
Analysing Heap Manipulating Programs:
An Automata-theoretic Approach

Supratik Chakraborty
IIT Bombay

November 13, 2012

Supratik Chakraborty IIT Bombay Analysing Heap Manipulating Programs: An Automata-theoretic Approach



Outline of Talk

Some automata basics

Programs, heaps and analysis

Regular model checking

Supratik Chakraborty IIT Bombay Analysing Heap Manipulating Programs: An Automata-theoretic Approach



Some Automata Basics

Supratik Chakraborty IIT Bombay Analysing Heap Manipulating Programs: An Automata-theoretic Approach



Finite State Automata

A 5−tuple A = (Σ,Q,
Q0, δ,F ), where

Q : Finite set of states

Σ : Input alphabet

Q0 ⊆ Q: Initial states

δ ⊆ Q × (Σ ∪ {ε})× Q:
State transition relation

F : Set of final states

q1
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q4

q5

qs

a

b

a, b Final state
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Runs and acceptance

An finite word α ∈ Σ∗

A run of A on α is a sequence ρ : N→ Q
such that

ρ(0) ∈ Q0

ρ(i + 1) ∈ δ(ρ(i), α(i))

An automaton may have many runs on α.

ρ is accepting iff ρ(|α|) ∈ F

α is accepted by A (α ∈ L(A)) iff there is
at least one accepting run of A on α.

q1

q2

q3

q4

q5

qs

a

b

a, b Final state

α = abbbbb

ρ1 = q1q2q2q2q2q2q2

ρ2 = q1q1q2q2q2q2q2
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Finite State Transducer (FST)

A 6-tuple
τ = (Q,Σ1,Σ2,Q0, δτ ,F )

Q: Set of states

Σ1: Input alphabet

Σ2: Output alphabet

Q0 ⊆ Q: Initial set of states

δτ ⊆ Q × (Σ1 ∪ {ε})×
(Sigma2 ∪ {ε})× Q:
Transition relation

F : Set of final states

q1

q2q3

(a, a)

(b, c)

(  , c)ε

Transduces ab to
acc

Goes from q1 to
q2 on input ab
and outputs acc
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Regular Relations

τ = (Q,Σ1,Σ2,Q0, δτ ,F ): Finite state transducer

Binary relation Rτ :

{(u, v) | u ∈ Σ∗1 , v ∈ Σ∗2 ,∃q ∈ Q0,∃q′ ∈ F ,
q′ can be reached from q on reading u and producing v}

Image under Rτ :

Given L ⊆ Σ∗1 , define Rτ (L) = {v | ∃u ∈ L, (u, v) ∈ Rτ}
Composition:

R1 ◦ R2 = {(u, v) | ∃x , (u, x) ∈ R1 and (x , v) ∈ R2}
Requires output alphabet of R1 same as input alphabet of R2.
Can compose Rτ with itself if Σ1 = Σ2

Iterated composition: Rτ with Σ1 = Σ2 = Σ

id = {(u, u) | u ∈ Σ∗}: identity relation
R0
τ = id

R i+1
τ = Rτ ◦ R i

τ , for all i ≥ 0
R∗τ =

⋃
i≥0 R

i
τ
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Programs, Heaps and Analysis
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Programs and Heaps

What is a “heap”?

Informally: Logical pool of
memory locations

Formally: A partial map of
MemoryLocations to
Values

A heap-manipulating program:

func(hd, x)

// all vars of ptr type

L1: t1 := hd;

L2: while (not(t1 = nil)) do

L3: if (t1 = x) then

L4: t2 := new;

L5: t3 := x->n;

L6: t2->n := t3;

L7: x->n := t2;

L8: t1 := t1->n;

L9: else t1 := t1-> n;

L10: return;
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Reasoning about Heaps

A concrete problem

Given a sequential program that manipulates dynamic linked data
structures by creating/deleting memory cells and by updating links
between them, how do we prove assertions about the resulting
structures in heap (trees, lists, ...)?

Undecidable in general

Represent non-blank part of TM tape as doubly-linked list
Ask if the tape ever becomes completely blank

But that doesn’t reduce the importance of the problem

Can we solve special cases of the problem?

YES! for some important special cases

Several techniques in literature
This talk only about some automata-theoretic techniques
Other powerful techniques exist (including automata-based)
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Some Simplifying Assumptions

Heap allocated objects have selectors, e.g.x->n

Assume one selector per object

Focus on link structures, abstract (ignore) other data types

Sole abstract data type: pointer to memory location
Simple new and free sufficient

No long sequences of selectors

x->n->n := y->n->n; semantically equivalent to
temp1 := x->n; temp2 := y->n; temp3 := temp2->n;

temp1->n := temp3;

temp1, temp2, temp3 fresh variables.

Simplify garbage handling

Garbage: Allocated memory in heap, no means of access
Example: x := new; x:= new;

Treat garbage generation as error/assume garbage collection
Rest of analysis assumes no garbage
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A Simple Imperative Language

PVar ::= u | v | . . . (pointer-valued variables)
FName ::= n | f | . . . (pointer-valued selectors)
PExp ::= PVar | PVar->FName
BExp ::= PVar = PVar | Pvar = nil | not BExp |

BExp or BExp | BExp and BExp

Stmt ::= AsgnStmt | CondStmt | LoopStmt |
SeqCompStmt | AllocStmt | FreeStmt

AsgnStmt ::= PExp := PVar | PVar := PExp | PExp := nil
AllocStmt ::= PVar := new
FreeStmt ::= free(PVar)
CondStmt ::= if (BoolExp) then Stmt else Stmt

LoopStmt ::= while (BoolExp) do Stmt

SeqCompStmt ::= Stmt ; Stmt
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Heap Graph

Given program P with variable
names in ΣP and selector names
in Σf , construct
G = (V ,E , vnil , λ, µ)

V : Memory locations
allocated by P

vnil : Represents “nil” value

E ⊆ V \ {vnil} × V : Link
structure

λ : E → 2Σf \ {∅}: Selector
assignments

µ : Σp ↪→ V : (Partial)
variable assignments

  

V
nil

hd

t1

x

n

n

n

n n

n

µ:

µ:

µ:
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Analyzing Programs with Heaps

Program state (minimalist view):

Location of statement to execute (pc)
Representation of heap graph

Why not construct a state transition graph?

Finite no. of locations: Good!
Unbounded vertices in heap graph: Bad!

Represent (unbounded) heap graph smartly

Effectively reason about the representation
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Regular Model Checking
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Regular (Word) Model Checking (RMC)

Represent heap graph (more generally, state) as finite
(unbounded) words on a finite alphabet Σ

Brass tacks coming soon!

Set of states ⊆ Σ∗

A language!
If regular, use a finite-state automaton

Executing a program statement transforms one state (word)
to another (word)

State transition relation is a word transducer
Is it a finite-state transducer?

Yes! for several classes of programs
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Core Idea of RMC (with words)

Program states (not just heap graphs): Finite words

Operational semantics

Program statement: Finite state transducer over words
Program: Non-deterministically compose transducers for all
statements to give a larger transducer τ

Regular set of initial and “error” program states: I and Bad

R∗
τ (I ) =

⋃
i≥0 R

i
τ (I ) denotes set of all reachable states

R∗τ (I ) may not be regular, even if Rτ and I are regular
Common solution: Regular overapproximations

Check if R∗
τ (I ) ∩ Bad = ∅

Focus of subsequent talk

Encoding states as finite words

Operational semantics of program statement

Overapproximating R∗
τ (I )
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Properties of Heap Graphs

Recall: Single pointer-valued selector of heap-allocated objects

Heap graph: Singly linked lists with possible sharing of
elements and circularly linked structures

  

hd

t1
x

v
nil

Heap shared

Interruption

Heap shared nodes
Two (or more) incoming edges, or
One incoming edge + pointed to by variable

Interruption: heap-shared node or pointed to by variable
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Properties of Heap Graphs

  

hd

t1
x

v
nil

A B C D E

G

Observation [Manevich et al’ 2005]

With n program variables, heap graph has ≤ n heap shared nodes,
≤ 2n interruptions, ≤ 2n uninterrupted lists

Example: A→ B → C , C → D, D → E → D, G → Vnil
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Encoding Heap Graphs as Words

Heap graph: Set of uninterrupted lists

Encoding

Assign unique name from rank-ordered set to each
heap-shared node

Uninterrupted list from heap-shared node C with 1 link
(sequence of n selectors) to heap-shared node D: C .nD

Use > (⊥) to denote uninitialized (nil) terminated lists

List encodings of uninterrupted lists separated by |

  

hd

t1
x

v
nil

C D

Ordering of names
hd ≺ t1 ≺ x ≺ C ≺ D.
Encoding:
hd .n.nt1C | t1C .nD |
D.n.nD | x .n⊥
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Encoding States

k program variables

ΣM = {M0,M1,M2, . . .Mk}: rank-ordered names for
heap-shared nodes

Σp: Set of program variable names

ΣL: Set of program locations (pc values)

ΣC = {CN ,C0,C1,C2, . . .Ck}: mode flags

Program state: w = |w1|w2|w3|w4|w5|, where
| doesn’t appear in any w1,w2,w3,w4

w5 encodes heap-graph: word over ΣM ∪ {>,⊥, |, .n}
w1 ∈ ΣC · ΣL: mode + program location
w2: (Possibly empty) rank-ordered sequence of unused names
for heap-shared nodes
w3: (Possibly empty) rank-ordered sequence of uninitialized
variable names
w4: (Possibly empty) rank-ordered sequence of variable names
set to nil
w : Finite word over ΣC ∪ ΣL ∪ ΣM ∪ Σp ∪ {>,⊥, |, .n}
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Encoding states

  

hd

t1

x
v

nil

M
2

M
4

Consider earlier program at L9 and above heap graph with
variables t2, t3 uninitialized

5 program variables, so ΣM = {M0,M1,M2,M3,M4,M5}
State:
|CN L9 |M0 M3 M4 M5 | t2 t3 | | hd .nM1 |t1M1.nM2 | xM2.n.n⊥ |
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Purpose of Mode Flags

For program with heap-shared node names in
ΣM = {M0,M1, . . .Mk}

Mode flags in ΣC = {CN ,C0,C1, . . .Ck}
CN : Normal mode of operation

Ci , i ∈ {0, . . . k}: Mode for reclaiming name Mi

Reclaim name of heap-shared node once it ceases to be
heap-shared
Crucial to be able to work with finite set of names

Supratik Chakraborty IIT Bombay Analysing Heap Manipulating Programs: An Automata-theoretic Approach



Operational Semantics of Statements

Finite state word transducers

Two special “sink” states: qmem and qerr
Go to qmem if garbage is generated, nil or uninitialized pointer
dereferenced
Go to qerr on realizing that we made a wrong move sometime
in the past

Simple for assignment, allocation and de-allocation statements

Use non-deterministic guesses to encode semantics of
conditional and loop statements

Recall state: |w1|w2|w3|w4|w5|, where w5 encodes heap
Can’t determine next location until we’ve seen whole of w
So, how do we figure out values of w1, w2, w3, w4 in next
state?

Non-deterministically guess, remember guess in finite control,
check as rest of word is read, transition to qerr if guess
incorrect

Supratik Chakraborty IIT Bombay Analysing Heap Manipulating Programs: An Automata-theoretic Approach



Operational Semantics of Statements

Finite state word transducers

Two special “sink” states: qmem and qerr
Go to qmem if garbage is generated, nil or uninitialized pointer
dereferenced
Go to qerr on realizing that we made a wrong move sometime
in the past

Simple for assignment, allocation and de-allocation statements

Use non-deterministic guesses to encode semantics of
conditional and loop statements

Recall state: |w1|w2|w3|w4|w5|, where w5 encodes heap
Can’t determine next location until we’ve seen whole of w
So, how do we figure out values of w1, w2, w3, w4 in next
state?
Non-deterministically guess, remember guess in finite control,
check as rest of word is read, transition to qerr if guess
incorrect

Supratik Chakraborty IIT Bombay Analysing Heap Manipulating Programs: An Automata-theoretic Approach



Computing (approximate) R∗τ (I )

Quotienting techniques

Abstraction-refinement techniques

Extrapolation/widening techniques

Regular language inferencing techniques
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