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Abstract

Similarity measures, originally introduced to express the
degree of comparison between two fuzzy sets, can be ap-
plied in several ways to digital images. In [1–3] we have
shown how similarity measures were used for the construc-
tion of image quality evaluation measures. In this paper
we illustrate how fuzzy similarity measures can be useful
for the comparison of histograms of digital images. We will
show that similarity measures can be applied to two dif-
ferent types of histograms: normalized histograms and or-
dered normalized histograms.

1. Introduction

An important problem in image processing is the compari-
son of images: if different algorithms are applied to an im-
age, we need an objective measure to compare the output
images. It is well-known that classical measures, such as
the RMSE (root mean square error), do not always give
convincing results. Furhtermore, measures of comparison
between images are an indispensable tool in image retrieval.
In this paper we focus on a low-level image comparison,
namely histogram-based comparison of images. Tradition-
ally, one uses a standard distance measure to calculate the
distance between two histograms. In this paper, we inves-
tigate the possible application of fuzzy similarity measures
to histograms of digital images.

After some preliminaries in Section 2 we briefly discuss
the relevant properties we impose to a similarity measure in
order to be applicable to digital images. Then, we give a
short overview of classical methods for histogram compar-
ison in Section 4. After this, the first way in which simi-
larity measures, originally introduced to express the degree
of comparison between two fuzzy sets, can be applied to
normalized histograms of digital images is outlined in Sec-
tion 5. However, similarity measures can be applied to a
second type of histograms, namely ordered and normalized
histograms. This is explained in Section 6. Finally, we il-

lustrate the behaviour of the appropriate similarity measures
with some examples in Section 8.

2. Preliminaries

In this section we repeat some basic notions of fuzzy set
theory and similarity measures.

2.1. Fuzzy sets

A fuzzy set [7] A in a universe X is characterised by a X −
[0, 1] mapping µA, which associates with every element x in
X a degree of membership µA(x) of x in the fuzzy set A. In
the following, we will denote the degree of membership by
A(x), and the class of fuzzy sets in a universe X by F(X).

2.2. Similarity measures

In the literature a lot of measures are proposed to express
the similarity or equality between fuzzy sets. There is no
unique definition, but the most frequently used is the fol-
lowing [8]. A similarity measure is a fuzzy binary relation
in F(X), i.e. a F(X) × F(X) → [0, 1] mapping that is re-
flexive, symmetric and min-transitive. However, not every
measure in the literature satisfies this definition. Therefore,
a similarity measure will here be understood as a measure
we can use to compare fuzzy sets, or objects which can be
identified with fuzzy sets.

2.3. Fuzzy logical operators

Several classes of similarity measures are based on fuzzy
logical operators, such as conjunctors, disjunctors and im-
plicators.

A conjunctor is an increasing [0, 1]2 − [0, 1] mapping
T satisfying the border conditions T (0, 0) = T (0, 1) =
T (1, 0) = 0 and T (1, 1) = 1. The most popular con-
junctors are TM , TP and TW : TM (x, y) = min(x, y),
TP (x, y) = x · y and TW (x, y) = max(0, x + y − 1), for
all (x, y) in [0, 1]2.



A disjunctor is a increasing [0, 1]2 − [0, 1] mapping
S satisfying the border conditions S(1, 0) = S(0, 1) =
S(1, 1) = 1 and S(0, 0) = 0. The most popular dis-
junctors are SM , SP and SW : SM (x, y) = max(x, y),
SP (x, y) = x + y − x · y and SW (x, y) = min(1, x + y),
for all (x, y) in [0, 1]2.

An implicator is a [0, 1]2−[0, 1] mapping I with decreas-
ing first and increasing second partial maps, which satisfies
the border conditions I(0, 0) = I(0, 1) = I(1, 1) = 1
and I(1, 0) = 0. The most popular implicators are IKD,
IW and IR: IKD(x, y) = max(1 − x, y), IW (x, y) =
min(1, 1 − x + y) and IR(x, y) = 1 − x + x · y, for all
(x, y) in [0, 1]2.

3. Relevant properties for image processing

In order to investigate whether similarity measures can be
applied for image comparison, we evaluated about 50 mea-
sures with respect to several relevant properties. We have
considered the following properties [3]:

Reflexivity: for two identical images one may expect
that the similarity measure has output 1.

Symmetry: the output of the similarity measure is ex-
pected to be independent of the order in which the two input
images are considered.

Reaction to noise (e.g. salt & pepper noise or gaussian
noise): a good similarity measure should not be affected
too much due to noise (since a noisy image is coming from
an original one, it has to be similar to the original image),
and should be decreasing with respect to an increasing noise
percentage.

Reaction to enlightening and darkening: if one en-
lightens or darkens an image with a constant value, the sim-
ilarity measure should return a high value (indeed, one con-
siders almost identical images). One also expects a decreas-
ing behaviour with respect to an increasing enlightening or
darkening percentage.

This list should not be considered as complete: depend-
ing on the application or the type of images that have to be
compared, some properties will be less relevant and some-
times completely different properties will have to be inves-
tigated.

4. Classical measures of comparison for histograms

The histogram of a greyscale image is a chart that shows
the frequency distribution of the different grey levels. The
value of the histogram of a greyscale image A in a grey level
g equals the total amount of pixels in the image A with grey
level g, and will be denoted as hA(g). In this way, we obtain

the following expression for the value of the histogram of
the image A in the grey level g:

hA(g) =
∑

(i,j)∈X

δ(g − A(i, j)),

with δ the Dirac function and X the universe of image
points.

Usually, one uses some kind of distance function to
determine how much two histograms differ from each
other. Since histograms are often understood as vectors,
the most popular metrics for histograms are induced by the
Minkowski norm (Lp) which is used in vector spaces. Two
popular examples are the Manhattan distance and the Eu-
clidean distance induced by respectively the L1-norm and
the L2-norm, and are given by the following expressions:

dL1
(hA, hB) =

|G|−1
∑

g=0

|hA(g) − hB(g)|

dL2
(hA, hB) =

√

√

√

√

|G|−1
∑

g=0

|hA(g) − hB(g)|2,

with G the universe of grey levels.
Another technique for the comparison of histograms was

introduced by Swain and Ballard [6] and is called the his-
togram intersection. For two histograms hA and hB , the
histogram intersection is defined as

dI(hA, hB) =
∑

g∈G

min(hA(g), hB(g)).

However, if A and B have the same size, one can proove
that the sum of dL1

(hA, hB) and 2dI(hA, hB) equals a
constant. Consequently, there is no significant difference
between the histogram intersection and the Manhattan dis-
tance.

Another distance function for histograms is based on
statistics: the χ2-test [4] defined as

dχ2(hA, hB) =
∑

g∈G

(hA(g) − hB(g))2

(hA(g) + hB(g))
.

There also exist techniques for histogram comparison
based on cumulative histograms, which are defined as fol-
lows

h̃A(g) =
∑

g′≤g

hA(g′).

The following metrics [5] make use of cumulative his-
tograms:

d̃L1
(hA, hB) =

∑

g∈G

|h̃A(g) − h̃B(g)|

d̃L2
(hA, hB) =

√

∑

g∈G

(

h̃A(g) − h̃B(g)
)2

.



5. Direct application of similarity measures to

histograms

First of all, it is meaningful to compare two histograms in
the framework of fuzzy set theory, because the histogram of
an image can be transformed to a fuzzy set in the universe
of grey levels by dividing the values of the histogram in ev-
ery grey leval by the maximum amount of pixels with the
same grey value. In this way the most typical grey value
gets membership degree 1 in the fuzzy set associated with
the histogram and every other less typical grey value gets
a smaller membership degree. Consequently, a normalized
histogram is in accordance with the intuitive idea behind
a fuzzy set: the most typical element in the universe gets
membership degree 1 and all other less typical elements be-
long to the fuzzy set to a less extent which can be expressed
by membership degrees smaller than 1. In this way we ob-
tain the following expression for the membership degree of
the grey value g in de fuzzy set FhA associated with the
histogram hA of the image A:

FhA(g) =
hA(g)

hA(gM )

with hA(gM ) = max
g∈G

hA(g). As histograms of digital im-

ages can be identified with fuzzy sets in the universe of
grey values, it is interesting to investigate whether similar-
ity measures, originally introduced to express the degree of
comparison between two fuzzy sets, can be applied to nor-
malized histograms in a meaningful way. In this way we
compare two images on a histogram-level, and the frequen-
cies of the different grey values are compared, grey value
per grey value.

6.  Application of similarity measures to ordered

histograms

Similarity measures can be applied in a second way to as-
sociated histograms of digital images. The values of a his-
togram can be ordered in such a way the least occuring grey
value is placed in the first position of the histogram and the
rest of frequencies are ordered in increasing order. Again,
the histogram is normalized analogously to the first case,
and consequently the most typical grey value gets member-
ship degree 1 in the fuzzy set associated with the histogram
and all the other membership degrees are all smaller than or
equal to 1 and are ordered in increasing order. Again, we
can apply the different similarity measures to these ordered
and normalized histograms. In contrast with the first ap-
plication of similarity measures to normalized histograms,
where the frequencies of the different grey levels are com-
pared grey level per grey level, in this case the frequency
of the most occuring grey level in the image A is compared

with the most occuring grey level in the image B, the fre-
quency of the second most occuring grey level in the image
A is compared with the second most occuring grey level in
the image B, ... The frequencies of the different grey val-
ues are compared frequency per frequency, with respect to
an increasing order of the different frequencies. So, it can
happen that two frequencies of two different grey values are
compared to each other, depending on the place they take in
the ordered histogram. If the ordered histogram of an image
A is denoted as oA, we obtain the following expression for
the fuzzy set associated with the ordered histogram of the
image A. For i = 1, ..., |G|, with G the universe of grey
levels:

OhA(i) =
oA(i)

oA(|G|)
,

with oA(g) = max
g∈G

hA(g).

7.  Appropriate measures of comparison for

histograms

A profound experimental study of the applicability of sim-
ilarity measures to normalized histograms resulted in 15
similarity measures which are appropriate for the compari-
son of images, i.e. they satisfy the list of relevant properties
we impose to a similarity measure in order to be applicable
in image processing. We recollect shortly the expressions
of several appropriate similarity measures:

H1(A, B) = 1 −

 

1

L

X

g∈G

|FhA(g) − FhB(g)|r
! 1

r

,

with r ∈ N\{0}

H3(A, B) = 1 −

P

g∈G

|FhA(g) − FhB(g)|

P

g∈G

(FhA(g) + FhB(g))

H6(A, B) =
|FhA ∩ FhB |

|FhA ∪ FhB |

H9(A, B) =
min(|FhA|, |FhB |)

|FhA ∪ FhB|

H12(A, B) =
|(FhA4FhB)c|

max(|(FhB\FhA)c|, |(FhA\FhB)c|)

H20(A, B) =
1

MN

X

g∈G

min(FhA(g), FhB(g)

max(FhA(g), FhB(g)
.

with L = |G| the total amount of different grey levels
and G the universe of grey levels. Furthermore we use
the minimum TM to model the intersection between two
fuzzy sets, the maximum SM to model the union between
two fuzzy sets, and the standard negator Ns to model the
complement of a fuzzy set. The symmetric difference be-
tween two fuzzy sets A and B in a universe X is defined as
A∆B = (A\B) ∪ (B\A), with A\B = A ∩ Bc. The car-
dinality of a fuzzy set A (with finite support) in a universe



X is defined as: |A| =
∑

x∈X

A(x).

If the similarity measures are applied to ordered his-
tograms we obtain 22 similarity measures which satisfy
the list of relevant properties. Besides the 15 similarity
measures which were appropriate for direct application, we
found 7 extra similarity measures which are appropriate for
application to ordered histograms. Also in this case we rec-
ollect the expressions of the several appropriate similarity
measures:

OH1(A, B) = 1 −

0

@

1

L

|G|
X

i=1

|OhA(i) − OhB(i)|r

1

A

1

r

,

with r ∈ N\{0}

OH2(A, B) = 1 − max
i∈G

|OhA(i) − OhB(i)|

OH3(A, B) = 1 −

|G|
P

i=1

|OhA(i) − OhB(i)|

|G|
P

i=1

(OhA(i) + OhB(i))

OH5(A, B) =
min(|OhA|, |OhB |)

max(|OhA|, |OhB |)

OH6(A, B) =
|OhA ∩ OhB |

|OhA ∪ OhB |

OH9(A, B) =
min(|OhA|, |OhB |)

|OhA ∪ OhB |

OH11(A, B) =
min(|OhA\OhB |, |OhB\OhA|)

max(|OhA\OhB |, |OhB\OhA|)

OH12(A, B) =
|(OhA4OhB)c|

max(|(OhB\OhA)c|, |(OhA\OhB)c|)

OH20(A, B) =
1

MN
·

|G|
X

i=1

»

min(OhA(i), OhB(i))

max(OhA(i), OhB(i))

–

.

8. Some examples

The first experiment is an illustration of how the similarity
measures react to salt & pepper noise and gaussian noise.
We will add three different percentages salt & pepper noise
and three different amounts of gaussian noise to the “cam-
eraman” image. The original image and the noisy images
are displayed in Figure 1. The results are shown in Table 1.
One can verify that the values are relatively high, and that
the similarity values slightly decrease with respect to an in-
creasing noise level. In the second experiment we apply the
different measures to an enlightened version of the “camera-
man” image (see Figure 1). The results of this experiment
are also displayed in Table 1. In this case the new measures
for histogram comparison clearly outperform the classical
measures of comparison, because the results of the classical
measures are far too high, in comparison with the results of
the experiment with an increasing noise percentage. Finally,
we apply the different similarity measures to the histograms

of totally different images, more precisely to the “camera-
man” image and the “Lena” image (see Figure 1). In this
case we obtain the lowest value for each of the new simi-
larity measures in comparison with the results of the other
experiments, which is of course a satisfactory result.

9. Conclusion

In this paper we have illustrated how similarity measures,
originally introduced to express the degree of comparison
between two fuzzy sets, can be applied to histograms of
images. In the first place, the similarity measures were
applied directly to the normalized histograms of the con-
sidered images, and secondly the similarity measures were
applied to normalized ordered histograms. We gave a thor-
ough overview of the similarity measures which can be ap-
plied succesfully to the histograms of digital images. All the
appropriate similarity measures were illustrated with some
examples.
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(b) (e) (h)
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Figure 1: (a) The original “cameraman” image, (b) enlightened version of the “cameraman” image, (c) the “lena” image (d)
the “cameraman” image corrupted with 10% salt & pepper noise, (e) the “cameraman” image corrupted with 15% salt &
pepper noise, (f) the “cameraman” image corrupted with 40% salt & pepper noise, (g) the “cameraman” image corrupted
with gaussian noise (σ = 14), (h) the “cameraman” image corrupted with gaussian noise (σ = 18), (i) the “cameraman”
image corrupted with gaussian noise (σ = 25).



(a) (b) (c) (d) (e) (f) (g) (h)
H1(r = 1) 0.99788 0.99676 0.99258 0.92379 0.90553 0.89085 0.84054 0.70588
H1(r = 2) 0.98315 0.97299 0.92946 0.83796 0.81253 0.79232 0.72676 0.62255
H1(r = 4) 0.9434 0.90913 0.76282 0.67235 0.6468 0.62851 0.56585 0.52299
H3 0.99305 0.98943 0.97603 0.70358 0.59283 0.48903 0.49452 0.42781
H4 0.99971 0.99926 0.99507 0.97416 0.96533 0.9573 0.92597 0.85927
H6 0.98619 0.97908 0.95318 0.54271 0.4213 0.32365 0.32848 0.27211
H6c 0.9975 0.99618 0.99126 0.91621 0.89855 0.88483 0.82705 0.66955
H7 0.98745 0.98179 0.95836 0.59532 0.4527 0.34379 0.49452 0.30365
H7c 0.99773 0.99669 0.99226 0.93129 0.90961 0.89375 0.90534 0.70269
H9 0.98747 0.98185 0.95859 0.63109 0.49065 0.38224 0.66424 0.376
H9c 0.99773 0.99669 0.99227 0.9324 0.91071 0.89481 0.91352 0.71671
H12 0.9978 0.9968 0.99252 0.93138 0.90964 0.89377 0.90537 0.70929
HI3 0.98294 0.9742 0.94265 0.53963 0.42 0.32286 0.32770 0.23567
HI3c

0.99758 0.99631 0.99155 0.91631 0.89859 0.88486 0.82710 0.67655
H18c 0.99788 0.99676 0.99258 0.92379 0.90553 0.89085 0.84054 0.70588
H20 0.98336 0.98005 0.97151 0.6417 0.56439 0.50757 0.45568 0.27719
H20c 0.99743 0.99605 0.99173 0.90768 0.89187 0.88029 0.82433 0.6566
OH1(r = 1) 0.99809 0.99734 0.99414 0.93846 0.92058 0.90424 0.99884 0.78719
OH1(r = 2) 0.99657 0.99518 0.98604 0.87635 0.84416 0.81887 0.99768 0.74345
OH1(r = 4) 0.99363 0.99112 0.96883 0.77034 0.72603 0.69296 0.99606 0.70846
OH2 0.98187 0.97211 0.89902 0.3962 0.30065 0.23089 0.98891 0.57636
OH3 0.99376 0.99132 0.98107 0.76064 0.65773 0.55171 0.99632 0.58599
OH4 0.99999 0.99998 0.99981 0.98509 0.97619 0.96765 0.99999 0.93513
OH5 0.98872 0.98457 0.9638 0.69228 0.52722 0.40602 1.00000 0.41958
OH5c 0.99796 0.99719 0.99327 0.94775 0.92192 0.90383 1.00000 0.75219
OH6 0.9876 0.98279 0.96284 0.61373 0.49001 0.38094 0.99267 0.41441
OH6c 0.99775 0.99687 0.99309 0.93179 0.91402 0.89824 0.99862 0.74945
OH7 0.98816 0.98367 0.96331 0.6436 0.50225 0.38786 0.99632 0.41593
OH7c 0.99785 0.99703 0.99318 0.93949 0.91779 0.90088 0.99931 0.75062
OH9 0.98817 0.98369 0.96333 0.66015 0.51438 0.39878 0.99634 0.41806
OH9c 0.99785 0.99703 0.99318 0.93998 0.91813 0.90117 0.99931 0.75101
OH11 0.98607 0.98096 0.95487 0.67858 0.51139 0.38938 1.00000 0.31096
OH11c 0.99803 0.99729 0.99351 0.94813 0.92233 0.90425 1.00000 0.76781
OH12 0.99793 0.99713 0.99342 0.93992 0.91823 0.90132 0.99934 0.76635
OH16e 0.97805 0.96668 0.89258 0.38055 0.29574 0.22719 0.98099 0.56986
OH16h 0.97798 0.96653 0.89185 0.35671 0.28431 0.21487 0.98090 0.56508
OHI3 0.98468 0.97877 0.95368 0.59737 0.47336 0.36392 0.99082 0.3053
OHI3c

0.99783 0.99697 0.99333 0.93227 0.91448 0.89869 0.99867 0.76523
OH18c 0.99809 0.99734 0.99414 0.93846 0.92058 0.90424 0.99884 0.78719
OH20 0.9522 0.95165 0.9473 0.68173 0.64546 0.55743 0.88798 0.31514
OH20c 0.99752 0.99627 0.98846 0.92031 0.90526 0.8924 0.99788 0.70712
dL1

1268 2024 5182 28138 32886 38946 66254 57866
dL2

453.81 723.81 1851.25 4186.20 4920.87 5810.41 7095.46 5631.92
dI 64902 64524 62945 51467 49093 46063 32409 36603
dχ2 638.18 1022.18 2648.91 13613.91 17062.46 21534.64 48238.22 37010.11

Table 1: Results of the classical measures of comparison for histograms and the appropriate fuzzy similarity measures for
the comparison of histograms: (a) 10% salt & pepper noise, (b) 15% salt & pepper noise, (c) 40% salt & pepper noise, (d)
gaussian noise with σ = 14, (e) gaussian noise with σ = 18, (f) gaussian noise with σ = 25, (g) enlightened version, (h)
“cameraman” image vs. “lena” image.


