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Abstract

In this paper we show that a simple beam ap-
proximation of the joint distribution between
attention and output is an easy, accurate, and
efficient attention mechanism for sequence to
sequence learning. The method combines the
advantage of sharp focus in hard attention and
the implementation ease of soft attention. On
five translation and two morphological inflec-
tion tasks we show effortless and consistent
gains in BLEU compared to existing attention
mechanisms.

1 Introduction

In structured input-output models as used in tasks
like translation and image captioning, the attention
variable decides which part of the input aligns to the
current output. Many attention mechanisms have
been proposed (Xu et al., 2015; Bahdanau et al.,
2014; Luong et al., 2015; Martins and Astudillo,
2016) but the de facto standard is a soft attention
mechanism that first assigns attention weights to
input encoder states, then computes an attention
weighted ’soft’ aligned input state, which finally
derives the output distribution. This method is end
to end differentiable and easy to implement.

Another less popular variant is hard attention
that aligns each output to exactly one input state but
requires intricate training to teach the network to
choose that state. When successfully trained, hard
attention is often found to be more accurate (Xu
et al., 2015; Zaremba and Sutskever, 2015). In
NLP, a recent success has been in a monotonic
hard attention setting in morphological inflection
tasks (Yu et al., 2016; Aharoni and Goldberg, 2017).
For general seq2seq learning, methods like Sparse-
Max (Martins and Astudillo, 2016) and local atten-
tion (Luong et al., 2015) were proposed to bridge
the gap between soft and hard attention.
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In this paper we propose a surprisingly simpler
alternative based on the original joint distribution
between output and attention, of which existing soft
and hard attention mechanisms are approximations.
The joint model couples input states individually to
the output like in hard attention, but it combines the
advantage of end-to-end trainability of soft atten-
tion. When the number of input states is large, we
propose to use a simple approximation of the full
joint distribution called Beam-joint. This approxi-
mation is also easily trainable and does not suffer
from the high variance of Monte-Carlo sampling
gradients of hard attention.

We evaluated our model on five translation tasks
and increased BLEU by 0.8 to 1.7 over soft atten-
tion, which in turn was better than hard and the
recent Sparsemax (Martins and Astudillo, 2016)
attention. More importantly, the training process
was as easy as soft attention. For further support,
we also evaluate on two morphological inflection
tasks and got gains over soft and hard attention.

2 Background and Related Work

For sequence to sequence (seq2seq) learning the
encoder-decoder model is the standard and we re-
view it here. We then review related work on atten-
tion mechanisms on these models.

2.1 Attention-based Encoder Decoder Model
Let x1, . . . , xm denote the tokens in the input
sequence that have been transformed by an
encoder network to state vectors x1, . . . , xm,
which we jointly denote as x1...m. Let y1, . . . , yn
denote the output tokens in the target sequence.
The Encoder-Decoder (ED) network factorizes
Pr(y1, . . . , yn|x1...m) as

∏n
t=1 Pr(yt|x1...m, st)

where st is a decoder state summarizing
y1, . . . yt−1. For each t, a hidden attention variable
at is used to denote which part of x1...m aligns
with yt. Let P (at = j|x1...m, st) denote the



probability that encoder state xj is relevant for
output yt. Typically this is estimated using a
softmax function over attention scores computed
from xj and decoder state st as follows.

P (at = j|x1...m, st) =
eAθ(xj ,st)∑m
r=1 e

Aθ(xr,st)
(1)

where Aθ(., .) is the attention unit that scores each
input state xj as per the decoder state st. There-
after, in the popular soft-attention mechanism, the
attention weighted sum of the input states is used
to model log likelihood for each yt as

log Pr(yt|x1...m) = log Pr(yt|
∑
a

Pt(a)xa) (2)

where Pt(at = j) is the short form for P (at =
j|x1...m, st). Also, here and in the rest of the paper
we drop st from P (yt) and Pt(a) for ease of nota-
tion. The weighted sum

∑
a Pt(a)xa is called an

input context ct which is fed to the decoder RNN
along with yt for computing the next state st+1.

2.2 Related Work
We next review existing attention types.

Soft Attention is the attention method described
in the previous section and is the current stan-
dard for seq2seq learning (Xu Chen, 2018; Koehn,
2017). It was proposed for translation in (Bah-
danau et al., 2014) and refined further in (Luong
et al., 2015). As shown in Eq 2, here each output
is derived from an attention averaged input. This
diffuses the coupling between the input and out-
put. The advantage of soft attention is end to end
differentiability, and fast training and inference.

Hard Attention was proposed in its current form
in (Xu et al., 2015) and attends to exactly one input
state for an output1. During training, log-likelihood
is an expectation over sampled attentions:

logPt(yt|x1...m) =
M∑
l=1

logPt(yt|xãl) (3)

where ã1, . . . , ãM are sampled from the multino-
mial Pt(a). Because of the sampling, the gradi-
ent has to be computed by Monte Carlo gradi-
ent/REINFORCE (Williams, 1992) and is subject
to high variance. Many tricks are required to train

1Note, attention on a single input encoder state does not
imply attention on a single input token because RNNs or self-
attention capture the context around the token.

hard attention and there is little standardization
across implementations. Xu et al (2015) use a
combination of REINFORCE and soft attention.
Zaremba et al(2015) uses curriculum learning that
starts as soft-attention and gradually becomes dis-
crete. Ling& Rush (2017) aggregates multiple sam-
ples during training, and a single sampled attention
while testing. However, once trained well the sharp
focus on memory provided by hard-attention has
been found to yield superior performance (Xu
et al., 2015; Shankar and Sarawagi, 2018).

Sparse/Local Attention Many attempts have
been made to bridge the gap between soft and hard
attention. Luong et al (2015) proposes local atten-
tion that averages a window of input. This has been
refined later to include syntax (Chen et al., 2017;
Sennrich and Haddow, 2016; Chen et al., 2018).
Another idea is to replace the softmax in soft atten-
tion with sparsity inducing operators (Martins and
Astudillo, 2016; Niculae and Blondel, 2017). How-
ever, all sparse/local attention methods continue to
compute P (y) from an attention weighted sum of
inputs (Eq: 2) unlike hard attention.

3 Joint Attention-Output Models

We start from an explicit joint representation of the
uncertainty of the attention and output variables.

logPt(yt|x1...m) = log
∑
a

Pt(a)Pt(yt|xa) (4)

The joint model directly couples individual input
states to the output, and thus is a type of hard atten-
tion. Also, by taking an expectation, instead of a
single hard attention, it enjoys differentiability as in
soft-attention. We call this the full-joint method.

Unfortunately, either when the vocabulary or the
number of encoder states (m) is large, full-joint
is not practical. Existing hard and soft attentions
can be viewed as its approximations that either
marginalize early or hard select attention. We show
a surprisingly simple alternative approximation that
provides hard attention without its training com-
plexity. Our method called Beam-joint determin-
istically selects the top-k highest attention values
and approximates the full joint log probability as

logPt(yt|x1...m) ≈ log
∑

a∈TopK(Pt(a))

Pt(a)Pt(yt|xa) (5)

Thus, in beam-joint, we first compute the multi-
nomial attention distribution in O(m) time using



Eq 1, select the Top-K input positions from the
multinomial, next with hard attention on each posi-
tion compute K output softmax, and finally com-
pute the attention weighted output mixture distribu-
tion. The number of output softmax is K times
in normal soft-attention but the actual running
time overhead is only 20–30% for translation tasks.
We used the default pass-through TopK operator
(which is not differentiable) and optimize the beam-
approximation directly. We also experimented with
a version which smoothly shifts from soft-attention
to beam-attention, but found that training the beam-
approximation directly leads to best results.

We show empirically that this very simple
scheme is surprisingly effective compared to exist-
ing hard and soft attention over several translation
tasks. Unlike sampling and variational methods
that require careful tuning and exotic tricks during
training, this simple scheme trains as easily as soft-
attention, without significant increase in training
time because even K = 6 works well enough.

Another reason why our ’sum of probabilities’
form performs better could be the softmax barrier
effect highlighted in (Yang et al., 2018). The au-
thors argue that the richness of natural language
cannot be captured in normal softmax due to the
low rank constraint it imposes on input-to-output
matrix. They improve performance using a Mixture
of Softmax model. Our beam-joint also is a mixture
of softmax and possibly achieves higher rank than
a single softmax. However their mixture requires
learning multiple softmax matrices, whereas ours
are due to varying attention and we do not learn
any extra parameters than soft attention.

4 Experiments

We compare attention models on two NLP tasks:
machine translation and morphological inflection.

4.1 Machine translation

We experiment on five language pairs from three
datasets: IWSLT15 English↔Vietnamese (Cet-
tolo et al., 2015) which contains 133k train, 1.5k
validation(tst2012) and 1.2k test(tst2013) sentence
pairs respectively; IWSLT14 German↔English
(Cettolo et al., 2014) which contains 160k train,
7.2k validation and 6.7k test sentence pairs respec-
tively ; Workshop on Asian Translation 2017
Japanese→English (Nakazawa et al., 2016) which
contains 2M train, 1.8k validation and 1.8k test
sentence pairs respectively. We use a 2 layer bi-

directional encoder and a 2 layer unidirectional de-
coder with 512 hidden LSTM units and 0.2 dropout
rate with vanilla SGD optimizer. We base our im-
plementation2 on the NMT code3 in Tensorflow.
We did no special hyper-parameter tuning and used
standard-softmax tuned parameters on a batch size
of 64.

Comparing attention models We compare
beam-joint (default K = 6) with standard soft and
hard attention. To further dissect the reasons behind
beam-joint’s gains, we compare beam-joint with a
sampling based approximation of full-joint called
Sample-Joint that replaces the TopK in Eq 5 with
K attention weighted samples. We train sample-
joint as well as hard-attention with REINFORCE
with 6-samples. Also to ascertain that our gains are
not explained by sparsity alone, we compare with
Sparsemax (Martins and Astudillo, 2016).

In Table 1 we show perplexity and BLEU with
three beam sizes (B). Beam-joint significantly out-
performs all other variants, including the standard
soft attention by 0.8 to 1.7 BLEU points. The per-
plexity shows even a more impressive drop in all
five datasets. Also we observe training times for
beam-joint to be only 20–30% higher than soft-
attention, establishing that beam-joint is both prac-
tical and more accurate.

Sample-joint is much worse than beam-joint.
Apart from the problem of high variance of gra-
dients in the reinforce step, another problem is that
sampling repeats states whereas TopK in beam-
joint gets distinct states. Hard attention too faces
training issues and performs worse than soft atten-
tion, explaining why it is not commonly used in
NMT. Sample-joint is better than Hard attention,
further highlighting the merits of the joint distri-
bution. Sparsemax is competitive but marginally
worse than soft attention. This is concordant with
the recent experiments of (Niculae and Blondel,
2017).

Comparison with Full Joint Next we evaluate
the impact of our beam-joint approximation against
full-joint and soft attention. Full-joint cannot scale
to large vocabularies, therefore we only compare
on En-Vi with a batch size of 32. Figure 1a shows
final BLEU of these methods as well as BLEU
against increasing training steps. Beam-joint both
converges faster and to a higher score than soft-

2https://github.com/sid7954/beam-joint-attention
3https://github.com/tensorflow/nmt



Dataset Attention PPL
BLEU

B=1 B=4 B=10

IWSLT14 DE-EN

Soft 9.61 27.7 28.6 28.5
Hard 9.50 25.3 25.6 25.5
Sparse 9.85 27.2 28.4 28.0
Sample-Joint 9.96 26.3 27.8 27.8
Beam-Joint 8.47 29.0 29.7 29.6

IWSLT14 EN-DE

Soft 10.68 23.1 24.2 24.2
Hard 10.15 21.4 21.8 21.7
Sparse 10.89 22.5 23.4 23.3
Sample-Joint 10.05 22.8 23.8 23.6
Beam-Joint 8.72 24.7 25.4 25.3

IWSLT15 EN-VI

Soft 10.27 26.0 26.6 26.4
Hard 10.53 24.1 24.3 24.0
Sparse 10.13 25.9 26.6 26.1
Sample-Joint 11.00 25.8 26.3 25.9
Beam-Joint 9.67 27.0 27.4 27.3

IWSLT14 VI-EN

Soft 8.30 23.6 24.7 24.6
Hard 8.28 21.1 21.9 21.5
Sparse 8.48 22.8 24.2 23.9
Sample-Joint 8.28 22.7 24.0 23.9
Beam-Joint 7.57 24.5 25.8 25.7

WAT17 JA-EN

Soft 12.46 17.6 18.9 18.5
Hard 12.78 13.2 13.1 12.7
Sparse 14.18 16.7 17.5 16.8
Sample-Joint 13.21 16.2 18.1 17.9
Beam-Joint 10.00 19.6 20.6 20.2

Table 1: Perplexity and test BLEU with three inference beam widths (B) on five translation tasks.
Beam-joint consistently and substantially outperforms soft-attention.

B=1 B=4 B=10
Soft 26.0 26.7 26.6
Beam-Joint 27.0 27.1 26.9
Full-Joint 26.8 27.1 26.9
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Figure 1: Test BLEU in various settings (Beam=1). Best viewed in color
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Figure 2: BLEU for Beam-Joint with increasing K.
BLEU increases with K and saturates at K=5

attention. For example by 10000 steps ( 5 epochs),
beam-joint has surpassed soft-attention by almost
2 BLEU points (20 vs 22). Moreover beam-joint
tracks full-joint well, and both converge finally to
similar BLEUs near 27 against 26 for soft attention.
This shows that an attention-beam of size 6 suffices
to approximate full joint almost perfectly.

Next, in Figure 1b, we compare beam-joint
(solid lines) and soft attention (dotted lines) for
convergence rates on three other datasets. For each
dataset beam-joint trains faster with a consistent
improvement of more than 1 BLEU.

Effect of K in Beam-joint We show the effect
of K used in TopK of beam-joint in Figure 2 on the
En-Vi and De-En tasks. On En-Vi BLEU increases
from 16.0 to 25.7 to 26.5 as K increases from 1 to
2 to 3; and then saturates quickly. Similar behavior
is observed in the other dataset. This shows that
small K values like 6 suffice for translation.

We further evaluate whether the performance
gain of beam-joint is due to the softmax barrier
alone in Table 2. We used our models trained with
K=6, and deployed them for test-time greedy de-
coding with K set to 1. Since the output now has
only a single softmax component, this model faces
the same bottleneck as soft-attention. One can ob-
serve that as expected these results are worse than
beam-joint with K=6, however they still exceed
soft-attention by a significant margin, demonstrat-
ing that the performance gain is not solely due to
the effect of ensembling or softmax-barrier.

4.2 Morphological Inflection
To demonstrate the use of this approach beyond
translation, we next consider two morphological
inflection tasks. We use (Durrett and DeNero,
2013)’s dataset containing 8 inflection forms for
German Nouns (de-N) and 27 forms for German

Dataset Soft Beam-Joint
(K=1)

Beam-Joint
(K=6)

En-De 23.1 24.5 24.7
De-En 27.7 28.4 29.0
En-Vi 26.0 26.5 27.0

Table 2: Comparing soft attention with Beam-Joint
using different values of K during inference. Dur-
ing training K = 6 for both Beam-Joint models.

Verbs (de-V). The number of training words is 2364
and 1627 respectively while the validation and test
words are 200 each. We train a one layer encoder
and decoder with 128 hidden LSTM units each with
a dropout rate of 0.2 using Adam(Kingma and Ba,
2014) and measure 0/1 accuracy for soft, hard and
full-joint attention models. Due to limited input
length and vocabulary, we were able to run directly
the full-joint model. We also ran the 100 units
wide two layer LSTM with hard-monotonic atten-
tion provided by (Aharoni and Goldberg, 2017)
labeled Hard-Mono4. The table below shows that
even for this task full-joint scores over existing at-
tention models5. The generic full-joint attention
provides slight gains even over the task specific
hard-monotonic attention.

Dataset Soft Hard
Hard-
Mono

Full-
Joint

de-N 85.50 85.13 85.65 85.81
de-V 94.91 95.04 95.31 95.52

Conclusion

In this paper we showed a simple yet effective ap-
proximation of the joint attention-output distribu-
tion in sequence to sequence learning. Our joint
model consistently provides higher accuracy with-
out significant running time overheads in five trans-
lation and two morphological inflection tasks. An
interesting direction for future work is to extend
beam-joint to multi-head attention architectures as
in (Vaswani et al., 2017; Xu Chen, 2018).

Acknowledgements We thank NVIDIA Corpo-
ration for supporting this research by the donation
of Titan X GPU.

4https://github.com/roeeaharoni/morphological-
reinflection

5Our numbers are lower than earlier reported because ours
use a single model whereas (Aharoni and Goldberg, 2017) and
others report from an ensemble of five models.
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