Analysing Heap Manipulating Programs: An Automata-theoretic Approach

Supratik Chakraborty IIT Bombay

November 13, 2012

向下 イヨト イヨト

- Some automata basics
- Programs, heaps and analysis
- Regular model checking

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

э

Some Automata Basics

◆□ > ◆□ > ◆目 > ◆目 > ● 目 ● の < ⊙

Finite State Automata

A 5-tuple $\mathcal{A} = (\Sigma, Q, Q_0, \delta, F)$, where

- Q : Finite set of states
- Σ : Input alphabet
- $Q_0 \subseteq Q$: Initial states
- δ ⊆ Q × (Σ ∪ {ε}) × Q:
 State transition relation
- F : Set of final states

Runs and acceptance

- 4 回 2 - 4 回 2 - 4 回 2

æ

Runs and acceptance

• An finite word $\alpha \in \Sigma^*$

→ 同 → → 目 → → 目 →

• $\alpha = abbbbb$

Supratik Chakraborty IIT Bombay Analysing Heap Manipulating Programs: An Automata-theoret

- An finite word $\alpha \in \Sigma^*$
- A run of \mathcal{A} on α is a sequence $\rho : \mathbb{N} \to Q$ such that

•
$$\rho(0) \in Q_0$$

• $\rho(i+1) \in \delta(\rho(i), \alpha(i))$

• $\alpha = abbbbb$

•
$$\rho_1 = q_1 q_2 q_2 q_2 q_2 q_2 q_2 q_2$$

- ∢ ⊒ ⊳

- An finite word $\alpha \in \Sigma^*$
- A run of \mathcal{A} on α is a sequence $\rho : \mathbb{N} \to Q$ such that
 - $\rho(0) \in Q_0$
 - $\rho(i+1) \in \delta(\rho(i), \alpha(i))$
- An automaton may have many runs on α .

• $\alpha = abbbbb$

•
$$\rho_1 = q_1 q_2 q_2 q_2 q_2 q_2 q_2 q_2$$

•
$$\rho_2 = q_1 q_1 q_2 q_2 q_2 q_2 q_2$$

- An finite word $\alpha \in \Sigma^*$
- A run of \mathcal{A} on α is a sequence $\rho : \mathbb{N} \to Q$ such that
 - $\rho(0) \in Q_0$
 - $\rho(i+1) \in \delta(\rho(i), \alpha(i))$
- An automaton may have many runs on $\alpha.$
- ρ is accepting iff $\rho(|\alpha|) \in F$

• $\alpha = abbbbb$

•
$$\rho_1 = q_1 q_2 q_2 q_2 q_2 q_2 q_2 q_2$$

•
$$\rho_2 = q_1 q_1 q_2 q_2 q_2 q_2 q_2$$

- An finite word $\alpha \in \Sigma^*$
- A *run* of \mathcal{A} on α is a sequence $\rho : \mathbb{N} \to Q$ such that
 - $ho(0) \in Q_0$
 - $\rho(i+1) \in \delta(\rho(i), \alpha(i))$
- An automaton may have many runs on $\alpha.$
- ρ is accepting iff $\rho(|\alpha|) \in F$
- α is accepted by A (α ∈ L(A)) iff there is at least one accepting run of A on α.

• $\alpha = abbbbb$

•
$$\rho_1 = q_1 q_2 q_2 q_2 q_2 q_2 q_2 q_2$$

•
$$\rho_2 = q_1 q_1 q_2 q_2 q_2 q_2 q_2 q_2$$

Finite State Transducer (FST)

A 6-tuple

- $\tau = (Q, \Sigma_1, \Sigma_2, Q_0, \delta_\tau, F)$
 - Q: Set of states
 - Σ₁: Input alphabet
 - Σ₂: Output alphabet
 - $Q_0 \subseteq Q$: Initial set of states
 - $\delta_{\tau} \subseteq Q \times (\Sigma_1 \cup \{\varepsilon\}) \times (Sigma_2 \cup \{\varepsilon\}) \times Q$: Transition relation
 - F: Set of final states

- Transduces *ab* to *acc*
- Goes from q₁ to q₂ on input ab and outputs acc

・ 同 ト ・ ヨ ト ・ ヨ ト

Regular Relations

- $au = (Q, \Sigma_1, \Sigma_2, Q_0, \delta_{ au}, F)$: Finite state transducer
 - Binary relation R_{τ} :
 - $\{(u,v) \mid u \in \Sigma_1^*, v \in \Sigma_2^*, \exists q \in Q_0, \exists q' \in F, \}$
 - q' can be reached from q on reading u and producing v}
 - Image under R_{τ} :
 - Given $L \subseteq \Sigma_1^*$, define $R_{\tau}(L) = \{v \mid \exists u \in L, (u, v) \in R_{\tau}\}$
 - Composition:
 - $R_1 \circ R_2 = \{(u, v) \mid \exists x, (u, x) \in R_1 \text{ and } (x, v) \in R_2\}$
 - Requires output alphabet of R_1 same as input alphabet of R_2 .
 - Can compose $R_{ au}$ with itself if $\Sigma_1 = \Sigma_2$
 - Iterated composition: $R_{ au}$ with $\Sigma_1 = \Sigma_2 = \Sigma$
 - $id = \{(u, u) \mid u \in \Sigma^*\}$: identity relation

•
$$R^0_{ au} = id$$

•
$$R_{ au}^{i+1} = R_{ au} \circ R_{ au}^i$$
, for all $i \ge 0$

•
$$R^*_{\tau} = \bigcup_{i \ge 0} R^i_{\tau}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のQ@

Programs, Heaps and Analysis

回 と く ヨ と く ヨ と

What is a "heap"?

- Informally: Logical pool of memory locations
- Formally: A *partial* map of MemoryLocations to Values

A heap-manipulating program:

func(hd. x)// all vars of ptr type L1: t1 := hd;L2: while (not(t1 = nil)) do L3: if (t1 = x) then L4: t2 := new;L5: t3 := x->n; L6: t2->n := t3; I.7: x->n := t2: I.8: t1 := t1 -> n:I.9: else t1 := t1-> n: L10: return;

・ロン ・回 と ・ ヨ と ・ ヨ と

3

Given a sequential program that manipulates dynamic linked data structures by creating/deleting memory cells and by updating links between them, how do we prove assertions about the resulting structures in heap (trees, lists, ...)?

- Undecidable in general
 - Represent non-blank part of TM tape as doubly-linked list
 - Ask if the tape ever becomes completely blank

▲圖▶ ▲屋▶ ▲屋▶

Given a sequential program that manipulates dynamic linked data structures by creating/deleting memory cells and by updating links between them, how do we prove assertions about the resulting structures in heap (trees, lists, ...)?

- Undecidable in general
 - Represent non-blank part of TM tape as doubly-linked list
 - Ask if the tape ever becomes completely blank
- But that doesn't reduce the importance of the problem

▲圖▶ ▲屋▶ ▲屋▶

Given a sequential program that manipulates dynamic linked data structures by creating/deleting memory cells and by updating links between them, how do we prove assertions about the resulting structures in heap (trees, lists, ...)?

- Undecidable in general
 - Represent non-blank part of TM tape as doubly-linked list
 - Ask if the tape ever becomes completely blank
- But that doesn't reduce the importance of the problem
- Can we solve special cases of the problem?

・ロン ・回 と ・ ヨ と ・ ヨ と

Given a sequential program that manipulates dynamic linked data structures by creating/deleting memory cells and by updating links between them, how do we prove assertions about the resulting structures in heap (trees, lists, ...)?

- Undecidable in general
 - Represent non-blank part of TM tape as doubly-linked list
 - Ask if the tape ever becomes completely blank
- But that doesn't reduce the importance of the problem
- Can we solve special cases of the problem?
- YES! for some important special cases
 - Several techniques in literature
 - This talk only about some automata-theoretic techniques
 - Other powerful techniques exist (including automata-based)

< □ > < @ > < 注 > < 注 > ... 注

- Heap allocated objects have selectors, e.g.x->n
 - Assume one selector per object

個 と く ヨ と く ヨ と …

- Heap allocated objects have selectors, e.g.x->n
 - Assume one selector per object
- Focus on link structures, abstract (ignore) other data types
 - Sole abstract data type: pointer to memory location
 - Simple new and free sufficient

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

- Heap allocated objects have selectors, e.g.x->n
 - Assume one selector per object
- Focus on link structures, abstract (ignore) other data types
 - Sole abstract data type: pointer to memory location
 - Simple new and free sufficient
- No long sequences of selectors
 - x->n->n := y->n->n; semantically equivalent to
 - temp1 := x->n; temp2 := y->n; temp3 := temp2->n; temp1->n := temp3;
 - temp1, temp2, temp3 fresh variables.

(ロ) (同) (E) (E) (E)

- Heap allocated objects have selectors, e.g.x->n
 - Assume one selector per object
- Focus on link structures, abstract (ignore) other data types
 - Sole abstract data type: pointer to memory location
 - Simple new and free sufficient
- No long sequences of selectors
 - x->n->n := y->n->n; semantically equivalent to
 - temp1 := x->n; temp2 := y->n; temp3 := temp2->n; temp1->n := temp3;
 - temp1, temp2, temp3 fresh variables.
- Simplify garbage handling
 - Garbage: Allocated memory in heap, no means of access
 - Example: x := new; x:= new;
 - Treat garbage generation as error/assume garbage collection
 - Rest of analysis assumes no garbage

(ロ) (同) (E) (E) (E)

A Simple Imperative Language

PVar	::=	$u \mid v \mid \dots$ (pointer-valued variables)
FName	::=	$n \mid f \mid \dots$ (pointer-valued selectors)
PExp	::=	PVar PVar->FName
BExp	::=	PVar = PVar Pvar = nil not BExp
		BExp or BExp BExp and BExp
Stmt	::=	AsgnStmt CondStmt LoopStmt
		SeqCompStmt AllocStmt FreeStmt
AsgnStmt	::=	PExp := PVar PVar := PExp PExp := nil
AllocStmt	::=	PVar := new
FreeStmt	::=	free(PVar)
CondStmt	::=	if (BoolExp) then Stmt else Stmt
LoopStmt	::=	while (BoolExp) do Stmt
SeqCompStmt	::=	Stmt ; Stmt

白 ト イヨト イヨト

Given program P with variable names in Σ_P and selector names in Σ_f , construct

- $G = (V, E, v_{nil}, \lambda, \mu)$
 - V: Memory locations allocated by P
 - v_{nil}: Represents "nil" value
 - $E \subseteq V \setminus \{v_{nil}\} \times V$: Link structure
 - $\lambda: E \to 2^{\Sigma_f} \setminus \{\emptyset\}$: Selector assignments
 - μ : Σ_p ↔ V: (Partial) variable assignments

・ 同 ト ・ ヨ ト ・ ヨ ト …

• Program state (minimalist view):

- Location of statement to execute (pc)
- Representation of heap graph

向下 イヨト イヨト

- Program state (minimalist view):
 - Location of statement to execute (pc)
 - Representation of heap graph
- Why not construct a state transition graph?
 - Finite no. of locations: Good!
 - Unbounded vertices in heap graph: Bad!

伺 と く き と く き と

- Program state (minimalist view):
 - Location of statement to execute (pc)
 - Representation of heap graph
- Why not construct a state transition graph?
 - Finite no. of locations: Good!
 - Unbounded vertices in heap graph: Bad!
- Represent (unbounded) heap graph smartly
- Effectively reason about the representation

・ 同 ト ・ ヨ ト ・ ヨ ト …

Regular Model Checking

æ

Regular (Word) Model Checking (RMC)

- Represent heap graph (more generally, state) as finite (unbounded) words on a finite alphabet Σ
 - Brass tacks coming soon!
- Set of states $\subseteq \Sigma^*$
 - A language!
 - If regular, use a finite-state automaton
- Executing a program statement transforms one state (word) to another (word)
 - State transition relation is a word transducer
 - Is it a finite-state transducer?

・ 同 ト ・ ヨ ト ・ ヨ ト …

Regular (Word) Model Checking (RMC)

- Represent heap graph (more generally, state) as finite (unbounded) words on a finite alphabet Σ
 - Brass tacks coming soon!
- Set of states $\subseteq \Sigma^*$
 - A language!
 - If regular, use a finite-state automaton
- Executing a program statement transforms one state (word) to another (word)
 - State transition relation is a word transducer
 - Is it a finite-state transducer?
 - Yes! for several classes of programs

・ 同 ト ・ ヨ ト ・ ヨ ト

Core Idea of RMC (with words)

- Program states (not just heap graphs): Finite words
- Operational semantics
 - Program statement: Finite state transducer over words
 - Program: Non-deterministically compose transducers for all statements to give a larger transducer τ
- Regular set of initial and "error" program states: I and Bad
- $R^*_{\tau}(I) = \bigcup_{i>0} R^i_{\tau}(I)$ denotes set of all reachable states
 - $R^*_{\tau}(I)$ may not be regular, even if R_{τ} and I are regular
 - Common solution: Regular overapproximations
- Check if $R^*_{\tau}(I) \cap Bad = \emptyset$

(4回) (注) (注) (注) (注)

Core Idea of RMC (with words)

- Program states (not just heap graphs): Finite words
- Operational semantics
 - Program statement: Finite state transducer over words
 - Program: Non-deterministically compose transducers for all statements to give a larger transducer τ
- Regular set of initial and "error" program states: I and Bad
- $R^*_{\tau}(I) = \bigcup_{i>0} R^i_{\tau}(I)$ denotes set of all reachable states
 - $R^*_{\tau}(I)$ may not be regular, even if R_{τ} and I are regular
 - Common solution: Regular overapproximations

• Check if
$$R^*_{\tau}(I) \cap Bad = \emptyset$$

Focus of subsequent talk

- Encoding states as finite words
- Operational semantics of program statement
- Overapproximating $R^*_{\tau}(I)$

Properties of Heap Graphs

- Recall: Single pointer-valued selector of heap-allocated objects
- Heap graph: Singly linked lists with possible sharing of elements and circularly linked structures

Properties of Heap Graphs

- Recall: Single pointer-valued selector of heap-allocated objects
- Heap graph: Singly linked lists with possible sharing of elements and circularly linked structures

• Heap shared nodes

- Two (or more) incoming edges, or
- $\bullet\,$ One incoming edge + pointed to by variable
- Interruption: heap-shared node or pointed to by variable

Properties of Heap Graphs

Observation [Manevich et al' 2005]

With *n* program variables, heap graph has $\leq n$ heap shared nodes, $\leq 2n$ interruptions, $\leq 2n$ uninterrupted lists

Example: $A \rightarrow B \rightarrow C$, $C \rightarrow D$, $D \rightarrow E \rightarrow D$, $G \rightarrow V_{nil}$

Encoding Heap Graphs as Words

Heap graph: Set of uninterrupted lists

Encoding

- Assign unique name from rank-ordered set to each heap-shared node
- Uninterrupted list from heap-shared node C with 1 link (sequence of n selectors) to heap-shared node D: C.nD
- Use \top (\perp) to denote uninitialized (nil) terminated lists
- List encodings of uninterrupted lists separated by |

Ordering of names $hd \prec t1 \prec x \prec C \prec D$. Encoding: $hd.n.nt1C \mid t1C.nD \mid$ $D.n.nD \mid x.n \perp$

・ロン ・回 と ・ ヨ と ・ ヨ と

Encoding States

- k program variables
- $\Sigma_M = \{M_0, M_1, M_2, \dots, M_k\}$: rank-ordered names for heap-shared nodes
- Σ_p : Set of program variable names
- Σ_L : Set of program locations (pc values)
- $\Sigma_C = \{C_N, C_0, C_1, C_2, \dots C_k\}$: mode flags

|▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ � � �

Encoding States

- k program variables
- $\Sigma_M = \{M_0, M_1, M_2, \dots, M_k\}$: rank-ordered names for heap-shared nodes
- Σ_p : Set of program variable names
- Σ_L : Set of program locations (pc values)
- $\Sigma_C = \{C_N, C_0, C_1, C_2, \dots C_k\}$: mode flags
- Program state: $w = |w_1|w_2|w_3|w_4|w_5|$, where
 - | doesn't appear in any w_1, w_2, w_3, w_4
 - w_5 encodes heap-graph: word over $\Sigma_M \cup \{\top, \bot, |, .n\}$
 - $w_1 \in \Sigma_C \cdot \Sigma_L$: mode + program location
 - *w*₂: (Possibly empty) rank-ordered sequence of unused names for heap-shared nodes
 - *w*₃: (Possibly empty) rank-ordered sequence of uninitialized variable names
 - w₄: (Possibly empty) rank-ordered sequence of variable names set to *nil*
 - *w*: Finite word over $\Sigma_C \cup \Sigma_L \cup \Sigma_M \cup \Sigma_p \cup \{\top, \bot, |, .n\}$

- Consider earlier program at L9 and above heap graph with variables t2, t3 uninitialized
 - 5 program variables, so $\Sigma_M = \{M_0, M_1, M_2, M_3, M_4, M_5\}$
 - State:

 $|C_{N}L9|M_{0}M_{3}M_{4}M_{5}|t2t3||hd.nM_{1}|t1M_{1}.nM_{2}|xM_{2}.n.n\perp|$

(日本) (日本) (日本)

For program with heap-shared node names in

- $\Sigma_M = \{M_0, M_1, \dots M_k\}$
 - Mode flags in $\Sigma_C = \{C_N, C_0, C_1, \dots C_k\}$
 - C_N : Normal mode of operation
 - $C_i, i \in \{0, \ldots, k\}$: Mode for reclaiming name M_i
 - Reclaim name of heap-shared node once it ceases to be heap-shared
 - Crucial to be able to work with finite set of names

(本間) (本語) (本語) (語)

Operational Semantics of Statements

- Finite state word transducers
- Two special "sink" states: q_{mem} and q_{err}
 - Go to q_{mem} if garbage is generated, *nil* or uninitialized pointer dereferenced
 - Go to q_{err} on realizing that we made a wrong move sometime in the past
- Simple for assignment, allocation and de-allocation statements
- Use non-deterministic guesses to encode semantics of conditional and loop statements
 - Recall state: $|w_1|w_2|w_3|w_4|w_5|$, where w_5 encodes heap
 - Can't determine next location until we've seen whole of \boldsymbol{w}
 - So, how do we figure out values of w_1 , w_2 , w_3 , w_4 in next state?

(本部) (本語) (本語) (語)

Operational Semantics of Statements

- Finite state word transducers
- Two special "sink" states: q_{mem} and q_{err}
 - Go to q_{mem} if garbage is generated, *nil* or uninitialized pointer dereferenced
 - Go to q_{err} on realizing that we made a wrong move sometime in the past
- Simple for assignment, allocation and de-allocation statements
- Use non-deterministic guesses to encode semantics of conditional and loop statements
 - Recall state: $|w_1|w_2|w_3|w_4|w_5|$, where w_5 encodes heap
 - Can't determine next location until we've seen whole of w
 - So, how do we figure out values of w_1 , w_2 , w_3 , w_4 in next state?
 - Non-deterministically guess, remember guess in finite control, check as rest of word is read, transition to *q_{err}* if guess incorrect

(本部) (本語) (本語) (語)

- Quotienting techniques
- Abstraction-refinement techniques
- Extrapolation/widening techniques
- Regular language inferencing techniques

向下 イヨト イヨト