generated in the range 0 to 1. Figure 2 shows 

the true model and the observed data points. As the 

function is monotonically increasing in x, the 

monotonicity constraint is set as δ = {0.1}. An SVR 

with Gaussian kernel is optimized to find the best 

parameter setting (𝛾 = 2−3 𝑎𝑛𝑑 𝐶 = 10). MC-SVR is 

learnt with the same hyper-parameters. The degree of 

monotonicity is set to 1 as the true model is 

monotonic in the full input range. Again, as can be 

observed from Figure 2, MC-SVR learns a better 

model compared to SVR. The RMSE of MC-SVR and 

SVR are 0.0387 and 0.0523 (approximately 26% 

improvement over SVR).  

 

Figure 1: Comparison of SVR and Hard MC-SVR 

(degree = 1) for 1 dimensional linear function 

 

 

 

 

 

 
Figure 2: Comparison of SVR and Hard MC-SVR 

(degree = 1) for 1 dimensional quadratic function 

 

 

 



We have also studied the behaviour of hard MC-SVR 

for multidimensional input. Similar to the one 

dimensional case, we set up a two dimensional 

experiment using an arbitrary linear function with two 

inputs. The true model and the data generation model 

with noise are as given in (18) below, 

True model: 𝑧 = 0.7 ∗ 𝑥 − 0.5 ∗ 𝑦
Data model: 𝑧 = 0.7 ∗ 𝑥 − 0.5 ∗ 𝑦

                                +𝒩(0.05,0.025) ∗ sin(25 ∗ 𝑥)

                                + 𝒩(0.05,0.025) ∗ sin(25 ∗ 𝑦)

 (18) 

The data model adds noise to both the input dimensions. 

We choose 300 data points randomly from a set of 1156 

generated data points (a two dimensional grid with 

spacing 0.03) in the range 0 to 1. The true model in (18) 

is monotonically increasing in x and decreasing in y. 

Hence we set the constraint as δ = {0.1, −0.1}.  
Similar to the one-dimensional case, an SVR with 

Gaussian kernel is used to minimize the root mean 

squared error. The best parameters found are 𝛾 =
2−2 𝑎𝑛𝑑 𝐶 = 32768. MC-SVR is learnt using the 

same hyper-parameters. The degree of monotonicity 

is set to 1 as the true model has perfect monotonic 

behaviour in both dimensions (increasing in the first 

and decreasing in the second). Once again, it has been 

observed that MC-SVR produces a better fit to the 

true model than SVR. MC-SVR achieves a significant 

improvement in RMSE over SVR – from 0.0607 for SVR 

to 0.0428 for MC-SVR, an improvement of around 30%. 

This experiment shows that MC-SVR can learn different 

monotonicity relations in different dimensions, and the 

model incorporating these relations performs better than 

SVR. 

The experiments in this section suggests that the 

difference between MC-SVR and SVR becomes more 

significant as the complexity (degree or dimensionality) 

of the problem increases. 

3.1.2 Softness capability of MC-SVR 

In order to evaluate the softness capability of MC-SVR, 

we modify the true model of (17) by imposing 

monotonically decreasing behaviour in input x for 

approximately 10% of the data. If we think of this data 

as coming from a real-life process, the monotonically 

decreasing part represents exceptions to the generally 

expected behaviour. We show that MC-SVR with an 

appropriately defined degree of monotonicity (which can 

be set by a domain expert) has the capacity to model this 

behaviour and is capable of achieving better accuracy 

than both SVR and hard MC-SVR. 

The true model and the data generation model for this 

experiment are as follows, 

True model: 𝑦 = x − 0.4 ∗ 𝑒−(
𝑥−0.5
0.07

)
2

Data model: 𝑦 = x − 0.4 ∗ 𝑒
−(
𝑥−0.5
0.07

)
2

+𝒩(0.08,0.04) ∗ sin(25 ∗ 𝑥)

 (19) 

The exponential term adds monotonically decreasing 

behaviour around 0.5 to an otherwise monotonically 

increasing true model. As before, the data model adds 

noise to the data points before they are observed. We 

generated 200 data points in the range 0 to 1. Figure 3 

shows the true model as well as the observed data points. 

This function is studied with monotonically increasing 

constraint i.e. δ = {0.1}.  
Again, an SVR with Gaussian kernel is optimized 

(𝛾 = 2−4 𝑎𝑛𝑑 𝐶 = 10) for minimizing the root mean 

squared error. MC-SVR is learnt using the same hyper-

parameters. The target variable in (19) is a monotonically 

increasing function of input. However, approximately 

10% data in the true model has opposite behaviour. To 

account for this, we incorporate softness in MC-SVR by 

specifying the degree of monotonicity as 0.9. We also 

learn hard MC-SVR (i.e. degree of monotonicity = 1). As 

observed from Figure 3, soft MC-SVR produces a better 

fit compared to hard MC-SVR. This is due to the fact that 

hard MC-SVR does not use the information that 10% of 

data has opposite behaviour and builds a model that is 

monotonic in the full input range. The model leant using 

SVR captures this behaviour. However, it also learns the 

noise present in the observed data. The model learnt 

using soft MC-SVR provides a balance between SVR 

and hard MC-SVR. Table 1 shows the RMSE values 

obtained for these three models. Soft MC-SVR achieves 

significantly better RMSE compared to both SVR and 

hard MC-SVR. 

Next we study the softness capability of MC-SVR on 

a non-linear function. The true model and the data 

generation model with noise are as given below, 

 

 
Figure 3: Comparison of Soft MC-SVR with SVR and 

Hard MC-SVR on linear soft monotonic function 

Table 1: RMSE for synthetic 1-dimensional linear 

data – monotonically increasing function with 

opposite behavior in approximately 10% data 

Function RMSE 

𝑆𝑉𝑅  0.0522 

𝑠𝑜𝑓𝑡 𝑀𝐶 − 𝑆𝑉𝑅 (𝑑𝑒𝑔𝑟𝑒𝑒 = 0.9) 0.0441 

ℎ𝑎𝑟𝑑 𝑀𝐶 − 𝑆𝑉𝑅 (𝑑𝑒𝑔𝑟𝑒𝑒 = 1) 0.0595 

 

 



True model: 𝑦 = x2 − 0.4 ∗ 𝑒
−(
𝑥2−0.4
0.1

)
2

Data model: 𝑦 = x2 − 0.4 ∗ 𝑒
−(
𝑥2−0.4
0.1

)
2

+𝒩(0.08,0.04) ∗ sin(30 ∗ 𝑥)                                

 (20) 

The model adds contrarian behaviour around 0.4 to an 

otherwise monotonically increasing function. 200 data 

points are generated in the range 0 to 1. Figure 4 shows 

the true model and the observed data points. As the 

function is monotonically increasing in x for the most 

part, the constraint is set as δ = {0.1}.  
As before, an SVR with Gaussian kernel is 

optimized to find the best parameter setting (𝛾 =
2−3 𝑎𝑛𝑑 𝐶 = 250). MC-SVR is also learnt with the 

same hyper-parameters. The degree of monotonicity 

is set to 0.9 for soft MC-SVR as approximately 10% 

of data exhibits the opposite behaviour. Hard MC-

SVR is also learnt to compare the effect of softness. 

Figure 4 shows the results. As can be seen, here also 

soft MC-SVR produces a better fit than SVR and hard 

MC-SVR. Table 2 reports the RMSE for the three 

models. As expected, soft MC-SVR performs 

significantly better than both SVR and hard MC-SVR. 

We also studied the effect of softness on the learnt 

models for multidimensional input. The true model and 

the data generation model are as given below, 

True model: 

                z = 0.7 ∗ x − 0.5 ∗ y − 0.5 ∗ 𝑒−(
𝑥−0.5
0.09

)
2

Data Model:

                𝑧 = 0.7 ∗ 𝑥 − 0.5 ∗ 𝑦 − 0.5 ∗ 𝑒−(
𝑥−0.5
0.09

)
2

                +𝒩(0.05,0.025) ∗ sin(25 ∗ 𝑥)

                + 𝒩(0.05,0.025) ∗ sin(25 ∗ 𝑦)

 (21) 

The model is the same as that used in (18), except that, 

here, the true model has a monotonically decreasing 

behaviour in x for approximately 10% of the data.  

Here again, an SVR with Gaussian kernel is 

optimized for minimizing root mean squared error (𝛾 =
2−3 𝑎𝑛𝑑 𝐶 = 10). The same hyper-parameters are 

then used for MC-SVR. Since approximately 10% of 

the data exhibits opposite behaviour, we set the 

degree of monotonicity to 0.9. We also learn hard 

MC-SVR (degree of monotonicity = 1). Once again, 

as expected, soft MC-SVR produces a better fit to the 

true model than SVR and hard MC-SVR. A 

comparison of RMSE obtained with all these three 

approaches is shown in Table 3. It can clearly be 

observed that MC-SVR, with the additional knowledge 

about degree of monotonicity (as opposed to just the 

knowledge about monotonicity) outperforms both SVR 

and hard MC-SVR. 

We have also studied the effect of softness on 

multidimensional non-linear functions using 𝑥2 − 𝑦2 as 

the true model with 10% contrarian behaviour. Once 

again soft MC-SVR performed significantly better than 

both SVR and hard MC-SVR. 

3.2 Experiments on Real world Datasets 

3.2.1 Extrapolation capability of MC-SVR 

In this section, global warming dataset has been 

considered which is first studied in [11]. Recently, 

Tibshirani et. al. developed a nearly monotonic 

regression using modified PAVA for this dataset [6]. 

The dataset contains annual temperature anomalies 

from 1856 to 1999, relative to the 1961-1990 mean. It 

has 150 data points. It can be observed from Figure 5 

that the actual data is monotonically increasing with 

respect to year, with possible decrease around 1900.  

An SVR with Gaussian kernel is optimized (𝛾 =
2−2 𝑎𝑛𝑑 𝐶 = 250) for minimizing the root mean 

squared error. Figure 5 shows the models produced by 

SVR, hard MC-SVR (degree of monotonicity = 1) and 

soft MC-SVR (degree of monotonicity = 0.83). It can 

be observed that SVR misses the monotonically 

increasing characteristic and learns a model that has 

decreasing behaviour at multiple places. On the other 

hand, hard MC-SVR learns a model that is increasing 

in the full input range. Soft MC-SVR produces a fit 

 

 
Figure 4: Comparison of Soft MC-SVR with SVR and 

Hard MC-SVR on quadratic soft monotonic function 

 

Table 2: RMSE for synthetic 1-dimensional quadratic 

data – monotonically increasing function with 

opposite behavior in approximately 10% data 

Function RMSE 

𝑆𝑉𝑅  0.0535 

𝑠𝑜𝑓𝑡 𝑀𝐶 − 𝑆𝑉𝑅 (𝑑𝑒𝑔𝑟𝑒𝑒 = 0.9) 0.0445 

ℎ𝑎𝑟𝑑 𝑀𝐶 − 𝑆𝑉𝑅 (𝑑𝑒𝑔𝑟𝑒𝑒 = 1) 0.0543 

 

Table 3: RMSE for synthetic 2-dimensional data – 

monotonically increasing function with opposite 

behavior in approximately 10% data 

Function RMSE 

𝑆𝑉𝑅  0.1746 

𝑠𝑜𝑓𝑡 𝑀𝐶 − 𝑆𝑉𝑅 (𝑑𝑒𝑔𝑟𝑒𝑒 = 0.9) 0.0486 

ℎ𝑎𝑟𝑑 𝑀𝐶 − 𝑆𝑉𝑅 (𝑑𝑒𝑔𝑟𝑒𝑒 = 1) 0.0810 

 



that captures the decreasing behaviour around year 

1900 but is monotonically increasing otherwise.  

In order to study the extrapolation capability of 

MC-SVR, the dataset is partitioned into 10 equally 

spaced bins. At a time, 9 bins have been used for 

training and the remaining for evaluation. This 

process has been continued for all the 10 bins. It has 

been observed that soft MC-SVR has produced a 

significantly better RMSE than standard SVR and full 

monotonic approximation as given in Table 4. 

Considering that the RMSE is reported on normalized 

data, soft MC-SVR improves SVR and hard MC-SVR 

by 17% and 10% respectively. The results are also 

portrayed in Figure 6. It can be observed that the 

extrapolation at the beginning as well as at the end is 

better for soft MC-SVR than for SVR and hard 

MC-SVR. Similar results have been observed by 

changing the number of bins to 5 and 20. 

3.2.2 Generalization capability of MC-SVR over 

multiple input dimensions 

In order to study monotonicity for multidimensional 

input, Cars dataset has been considered. This dataset 

has been studied in [12,13]. It contains 4 input 

attributes of cars viz. displacement, engine output in 

horsepower, weight and time to accelerate from 0 to 

60 mph (acceleration time); the output is the 

prediction of fuel efficiency in miles per gallon. The 

first 3 input attributes have monotonically decreasing 

relation with the output attribute while the last 

attribute, acceleration time, has monotonically 

increasing relation. The dataset contains 392 

instances. 

The quantitative performance on RMSE has been 

assessed by performing 10-fold cross validation on 

normalized data. The constraint has been set as 

monotonically decreasing for displacement, engine 

output and weight while monotonically increasing for 

acceleration time. Grid search is performed to find 

the hyper- parameters (𝛾 𝑎𝑛𝑑 𝐶) that minimize root 

mean squared error for SVR. The same hyper-

parameters are then used for MC-SVR. The degree of 

monotonicity is varied to incorporate softness in MC-

SVR.  

Table 5 reports RMSE for various experiments. 

The first experiment uses all four input attributes and 

accordingly the constraint is set as 𝛿 =  { −0.1, −0.1,
−0.1, 0.1}. As can be noticed from Table 5, MC-SVR 

(soft as well as hard constraints) gives better results 

than SVR (approximately 10% improvement). The 

second experiment uses a 2-dimensional input – 

displacement and acceleration time. Once again, 

Table 5: Cars dataset: RMSE for SVR and Soft MC-SVR and Hard MC-SVR for multiple input dimensions 

Input  Va r ia b le s  SVR  Ha rd  

M C-SVR  

So f t  

M C-SVR  

Disp lace me nt ,  En gi ne  Outp u t ,  

We igh t ,  Acce le r a t io n  Time  

0 .1 0 37  0 .0 9 30  0 .0 9 29  

Disp lace me nt ,  Acce le r a t io n  t i me  0 .1 2 90  0 .1 2 29  0 .1 2 28  

 

 
Figure 6: Results on extrapolation capability of SVR, 

Soft MC-SVR and Hard MC-SVR on Global 

Warming dataset 

Table 4: RMSE for Global Warming dataset 

Function RMSE 

𝑆𝑉𝑅  0.1193 

𝑆𝑜𝑓𝑡 𝑀𝐶 − 𝑆𝑉𝑅 (𝑑𝑒𝑔𝑟𝑒𝑒 = 0.83) 0.0988 

𝐻𝑎𝑟𝑑 𝑀𝐶 − 𝑆𝑉𝑅 (𝑑𝑒𝑔𝑟𝑒𝑒 = 1) 0.1101 

 

 

 
Figure 5: Results of SVR, Soft MC-SVR and Hard 

MC-SVR on Global Warming dataset 

 

 

 

 



MC-SVR performs better than SVR (approximately 

5% improvement).  

The results show that MC-SVR leverages the 

monotonicity information present in multiple input 

dimensions. It can also be noticed that the difference 

between MC-SVR and SVR seems to become more 

significant as the dimensionality of the problem 

increases. 

5. Related Work 

Monotonic function learning has been extensively 

studied in literature for both classification as well as 

regression problems. Classification of ordered classes 

is often assumed to be monotonic with respect to 

input features. Hence, incorporating monotonicity for 

ordinal classification was investigated by many 

researchers. Neural networks is one of the well-

studied algorithms in this direction. [14,15] 

approached monotonicity in neural networks by 

enforcing constraints on the weights and architecture 

of the network. An additional error term called 

monotonicity error, was implemented in neural 

network to ensure monotonicity in [16]. Makino et. 

al. [17] proposed classification trees with 

monotonicity constraint for binary classification. This 

was extended for multiclass decision trees in [2] as 

quasi-monotone decision trees. An instance based 

method for ordinal classification called ordinal 

stochastic dominance learner was proposed in [18]. 

Decision rules and ensemble of decision rules were 

also proposed for ordinal classification using 

monotonicity constraint [19]. Apart from modifying 

the classical learning algorithms, a method of altering 

the training data such that they are consistent with 

monotonicity definition was also proposed in [20]. 

Many real world applications were investigated using 

ordinal classification. These include liver disorder 

diagnosis [16], house pricing [2], internet content 

filtering [21] and breast cancer diagnosis [22]. The 

methods discussed above have been reported to 

perform well for ordinal classification. However, they 

cannot be directly extended to problems with 

continuous variables. 

In order to implement monotonic regression, a 

smoothing method based on constraints was proposed 

in [12]. The capability of smoothing method was 

demonstrated on a few real world datasets such as 

cars and onion. In [23], monotonic regression was 

modelled using Gaussian process. Monotonicity was 

incorporated by virtual training examples that are 

generated from derivatives of actual data. This 

method was shown to improve performance on a 

synthetic dataset. Incorporating prior knowledge in 

the form of equality and inequality constraints was 

extensively discussed in [24,25], where linear 

programming formulation was used for support vector 

regression. Quadratic programming based learning 

with monotonicity of sequential data was studied in 

[26]. In this method, the input data are one 

dimensional and are assumed to be in sequence and 

cannot be used for multidimensional dataset. All the 

methods discussed above assume perfect prior 

domain knowledge about monotonicity. They also do 

not support monotonicity across multiple input 

dimensions. The solution proposed in this paper 

addresses these short comings. It provides a way of 

specifying partial a priori knowledge in the form of 

degree of monotonicity. The solution can be applied to 

multiple input dimensions where the monotonicity 

constraints can be increasing or decreasing in each 

individual dimension.  

6. Conclusion 

This paper addresses the problem of learning soft-

monotonic regression functions in the presence of 

imperfect domain knowledge. A novel monotonicity 

constraint based support vector regression has been 

proposed. A new hardness parameter, 𝐷, is introduced 

in order to configure the degree of monotonicity 

required. The working of MC-SVR has been validated 

using datasets obtained from linear and non-linear 

synthetic functions. Our experiments on global 

warming dataset show that MC-SVR with soft 

constraint has better extrapolation capability than 

standard SVR. The experiment on Cars dataset shows 

the generalization capability of MC-SVR over 

multiple input dimensions. The formulation presented 

can also be extended to support soft convex 

constraints [6] and soft positive constraint SVR [13]. 

Though the results seem encouraging, more 

theoretical investigations are required to study its 

generalization properties. 
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