
BaSE(Byte addressable Storage Engine) Transaction Manager

Sathyanarayanan Manamohan
Hewlett-Packard Enterprise

sathya@hpe.com

Ravi Sarveswara
Hewlett-Packard Enterprise

ravi.s@hpe.com

Krishnaprasad Shastry
Hewlett-Packard Enterprise

krishnaprasad.shastry@hpe.com

Kirk Bresniker
Hewlett-Packard Laboratories

kirk.bresniker@hpe.com

Shine Mathew
Hewlett Packard Enterprise

shine.mathew@hpe.com

Goetz Graefe
Hewlett-Packard Laboratories

goetz.graefe@hpe.com

Abstract
Non-Volatile Memory (NVM) is an emerging
memory technology that combines the best
properties of current hard disks and main
memories by providing non-volatility, high
density, high speed, and byte addressability. This
provides an opportunity to redesign systems and
their software stacks to improve performance and
to reduce the complexity. Present-day database
systems are designed and optimized for
traditional disks and memory hierarchies. They
are very complex because they handle varying
levels of storage latencies, from CPU caches to
hard disks. Our intention is to build a prototype
storage engine that is optimized for NVM and
which takes advantage of the collapsed memory
hierarchy. We are developing this storage engine
in an incremental way. In this paper, we describe
a novel approach to optimize write-ahead
logging (WAL) for NVM based systems.

Most database systems use ARIES-style
write-ahead logging to implement transactions.
ARIES techniques are optimized for disk based
systems and tuned for the sequential write
performance of disks. We leverage the high
speed, byte-addressable random access of NVM
to design a high-performance logging
mechanism. We discuss the bottlenecks of
sequential logging, identify the challenges of
distributed logging and propose a novel solution.
We show that NVM-optimized logging improves

performance 8-15 times over default
MariaDB/XtraDB for log-intensive workloads.

1. Introduction
Transactions are an essential part of OLTP data

management systems. Strong transactional support is
crucial for supporting the operational activities of all
businesses. A significant amount of research effort is
dedicated to the design of efficient, reliable and scalable
transactions. A key research focus area in transaction
processing systems is the support of ACID properties. The
transaction systems use write-ahead logging or shadow
copy and concurrency control techniques to support ACID
properties. Traditional database systems, which support
strong ACID compliance most commonly use write-ahead
logging. The non-relational data management systems,
also popularly called as NoSQL, support eventual
consistency properties based on CAP theorem [15] and
commonly use shadow copy.

Traditional database storage engines can be divided
into four important modules based on functionality. They
are Access methods, Log manager, Lock manager and
Buffer pool. These four modules account for about 80%
of CPU cycles when the database system runs entirely in
memory [1].

Most of the transaction processing system
implementations rely on DRAM for performance and
disks for persistent storage. The data structures and the
algorithms are optimized for this type of memory
hierarchy. The advent of NVM provides opportunity to
redesign and optimize the data structures and algorithms
to use a single layer of flat memory. We evaluate various
properties of NVM and the opportunity it provides to
redesign the transaction management systems that are
used in relational databases.

The reminder of the paper is organized as follows.
The next few sub-sections provide the background on
NVM, transaction management system components and a
specific implementation in an open source RDBMS,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Articles from this volume
were invited to present their results at The 21st International Conference
on Management of Data.
COMAD, March 11-13, 2016, Pune.
Copyright 2016 Computer Society of India (CSI).

MariaDB [13]. Section 2 captures some of the related
work to optimize the transaction systems. Section 3
discusses the implementation of write ahead logging on
NVM and its benefits. Section 4 mentions the prototype
implementation and the results. The final section contains
our summary and conclusions.

1.1. Non-volatile memory

Non-Volatile Memory (NVM) is an emerging
memory technology that combines best properties of
today’s hard disks and main memories. It offers non-
volatility, high speed and byte addressability [19]. There
are many different forms of NVM technologies such as
Phase Change Memory (PCM) [16], Spin-Transfer
Torque RAM (STT-RAM) [17] and Memristor [18] that
are being developed actively. Each of these uses a
different underlying technology. They exhibit different
characteristics in terms of read/write latency, endurance,
energy efficiency etc.

However all these NVM technologies offer byte-
addressability, high speed read/write access that is
comparable to DRAM and storage capacities that is
comparable to HDD or SSD.

We design our solution based on these generic
properties. We are not dependent on any specific NVM
implementation. It is a conscious attempt to make the
solution NVM-technology neutral.

Byte addressability provides an interesting
programming model as it allows programs to persist data
objects directly on NVM without converting them into
disk format. We leverage this aspect in our solution to
avoid maintaining multiple formats of data and having to
convert between them.

There are many different areas in which NVM can be
used in a system architecture. The straight-forward option
is to use NVM as a disk replacement, which maintains the
programming semantics and thus involves the least
amount of changes to the software layer. But, in general,
this approach does not work because it upsets the
optimization and fine tuning for hard disks. The next
option is to use NVM as fast cache in between disk and
DRAM. The third option is to use NVM alongside
DRAM in same address space. This is the most interesting
one because the CPU can use load and store operations to
access NVM directly. We develop our solution with the
assumption of a direct load/store model.

1.2. Transactional logging in relational and non-
relational systems

Transaction support is essential in all data
management systems for handling failures and reducing
the impact of failures on the system’s overall behavior.
We consider everything from file systems to complex
RDBMS in the scope of transactions for data
management. Several methods have been adopted to
handle failures ranging from protecting the metadata for

single operations, like it is done in file systems, to
complex multi-operation, multiple data entities in
RDBMS. There are also complex combination of
techniques that attempt to provide ACID properties to file
system operations [7][8].

Irrespective of the use case, the systems have to be
engineered from the ground up to support solid
transaction semantics and robust failure recovery.
RDMBS are built ground up with transaction semantics,
but these design choices made them very complex and
rigid. These, to some extent contributed to the
development of NonSQL solutions that are more flexible.
But they make other design choices that, in turn, make it
very difficult to support ACID properties. Hence,
flexibility and performance of the transaction
management system are essential design parameters for
any high-performance transaction manager. The
emergence of non-volatile memory gives us an
opportunity to re-design the transaction managers to
achieve these goals and make them suitable for the data
management systems of the future.

1.3. Limitations of WAL

Most database systems use ARIES [2] style write-
ahead logging (WAL) to implement transactions. ARIES
design decisions are made to get optimal performance for
disk based systems. ARIES adopts a centralized logging
and optimizes it to leverage the sequential write
performance of disks. To hide the performance difference
between DRAM and disks the log records are cached in
DRAM and forced to disk at the time of commit. This
creates a two-layered logging system.

The centralized logging with two-layered design
causes several bottlenecks. Aether [3] identifies four types
of delays that impact the logging performance: (a) IO
related delay; (b) excessive context switching; (c) log
induced lock contention; and (d) log buffer contention.

Several techniques have been developed to address
these problems on the traditional assumptions of slow
block oriented disk and byte-oriented DRAM. The NVM
technologies open up a new opportunity to optimize WAL
for byte-addressable persistent memory.

1.4. Logging in XtraDB

XtraDB [14] is a transactional storage engine for
MariaDB. A transactional storage engine, in MariaDB’s
context, is a pluggable software module that performs
various data management operations, such as create,
insert, update and delete, on the data that it manages in a
transactionally consistent manner. It uses the concept of
write ahead logging to manage transactions. XtraDB
maintains the transaction logs in DRAM as a circular
buffer and a persistent copy of the same content in a flat
file on disk. All database operations that are performed
by the storage engine to manipulate the database's pages
are logged in a Redo log prior to the actual execution. The

contents of the redo logs are flushed to disk before
transaction commit, in line with WAL semantics. The
redo log is used during system recovery. In XtraDB the
system recovery starts off by replaying the redo log on to
the buffer pool until all the database pages are recovered.
This replay starts from the last successful checkpoint.
Once this replay is over, the undo log is used to rollback
all partially complete transactions.

XtraDB maintains the undo log in memory and on
disk. The undo logs contain the before images of database
records that were modified by a transaction. The undo
logs in XtraDB are used to support transaction rollback,
database flush of dirty pages into disk and the concept of
MVCC to optimize read performance. The data itself is
maintained as a B-tree on disk and a hash table in an in-
memory buffer pool. The redo log and buffer pool are
flushed periodically flushed into the disk. We use XtraDB
as the vehicle to demonstrate the effect of design changes
as it is extensively used commercially and it is open
source. This allows us to run relevant benchmarks on the
solution and prove the solution on real-world applications.

2. Related work
Aether [3] identifies a set of challenges with WAL –

(a) I/O related delays, (b) log induced lock contention, (c)
excessive context switching and (d) log buffer contention.
The paper recommends a set of optimizations using a
combination of early lock release and flush pipelining.
Early lock release allows transactions to release their
locks as soon as the commit records have been made
durable. Flush pipelining helps to reduce the I/O delay
and log induced lock contention. The authors also
recommend redesigning of log buffer to enable better
parallelism.

Fung R. et al. [4] describe an approach to implement
WAL on storage class memory (SCM). They allocate log
records directly on SCM to reduce I/O related delays.
They avoid the techniques like group-commit. However,
they still write the log records sequentially.

MARS [5] moves most of the logging functionality to
hardware and eliminates the Log Sequence Number
(LSN) and log checkpointing. It accomplishes this by
allowing the storage array to maintain the ordering of
write at commit time instead of maintaining the LSN at a
software level. MARS also relies on hardware writes to
eliminate the need for log checkpointing.

There have been proposals to revisit the design of
logging in Flash and PCM based storage [9][10]. Sang-
won Lee et.al. propose a technique called in-page logging
(IPL) as a new storage model for flash based database
systems. To overcome the erase-before-write limitation of
flash memory, they propose the IPL technique to co-
locate the log and data pages. The IPL-P paper is an
extension of the in-page logging method and proposes
move the log storage to PCM based storage for better
performance.

Tianzheng Wang et al. [20] describe an approach for
distributed, NVM-backed logging. They evaluate the
performances of two log distribution schemes – one that is
distributed on a transaction level and another that is
distributed on a page level. They recommend distributing
on a transaction level. We show using a transaction level
distribution for the undo log and a page level distribution
for the redo log performs better.

Jian Huang et al. [21] show that they get the best
transactions per dollar rate by moving only the logging
subsystem to NVRAM, rather than replacing all disks
with NVRAM. In their implementation, they use a
circular log on NVRAM and chain the log entries using
pointers to enable recovery. However, this slows the
recovery process because the entire log chain must be
traversed to build the set of dirty pages. This approach to
page-level recovery is not efficient.

3. Our solution
We have designed a NVM-optimized logging system

that writes log records directly to NVM and have
implemented a prototype based on MariaDB/XtraDB.

In the context of our solution, we assume the NVM is
directly accessible by the database process using
load/store model. We treat it as a byte-addressable
persistent memory alongside DRAM memory.

Our design depends on system primitives and
programming APIs to read and write the NVM. These
APIs shall: (a) support namespaces for NVM; (b) support
dynamic memory management; and (c) support variable
length read/write operations in an atomic and durable
way. There are challenges in implementing variable
length atomic read/write operations. The implementation
has to take care of write ordering, cache flushes, fault
zones, fault containment in NVM etc. Our implementation
assumes these challenges will be abstracted and handled
by the NVM programming APIs. Atlas [19] is an example
of such an API that provides the necessary atomicity
guarantees and also handles the memory management.
We did not have access to this library at the time of this
work and so, we modeled NVM access using mmap files.

There are two main types of log records that are used
in traditional ARIES-style WAL: (a) undo log records,
which store information about how to undo a change; and
(b) redo log records, which store information about how
to reproduce a change. In traditional database systems, the
log records are cached in memory and persisted on disk as
a large sequential file. The log files are flushed to disk
before the transaction commits. Database systems employ
several optimizations to improve the performance of log
writing, such as group-commit [6], which aggregates
multiple log write requests into a single IO, and
asynchronous commit, which allows transactions to
commit without waiting for log IO requests to complete.

We write log records directly on NVM. This
eliminates the IO related to log records and also simplifies

log buffer management. XtraDB has separate memory
space in DRAM for redo and undo log records. The undo
log records are stored along with page data in the buffer
pool. The redo log records are stored in a separate circular
buffer. In our solution, we do not maintain any of the log
records on DRAM. We maintain two separate hash lists in
NVM for the redo and undo records. Figure 1 shows log
files representation on default MariaDB/XtraDB and our
NVM optimized log manager.

As writes to NVM are very fast, we write the log
records synchronously. Persisting of the redo data is
synchronous with the commit. We do not wait for a
separate thread to flush to disk before finishing the
commit operation. This reduces the extensive context
switching that occurs due to log-record related IO
operations in traditional systems.

Traditionally, log records are cached in DRAM using
an in-memory format and stored on disks in a block-
oriented format [22]. The log records are converted from
the memory format to the disk one while persisting them.
The disk format is converted to the memory format when
the log records are read for recovery. We avoid the
multiple formats and implement a single unified format of
log records on NVM. Thus we avoid the extra memory
copy and log record conversion complexity.

Synchronous write also allows our solution to
eliminate the group commit. This in turn reduces the log
induced lock contention.

To overcome the log-related contention, we have re-
designed the redo and undo logs. The operations on these
log files exhibit different degrees of parallelism. We have
designed them with different parallelism schemes after
taking their usage into account. The undo operations are
applicable for a transaction and hence can be parallelized
at transaction level. The redo operations are applicable for
a page and hence can be parallelized at page level. We
observe these parallelism needs of undo and redo
operations and design a customized distribution scheme.
We distribute undo log records based on transaction ID
and implement it as a linked list of undo records
belonging to a transaction. We implement a hash based
distribution of transaction IDs.

Figure 2 shows the structure of undo log records. The
information about transaction state and pointer to undo
log records are maintained in a hash table. The undo log
records, that contain undo number, page number, LSN

and undo operation details (called as payload) is
implemented as a linked list. This eliminates the
contention for writing undo log records from multiple
transactions. Only during the beginning of a transaction
we need to acquire a lock to get the corresponding hash
slot. Thus we improve the concurrency of undo log
operations.

Similarly we distribute the redo log records based on
page id. Figure 3 shows the structure of redo log records.
We store the details of page number, start and end LSN of
the page and pointer to redo chain in hash bucket header.
We store redo records that consists of transaction ID,
record type, LSN, record payload etc. as a linked list. This
reduces the redo log write contention across the pages.
Only the parallel transactions that operate on the same
page contend for the redo log chain. With this customized
distribution of redo and undo log records we can
implement more granular latches and increase the
parallelism in logging operations. This reduces the log
buffer contention and improves the performance.

ARIES recommends periodic checkpointing to
accelerate the recovery. The checkpointing flushes the log
records and dirty pages in buffer pool to disks. The
checkpoint log record holds information about active
transactions, its state and flushed LSN. Since the active
transactions and their states are directly written to NVM

Figure 2: Undo log record structure

Figure 3: Redo log structure

Figure 1: Logging on NVM

along with undo logging, the checkpoint log record has to
just write the flushed LSN. This improves the
checkpointing performance.

Our parallel hash based distribution of the redo and
undo log records opens up the opportunity to parallelize
recovery operations. ARIES recommends the recovery in
3 phases: (i) analysis phase – during which the algorithm
reads the flushed LSN information from checkpoint and
scans the log records sequentially to gather the required
redo and undo operation information, (ii) redo phase –
during which the redo operations are applied to bring the
database back to the state before the crash; and (iii) undo
phase – during which undo operations are applied to
reverse the effect of inflight transactions. Our distributed
redo log records enable parallelism in building and
applying redo operations. Distributed undo log records
enable parallelism in rolling back the inflight transactions.
Thus we improve the recovery performance. The benefits
of partitioning log records are explained in the following
sections.

3.1. Partitioning log structures

Partitioning of log structures addresses several
bottlenecks that are seen with sequential logs.

Centralized log structure is well suited for disk based
systems. In such systems, log records from multiple
transactions are logged into a centralized log structure.
These log records are persisted on disk using the
sequential IO. Optimizations like group-commit are done
to further improve the IO performance. But a centralized
log creates synchronization problem. Multiple
transactions that run in parallel will contend to get the
lock at the head of the log structure to write log records.
The contention increases with number of parallel
transactions and causes a concurrency limitation. Since
the threads have to wait for the lock they get context
switched. This also increases the number of context
switches and impacts the performance.

The centralized logging will also impact the
parallelism of recovery operation. To parallelize the
recovery operation, the recovery system has to process the
sequential log to extract the undo and redo information
into some partitioned structure. Typically the recovery
system does this during the initialization phase.
Otherwise, the system would be scanning and applying
the sequential logs one record at a time, which will
significantly increase the recovery time.

Our design avoids these problems by partitioning the
undo and redo logs in NVM. We use hash based
partitioning scheme. By hashing we break up the single
centralized log head into several streams equal to the
bucket size of hash table. This eliminates the bottleneck
on global log by parallelizing access to the logs. This will
enable several threads to write to the log records
simultaneously. Consequently, this reduces log induced
contention and context switching.

Also having to separate logs structures for undo and
redo logs allows us to partition the log in the most optimal
way based on the use case. Undo logs are closely
associated with a transaction hence we partition it based
on transaction Id. This allows us to create sufficiently
large hash buckets to the extent where we can completely
eliminate the need of synchronization constructs and
make the undo logging practically lock free. As an
example, if we optimize the system to handle 2K
concurrent transactions, we can create an undo log hash
table having more than 2K (closest prime number) bucket.
In this way every transactions will get its own exclusive
hash bucket there by eliminating the need to have a
synchronization construct to manage the undo log. This
also simplifies the search of undo logs during recovery
operation, as all the undo logs pertaining to individual
transaction that needs to be rolled back during recovery
are found grouped in the same hash bucket.

Similarly redo logs are partitioned on page ID that
allows several database threads to operate in parallel as
long as they don’t try to append redo log records on the
same page. Due this approach, optimizations like
grouping redo logs prior to append into the global logs are
no longer needed. Transactions can directly append the
logs into the log structure directly as and when they are
generated. This also simplifies the recovery operation.
During recovery multiple threads can be created to
recover the pages in parallel.

3.2. Benefits of undo and redo log optimizations

In this section, we explore the implications of the
design optimizations that we explained in the previous
section. The first implication is the simplification in the
process of releasing locks that were held by the
transaction. Transactions acquire locks to protect the data
that it is using, against possible corruption from
concurrent access. This ensures the isolation guarantee of
the database is maintained. Lock release happens at the
end of a transaction when the commit status of the
transaction is flushed into durable media. In traditional
systems, we have to wait for the flushing of commit
records to complete. This creates an I/O bottleneck.
Transactions are made to wait [3] [6] for the grouping of
log data to be sufficient enough to overcome the cost of a
doing a serial I/O to disk. Our solution eliminates this
completely because the logs are directly written to
persistent media in their native form. Our solution does
not maintain two distinct data structures, one where we
buffer the logs and the other that is used to do bulk I/O to
the disk. This approach also simplifies the code. Due to
this design attribute of our solution, locks can be released
as soon as the commit record is posted into the data
structure.

The second implication of our design is the reduced
context switching. Most modern databases are multi-
threaded to take advantage of the abundance of compute

cores available in state-of-the-art CPUs. However, even
though this is largely beneficial, due to I/O and
synchronization bottlenecks, much of the compute cycle
is wasted in context switching and spin locks. Our
solution addresses the context switching part of the
problem. The synchronization problem is tougher to
handle as it requires a complex redesign of XtraDB to
resolve synchronization bottlenecks. In our solution, the
persistence of log records is now reduced to a write
operation to a NVM resident data structure. This now can
be done in the same thread, without having to wait for I/O
operations, which are usually done by other I/O threads
[3]. This optimization allows us to drive the cores to do
more user work rather than waiting for I/O operations to
complete.

The third implication of the design is the elimination
of log multiplexing, which attempts to combine logs
records from various transactions to achieve optimal
volume to make flush operations efficient. On disk based
logging systems [2] [3] [6] it is used as a method to
reduce the I/O overhead for writing to the disk. In flash
based systems [9] [10] it is used as a method to reduce
erase-unit overheads. In both the systems it is quite
possible that the system writes more data than what was
actually updated. This arises due the block oriented nature
of writes on these systems. On disk based systems the
block is usually 4-16 KB and on flash based systems the
block size (erase unit size) is 128KB. Since our solution
relies on byte-addressability we write variable log data
without having to worry about block boundaries. This
results in faster commit time and better utilization of cores
to do more useful work.

3.3. Implications on checkpointing operation

In data management systems, a checkpoint can be
treated as a marker that indicates the extent to which state
information has been transferred to the secure persistent
storage. Modifications to data pages are not necessarily
flushed to disk in a synchronous manner for performance
reasons. Checkpointing is a costly operation and has
serious impact on the throughput of the system.
Checkpoints are classified into two categories: full
checkpoint and fuzzy checkpoint. In a full checkpoint, the
data management system writes all the dirty information
to the disk. The fuzzy checkpoint, which is commonly
used for performance reasons, writes only a certain
number of dirty pages. Fuzzy checkpoints are used in
XtraDB.

Checkpointing in NoSQL solutions, like HBase, are
more like full checkpoints where the entire of the old
version metadata and the logs are combined
synchronously on a standby node to a create the newer
version of the metadata that is then gradually transmitted
to all the active node servers in the system. What ever the
method used, the system will experience a drop in
performance for the duration of the checkpointing

operation. In our solution, due to NVM, the flush of the
redo logs is completely eliminated and the fuzzy
checkpoint needs to maintain only the state of the pages
that were flushed from the buffer pool. This also
simplifies page stealing because the logs are already
persisted and hence the buffer pool manager has the
freedom to pick up dirty pages on demand. This makes
the checkpoint process and page stealing simpler and
faster.

3.4. Implications on crash recovery operation

Recovery or crash recovery operation rebuilds the
internal data structures of the data management system to
a consistent state from which the storage engine can start
processing transactions again. The recovery process also
ensures that the overall consistency of the data is
maintained. In XtraDB, the recovery happens in several
steps. These steps are semantically similar for any data
management system which supports crash recovery. The
first task is to bring the data pages that were present in the
buffer pool without being flushed to persistent media,
back to a consistent state. This is done by applying the
redo log from the last checkpoint forward until all of the
redo log is exhausted. This process brings the buffer pool
up to the state just prior to the point of failure.

However the buffer pool also contains dirty data
pages that are part of incomplete transactions. These
transactions need to be rolled back. The undo logs are
used to perform this operation. There are several variants
in the recovery process based on the richness of the redo
and undo information stored by the system prior to crash.
In the case of file systems, the recovery is usually limited
to metadata. In more complex systems, higher levels, that
might include actual file data, are supported [7][8]. In
NoSQL systems, the recovery is only in the forward
direction as they typically do not store undo information.
These systems rely on replication and some variation of
voting to get the data to a consistent state eventually.
RDBMSes have richer information in their logs and
hence, can restore the database to the closest possible
state prior to the crash, when compared with all other data
management systems.

In our solution we support both undo and redo logs.
Hence our transaction manager can be used to perform
RDBMS-like recovery. The primary performance
bottleneck with recovery operations is the time spent in
doing lots of random IOs to get the buffer pool back to a
state where undo information can be used. Also,
processing and converting the block based redo logs on
disk to a format that is usable in DRAM impacts recovery
performance. It should also be noted that the system is not
available for transactions until the buffer pool is restored
by the redo log.

In our solution, hash partitioning the redo log on
PageID enables parallel recovery of pages. Instead of
reading a serial redo log, recovery threads are assigned to

process several hash buckets in parallel. Our solution also
has a single format in which the redo logs are stored
hence the cost of converting disk based structure to a
DRAM based structure is completely avoided. Also, undo
of in-flight transactions can be parallelized because the
undo log records are hash partitioned on TranasactionID.
These improvements can significantly reduce recovery
time of the system that uses our transaction manager.

4. Performance evaluation
We implemented the techniques described in section

3 on MariaDB/XtraDB storage engine. We used a
simulated NVM environment for the validation and
performance measurement.

Our prototype was built on a Linux machine with 16
GB of RAM running 8 CPU Xeon Processors with 2
cores. The system had separate disks for the host
operating system, and the data and log files used by
XtraDB. All disks were standard 7200 RPM 200 GB IDE
disks.

4.1. Storage engine development

We prototyped our log manager and integrated it with
MariaDB/XtraDB. MariaDB is a popular open source fork
of MySQL. We wanted to test our solution on a
commercial database software to get a better
understanding of the implications of a new log manager in
the real world operation environment.

We followed a modular design approach to develop
the new log manager. The interactions with the NVM
device and memory management functionalities were
developed as a pluggable component. This provides an
easy option to plug in different NVM technologies. We
isolated the creation, modification and management of
redo and undo log records into a separate module. We
defined a set of APIs to interact with the log manager.
The parallelization of undo and redo log records,
maintenance of hash structures are all contained in the log
manager code. The log manager is integrated with
XtraDB using the APIs. And the XtraDB code is modified
to write log records using the log manager interfaces. The
recovery module of XtraDB reads the log files from disk
and prepares an in-memory structure to parallelize the
recovery option. We bypassed this layer as the log records
are already partitioned according to their usage pattern.

We configured XtraDB data files and log files on
separate volumes. This helped us to understand the I/O
characteristics of the workload. Separation of the log
volume from the data volume helped us to understand the
characteristics of logging and make a good performance
comparison.

4.2. NVM simulation

At the time of prototyping, we did not have access to
a NVM device. We simulated the NVM using the Linux

file system. We used this NVM simulation to demonstrate
both the functionality and performance gains.

To demonstrate the parallel logging and recovery, we
implemented the log manager using mmap files. The redo
and undo log records are persisted on mmap-ed files. We
manually crashed the system to force the recovery
operation. During the recovery process, XtraDB reads the
log records from the mmap files to reconstruct the undo
and redo operations.

We implemented log records on mmap files from
tmpfs to demonstrate the performance gain with NVM.
Memory mapping tmpfs files avoids the IO operation.
This simulates the implementation of log records with
read/write access latencies of memory which is an
idealistic NVM environment. In reality there might be
different write/read speeds for NVM systems.

4.3. Performance test bed

We used the TPC-C [12] benchmark and a custom
built insert workload to evaluate performance of our
solution. The TPC-C benchmark is an online transaction
processing benchmark. It is based on an order-entry use
case with several complex transactions that simulate real-
life operations on a typical order-entry system.

We developed a custom built parallel insert program
to simulate logging intensive workloads. The program
inserts 2 million random records of 80 bytes length using
tunable number of concurrent threads.

We measured 3 dimensions of performance: a)
Elapsed time to complete a fixed number of inserts; b) the
CPU and I/O utilization characteristics for the inserts; and
c) End-to-End transactions per second on TPCC
workload. The results are discussed in the next section.

4.4. Results

We ran the insert program with 1, 2, 4, 8 and 16
parallel threads. We measured the overall time taken to
ingest 2 million records by the standard XtraDB program
and our modified XtraDB that has our log manager
(henceforth referred to as BTM.)

Figure 4 shows the execution time comparison for
this insert program on the standard XtraDB and our BTM.
We demonstrate 8-15 times improvement in performance.

Figure 4: Performance comparison of BTM and
default XtraDB

We also measured the CPU utilization. We get good CPU
utilization with BTM. We enable more processing by
eliminating IO and lock bottlenecks. This reduces the time
required to finish the work and results in higher
throughput. In the case of the default XtraDB code, the
CPU utilization does not go above 15%. The threads
spend most of the time waiting on either IO or on locks
for log records.

Figure 5a and Figure 5b show the IO operations on

both data and log volumes. Figure 5a indicates the
elimination of log IO in BTM. By eliminating wait times
and lock contentions, BTM is able deliver better
throughput and process more data. This is seen in Figure
5b.

Figure 6 shows the performance comparison for

TPC-C benchmark and the corresponding CPU and IO
utilization. Our implementation eliminates the log IO and
improves the CPU utilization. We get around 1.2-1.6
times improvement in the throughput. The improvement
is limited by the lock contention in other modules of
MariaDB. Similar to insert benchmark, we see good
reduction in CPU utilization with BTM log manager. This
is again attributed to the reduction in lock contention for
log records.

5. Conclusions
In conclusion, our design improves the performance

of transaction manger by eliminating disk I/O that is

needed for performing log operations. In the process, it
simplifies the code and reduces the path length due to
elimination of log I/O and synchronization code. It
improves throughput of the system by parallelizing access
to log data structures and eliminating single entry point
bottlenecks. It improves core utilization as now most of
the time is spent in doing useful work than waiting for I/O

completion or latches. It also eliminates the need for
techniques like flush pipelining, group commits and early
lock release. We have also shown that these optimizations
results in 8-15 times improvement in performance and
higher CPU utilization for doing useful work.

6. References
[1] Stavros Harizopoulos, Daniel J. Abadi, Samuel

Madden, Michael Stonebraker “OLTP Through the
Looking Glass, and What We Found There”
SIGMOD 2008

[2] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz. “Aries: a transaction recovery method
supporting fine-granularity locking and partial
rollbacks using write-ahead logging.” ACM Trans.
Database Syst., 17(1):94–162, 1992.

[3] R. Johnson, I. Pandis, R. Stoica, M. Athanassoulis,
and A. Ailamaki. “Aether: a scalable approach to
logging.” Proc. VLDB Endow, 3:681–692,
September 2010.

[4] Ru Fang, Hui-I Hsiao, Bin He, C. Mohan, Yun
Wang. “High performance database logging using
storage class memory.” ICDE, pp. 1221–1231, 2011.

[5] Joel Coburn, Trevor Bunker, Rajesh K. Gupta,
Steven Swanson. “From ARIES to MARS:
Transaction support for next-generation, solid-state
drives.” SOSP, pp. 197–212, 2013.

[6] P. Helland, H. Sammer, J. Lyon, R. Carr, and P.
Garrett. “Group Commit Timers and High-Volume
Transaction Systems.” In Proc. HPTS, 1987

[7] Wright, Charles P.; Spillane, Richard; Sivathanu,
Gopalan; Zadok, Erez; 2007; "Extending ACID

Figure 5a: Log IO comparison of BTM and default
XtraDB

Figure 6: TPCC performance comparison

Figure 5b: Data IO comparison of BTM and default
XtraDB

Semantics to the File System; ACM Transactions on
Storage

[8] Spillane, Richard; Gaikwad, Sachin; Chinni,
Manjunath; Zadok, Erez and Wright, Charles P.;
2009; "Enabling transactional file access via
lightweight kernel extensions"; Seventh USENIX

Conference on File and Storage Technologies (FAST
2009)

[9] Sang-Won Lee, Bongki Moon "Design of Flash-
Based DBMS: An In-Page Logging Approach"
SIGMOD '07 Proceedings of the 2007 ACM

SIGMOD international conference on Management
of data Pages 55-66

[10] Kang-Nyeon Kim, Sang-Won Lee, Bongki Moon,
Chanik Park, Joo-Young Hwang "IPL-P: In-Page
Logging with PCRAM" VLDB 2011

[11] Jim Gray and Andreas Reuter. Transaction
Processing: Concepts and Techniques. Morgan
Kaufmann, 1993.

[12] Transaction Processing Performance Council. “TPC -
C v5.5:On-Line Transaction Processing (OLTP)
Benchmark.”

[13] MariaDB. URL: https://mariadb.org/
[14] XtraDB. URL:

https://www.percona.com/software/mysql-
database/percona-server/xtradb

[15] Seth Gilbert and Nancy Lynch, “Brewer's conjecture
and the feasibility of consistent, available, partition-
tolerant web services”, ACM SIGACT News,
Volume 33 Issue 2 (2002), pg. 51-59

[16] M. J. Breitwisch. Phase change memory. Interconnect
Technology Conference, 2008. IITC 2008.
International, pages 219–221, June 2008.

[17] B. Dieny, R. Sousa, G. Prenat, and U. Ebels.
Spindependent phenomena and their implementation
in spintronic devices. VLSI Technology, Systems and

Applications, 2008. VLSI-TSA 2008. International
Symposium on, pages 70–71, April 2008.

[18] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S.
Williams. The missing memristor found. Nature,
(7191):80–83, 2008.

[19] Dhruva R. Chakrabarti, Hans-J. Boehm, Kumud
Bhandari. "Atlas: leveraging locks for non-volatile
memory consistency", Proceedings of the 2014 ACM
International Conference on Object Oriented
Programming Systems Languages & Applications,
pages 433-452.

[20] Tianzheng Wang, Ryan Johnson. "Scalable Logging
through Emerging Non-Volatile Memory,"
Proceedigns of the VLDB Endowment, Vol. 7, No.
10, pages 865-876.

[21] Jian Huang, Karsten Schwan, Moinuddin K. Qureshi.
"NVRAM-aware Logging in Transaction Systems,"
Proceedings of the VLDB Endowment, Vol. 8, No. 4,
pages 389-400.

[22] Jay Janssen. "The relationship between Innodb Log
checkpointing and dirty Buffer pool pages." URL:
https://www.percona.com/blog/2012/02/17/the-
relationship-between-innodb-log-checkpointing-and-
dirty-buffer-pool-pages/

https://mariadb.org/
https://www.percona.com/software/mysql-database/percona-server/xtradb
https://www.percona.com/software/mysql-database/percona-server/xtradb
https://www.percona.com/blog/2012/02/17/the-relationship-between-innodb-log-checkpointing-and-dirty-buffer-pool-pages/
https://www.percona.com/blog/2012/02/17/the-relationship-between-innodb-log-checkpointing-and-dirty-buffer-pool-pages/
https://www.percona.com/blog/2012/02/17/the-relationship-between-innodb-log-checkpointing-and-dirty-buffer-pool-pages/

