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Abstract 
Non-Volatile Memory (NVM) is an emerging 
memory technology that combines the best 
properties of current hard disks and main 
memories by providing non-volatility, high 
density, high speed, and byte addressability. This 
provides an opportunity to redesign systems and 
their software stacks to improve performance and 
to reduce the complexity. Present-day database 
systems are designed and optimized for 
traditional disks and memory hierarchies. They 
are very complex because they handle varying 
levels of storage latencies, from CPU caches to 
hard disks. Our intention is to build a prototype 
storage engine that is optimized for NVM and 
which takes advantage of the collapsed memory 
hierarchy. We are developing this storage engine 
in an incremental way. In this paper, we describe 
a novel approach to optimize write-ahead 
logging (WAL) for NVM based systems. 

Most database systems use ARIES-style 
write-ahead logging to implement transactions. 
ARIES techniques are optimized for disk based 
systems and tuned for the sequential write 
performance of disks. We leverage the high 
speed, byte-addressable random access of NVM 
to design a high-performance logging 
mechanism. We discuss the bottlenecks of 
sequential logging, identify the challenges of 
distributed logging and propose a novel solution. 
We show that NVM-optimized logging improves 

performance 8-15 times over default 
MariaDB/XtraDB for log-intensive workloads. 

1. Introduction 
Transactions are an essential part of OLTP data 

management systems. Strong transactional support is 
crucial for supporting the operational activities of all 
businesses. A significant amount of research effort is 
dedicated to the design of efficient, reliable and scalable 
transactions. A key research focus area in transaction 
processing systems is the support of ACID properties. The 
transaction systems use write-ahead logging or shadow 
copy and concurrency control techniques to support ACID 
properties. Traditional database systems, which support 
strong ACID compliance most commonly use write-ahead 
logging. The non-relational data management systems, 
also popularly called as NoSQL, support eventual 
consistency properties based on CAP theorem [15] and 
commonly use shadow copy. 

Traditional database storage engines can be divided 
into four important modules based on functionality. They 
are Access methods, Log manager, Lock manager and 
Buffer pool. These four modules account for about 80% 
of CPU cycles when the database system runs entirely in 
memory [1].  

Most of the transaction processing system 
implementations rely on DRAM for performance and 
disks for persistent storage. The data structures and the 
algorithms are optimized for this type of memory 
hierarchy. The advent of NVM provides opportunity to 
redesign and optimize the data structures and algorithms 
to use a single layer of flat memory. We evaluate various 
properties of NVM and the opportunity it provides to 
redesign the transaction management systems that are 
used in relational databases. 

The reminder of the paper is organized as follows. 
The next few sub-sections provide the background on 
NVM, transaction management system components and a 
specific implementation in an open source RDBMS, 
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MariaDB [13]. Section 2 captures some of the related 
work to optimize the transaction systems. Section 3 
discusses the implementation of write ahead logging on 
NVM and its benefits. Section 4 mentions the prototype 
implementation and the results. The final section contains 
our summary and conclusions. 

1.1. Non-volatile memory 

Non-Volatile Memory (NVM) is an emerging 
memory technology that combines best properties of 
today’s hard disks and main memories. It offers non-
volatility, high speed and byte addressability [19]. There 
are many different forms of NVM technologies such as 
Phase Change Memory (PCM) [16], Spin-Transfer 
Torque RAM (STT-RAM) [17] and Memristor [18] that 
are being developed actively. Each of these uses a 
different underlying technology. They exhibit different 
characteristics in terms of read/write latency, endurance, 
energy efficiency etc.  

However all these NVM technologies offer byte-
addressability, high speed read/write access that is 
comparable to DRAM and storage capacities that is 
comparable to HDD or SSD. 

We design our solution based on these generic 
properties. We are not dependent on any specific NVM 
implementation. It is a conscious attempt to make the 
solution NVM-technology neutral. 

Byte addressability provides an interesting 
programming model as it allows programs to persist data 
objects directly on NVM without converting them into 
disk format. We leverage this aspect in our solution to 
avoid maintaining multiple formats of data and having to 
convert between them. 

There are many different areas in which NVM can be 
used in a system architecture. The straight-forward option 
is to use NVM as a disk replacement, which maintains the 
programming semantics and thus involves the least 
amount of changes to the software layer. But, in general, 
this approach does not work because it upsets the 
optimization and fine tuning for hard disks. The next 
option is to use NVM as fast cache in between disk and 
DRAM. The third option is to use NVM alongside 
DRAM in same address space. This is the most interesting 
one because the CPU can use load and store operations to 
access NVM directly. We develop our solution with the 
assumption of a direct load/store model. 

1.2. Transactional logging in relational and non-
relational systems 

Transaction support is essential in all data 
management systems for handling failures and reducing 
the impact of failures on the system’s overall behavior. 
We consider everything from file systems to complex 
RDBMS in the scope of transactions for data 
management. Several methods have been adopted to 
handle failures ranging from protecting the metadata for 

single operations, like it is done in file systems, to 
complex multi-operation, multiple data entities in 
RDBMS. There are also complex combination of 
techniques that attempt to provide ACID properties to file 
system operations [7][8].  

Irrespective of the use case, the systems have to be 
engineered from the ground up to support solid 
transaction semantics and robust failure recovery. 
RDMBS are built ground up with transaction semantics, 
but these design choices made them very complex and 
rigid. These, to some extent contributed to the 
development of NonSQL solutions that are more flexible. 
But they make other design choices that, in turn, make it 
very difficult to support ACID properties. Hence, 
flexibility and performance of the transaction 
management system are essential design parameters for 
any high-performance transaction manager. The 
emergence of non-volatile memory gives us an 
opportunity to re-design the transaction managers to 
achieve these goals and make them suitable for the data 
management systems of the future. 

1.3. Limitations of WAL 

Most database systems use ARIES [2] style write-
ahead logging (WAL) to implement transactions. ARIES 
design decisions are made to get optimal performance for 
disk based systems. ARIES adopts a centralized logging 
and optimizes it to leverage the sequential write 
performance of disks. To hide the performance difference 
between DRAM and disks the log records are cached in 
DRAM and forced to disk at the time of commit. This 
creates a two-layered logging system.  

The centralized logging with two-layered design 
causes several bottlenecks. Aether [3] identifies four types 
of delays that impact the logging performance: (a) IO 
related delay; (b) excessive context switching; (c) log 
induced lock contention; and (d) log buffer contention.  

Several techniques have been developed to address 
these problems on the traditional assumptions of slow 
block oriented disk and byte-oriented DRAM. The NVM 
technologies open up a new opportunity to optimize WAL 
for byte-addressable persistent memory. 

1.4. Logging in XtraDB 

XtraDB [14] is a transactional storage engine for 
MariaDB. A transactional storage engine, in MariaDB’s 
context, is a pluggable software module that performs 
various data management operations, such as create, 
insert, update and delete, on the data that it manages in a 
transactionally consistent manner. It uses the concept of 
write ahead logging to manage transactions.  XtraDB 
maintains the transaction logs in DRAM as a circular 
buffer and a persistent copy of the same content in a flat 
file on disk.  All database operations that are performed 
by the storage engine to manipulate the database's pages 
are logged in a Redo log prior to the actual execution. The 



contents of the redo logs are flushed to disk before 
transaction commit, in line with WAL semantics. The 
redo log is used during system recovery. In XtraDB the 
system recovery starts off by replaying the redo log on to 
the buffer pool until all the database pages are recovered. 
This replay starts from the last successful checkpoint. 
Once this replay is over, the undo log is used to rollback 
all partially complete transactions. 

XtraDB maintains the undo log in memory and on 
disk. The undo logs contain the before images of database 
records that were modified by a transaction. The undo 
logs in XtraDB are used to support transaction rollback, 
database flush of dirty pages into disk and the concept of 
MVCC to optimize read performance. The data itself is 
maintained as a B-tree on disk and a hash table in an in-
memory buffer pool. The redo log and buffer pool are 
flushed periodically flushed into the disk. We use XtraDB 
as the vehicle to demonstrate the effect of design changes 
as it is extensively used commercially and it is open 
source. This allows us to run relevant benchmarks on the 
solution and prove the solution on real-world applications. 

2. Related work 
Aether [3] identifies a set of challenges with WAL – 

(a) I/O related delays, (b) log induced lock contention, (c) 
excessive context switching and (d) log buffer contention. 
The paper recommends a set of optimizations using a 
combination of early lock release and flush pipelining. 
Early lock release allows transactions to release their 
locks as soon as the commit records have been made 
durable. Flush pipelining helps to reduce the I/O delay 
and log induced lock contention. The authors also 
recommend redesigning of log buffer to enable better 
parallelism. 

Fung R. et al. [4] describe an approach to implement 
WAL on storage class memory (SCM). They allocate log 
records directly on SCM to reduce I/O related delays. 
They avoid the techniques like group-commit. However, 
they still write the log records sequentially. 

MARS [5] moves most of the logging functionality to 
hardware and eliminates the Log Sequence Number 
(LSN) and log checkpointing. It accomplishes this by 
allowing the storage array to maintain the ordering of 
write at commit time instead of maintaining the LSN at a 
software level. MARS also relies on hardware writes to 
eliminate the need for log checkpointing. 

There have been proposals to revisit the design of 
logging in Flash and PCM based storage [9][10]. Sang-
won Lee et.al. propose a technique called in-page logging 
(IPL) as a new storage model for flash based database 
systems. To overcome the erase-before-write limitation of 
flash memory, they propose the IPL technique to co-
locate the log and data pages. The IPL-P paper is an 
extension of the in-page logging method and proposes 
move the log storage to PCM based storage for better 
performance. 

Tianzheng Wang et al. [20] describe an approach for 
distributed, NVM-backed logging. They evaluate the 
performances of two log distribution schemes – one that is 
distributed on a transaction level and another that is 
distributed on a page level. They recommend distributing 
on a transaction level. We show using a transaction level 
distribution for the undo log and a page level distribution 
for the redo log performs better. 

Jian Huang et al. [21] show that they get the best 
transactions per dollar rate by moving only the logging 
subsystem to NVRAM, rather than replacing all disks 
with NVRAM. In their implementation, they use a 
circular log on NVRAM and chain the log entries using 
pointers to enable recovery. However, this slows the 
recovery process because the entire log chain must be 
traversed to build the set of dirty pages. This approach to 
page-level recovery is not efficient. 

3. Our solution 
We have designed a NVM-optimized logging system 

that writes log records directly to NVM and have 
implemented a prototype based on MariaDB/XtraDB.  

In the context of our solution, we assume the NVM is 
directly accessible by the database process using 
load/store model. We treat it as a byte-addressable 
persistent memory alongside DRAM memory. 

Our design depends on system primitives and 
programming APIs to read and write the NVM. These 
APIs shall: (a) support namespaces for NVM; (b) support 
dynamic memory management; and (c) support variable 
length read/write operations in an atomic and durable 
way. There are challenges in implementing variable 
length atomic read/write operations. The implementation 
has to take care of write ordering, cache flushes, fault 
zones, fault containment in NVM etc. Our implementation 
assumes these challenges will be abstracted and handled 
by the NVM programming APIs. Atlas [19] is an example 
of such an API that provides the necessary atomicity 
guarantees and also handles the memory management. 
We did not have access to this library at the time of this 
work and so, we modeled NVM access using mmap files.  

There are two main types of log records that are used 
in traditional ARIES-style WAL: (a) undo log records, 
which store information about how to undo a change; and 
(b) redo log records, which store information about how 
to reproduce a change. In traditional database systems, the 
log records are cached in memory and persisted on disk as 
a large sequential file. The log files are flushed to disk 
before the transaction commits. Database systems employ 
several optimizations to improve the performance of log 
writing, such as group-commit [6], which aggregates 
multiple log write requests into a single IO, and 
asynchronous commit, which allows transactions to 
commit without waiting for log IO requests to complete. 

We write log records directly on NVM. This 
eliminates the IO related to log records and also simplifies 



log buffer management. XtraDB has separate memory 
space in DRAM for redo and undo log records. The undo 
log records are stored along with page data in the buffer 
pool. The redo log records are stored in a separate circular 
buffer. In our solution, we do not maintain any of the log 
records on DRAM. We maintain two separate hash lists in 
NVM for the redo and undo records. Figure 1 shows log 
files representation on default MariaDB/XtraDB and our 
NVM optimized log manager. 

As writes to NVM are very fast, we write the log 
records synchronously. Persisting of the redo data is 
synchronous with the commit. We do not wait for a 
separate thread to flush to disk before finishing the 
commit operation. This reduces the extensive context 
switching that occurs due to log-record related IO 
operations in traditional systems. 

Traditionally, log records are cached in DRAM using 
an in-memory format and stored on disks in a block-
oriented format [22]. The log records are converted from 
the memory format to the disk one while persisting them. 
The disk format is converted to the memory format when 
the log records are read for recovery. We avoid the 
multiple formats and implement a single unified format of 
log records on NVM. Thus we avoid the extra memory 
copy and log record conversion complexity.  

Synchronous write also allows our solution to 
eliminate the group commit. This in turn reduces the log 
induced lock contention.  

To overcome the log-related contention, we have re-
designed the redo and undo logs. The operations on these 
log files exhibit different degrees of parallelism. We have 
designed them with different parallelism schemes after 
taking their usage into account. The undo operations are 
applicable for a transaction and hence can be parallelized 
at transaction level. The redo operations are applicable for 
a page and hence can be parallelized at page level. We 
observe these parallelism needs of undo and redo 
operations and design a customized distribution scheme. 
We distribute undo log records based on transaction ID 
and implement it as a linked list of undo records 
belonging to a transaction. We implement a hash based 
distribution of transaction IDs.  

Figure 2 shows the structure of undo log records. The 
information about transaction state and pointer to undo 
log records are maintained in a hash table. The undo log 
records, that contain undo number, page number, LSN 

and undo operation details (called as payload) is 
implemented as a linked list. This eliminates the 
contention for writing undo log records from multiple 
transactions. Only during the beginning of a transaction 
we need to acquire a lock to get the corresponding hash 
slot. Thus we improve the concurrency of undo log 
operations. 

Similarly we distribute the redo log records based on 
page id. Figure 3 shows the structure of redo log records.  
We store the details of page number, start and end LSN of 
the page and pointer to redo chain in hash bucket header. 
We store redo records that consists of transaction ID, 
record type, LSN, record payload etc. as a linked list. This 
reduces the redo log write contention across the pages. 
Only the parallel transactions that operate on the same 
page contend for the redo log chain. With this customized 
distribution of redo and undo log records we can 
implement more granular latches and increase the 
parallelism in logging operations. This reduces the log 
buffer contention and improves the performance.  

ARIES recommends periodic checkpointing to 
accelerate the recovery. The checkpointing flushes the log 
records and dirty pages in buffer pool to disks. The 
checkpoint log record holds information about active 
transactions, its state and flushed LSN. Since the active 
transactions and their states are directly written to NVM 

Figure 2: Undo log record structure 

Figure 3: Redo log structure 

Figure 1: Logging on NVM 



along with undo logging, the checkpoint log record has to 
just write the flushed LSN. This improves the 
checkpointing performance. 

Our parallel hash based distribution of the redo and 
undo log records opens up the opportunity to parallelize 
recovery operations. ARIES recommends the recovery in 
3 phases: (i) analysis phase – during which the algorithm 
reads the flushed LSN information from checkpoint and 
scans the log records sequentially to gather the required 
redo and undo operation information, (ii) redo phase – 
during which the redo operations are applied to bring the 
database back to the state before the crash; and (iii) undo 
phase – during which undo operations are applied to 
reverse the effect of inflight transactions. Our distributed 
redo log records enable parallelism in building and 
applying redo operations. Distributed undo log records 
enable parallelism in rolling back the inflight transactions. 
Thus we improve the recovery performance. The benefits 
of partitioning log records are explained in the following 
sections. 

3.1. Partitioning log structures 

Partitioning of log structures addresses several 
bottlenecks that are seen with sequential logs.  

Centralized log structure is well suited for disk based 
systems. In such systems, log records from multiple 
transactions are logged into a centralized log structure. 
These log records are persisted on disk using the 
sequential IO. Optimizations like group-commit are done 
to further improve the IO performance. But a centralized 
log creates synchronization problem. Multiple 
transactions that run in parallel will contend to get the 
lock at the head of the log structure to write log records. 
The contention increases with number of parallel 
transactions and causes a concurrency limitation. Since 
the threads have to wait for the lock they get context 
switched. This also increases the number of context 
switches and impacts the performance. 

The centralized logging will also impact the 
parallelism of recovery operation. To parallelize the 
recovery operation, the recovery system has to process the 
sequential log to extract the undo and redo information 
into some partitioned structure. Typically the recovery 
system does this during the initialization phase. 
Otherwise, the system would be scanning and applying 
the sequential logs one record at a time, which will 
significantly increase the recovery time.  

Our design avoids these problems by partitioning the 
undo and redo logs in NVM. We use hash based 
partitioning scheme. By hashing we break up the single 
centralized log head into several streams equal to the 
bucket size of hash table. This eliminates the bottleneck 
on global log by parallelizing access to the logs. This will 
enable several threads to write to the log records 
simultaneously. Consequently, this reduces log induced 
contention and context switching.  

Also having to separate logs structures for undo and 
redo logs allows us to partition the log in the most optimal 
way based on the use case. Undo logs are closely 
associated with a transaction hence we partition it based 
on transaction Id. This allows us to create sufficiently 
large hash buckets to the extent where we can completely 
eliminate the need of synchronization constructs and 
make the undo logging practically lock free. As an 
example, if we optimize the system to handle 2K 
concurrent transactions, we can create an undo log hash 
table having more than 2K (closest prime number) bucket. 
In this way every transactions will get its own exclusive 
hash bucket there by eliminating the need to have a 
synchronization construct to manage the undo log. This 
also simplifies the search of undo logs during recovery 
operation, as all the undo logs pertaining to individual 
transaction that needs to be rolled back during recovery 
are found grouped in the same hash bucket. 

Similarly redo logs are partitioned on page ID that 
allows several database threads to operate in parallel as 
long as they don’t try to append redo log records on the 
same page. Due this approach, optimizations like 
grouping redo logs prior to append into the global logs are 
no longer needed. Transactions can directly append the 
logs into the log structure directly as and when they are 
generated. This also simplifies the recovery operation. 
During recovery multiple threads can be created to 
recover the pages in parallel. 

3.2. Benefits of undo and redo log optimizations 

In this section, we explore the implications of the 
design optimizations that we explained in the previous 
section. The first implication is the simplification in the 
process of releasing locks that were held by the 
transaction. Transactions acquire locks to protect the data 
that it is using, against possible corruption from 
concurrent access. This ensures the isolation guarantee of 
the database is maintained. Lock release happens at the 
end of a transaction when the commit status of the 
transaction is flushed into durable media. In traditional 
systems, we have to wait for the flushing of commit 
records to complete. This creates an I/O bottleneck. 
Transactions are made to wait [3] [6] for the grouping of 
log data to be sufficient enough to overcome the cost of a 
doing a serial I/O to disk. Our solution eliminates this 
completely because the logs are directly written to 
persistent media in their native form. Our solution does 
not maintain two distinct data structures, one where we 
buffer the logs and the other that is used to do bulk I/O to 
the disk. This approach also simplifies the code. Due to 
this design attribute of our solution, locks can be released 
as soon as the commit record is posted into the data 
structure. 

The second implication of our design is the reduced 
context switching. Most modern databases are multi-
threaded to take advantage of the abundance of compute 



cores available in state-of-the-art CPUs. However, even 
though this is largely beneficial, due to I/O and 
synchronization bottlenecks, much of the compute cycle 
is wasted in context switching and spin locks. Our 
solution addresses the context switching part of the 
problem. The synchronization problem is tougher to 
handle as it requires a complex redesign of XtraDB to 
resolve synchronization bottlenecks. In our solution, the 
persistence of log records is now reduced to a write 
operation to a NVM resident data structure. This now can 
be done in the same thread, without having to wait for I/O 
operations, which are usually done by other I/O threads 
[3]. This optimization allows us to drive the cores to do 
more user work rather than waiting for I/O operations to 
complete.  

The third implication of the design is the elimination 
of log multiplexing, which attempts to combine logs 
records from various transactions to achieve optimal 
volume to make flush operations efficient. On disk based 
logging systems [2] [3] [6] it is used as a method to 
reduce the I/O overhead for writing to the disk. In flash 
based systems [9] [10] it is used as a method to reduce 
erase-unit overheads. In both the systems it is quite 
possible that the system writes more data than what was 
actually updated. This arises due the block oriented nature 
of writes on these systems. On disk based systems the 
block is usually 4-16 KB and on flash based systems the 
block size (erase unit size) is 128KB. Since our solution 
relies on byte-addressability we write variable log data 
without having to worry about block boundaries. This 
results in faster commit time and better utilization of cores 
to do more useful work. 

3.3. Implications on checkpointing operation 

In data management systems, a checkpoint can be 
treated as a marker that indicates the extent to which state 
information has been transferred to the secure persistent 
storage. Modifications to data pages are not necessarily 
flushed to disk in a synchronous manner for performance 
reasons. Checkpointing is a costly operation and has 
serious impact on the throughput of the system. 
Checkpoints are classified into two categories: full 
checkpoint and fuzzy checkpoint. In a full checkpoint, the 
data management system writes all the dirty information 
to the disk. The fuzzy checkpoint, which is commonly 
used for performance reasons, writes only a certain 
number of dirty pages. Fuzzy checkpoints are used in 
XtraDB.  

Checkpointing in NoSQL solutions, like HBase, are 
more like full checkpoints where the entire of the old 
version metadata and the logs are combined 
synchronously on a standby node to a create the newer 
version of the metadata that is then gradually transmitted 
to all the active node servers in the system. What ever the 
method used, the system will experience a drop in 
performance for the duration of the checkpointing 

operation. In our solution, due to NVM, the flush of the 
redo logs is completely eliminated and the fuzzy 
checkpoint needs to maintain only the state of the pages 
that were flushed from the buffer pool. This also 
simplifies page stealing because the logs are already 
persisted and hence the buffer pool manager has the 
freedom to pick up dirty pages on demand. This makes 
the checkpoint process and page stealing simpler and 
faster. 

3.4. Implications on crash recovery operation 

Recovery or crash recovery operation rebuilds the 
internal data structures of the data management system to 
a consistent state from which the storage engine can start 
processing transactions again. The recovery process also 
ensures that the overall consistency of the data is 
maintained. In XtraDB, the recovery happens in several 
steps. These steps are semantically similar for any data 
management system which supports crash recovery. The 
first task is to bring the data pages that were present in the 
buffer pool without being flushed to persistent media, 
back to a consistent state. This is done by applying the 
redo log from the last checkpoint forward until all of the 
redo log is exhausted. This process brings the buffer pool 
up to the state just prior to the point of failure.  

However the buffer pool also contains dirty data 
pages that are part of incomplete transactions. These 
transactions need to be rolled back. The undo logs are 
used to perform this operation.  There are several variants 
in the recovery process based on the richness of the redo 
and undo information stored by the system prior to crash. 
In the case of file systems, the recovery is usually limited 
to metadata. In more complex systems, higher levels, that 
might include actual file data, are supported [7][8]. In 
NoSQL systems, the recovery is only in the forward 
direction as they typically do not store undo information. 
These systems rely on replication and some variation of 
voting to get the data to a consistent state eventually. 
RDBMSes have richer information in their logs and 
hence, can restore the database to the closest possible 
state prior to the crash, when compared with all other data 
management systems.  

In our solution we support both undo and redo logs. 
Hence our transaction manager can be used to perform 
RDBMS-like recovery. The primary performance 
bottleneck with recovery operations is the time spent in 
doing lots of random IOs to get the buffer pool back to a 
state where undo information can be used.  Also, 
processing and converting the block based redo logs on 
disk to a format that is usable in DRAM impacts recovery 
performance. It should also be noted that the system is not 
available for transactions until the buffer pool is restored 
by the redo log. 

In our solution, hash partitioning the redo log on 
PageID enables parallel recovery of pages. Instead of 
reading a serial redo log, recovery threads are assigned to 



process several hash buckets in parallel. Our solution also 
has a single format in which the redo logs are stored 
hence the cost of converting disk based structure to a 
DRAM based structure is completely avoided. Also, undo 
of in-flight transactions can be parallelized because the 
undo log records are hash partitioned on TranasactionID. 
These improvements can significantly reduce recovery 
time of the system that uses our transaction manager. 

4. Performance evaluation 
We implemented the techniques described in section 

3 on MariaDB/XtraDB storage engine. We used a 
simulated NVM environment for the validation and 
performance measurement. 

Our prototype was built on a Linux machine with 16 
GB of RAM running 8 CPU Xeon Processors with 2 
cores. The system had separate disks for the host 
operating system, and the data and log files used by 
XtraDB. All disks were standard 7200 RPM 200 GB IDE 
disks. 

4.1. Storage engine development 

We prototyped our log manager and integrated it with 
MariaDB/XtraDB. MariaDB is a popular open source fork 
of MySQL. We wanted to test our solution on a 
commercial database software to get a better 
understanding of the implications of a new log manager in 
the real world operation environment.  

We followed a modular design approach to develop 
the new log manager. The interactions with the NVM 
device and memory management functionalities were 
developed as a pluggable component. This provides an 
easy option to plug in different NVM technologies. We 
isolated the creation, modification and management of 
redo and undo log records into a separate module. We 
defined a set of APIs to interact with the log manager. 
The parallelization of undo and redo log records, 
maintenance of hash structures are all contained in the log 
manager code. The log manager is integrated with 
XtraDB using the APIs. And the XtraDB code is modified 
to write log records using the log manager interfaces. The 
recovery module of XtraDB reads the log files from disk 
and prepares an in-memory structure to parallelize the 
recovery option. We bypassed this layer as the log records 
are already partitioned according to their usage pattern.  

We configured XtraDB data files and log files on 
separate volumes. This helped us to understand the I/O 
characteristics of the workload. Separation of the log 
volume from the data volume helped us to understand the 
characteristics of logging and make a good performance 
comparison. 

4.2. NVM simulation 

At the time of prototyping, we did not have access to 
a NVM device. We simulated the NVM using the Linux 

file system. We used this NVM simulation to demonstrate 
both the functionality and performance gains. 

To demonstrate the parallel logging and recovery, we 
implemented the log manager using mmap files. The redo 
and undo log records are persisted on mmap-ed files. We 
manually crashed the system to force the recovery 
operation. During the recovery process, XtraDB reads the 
log records from the mmap files to reconstruct the undo 
and redo operations.  

We implemented log records on mmap files from 
tmpfs to demonstrate the performance gain with NVM. 
Memory mapping tmpfs files avoids the IO operation. 
This simulates the implementation of log records with 
read/write access latencies of memory which is an 
idealistic NVM environment. In reality there might be 
different write/read speeds for NVM systems. 

4.3. Performance test bed 

We used the TPC-C [12] benchmark and a custom 
built insert workload to evaluate performance of our 
solution. The TPC-C benchmark is an online transaction 
processing benchmark. It is based on an order-entry use 
case with several complex transactions that simulate real-
life operations on a typical order-entry system.  

We developed a custom built parallel insert program 
to simulate logging intensive workloads. The program 
inserts 2 million random records of 80 bytes length using 
tunable number of concurrent threads.  

We measured 3 dimensions of performance: a) 
Elapsed time to complete a fixed number of inserts; b) the 
CPU and I/O utilization characteristics for the inserts; and 
c) End-to-End transactions per second on TPCC 
workload. The results are discussed in the next section. 

4.4. Results 

We ran the insert program with 1, 2, 4, 8 and 16 
parallel threads. We measured the overall time taken to 
ingest 2 million records by the standard XtraDB program 
and our modified XtraDB that has our log manager 
(henceforth referred to as BTM.)  

Figure 4 shows the execution time comparison for 
this insert program on the standard XtraDB and our BTM. 
We demonstrate 8-15 times improvement in performance. 

Figure 4: Performance comparison of BTM and 
default XtraDB 



We also measured the CPU utilization. We get good CPU 
utilization with BTM. We enable more processing by 
eliminating IO and lock bottlenecks. This reduces the time 
required to finish the work and results in higher 
throughput. In the case of the default XtraDB code, the 
CPU utilization does not go above 15%. The threads 
spend most of the time waiting on either IO or on locks 
for log records. 

 
Figure 5a and Figure 5b show the IO operations on 

both data and log volumes. Figure 5a indicates the 
elimination of log IO in BTM. By eliminating wait times 
and lock contentions, BTM is able deliver better 
throughput and process more data. This is seen in Figure 
5b.  

 
Figure 6 shows the performance comparison for 

TPC-C benchmark and the corresponding CPU and IO 
utilization. Our implementation eliminates the log IO and 
improves the CPU utilization. We get around 1.2-1.6 
times improvement in the throughput. The improvement 
is limited by the lock contention in other modules of 
MariaDB.  Similar to insert benchmark, we see good 
reduction in CPU utilization with BTM log manager. This 
is again attributed to the reduction in lock contention for 
log records.  

5. Conclusions 
In conclusion, our design improves the performance 

of transaction manger by eliminating disk I/O that is 

needed for performing log operations. In the process, it 
simplifies the code and reduces the path length due to 
elimination of log I/O and synchronization code. It 
improves throughput of the system by parallelizing access 
to log data structures and eliminating single entry point 
bottlenecks. It improves core utilization as now most of 
the time is spent in doing useful work than waiting for I/O 

completion or latches. It also eliminates the need for 
techniques like flush pipelining, group commits and early 
lock release. We have also shown that these optimizations 
results in 8-15 times improvement in performance and 
higher CPU utilization for doing useful work. 
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