Analysing Heap Manipulating Programs:

An Automata-theoretic Approach

Supratik Chakraborty
IIT Bombay

November 13, 2012

Supratik Chakraborty IIT Bombay Analysing Heap Manipulating Programs: An Automata-theoret

Outline of Talk

@ Some automata basics
@ Programs, heaps and analysis

@ Regular model checking

Supratik Chakraborty 11T Bombay Analysing Heap Manipulating Programs: An Automata-theoret

Some Automata Basics

Supratik Chakraborty 11T Bombay Analysing Heap Mani ing Programs: An Automata-theoret

Finite State Automata

A 5—tuple A = (%, Q, ")
Qo, 9, F), where
@ @ : Finite set of states b (@

Y : Input alphabet

(]

o Qu C Q: Initial states (@ @)

e I CQx((Xu{e}) xQ: '
State transition relation @

F : Set of final states

—» ab Q Final state

Supratik Chakraborty 11T Bombay Analysing Heap Manipulating Programs: An Automata-theoret

Runs and acceptance

|
a (@
b (@
Ot
©
()
o

—» ab Final state

pratik Chakraborty IIT Bombay Analysing Heap Manipulating Programs: An Automata-theoret

Runs and acceptance

!
a (@

@ An finite word o € X* b @)
Ot
()

—» ab O Final state

@ o = abbbbb

Supratik Chakraborty 11T Bombay Analysing Heap Manipulating Programs: An Automata-theoret

Runs and acceptance

!
a (@

@ An finite word o € ©* b @)
@ A runof Aon «is asequence p: N — @
such that Ot
o p(0) € Qo
o pli+1) € 8(p(i), (i) @

—» ab O Final state

@ « = abbbbb
@ p1 = q1G292G2G2G2G2

Supratik Chakraborty 11T Bombay Analysing Heap Manipulating Programs: An Automata-theoret

Runs and acceptance

@
@ An finite word o € ©* b @)
@ A runof Aon «is asequence p: N — @
such that Ot
e p(0) e Q
o pli+1) € 8(p(i), (i) @
@ An automaton may have many runs on a. 5

—» ab O Final state

@ o = abbbbb
@ p1 = q1G292G2G2G2G2
@ 02 = q191G2G292Q2Q>

Analysing Heap Manipulating Programs: An Automata-theoret

Supratik Chakraborty 11T Bombay

Runs and acceptance

|
(@
@ An finite word o € ©* b @)
@ A runof Aon «is asequence p: N — @
such that Ot
e p(0) e Q
o p(i+1) € 3(p(i). ali)) @
@ An automaton may have many runs on a.
e pis accepting iff p(|a]) € F ()

—» ab O Final state

@ o = abbbbb

@ p1 = q1G292G2G2G2G2
@ 02 = q191G2G292Q2Q>

Supratik Chakraborty 11T Bombay Analysing Heap Manipulating Programs: An Automata-theoret

Runs and acceptance

!
a (@

@ An finite word o € ©* b @)
@ A runof Aon «is asequence p: N — @
such that Ot

e p(0) e Q

o pli+1) € 6(p(i), a(i)) @
@ An automaton may have many runs on a.
e pis accepting iff p(|a]) € F () o

—» a, Final state

@ « is accepted by A (a € L(.A)) iff there is i

| [f :
at least one acceptlng run o A on « @ o — abbbbb

@ p1 = q1G292G2G2G2G2
@ 02 = q191G2G292Q2Q>

Supratik Chakraborty 11T Bombay Analysing Heap Manipulating Programs: An Automata-theoret

Finite State Transducer (FST)

A 6-tuple Q

T=(Q,X1,%2, Qo, 05, F)
@ @: Set of states

@ X 1: Input alphabet @
@ Y,: Output alphabet (b,)

@ Qy € Q: Initial set of states

(s c) (a,a)

00, CQx(X1U{e}) x @ Transduces ab to
(Sigmax U {e}) x Q: acc
Transition relation e Goes from ¢ to
@ F: Set of final states g2 on input ab

and outputs acc

Supratik Chakraborty 11T Bombay Analysing Heap Manipulating Programs: An Automata-theoret

Regular Relations

7=(Q,X1,X2, Qu,0s, F): Finite state transducer
@ Binary relation R;:
L {(U, V) ‘ ue ZT7V € 237357 S QCHEq/ € F7
g’ can be reached from g on reading v and producing v}

Image under R;:
o Given L C X7, define R (L) ={v|Jue L, (uv) e R}
Composition:
o RioRy={(u,v)]|3x, (u,x) € Ry and (x,v) € Ra}
e Requires output alphabet of R; same as input alphabet of R».
o Can compose R, with itself if £; = %,

@ lterated composition: R, with X1 =Y, =%

o id ={(u,u) | u€ X*}: identity relation
° R =id

° ,‘:\”+1 R, o RL, forall i >0

o R =Uso R

Supratik Chakraborty 11T Bombay Analysing Heap Manipulating Programs: An Automata-theoret

Programs, Heaps and Analysis

Supratik Chakraborty 11T Bombay Analysing Heap Mani ing Programs: An Automata-theoret

Programs and Heaps

A heap-manipulating program:

What is a “heap”?

@ Informally: Logical pool of
memory locations

e Formally: A partial map of
MemorylLocations to
Values

L1:
L2:
L3:
L4:
L5:
L6:
L7:
L8:
L9:
L10:

func(hd, x)

// all vars of ptr type

:= hd;

while (not(t1 = nil)) do
if (t1 = x) then

t2 := new;

t3 := x->n;

t2->n := t3;

x->n := t2;

tl := t1->n;
else t1 := t1-> n;

return;

Supratik Chakraborty 11T Bombay

Analysing Heap Manipulating Programs: An Automata-theoret

Reasoning about Heaps

A concrete problem

Given a sequential program that manipulates dynamic linked data
structures by creating/deleting memory cells and by updating links
between them, how do we prove assertions about the resulting
structures in heap (trees, lists, ...)?

@ Undecidable in general
e Represent non-blank part of TM tape as doubly-linked list
o Ask if the tape ever becomes completely blank

Supratik Chakraborty 11T Bombay Analysing Heap Manipulating Programs: An Automata-theoret

Reasoning about Heaps

A concrete problem

Given a sequential program that manipulates dynamic linked data
structures by creating/deleting memory cells and by updating links
between them, how do we prove assertions about the resulting
structures in heap (trees, lists, ...)?

@ Undecidable in general
e Represent non-blank part of TM tape as doubly-linked list
o Ask if the tape ever becomes completely blank

@ But that doesn’t reduce the importance of the problem

Supratik Chakraborty 11T Bombay Analysing Heap Manipulating Programs: An Automata-theoret

Reasoning about Heaps

A concrete problem

Given a sequential program that manipulates dynamic linked data
structures by creating/deleting memory cells and by updating links
between them, how do we prove assertions about the resulting
structures in heap (trees, lists, ...)?

@ Undecidable in general
o Represent non-blank part of TM tape as doubly-linked list
o Ask if the tape ever becomes completely blank

@ But that doesn’t reduce the importance of the problem

@ Can we solve special cases of the problem?

Supratik Chakraborty 11T Bombay Analysing Heap Manipulating Programs: An Automata-theoret

Reasoning about Heaps

A concrete problem

Given a sequential program that manipulates dynamic linked data
structures by creating/deleting memory cells and by updating links
between them, how do we prove assertions about the resulting
structures in heap (trees, lists, ...)?

@ Undecidable in general
o Represent non-blank part of TM tape as doubly-linked list
o Ask if the tape ever becomes completely blank

@ But that doesn’t reduce the importance of the problem

@ Can we solve special cases of the problem?

@ YES! for some important special cases
e Several techniques in literature
e This talk only about some automata-theoretic techniques
o Other powerful techniques exist (including automata-based)

Supratik Chakraborty 11T Bombay Analysing Heap Manipulating Programs: An Automata-theoret

Some Simplifying Assumptions

@ Heap allocated objects have selectors, e.g.x->n
e Assume one selector per object

Supratik Chakraborty IIT Bombay Analysing Heap Manipulating Programs: An Automata-theoret

Some Simplifying Assumptions

@ Heap allocated objects have selectors, e.g.x->n
e Assume one selector per object
e Focus on link structures, abstract (ignore) other data types

e Sole abstract data type: pointer to memory location
e Simple new and free sufficient

Supratik Chakraborty IIT Bombay Analysing Heap Manipulating Programs: An Automata-theoret

Some Simplifying Assumptions

@ Heap allocated objects have selectors, e.g.x->n
e Assume one selector per object
e Focus on link structures, abstract (ignore) other data types
e Sole abstract data type: pointer to memory location
e Simple new and free sufficient
@ No long sequences of selectors
e x->n->n := y->n->n; semantically equivalent to
o templ := x->n; temp2 := y->n; temp3d := temp2->n;
templ->n := temp3;
o templ, temp2, temp3 fresh variables.

Supratik Chakraborty IIT Bombay Analysing Heap Manipulating Programs: An Automata-theoret

Some Simplifying Assumptions

@ Heap allocated objects have selectors, e.g.x->n
e Assume one selector per object
e Focus on link structures, abstract (ignore) other data types
e Sole abstract data type: pointer to memory location
e Simple new and free sufficient
@ No long sequences of selectors
e x->n->n := y->n->n; semantically equivalent to
o templ := x->n; temp2 := y->n; temp3d := temp2->n;
templ->n := temp3;
o templ, temp2, temp3 fresh variables.
@ Simplify garbage handling
Garbage: Allocated memory in heap, no means of access
Example: x := new; x:= new;
Treat garbage generation as error/assume garbage collection
Rest of analysis assumes no garbage

Supratik Chakraborty IIT Bombay Analysing Heap Manipulating Programs: An Automata-theoret

A Simple Imperative Language

PVar 2= u|v|...(pointer-valued variables)

FName = n|f|...(pointer-valued selectors)

PExp = PVar | PVar->FName

BExp = PVar = PVar | Pvar = nil | not BExp |
BExp or BExp | BExp and BExp

Stmt := AsgnStmt | CondStmt | LoopStmt |
SeqCompStmt | AllocStmt | FreeStmt

AsgnStmt »= PExp := PVar | PVar := PExp | PExp := nil

AllocStmt = PVar := new

FreeStmt = free(PVar)

CondStmt = if (BoolExp) then Stmt else Stmt

LoopStmt = while (BoolExp) do Stmt

SeqCompStmt 1= Stmt ; Stmt

Supratik Chakraborty 11T Bombay Analysing Heap Manipulating Programs: An Automata-theoret

Heap Graph

Given program P with variable
names in X p and selector names

. . hd
in X ¢, construct H gn

G:(VvEyvnilv)\v,u) @
n

@ V: Memory locations
allocated by P H-tl .
@ v,;: Represents “nil” value
@ EC V\ {vni} x V: Link o

structure

o \: E — 2%\ {P}: Selector Boox—
assignments

° pu: X, — V: (Partial)
variable assignments

=

Supratik Chakraborty 11T Bombay Analysing Heap Manipulating Programs: An Automata-theoret

Analyzing Programs with Heaps

e Program state (minimalist view):

o Location of statement to execute (pc)
e Representation of heap graph

Supratik Chakraborty 11T Bombay Analysing Heap Manipulating Programs: An Automata-theoret

Analyzing Programs with Heaps

e Program state (minimalist view):
o Location of statement to execute (pc)
e Representation of heap graph
@ Why not construct a state transition graph?

e Finite no. of locations:
e Unbounded vertices in heap graph: Bad!

Supratik Chakraborty 11T Bombay Analysing Heap Manipulating Programs: An Automata-theoret

Analyzing Programs with Heaps

e Program state (minimalist view):

o Location of statement to execute (pc)
e Representation of heap graph

@ Why not construct a state transition graph?

e Finite no. of locations:
e Unbounded vertices in heap graph: Bad!

@ Represent (unbounded) heap graph smartly
o Effectively reason about the representation

Supratik Chakraborty 11T Bombay Analysing Heap Manipulating Programs: An Automata-theoret

Regular Model Checking

Supratik Chakraborty 11T Bombay Analysing Heap Mani ing Programs: An Automata-theoret

Regular (Word) Model Checking (RMC)

@ Represent heap graph (more generally, state) as finite
(unbounded) words on a finite alphabet ¥

e Brass tacks coming soon!

@ Set of states C L*
o A language!
o If regular, use a finite-state automaton
@ Executing a program statement transforms one state (word)
to another (word)
e State transition relation is a word transducer
e Is it a finite-state transducer?

Supratik Chakraborty 11T Bombay Analysing Heap Manipulating Programs: An Automata-theoret

Regular (Word) Model Checking (RMC)

@ Represent heap graph (more generally, state) as finite
(unbounded) words on a finite alphabet ¥

e Brass tacks coming soon!

@ Set of states C L*
o A language!
o If regular, use a finite-state automaton
@ Executing a program statement transforms one state (word)
to another (word)
e State transition relation is a word transducer
e Is it a finite-state transducer?
° for several classes of programs

Supratik Chakraborty 11T Bombay Analysing Heap Manipulating Programs: An Automata-theoret

Core Idea of RMC (with words)

@ Program states (not just heap graphs): Finite words
@ Operational semantics
o Program statement: Finite state transducer over words
e Program: Non-deterministically compose transducers for all
statements to give a larger transducer
@ Regular set of initial and “error” program states: | and Bad
o RX(I) = U;>o Ri(I) denotes set of all reachable states

e R*(I) may not be regular, even if R, and [are regular
e Common solution: Regular overapproximations

@ Check if RE(1)N Bad =)

Supratik Chakraborty 11T Bombay Analysing Heap Manipulating Programs: An Automata-theoret

Core Idea of RMC (with words)

Program states (not just heap graphs): Finite words

Operational semantics

o Program statement: Finite state transducer over words
e Program: Non-deterministically compose transducers for all
statements to give a larger transducer

Regular set of initial and “error” program states: | and Bad
o RX(I) = U;>o Ri(I) denotes set of all reachable states

e R*(I) may not be regular, even if R, and [are regular
e Common solution: Regular overapproximations

Check if RX(/)N Bad =0

Focus of subsequent talk

@ Encoding states as finite words
@ Operational semantics of program statement

@ Overapproximating RX(/)

Supratik Chakraborty 11T Bombay Analysing Heap Manipulating Programs: An Automata-theoret

Properties of Heap Graphs

@ Recall: Single pointer-valued selector of heap-allocated objects
@ Heap graph: Singly linked lists with possible sharing of
elements and circularly linked structures

X D Heap shared
t1
D Interruption

Supratik Chakraborty IIT Bombay Analysing Heap Manipulating Programs: An Automata-theoret

Properties of Heap Graphs

@ Recall: Single pointer-valued selector of heap-allocated objects
@ Heap graph: Singly linked lists with possible sharing of
elements and circularly linked structures

X D Heap shared
t1
D Interruption

@ Heap shared nodes
e Two (or more) incoming edges, or
e One incoming edge + pointed to by variable

@ Interruption: heap-shared node or pointed to by variable

Supratik Chakraborty IIT Bombay Analysing Heap Manipulating Programs: An Automata-theoret

Properties of Heap Graphs

Observation [Manevich et al' 2005]

With n program variables, heap graph has < n heap shared nodes,
< 2n interruptions, < 2n uninterrupted lists

Example: A= B —~C,C—-D,D—E—D, G— V,

Supratik Chakraborty 11T Bombay Analysing Heap Manipulating Programs: An Automata-theoret

Encoding Heap Graphs as Words

Heap graph: Set of uninterrupted lists

@ Assign unique name from rank-ordered set to each
heap-shared node

@ Uninterrupted list from heap-shared node C with 1 link
(sequence of n selectors) to heap-shared node D: C.nD

@ Use T (L) to denote uninitialized (nil) terminated lists

@ List encodings of uninterrupted lists separated by |

Ordering of names

hd <tl<x<C=<D.
] IM Encoding:
. hd.n.nt1C | t1C.nD |

| I 'nl t1

D.n.nD | x.nL

Supratik Chakraborty 11T Bombay Analysing Heap Manipulating Programs: An Automata-theoret

Encoding States

@ k program variables

o Yy = {Moy, My, My, ... M}: rank-ordered names for
heap-shared nodes

@ > ,: Set of program variable names

@ X ;: Set of program locations (pc values)

o Xc={Cn, G, C,C,...Ck}: mode flags

Supratik Chakraborty 11T Bombay Analysing Heap Manipulating Programs: An Automata-theoret

Encoding States

@ k program variables

o Yy = {Moy, My, My, ... M}: rank-ordered names for

heap-shared nodes

Y . Set of program variable names

Y ,: Set of program locations (pc values)

ZC = {CN, Co, Cl, Cg, ce Ck}: mode flags

Program state: w = |wq|wa|wsz|wa|ws|, where

| doesn't appear in any wiy, wa, w3, wy

ws encodes heap-graph: word over Xy, U{T,L,][,.n}

wy € X¢ - X mode + program location

wa: (Possibly empty) rank-ordered sequence of unused names

for heap-shared nodes

o ws: (Possibly empty) rank-ordered sequence of uninitialized
variable names

o wy: (Possibly empty) rank-ordered sequence of variable names

set to nil
o w: Finite word over LcUX, UXyUX,U{T,L,|, .n}

e 6 6 o
[

Supratik Chakraborty IIT Bombay Analysing Heap Manipulating Programs: An Automata-theoret

Encoding states

@ Consider earlier program at L9 and above heap graph with
variables t2, t3 uninitialized
e 5 program variables, so Xy = {My, My, My, M3, My, Ms}
o State:
| Cn L9| My M3 My Ms ‘ t2 t3| | hd.nMy |t1M1.n/\/l2 ‘XMQ.I‘I.HJ_ ‘

Supratik Chakraborty 11T Bombay Analysing Heap Manipulating Programs: An Automata-theoret

Purpose of Mode Flags

For program with heap-shared node names in
Yv = {Mo, My,... My}
e Mode flags in ZC = {CN, Co, Cl, cee Ck}
@ Cp : Normal mode of operation
e C;,i€{0,...k}: Mode for reclaiming name M;

e Reclaim name of heap-shared node once it ceases to be
heap-shared

o Crucial to be able to work with finite set of names

Supratik Chakraborty 11T Bombay

Analysing Heap Manipulating Programs: An Automata-theoret

Operational Semantics of Statements

@ Finite state word transducers
@ Two special “sink” states: gmem and gerr
o Go to gmem If garbage is generated, nil or uninitialized pointer
dereferenced
@ Go to ge on realizing that we made a wrong move sometime
in the past
@ Simple for assignment, allocation and de-allocation statements
@ Use non-deterministic guesses to encode semantics of

conditional and loop statements
o Recall state: |wq|ws|ws|wy|ws|, where ws encodes heap
o Can't determine next location until we've seen whole of w
e So, how do we figure out values of wy, wo, wz, wy in next
state?

Supratik Chakraborty 11T Bombay Analysing Heap Manipulating Programs: An Automata-theoret

Operational Semantics of Statements

@ Finite state word transducers
@ Two special “sink” states: gmem and gerr
o Go to gmem If garbage is generated, nil or uninitialized pointer
dereferenced
@ Go to ge on realizing that we made a wrong move sometime
in the past
@ Simple for assignment, allocation and de-allocation statements
@ Use non-deterministic guesses to encode semantics of

conditional and loop statements

o Recall state: |wq|ws|ws|wy|ws|, where ws encodes heap

o Can't determine next location until we've seen whole of w

e So, how do we figure out values of wy, wo, wz, wy in next
state?

o Non-deterministically guess, remember guess in finite control,
check as rest of word is read, transition to qe, if guess
incorrect

Supratik Chakraborty 11T Bombay Analysing Heap Manipulating Programs: An Automata-theoret

Computing (approximate) R*(/)

@ Quotienting techniques
@ Abstraction-refinement techniques
e Extrapolation/widening techniques

@ Regular language inferencing techniques

Supratik Chakraborty 11T Bombay Analysing Heap Manipulating Programs: An Automata-theoret

