

An Architecture-Oriented Data Warehouse Testing

Approach

Neveen ElGamal

Information Systems Department

Faculty of Computers and

Information

Cairo University

Egypt

n.elgamal@fci-cu.edu.eg

Ali El-Bastawissy

Information Systems Department

Faculty of Computers and

Information

Cairo University

Egypt

aelbastawissy@msa.eun.eg

Galal Galal-Edeen

Information Systems Department

Faculty of Computers and

Information

Cairo University

Egypt

galal@acm.org

Abstract

In the past few years, the data warehouse (DW) has

regained experts’ interest due to the paradigm shift from

data storages to data analysis. During the development of

DWs data passes through a number of transformations

and are staged in multiple storages which might lead to

data corruption and/or manipulation. Hence, testing DWs

is a vital stage in the DW development life cycle. In this

paper, we will present a DW testing approach that is

adjustable to fit multiple DW architectures and will

present its applicability on three case studies to outline

the flexibility and generality of the proposed approach.

1. Introduction

The topic of data warehousing encompasses application

tools, architectures, information service, and

communication infrastructure to synthesize useful

information for decision making from distributed

heterogeneous data sources. For this reason, vendors

agree that DWs cannot be off-the shelf products but must

be designed and optimized with great attention to the

customer’s situation [20]. Multiple DW life cycle

approaches were presented in the literature to discuss

how DW systems are built [21, 23]. In those approaches,

the architectural design was one of the early and key

stages in developing DW systems. On the other hand,

testing was not considered in any of the proposed life

cycle approaches given that it was always considered in

all well-known life cycle approaches like the waterfall

and the spiral models. [4, 27]

DW architectural patterns vary from one DW system to

another based on user requirements [14]. However, The

most common idea in all DW projects is that data is

available in one or more data sources and this data needs

to be integrated in order to give useful information to

assist decision makers to base their decisions on

historical behavior of their systems [17].

In the beginning, the data stored in the Data Sources

(DS) are extracted, transformed, and loaded in the so

called Data Warehouse (DW). Sometimes this DW is

then specialized into a group of business area specific

structures each of which contains data that target a

specific business area which are called Data Marts

(DM).

Data passes through several transformations and

integration stages before they are loaded from the DSs to

the DW or DMs which in most cases force the DW

developers to use an intermediary data storage called

Data Staging Area (DSA); where all the data is

transferred to it then transformed and loaded to the DW.

From another perspective, the DW consists of historical

data that accumulates years of operational data in one

place. Preparing this type of information requires some

time, that’s why the data stored in the DW are not up to

date or even close to that. In some decision making

situations, the decision makers want rapid information

about data that is not historical, for example; data that is

one or two days old. However, they want this type of

information to be accumulated from all DSs just like the

ones stored in the DW but with less historical dimension.

If this type of information is expected to be frequently

asked by the decision makers then an Operational Data

Store (ODS) is required to be part of the DW selected

architecture.

Figure 1 shows the most generic and detailed DW

architecture that includes most commonly used

components and transformations in a DW project. This

architecture was proposed under the name of “Kim-mon

Architecture” which refers to the representation of both

Ralph Kimball and Bill Inmon’s architectures combined

[1]. Data is wrapped from the DSs to the DSA then it

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy

otherwise, to republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Articles from this
volume were invited to present their results at The 21st International

Conference on Management of Data.

COMAD, March 11-13, 2016, Pune.
Copyright 2016 Computer Society of India (CSI).

travels to the ODS then to the DW then it is specialized

into domain specific DMs then finally it reaches the

user/decision maker through User Interfaces (UI) for

example; OLAP reports, Analysis, and/or DSS tools.

Figure 1. DW Generic Architecture (adapted from [1])

The DW architecture differs from one project to the other

based on the specific business requirements. However,

the basic component that is available in all DW projects

is the DSs. Any other component is included or excluded

in the DW project according to the need for it [14].

Variations from the above architecture have been

proposed in [19, 14, 21]. These DW architectural patterns

simply eliminate or duplicate one of the existing

components that are discussed in the Kim-mon

architecture. Table 1 summarizes the architectural

patterns, discussed in [14], and shows participating

components in each.

Table 1. DW Architectural Patterns

Architectural

Pattern Name

Architectural Pattern

Components

One Layer DSsUI

Two Layer DSsDWUI

Independent Data

Marts

DSsDMsUI

Bus DSsDMsUI

Three Layer DSsODSDWUI

Drill-through DSsODSDWDMUI

 UI

Hub and Spoke DSsODSDMUI

Centralized DSsDSADWUI

Federated DSsDMsIL1
UI

Kim-mon (Generic) DSsDSAODSDW DMUI

Regardless of the architecture of the DW project, data

passes through a long way of Extract, Transform, and

Load (ETL) processes from its origin in the DSs till it is

transformed into information by the UI applications.

During this journey data is wrapped, integrated,

1 IL refers to Integration Layer either Physical or Logical

aggregated, cleansed, loaded, and accumulated which

could highly affect the quality of information delivered

to the decision makers. Therefore, DW testing is a critical

stage in the DW development life cycle which gained

multiple researchers’ attention to propose a testing

technique that is suitable for use in DW projects and

provide implementation mechanisms for testing

technique to speed the process of testing.

This paper tackles the DW testing from a different

perspective. Instead of proposing a testing technique that

is suitable for use with a specific DW architecture, this

paper proposes a generic DW testing approach and

provides an accomodation mechanism that adapts the

proposed DW testing approach according to the DW

used architecture.

The remainder of this paper will be organized as follows;

Section 2 presents a survey on DW testing showing the

influence of architectural variations on the DW testing

process. Section 3 introduces the generic testing

approach that is adequate for use with the Kim-mon

architecture. Section 4 describes the technique used to

accommodate the proposed testing approach to be

adequate for use with other architectures. Section 5

briefly states the implementation details of the

accommodation technique. Section 6 discusses findings

from applying the proposed technique on several case

studies and presents an overall evaluation of the

proposed technique. Finally, we conclude our work in

section 7.

2. Related Work

Testing DW systems had been studied in literature from

various perspectives. Some attempts customized the

Software testing strategies to be adequate for use in DW

testing [2, 3, 5, 18, 24] while others concentrated on

addressing the ETL testing since most of the work is done

in the ETL process [7, 35, 22, 26]. A broader view of the

DW testing process was studied to address the problem

from various perspectives and present to the DW field an

integrated solution for DW testing [13, 16, 15, 30, 29, 31,

32, 36, 37, 39, 38]. These approaches were previously

studied from the test routine coverage point of view in

[11, 10] and it was concluded that none of the existing

approaches fully cover the DW testing process. In this

paper, we are more concerned with the architectural

diversities between the existing approaches and the

possibility of generalizing any of the existing approaches

to suite several architectures.

 By exploring the various DW testing approaches

mentioned above, we uncovered considerable diversities

between approaches with respect to the architectures that

these testing approaches target. From the other

perspective, there are many DW architectures defined in

literature that needs a DW testing technique to be used in

conjunction with them when they are put into operation

and yet none of the existing approaches supported these

architectures.

Table 2 presents a brief comparison allocating existing

DW testing approaches to their specified or inferred

architectures. The first column displays different

architectural patterns, discussed in Table 1, and the

second column presents the DW testing approaches

along with their architectures that each approach used

while describing the DW testing process.

Table 2. Architectural Coverage of DW Testing

Approaches

Architecture Name DW Testing Approaches and

Their

Used Architectures

One Layer N/A

Two Layer [2, 7, 35] DSDW

[24] DSDWDMUI

[26] DSDWUI

Independent Data

Marts
N/A

Bus N/A

Three Layer [3] DSODSDWDM2 UI

[5] DS ODSDWUI

Drill-through N/A

Hub and Spoke [15] DSDSADMUI

Centralized [22] DSDSADWDMUI

[29] DSDSADW/DMDDB3UI

Federated N/A

Kim-mon (Generic) [36] DSDSAODSDW UI

By comparing the architectural components in Table 1

and the architectures in Table 2, we noticed that, few

architectures proposed in literature were addressed by the

DW testing approaches without further modifications.

All the proposed approaches used variations of the

defined architectural patterns and customized their DW

testing approach based on these variation. It is also

shown that some architectures were not addressed by any

testing approach like Independent Data Marts, Bus and

Federated architectures

What could be concluded from the comparison matrix in

Table 2 is that each DW testing approach was defined

targeting specific architecture and is therefore adequate

for use on DW projects that use the same architecture. If

a different architecture is used, then this testing approach

will not be adequate for use as it is. Some sort of

customization should take place to extend this testing

approach to fit the new architecture. This customization

could not take place by a testing expert nor a DW expert

alone. It is a joint process that should take place

benefiting from both experts’ knowledge, which is not

possible in most cases due to time and budget constraints.

To overcome the weaknesses in the existing approaches,

we considered defining a testing approach that is generic

enough to be used in multiple DW projects and provide

a customization mechanism that is able to accommodate

2 Italic data warehouse components in Table 2 refer to components
in the data warehouse architecture that are defined in the proposing
approach but not tested.

the proposed testing approach to different DW

architectures.

Each DW testing approach consists of a group of test

routines that describe how this approach tests the DW to

improve the quality of the output product. The next

section will discuss the group of test routines of the

proposed generic DW testing approach.

3. A generic DW testing approach

Test routines defined for DWs are diverse and on

different levels of detail, as previously discussed in [10].

To develop a generic DW testing approach that works

with different DW architectures, we need to

comprehensively determine and describe the complete

set of test routines that cover all DW components and

transformations. It should also be taken into

consideration that these descriptions should be done on a

low level of detail to allow later customization for

different architectures. For this reason, the Kim-mon

architecture presented in Figure 1 will be used for

defining DW test routines as it contains all DW

components that are most commonly used in all DW

architectures.

3.1 Test routine list

Our proposed set of test routines, presented in Table 3, is

a refinement of the set of test routines previously

presented in [10] when it was used to evaluate and

compare the available DW testing approaches. This set

of test routines was categorized according to the layer

that each test routine targets, the level of detail that this

test involves, and when this test takes place. It is worth

mentioning that the User Interface layer (DMUI) will

not be part of our proposed solution. The refinements

took place to come up with a uniform and consistent set

of test routines. These refinements are as follows:

1. Unifying synonymous test routines like Field

mapping, Data type compatibility, and Data Layout

Format.

2. Removing the Overall test routines and define them

redundantly on each layer.

As shown in Table 3, the rows represent the layers of the

Kim-mon architecture, the columns represent the level of

detail that each test routine involves, and test routine

periodicity is represented by italicizing test routines that

are conducted after system development. The underlined

test routines are the ones that are redundant on several

layers. Introducing redundant test routine came from the

need to support multiple architectures. When a different

architecture is under test the proposed approach will

customize the Table 3 to fit the new architecture.

After identifying the set of test routines that are suitable

for use in DW projects, it is mandatory to provide the

tested with descriptions of these test routines to assist

him/her during the testing process. The next section

3 DDB refers to Dimensional Database

presents the description scheme that we introduced and

used to provide descriptions for all test routines inclosed

in the test routine list.

Table 3. Proposed DW Test Routines

 Schema Data Operation

D
S


D
SA

1. User requirements

2. Field mapping

a. Field naming,

b. Data types match,

c. Field size match,

3. Correct data selection

1. Record counts

2. Threshold test

3. Data boundaries

4. Data profiling

5. Random record

comparison

6. Field to field comparison

1. Rejected records

2. Data access

3. Security

D
SA


O
D

S

1. Schema Design

2. Field mapping

a. Field naming,

b. Data types match,

c. Field size match,

d. Data type constraints

3. Aspects of transformation

rules

a. Captured

b. Formula syntax

c. Transformation Logic

1. Record counts

2. Data integrity

a. Identity integrity

b. Referential integrity

c. Cardinal integrity

d. Inheritance integrity

e. Domain integrity

f. Relationship

dependency integrity

g. Attribute

dependency integrity

3. Parent-child relationship

4. Duplicate detection

5. Threshold test

6. Data boundaries

7. Data profiling

8. Random record

comparison

9. Field to Field

Comparison

10. Surrogate keys

a. Correctness

b. Integrity

1. Review job

procedures

2. Error logging

3. Performance

4. Rejected record

5. Data access

6. Forced Error test

7. Stress test

8. Security

O
D

S


D
W

1. User requirements

coverage

2. DW conceptual schema:

a. Conformed hierarchy

b. Understandability

c. Usability

d. Mapping to logical

model

3. DW logical model:

a. Mapping to physical

model

b. Functionality

c. Performance

(comply with MDNF)

4. Integrity constraints

5. Hierarchy level integrity

6. Granularity

7. Derived attributes

checking

8. Field mapping

a. Field naming,

b. Data types match,

c. Field size match,

d. Data type constraints

1. Record counts

2. Data integrity

a. Identity integrity

b. Referential integrity

c. Cardinal integrity

d. Inheritance integrity

e. Domain integrity

f. Relationship

dependency integrity

g. Attribute

dependency integrity

3. Parent-child

relationship

4. Duplicate detection

5. Threshold Test

6. Data boundaries

7. Data profiling

8. Random Record

Comparison

9. Field to field

comparison

10. No constants loaded

11. No Null records

loaded

12. Simulate data loading

13. Data aggregation

14. Reversibility of data

from DW to DS

15. Confirm all fields

loaded

16. Data freshness

1. Review ETL

documentation

2. ETL test

a. ETL activity

ordering

b. ETL

recoverability

c. Job sequence

d. Error

propagation

through jobs

e. Job resetting

f. Batch failure

propagation

g. Batch reset in

case of failure

3. Scalability

4. Initial load

5. Incremental load

6. Data access

7. Rejected record

8. Performance

9. Error logging

10. Forced error test

11. Stress test

12. Security

13. HW and SW

configuration

D
W


D
M

1. Schema Design

2. Calculated members

3. Irregular hierarchies

4. Correct data filters

5. Additivity guards

1. Measure

Aggregation

1. Security

2. HW and SW

configuration

3.2 Test routine description scheme

Test routines listed in Table 3 are a group of test routines

that are refined and few of them were introduced to the

DW testing process. To be able to use these test routines

they need to be fully described. The full description will

not appear in this section. However, The description

scheme that we introduced to broadly describe all test

routines is as follows:

1. Name: The common name used in testing field

for this test routine.

2. Layer: Which layer of the Kim-mon

architecture does this test routine take place?

3. Level: What is being tested in this test routine?

(Schema/Data/Operation)

4. Objective(s): a textual description of the test

routine showing its objective(s).

5. Type: The type of the test routine:

(Verification/Validation)

6. Severity: The importance of this test routine

(Mandatory, Recommended, Optional)

7. Periodicity: How often does this test routine

take place? (Schema Change/Data Load)

8. Part Under Test: which part of the component

under test is being tested (ex: Schema, Table,

Attribute, etc…)

9. Input(s): Required documents that need to be

available to conduct this test routine (if any).

10. Testing Scenario: The detailed description of

how this test routine is conducted.

11. Automation: the possibility of automating this

test routine and the type of automatic assistance

required, (Testing Tool, Data Generation Tool,

Test Case Generation Tool)

Each test routine was described using the above scheme.

Required information about each test routine was

gathered from existing testing approaches and few of

them were defined from scratch. For example; the test

routine named Duplicate Detection is described in Table

4 using the aforementioned scheme.

Table 4. Duplicate Detection Test Routine Description

All test routines displayed in Table 3 were described

using the same scheme, used in Table 4, to provide the

testers with some sort of instruction manual for DW

Name: Duplicate Detection

Layer: DSAODS

Level: Data

Objective(s): Confirm that no duplicate records exist in the ODS

Type: Verification

Severity: Mandatory

Periodicity: Data Loads

Part Under Test: Every Table in the Destination

Input(s): None

Testing Scenario:

There are two types of duplicated that needs to be

detected and resolved:

I. Duplicates resulting from incorrect data

transformation procedure.

II. Duplicates resulting from integrating data

from different data sources.

This first type of duplicates could be detected as follows:

1. Run a query on each destination table to

retrieve duplicates. An example of this query

could be as follows:

Select *

From <TableName>

Group by <AllAtributes>

Having count(*) >1.

2. If this query returns any results, it means that

there are duplicate records in this table and

these duplicates are a result of an incorrect

transformation process

The second type of duplicates could be detected by

applying one of the duplicate detection techniques that

have been severely studied in science to solve the

problem of duplicate detection and resolution in

integrated data. [12]

Automation: Testing Tool is required

testers, available at [8, 9], supplying them with any

required information regarding the process of DW

testing. However, this test routine description is adequate

for use with the Kim-mon architecture only. If another

architecture is used in a DW project, these test routines

need to be adapted to be adequate for use with the used

architecture. This paper proposes a customization

mechanism in the next section.

4. Multiple architectural accomodation

As it was previously discussed in section 1, DW

components are the interrelated parts of the DW

architecture that are connected together to transform data

in DSs into information. Moreover, by studying the

available architectural patterns discussed in literature, it

was notable that all the architectural components are

always used in the same order (DS, DSA, ODS, DW,

DM) if they are part of the selected architecture.

Since we are concerned with testing DWs with different

architectures, then the above mentioned set of test

routines that are defined on the Kim-mon architecture

need to be customized in a way to fit different

architectures.

Each test routine stated in Table 3 is mapped to a specific

DW layer. Each layer consequently relates this test

routine to two DW components (source and destination

components). For example, the test routine “Duplicate

Detection” presented in Table 4 is defined on the

DSAODS layer, hence, relates this test routine to both

layers the DSA and ODS. However, this test is concerned

with detecting duplicates that exist between the ODS

records and it is not concerned with the DSA by any

means. On the Contrary, the test routine “Record

Counts”, defined on the DSDSA layer in Table 3,

requires the participation of both the DS and the DSA in

the test routine in order to compare record counts and

confirm that they are matching.

So, relating test routines to DW layers only will not help

in the process of test routine customization to multiple

architectural patterns because each test is not related

explicitly to each DW component. For this reason,

adding more descriptive attributes to the test routine

description scheme discussed in the previous section is

needed to include in the test routine description the

prerequisite components that this test routine involves or

requires.

Two prerequisite attributes need be specified for each

test routine; one is a source prerequisite and the other is

a destination prerequisite. Depending on the objective of

each test routine and the role of the DW component with

respect to the test routine. Whether it is the source of the

data being transformed, or the component that receives

the data. These two attributes are not mandatory to all

test routines. Some test routines might require both

attributes to be specified like the Record Counts test

routine discussed above because its objective is to

compare results between the source and destination.

While another test routine requires only one prerequisite,

either the source or the destination, because they check

one component’s consistency or its validity with respect

to some other parameter like user requirements or

business rules. Example for these test routines is the

“Duplicate Detection” and “User Requirements”. The

two attribute templates are as follows:

Prerequisite(s):

 Source: <ComponentName>

 Destination: <ComponentName>

From another perspective, Test routines stated in Table 3

could be clustered according to the purpose of each.

Some of them are concerned with the successful

transformation of data from the data sources through all

the DW system data storages till it reaches the user.

Examples of these test routines are Record Counts,

Duplicate Detection, Data Boundaries, Error Logging,

etc. While others are concerned to experiment a specific

functionality that is served by a specific DW component.

For example, DW conceptual schema, DW Logical

Schema, and Measure Aggregation. This type of

clustering needs to be taken into consideration while

defining each test routine, because when a DW

component is not part of the architecture used, then these

test routines need not be considered in the proposed test

routine list. For this reason, an extra attribute named

“Single Layer Test (SLT)” is assigned the value 1 for test

routines that experiment specific functionalities to be

able to differentiate between the purpose of each test

routine. The template of the SLT attribute is as follows:

SLT: <Binary>

Till this point, all test routines have been mapped to its

proper components and all desired information about

each test routine is available in the test routine

description over the Kim-mon architecture. But, when

the architecture under test is a different architecture, a

mapping technique needs to be defined to re-direct the

test routines that refer to a DW component that is not part

of the architecture under test to another component that

is present in the given architecture. This technique is

defined as follows;

Using the extra two attributes that define the

prerequisites, each test routine is related to one or more

DW component each of which acts as a source or

destination prerequisite. When the test routine is related

to a prerequisite DW component that is not part of the

architecture under test, alternative component needs to

take over the place of the absent component and this test

routine will be conducted on the alternative component

instead to guarantee a proper transformation of data

between participating DW components. This rule does

not apply to test routines whose attribute SLT takes the

value 1 since these test routines are testing a specific

functionality of the prerequisite component that is

currently not part of the architecture used. Therefore, no

alternative component will perform this specific

functionality and consequently the test routines testing it

need not be taken into consideration.

Choosing the suitable alternative component is a decision

that is taken based on the type of the absent component,

whether it was a source or destination prerequisite with

respect to the test routine. If it was a source prerequisite,

the preceding alternative needs to be chosen as the absent

component’s replacement, and if it was a destination

prerequisite, the succeeding alternative will be chosen.

Figure 2 presents the succeeding and preceding

alternatives for all possible DW components.

Figure 2. DW Component Alternatives

It is quite common in the architectures discussed earlier

in section 1 that more than one consecutive component

could be absent from the DW architecture with respect to

the generic (Kim-mon) architecture presented in Figure

1. To find a suitable alternative for test routine’s

prerequisites, transitivity is applied on the alternative

relationship defined above. The relationship is transitive

in the sense that if an absent component is a preceding or

a succeeding alternative of another absent component,

then find the alternative component’s alternative to

replace it and assign it to the specified test routine.

To determine the alternatives for each absent prerequisite

the following steps will take place:

1. For each test routine that is not a Single Layer

Test, determine whether its prerequisites are

absent or present components. Since Single Layer

Tests need not be mapped on any other layers

because they target functionalities that are

specific to their prerequisites and when these

prerequisites are not part of the architecture under

test, these test routines will not be part of the

customized test routine list.

2. For each absent prerequisite, determine its

preceding or succeeding alternative components,

depending on the type of the prerequisite relation

whether this component is a source or a

destination prerequisite to this test routine.

3. For each preceding alternative component, if it is

also an absent component, then get its preceding

alternative. Repeat this sequence until the

transitivity rule leads to an alternative that is not

an absent component.

4. For each succeeding alternative component, if it

is also an absent component, then get its

succeeding alternative. Repeat this sequence until

the transitivity rule leads to an alternative that is

not an absent component.

This technique will assign test routines to DW

components that are part of the architecture under test to

be able to test it properly.

4.1 Example

If the architecture used for the DW is the Two Layer

architecture, presented in Table 1, which consists of DSs,

DW, and DMs. Then the two components DSA and ODS

are considered absent components with respect to the

generic (Kim-mon) architecture presented in Figure 1.

By applying the test routine customization on the test

routines presented in Table 3 and re-directing test

routines to their suitable prerequisite alternatives as

discussed previously the outcome of this process will

result in the set of test routines presented in Table 5 that

was customized to the Two Layer architecture not by

removing the two layers DSDSA and DSAODS but

redirecting their test routines to the appropriate

alternative layers.

Table 5. Test Routines for the Two-Layer Architecture

 Schema Data Operation

D
S


D
W

1. User requirements

2. Field mapping

a. Field naming,

b. Data types match,

c. Field size match,

d. Data type constraints

3. Correct data selection

4. Schema Design

5. Aspects of transformation

rules

a. Captured

b. Formula syntax

c. Transformation Logic

6. User requirements

coverage

7. DW conceptual schema:

a. Conformed hierarchy

b. Understandability

c. Usability

d. Mapping to logical

model

8. DW logical model:

a. Mapping to physical

model

b. Functionality

c. Performance (comply

with MDNF)

9. Integrity constraints

10. Hierarchy level integrity

11. Granularity

12. Derived attributes

checking

1. Record counts

2. Threshold test

3. Data boundaries

4. Data profiling

5. Field to field comparison

6. Random record

comparison

7. Parent-child relationship

8. Duplicate detection

9. Surrogate keys

a. Correctness

b. Integrity

10. Data integrity

a. Identity integrity

b. Referential integrity

c. Cardinal integrity

d. Inheritance integrity

e. Domain integrity

f. Relationship

dependency integrity

g. Attribute dependency

integrity

11. No constants loaded

12. No null records loaded

13. Simulate data loading

14. Data aggregation

15. Reversibility of data

from DW to DS

16. Confirm all fields loaded

17. Data freshness

1. Rejected records

2. Data Access

3. Security

4. Review job procedures

5. Error logging

6. Performance

7. Forced Error test

8. Stress test

9. Review ETL

documentation

10. ETL test

a. ETL activity

ordering

b. ETL recoverability

(Robustness)

c. Job sequence

d. Error propagation

through jobs

e. Job resetting

f. Batch failure

propagation

g. Batch reset in case

of failure

11. Scalability

12. Initial load

13. Incremental load

14. HW and SW

configuration

D
W


D
M

1. Schema Design

2. Calculated members

3. Irregular hierarchies

4. Correct data filters

5. Additivity guards

1. Data Aggregation

1. Security

2. HW and SW

configuration

5. Implementation

To structure and keep track of this large amount of

information required for test routines and the

relationships between test routines and their prerequisite

components, It was mandatory to store these details in a

structured yet flexible format to accommodate any future

changes that might take place; like adding test routines,

modifying test routine descriptions, and/or deleting

unnecessary test routines.

The proposed test routine description and customization

mechanisms were implemented using the graph database

Neo4j [25]. We chose the graph database because of its

flexible structure that could evolve through time without

affecting stored information. It is also distinguished to

have a very simple yet powerful querying language

called Cypher that is used as both data definition and

data manipulation language.

Using Cypher query, we have prepared a data definition

script that fully defines and fills the graph database with

all test routine definitions and relationships. Another

Cypher query template was defined to accommodate the

graph database according to the architecture under test.

Finally, a third Cypher query was defined to generate

from the customized graph database a detailed test

routine list clustered according to levels and layers as the

one displayed in tables Table 3 or Table 5 when the

architecture under test is the Kim-mon architecture or the

Two-Layer Architecture, respectively.

6. Case studies and evaluation

The proposed approach claims to provide a testing

technique that is adjustable according to the architecture

of the DW system under test. For this reason, it was

mandatory to experiment with it using different case

studies with different DW architectures.

The experimentation mechanism we used to apply the

proposed customization technique was getting access to

abstract information about the DW under test, proposing

the set of test routines adequate for the given architecture,

and getting the feedback from the DW testers regarding

the proposed test routine list. On the other hand, we

considered studying the testing technique used in the DW

under test (if available) and compared it with our

proposed test routine list.

During the selection of the case studies, we were keen to

find case studies with different architectures and to

choose companies in different sizes. The proposed

approach was applied to three case studies from three

different sized companies;

1. CentriVision: a small sized Egyptian company,

founded in 2003, whose development services

involves business intelligence solutions.[6]

2. SMSMT: a medium sized Australian company,

founded in 1986, that provides testing as one of its

services.[28]

3. Teradata: a large sized American company,

founded in 1979, that sells analytic data platforms,

applications and related services. [34]

Each of these companies was using a different DW

architecture in the DW project they supplied us with,

except for Teradata since it uses a generic architecture

for all its projects. The architectures of the three case

studies are displayed in Figure 3.

The results concluded from applying the proposed

accommodation mechanism to customize a test routine

list for each case study is presented separately in the

following three sections. Each section will present a

comment on the adequacy of the proposed approach

when applied to one of the case studies.

6.1 CentriVision

According to the DW development/testing team at

CentriVision, testing in this DW project was conducted

using team members’ experiences. There was no

standard testing technique used. However, a set of tests

takes place at different levels of detail to guarantee the

quality of the DW under development. The

categorization of CentriVision’s undocumented testing

activities is displayed in Table 6 categorized by layers

and levels they apply to with respect to the DW

architecture used.

Table 6: CentriVision Test Routine Categorization

 Level
Layer

Schema Data Operation

DSDM

 User Requirements

Coverage

 DM Schema Design

 Field mapping in

Transformation rules

 Record Counts

 Data Aggregation

 Calculated members

 No null measures exists

 Duplicate detection

 Simulate data loading

 Data freshness

 HW and SW

configuration

 Scalability of data

 Performance Test

 Review Job

Procedures

DMUI  User requirements

coverage - -

By communicating the proposed test routine list with a

project manager at CentriVision the feedback was as

follows:

1. Most recommended test routines that were

proposed in the test routine list are usually

conducted either directly by snooping for

mismatches in the migrated data or indirectly

during the process of defect tracking.

2. Supplying them with the customized test routine list

is of great help to give them ideas about what needs

to be tested and how these tests could be conducted

rather than depending on tester’s experience and

jeopardize the DW quality.

3. Regarding the test routines they did not support,

their feedback was that it would highly increase the

quality of their output products if taken into

consideration during the testing process.

From our point of view, depending on the tester’s

experience in testing the system is not a reliable way of

finding errors. Having a consistent and well

documented testing strategy that could be used as an

instruction manual for the tester to follow during the

testing process could highly assist the tester in knowing

the possible vulnerabilities that could take place in the

DW and testing the system to prevent it against

possible threats. Applying the testing technique that is

defect oriented; where the tester follows defects to fix

the errors, is not the best way to find and fix errors. It

could be possible that errors exist in the system, but the

right test was not conducted to reveal them.

Centrivision’s Architecture

SMSMT’s Architecture

Teradata’s Architecture

Figure 3. Architectures of the Case Studies

6.2 SMSMT

According to a Testing and Quality Assurance

consultant at SMSMT, the company agreed to use a

set of test routines in their current project of

developing a DW for a Legacy system. Table 7

presents the test routines used in this case study. The

set of test routines used in this case study are mostly

data tests which involve simulating and comparing

data transformations between different data storages.

Table 7. SMSMT Test Routine Categorization

 Level
Layer

Schema Data Operation

DSDSA
Field Mapping

 Not nullable fields

 Record counts

 Field to field comparison

 Simulate data loading

Delta load test

DSAODS  Field mapping

 Transformation

rules test

 Record counts

 Field to field comparison

 Simulate data loading

 Domain Key Metric test

Delta load test

ODSDW  Field mapping

 Transformatio

n rules test

 Record counts

 Field to field comparison

 Simulate data loading

 Domain Key Metric test

 Initial load test

 Incremental load

test

DWUI -
 Result comparison

across data sources
-

By communicating the proposed set of test routines

customized for the SMSMT case study, the feedback

of the test and quality assurance consultant was as

follows:

1. The proposed set of test routines is quite

comprehensive for a one-time load, however,

it misses the tests for delta loads on several

layers.

2. Some test routines that we proposed needs to

be conducted on different layers like the

performance and stress tests needs to take

place between DS and DW not only ODS and

DW.

3. The proposed set of test routines lacks the

consideration of timeliness of test routines to

guard against the execution of test routines that

might cause conflicts in the data if run at the

same time.

The comparison between the proposed and the used

set of test routines showed that 90% of the test

routines used in SMSMT case study are included in

the proposed set of test routines which confirms the

soundness of the proposed approach and proves its

adjustability to a different architecture.

6.3 Teradata

According to the interview conducted with the test

manager at Teradata Egypt, there exists a

documented, well defined, and formulated testing

strategy that is used in all DW projects in Teradata,

yet it is still in the editing phase [33]. The basic

modules of tests were interpreted from the testing

strategy and was categorized according to layers and

levels of the DW architecture. Table 8 presents the test

routines introduced in the Teradata testing strategy.

As it is shown in Table 8, all test routines used by

Teradata are tests that take place before system

delivery. Any post delivery tests are conducted by the

quality assurance team based on the customer’s

reporting of errors or inconsistencies on the output

data. The Teradata testing strategy is also notable for

its coverage on all three testing levels (Data, Schema,

and Operation), which highly enriches the quality of

their DW products.

Table 8. Teradata Test Routine Categorization

 Level
Layer

Schema Data Operation

DS DSA  User

Requirements

 Data types

 Columns order

 Record counts

 Pattern counts

 Data profiling

 Random record

comparison

 All sources are

loaded

 Rejected records

DSADW  Field mapping

 Review Logical

schema for

customizations

 Naming

Conventions

 Record Counts

 Field to field comparison

 Random record

comparison

 Primary key index integrity

 Surrogate keys integrity

and correctness

 Referential integrity

 Domain integrity

 History integrity

o Reverse History

o History Overlap

o Null History

o History Gap

o Open end History



 Rejected records

 Performance test

 ETL Scheduling

DWDM  Schema Design

 Record counts

 Field to field comparison

 Data aggregation

 Business Rules Integrity

 Security

 HW and SW

configuration

DMUI  User

Requirements

Coverage

 Business logic testing
-

A comparison took place between the Teradata testing

strategy and the proposed test routine list customized

on the Teradata architecture. Table 9 presents a

numerical reference, for the number of test routines

that Teradata testing strategy takes into account from

the proposed test routine list. For example, On the

DSADW layer at the Data level, the Teradata

testing strategy considers 8 of the proposed 17 test

routines and applies an extra 5 test routines to test this

layer of the DW.

This comparison revealed that, in general, the

proposed test routine list agrees with the Teradata

testing strategy in 40% of the proposed test routines.

This is because the proposed set of test routines

contains all possible test routines that could be used

to test any DW, however; the proposed test routines

should not be all conducted on any system. Some of

them are alternative to each other which leaves to the

tester the option of choosing among them.

Table 9. Teradata Vs Proposed Testing Strategy

 Level
Layer

Schema Data Operation

DS DSA 1/4 3/6 +1 1/3 +1

DSADW 2/9 +1 8/17 +5 7/14 +1

DWDM 1/5 1/1 +1 1/2

According to the analysis abstracted in Table 9, it is

clear that the Teradata testing strategy agrees with the

proposed test plan to a great extent on the data level

comparisons. On the schema level, however, the

Teradata testing strategy lacks the support of most of

these types of tests. This was due to their reliance on

the data tests that will reveal any possible schema or

structural problems or inconsistencies.

What Table 9 revealed as well was that the tests on

the operational level like scalability, security, or

stress were not conducted on a project basis. This is

because they use the Teradata Database Management

System which is extensively tested from these

perspectives and results are guaranteed if proper HW

and SW configurations took place.

On the other hand, to fairly compare the two testing

strategies, Table 9 shows that on certain levels and

layers the Teradata testing strategy supported some

test routines that were not part of the proposed test

routine list. These test routines are Italicized in Table

8. By studying these test routines we see that

including these test routines in our proposed testing

technique would be a good addition to it.

From a different angle, after communicating the

proposed detailed test routine list with the Test Lead

and a Testing Developer at Teradata Egypt, we were

able to get their feedback regarding the proposed set

of test routines. Their comments were as follows:

1. The proposed set of test routines could be

considered as the standard suite of tests

required for system test a DW solution.

2. It is satisfactory for the technical

requirements of testing a DW solution.

From their point of view, what lacks the proposed

testing strategy is reference to commercial tools that

could be used to automate each test routine, showing

stakeholders involvement in each test routine and

absence of the test routines supported by Teradata and

not included in the proposed testing strategy as

discussed previously.

In spite of the above drawbacks, due to the flexibility

of the graph database, they could be easily overcome

by introducing the required modifications on the

graph database with minimal change in the Cypher

query graph creator script.

6.4 Overall evaluation

As discussed previously in section 02 the main

drawback of existing testing approaches was their

rigidity with respect to the architecture of the DW.

Each approach assumed that the architecture used in

their approach is the DW architecture mostly used and

proposed a testing strategy for it. What distinguishes

our proposed approach is its flexibility of adapting the

test routines according to the architecture under test

unlike other approaches.

Table 10 presents possible architectures that the

proposed test routine list could be customized for. The

proposed approach was the first approach that covers

testing DWs with different architectures and not only

supported well-known architecture types discussed in

the literature, but also supported other DW

architectures that are sometimes used but it was not

named in the literature.

Table 10. Proposed Framework Architectural

Coverage

Architectural Pattern
 Name

Proposed
Approach’s
Coverage

One Layer X

Two Layer 

Independent Data Marts 

Bus 

Three Layer 

Drill-through 

Hub and Spoke 

Centralized 

Federated X

Kim-mon (Generic) 

DSDSADWDM 

DSDSADM 

Architectures not supported in the proposed approach

are the ones that involve a special nature layer which

is not commonly used in DWs. For example, the

Single Layer architecture integrates data virtually

through a group of on-the-fly transformation rules.

Neither integrated data are stored nor are historic data

available for any decision making processes. This

type of DWs requires a custom made test plan that

could not be provided given the proposed test routine

list. The same rule applies for the Federated

architecture, where the Integration Layer is a special

layer that needs a custom made testing technique.

However, our proposed test routine list is adequate for

testing the transformation of data from the DSs to the

federated DMs smoothly.

What needs to be clarified regarding the architectural

coverage is that the proposed approach does not

present test routines that targets the layer of the UI

which is a drawback that affects all supported

architectures. However, The UI Layer testing were

beyond our scope and excluding it was based on

expert’s recommendation because there are different

means of UIs like reports, charts, DSS tools, and

Analytical tools; where, each of which required a

different testing technique for their verification and

validation.

7. Conclusion and future work

What distinguishes this study from any other

proposed solution for the issue of DW testing is the

comprehensiveness of the description scheme that

was used to describe all test routines, studying DW

architectures to interpret means of relating

architectural components in order to fulfill the aim of

providing the DW testers with a generic solution for

DW testing adequate for use in multiple projects with

different architectures, benefiting from other people’s

work by integrating the proposed solution with their

work to come up with a detailed technique for DW

testing with minimum effort and maximum gain, and

finally, considering future system modifications by

using a graph database to store the test routine

descriptions to be easily extended to contain various

system additions or changes.

Future work in this area could be categorizing test

routines according to the well known software testing

phases, namely; Unit testing, Integration testing,

System testing, and User Acceptance testing. Since it

has been widely agreed upon that the testing phase is

categorized into the aforementioned test phases, it

would be of great help to the testing team to suggest

for them test routines given in the categorization

scheme they are familiar with.

Another possible extension to the proposed work

could be including the group of test routines targeting

the layer of User Interfaces since it has been skipped,

though our research.

Test routines suggested in this paper are all possible

test routines. Not all of them need to be conducted on

any DW to test it. Consequently, testers are given the

opportunity to choose the proper set of test routines to

conduct on their DW. Hence, providing the testers

with enough information about relationships between

test routines and possible dependencies that might

take place between them might help them choose the

proper set of test routines without sacrificing their

system’s quality.

In the end, we would like to conclude that the

proposed architecture-oriented testing approach may

not be the ultimate solution for DW testing, however,

it has gained multiple user’s trust. It is powerful for

its flexibility and might be adequate for use by small

to medium sized DW development companies that do

not have standardized or comprehensive DW Testing

frameworks.

8. Acknowledgements

We would like to thank the companies who supported

us with time and resources to be able to experiment

with the proposed architecture-oriented DW testing

approach (Teradata Egypt, Centrivision, and

SMSMT).

9. REFERENCES

[1] R. Abellera, Data Warehouse Architectures:

Overview of the Corporate Information Factory

and the Dimensional Modeling, The Data

Warehouse Institute, 2010.

[2] C. Bateman, Where are the Articles on Data

Warehouse Testing and Validation Strategy?,

Information Management, 2002.

[3] S. Bhat, Data Warehouse Testing - Practical,

Stick Minds, 2007.

[4] B. Boehm, A Spiral Model of Software

Development and Enhancement, 21 (1988), pp.

61-72.

[5] K. Brahmkshatriya, Data Warehouse Testing,

Stick Minds, 2007.

[6] CentriVision, www.Cenrivision.com, 2003.

[7] R. Cooper and S. Arbuckle, How to Thoroughly

Test a Data Warehouse, Software Testing

Analysis and Review (STAREAST'02), Orlando,

Florida, 2002.

[8] N. ElGamal, Data Warehouse Test Routine

Descriptions, Technical Report,

www.researchgate.net/publication/289729988_D

ata_Warehouse_Test_Routine_Descriptions,

2016.

[9] N. ElGamal, Data Warehouse Testing, PhD.

Thesis, Faculty of Computers and Information,

Cairo University, 2015, Appendix B, pp. 193-

228.

[10] N. ElGamal, A. ElBastawissy and G. Galal-

Edeen, Data Warehouse Testing, Proceedings of

the Joint EDBT/ICDT PhD Workshop, ACM,

Genoa, Italy, 2013.

[11] N. ElGamal, A. ElBastawissy and G. Galal-

Edeen, Towards a Data Warehouse Testing

Framework, Proceedings of the 9th International

Conference on ICT and Knowledge Engineering

(ICT&KE'11), IEEE, Bangkok, Thailand, 2011,

pp. 67-71.

[12] A. K. Elmagarmid, P. G. Ipeirotis and V. S.

Verykios, Duplicate Record Detection: A Survey,

IEEE Transactions on Knowledge and Data

Engineering, 19 (2007), pp. 1-16.

http://www.cenrivision.com/
http://www.researchgate.net/publication/289729988_Data_Warehouse_Test_Routine_Descriptions
http://www.researchgate.net/publication/289729988_Data_Warehouse_Test_Routine_Descriptions

[13] M. Golfarelli and S. Rizzi, A Comprehensive

Approach to Data Warehouse Testing,

Proceedings of the ACM 12th international

workshop on Data warehousing and OLAP

(DOLAP'09), ACM, Hong Kong, China, 2009,

pp. 17-24.

[14] M. Golfarelli and S. Rizzi, Data Warehouse

Design: Modern Principles and Methodologies,

McGraw Hill, 2009.

[15] M. Golfarelli and S. Rizzi, Data Warehouse

Testing, International Journal of Data

Warehousing and Mining, 7 (2011), pp. 26-43.

[16] M. Golfarelli and S. Rizzi, Data Warehouse

Testing: A prototype-based methodology,

Information and Software Technology, 53 (2011),

pp. 1183-1198.

[17] J. Guerra and D. Andrews, Why You Need a Data

Warehouse, www.rapiddecisions.net, Copyright

Andrews Consulting Group, Inc., 2011.

[18] S. L. Gupta, P. Pahwa and S. Mathur,

Classification of Data Warehouse Testing

Approaches, International Journal of Computers

and Technology, 3 (2012), pp. 381-386.

[19] W. H. Inmon, Building the Data Warehouse,

Wiley Comp., 1996.

[20] M. Jarke, M. Lenzerini, Y. Vassiliou and P.

Vassiliadis, Fundamentals of Data Warehouses,

Springer-Verlag New York, Inc., 2001.

[21] R. Kimball, L. Reeves, W. Thornthwaite and M.

Ross, The Data Warehouse Lifecycle Toolkit:

Expert Methods for Designing, Developing and

Deploying Data Warehouses, John Wiley \&

Sons, Inc., 1998.

[22] M. P. Mathen, Data Warehouse Testing, Infosys

Technologies Limited, 2010.

[23] R. Mattison, The Data Warehousing Handbook,

XiT Press, Oakwood Hills, Illinois-USA, 2006.

[24] A. Munshi, Testing a Data Warehouse

Application, Wipro Technologies, 2003.

[25] Neo4j, Neo4j Graph Database, 2013.

[26] V. Rainardi, Testing your Data Warehouse,

Building a Data Warehouse with Examples in

SQL Server, Apress, 2008.

[27] W. W. Royce, Managing the development of

large software systems: concepts and Techniques,

Proceedings of the 9th International Conference

on Software Engineering (ICSE'87), Monterey,

California, USA, 1987, pp. 328-338.

[28] SMSMT, SMS Management and Technology

www.smsmt.com, 1986.

[29] P. Tanuška, O. Moravčík, P. Važan and F. Miksa,

The Proposal of Data Warehouse Testing

Activities, Proceedings of 20th Central European

conference on Information and Intelligent

Systems, Varaždin, Croatia, 2009, pp. 7-11.

[30] P. Tanuška, O. Moravčík, P. Važan and F. Miksa,

The Proposal of the Essential Strategies of Data

Warehouse Testing, Proceedings of 19th Central

European Conference on Information and

Intelligent Systems (CECIIS'08), 2008, pp. 63-67.

[31] P. Tanuška, P. Schreiber and J. Zeman, The

Realization of Data Warehouse Testing Scenario,

proizvodstvo obrazovanii. (Infokit-3) Part II: 3

meždunarodnaja nature-techničeskaja

konferencija., Stavropol, Russia, 2008.

[32] P. Tanuška, W. Verschelde and M. Kopček, The

proposal of Data Warehouse Test Scenario,

Proceedings of European conference on the use

of Modern Information and Communication

Technologies (ECUMICT'08), Gent, Belgium,

2008.

[33] Teradata, Teradata Testing Strategy, 2014.

[34] Teradata, www.teradata.com, 1980.

[35] J. Theobald, Strategies for Testing Data

Warehouse Applications, Information

Management, 2007.

[36] D. Vucevic and W. Yaddow, Testing the Data

Warehouse Practicum - Assuring Data Content,

Data Structures and Quality, Trafford, 2012.

[37] D. Vucevic and M. J. Zhang, Testing Data

Warehouse Applications, Trafford Publishing,

2011.

[38] W. Yaddow, Conducting end-to-end testing and

quality assurance for data warehouses, IBM Data

Magazine, 2013.

[39] W. Yaddow, Enriching data warehouse testing

with Checklists, IBM Data Magazine, 2013.

http://www.rapiddecisions.net/
http://www.smsmt.com/
http://www.teradata.com/

