CS331 : THEORY OF COMPUTATION

Lecture 4

July 29, 2003

EXAMPLES
Example 1: Let us define a Language L
¥ = {0}

Ly = {0"n = 6k, k > 1}

_boﬂ,o LNQLNEGLY LGy

Figure 1: Transition Diagram for DFA recognizing language L1

In this model while reading the input string the information required to check the validity of string
is finite. Precisely we have to remember 6 states. Intermixing of any two of them may lead to incorrect
recognition. In this language there are finite number of states and thus finite amount of information
stored in them.

Example 2: Let us define a Language Lo
> ={0,1}
Ly ={0"1"|n > 1}

To check acceptance of strings of this language, we have to remember number of 0’s which can be
arbitrarily large. So we cannot express this language with any Finite Automaton.

Example 3: Let us define a language L3 such as
% ={0}

Ly ={0"|n > 1}

Here though the situation is not like Lo, but the difference between the length of strings to be accepted
keeps on increasing. So, the information to be remembered becomes arbitrarily large. Due to that,
we cannot recognize this language using finite amount of information. We are sure that this language
cannot be recognized by DFA.

1 NON-DETERMINISTIC FINITE AUTOMATION (NFA)
As we know that in DFA

Q : finite set of states
Y. : alphabet
s0 € Q : starting state
F CQ: set of accepting states
Transition Function in DFA is defined as

0:QxX—Q

1.1 Difference between DFA and NFA

In DFA the transition function gives exactly one state, when applied from some state on an input
symbol. In the nondeterministic automaton there can be several possible next states , and the au-
tomaton ‘guesses’ (always correctly) which next state (of the set of possible next states) will lead to
acceptance of the input string. DFA is a particular case of NFA.
So, transition function in NFA is

§:QxY—2¢9

Here the Transition Function will give set of states

> : alphabet
Q : finite set of states
§:Qx¥—2¢9

Here NFA has four states : A,B,C and D
>
@ a

a

b

“&“‘tow

Figure 2: Transition Diagram of an NFA : Ny

Figure 3: Possible transitions in N; on seeing the input “aba”

1.2 Acceptance condition of NFA

In DFA the acceptance condition is

d(sp,w) € F

It means that on applying string w to the automata with sy as the starting state, we should end up
in a final(accepting) state.

But in NFA the acceptance condition is defined as:

S(So,w)ﬂF # ¢

An input sequence is accepted by a NFA if there exists a sequence of transitions, corresponding
to the input sequence , that leads from the initial state to some final state.

§:Qx¥—2¢9
§:Qx ¥ —29
Here X* is set of strings
0(g,¢) = {a};¥g € Q

d(q,a) = 6(d(q,x), a)

- U s

p€d(g,x)

Applying to our example in fig3

5(Ae) = {A}

5(A,ae) = 6(A,a) = {B,C, D}
0(A,ab)= | 6(p,b) = 8(B,b) US(C,b) US(D,b)
pe{B,C,D}
= ¢U{A,BtU{B} ={A, B}
A aba) U d(p,a) = U d(p, a)
5(A,ab) pe{A,B}

=0(A,a) Ud(B,a)
={B,C,D}U¢
={B,C, D}

	NON-DETERMINISTIC FINITE AUTOMATION (NFA)
	 Difference between DFA and NFA
	 Acceptance condition of NFA

