
CS615 Midsem Exam (Autumn 2015)

Max marks: 75 Time: 120 mins

• Be brief, complete and stick to what has been asked.

• Unless asked for explicitly, you may cite results/proofs covered in class without reproducing
them.

• If you need to make any assumptions, state them clearly.

• Do not copy solutions from others. Penalty for offenders: FR grade.

1. Consider the following program in a C-like language, in which conditional assignment state-
ments are used. Thus, a statement like b = !h ? a+b: a is semantically equivalent to
if (!h) b := a+b; else b := a;.

int a, b; bool h;

L1: while (a != b) do {

L2: b := !h ? a+b : a;

L3: h := (a != b) ? true : h;

L4: }

L5: assert (h);

A student wants to analyze the above program using predicate abstraction (or equivalently,
Boolean programs) to determine if the assertion at line L5 can be violated starting from a
pre-condition (to be specified). The student has decided that she will use the set of predicates
P = {p1, p2}, where p1 represents (a = b), and p2 represents (h = true).

(a) [10 marks] Construct as precise a Boolean program BP as you can using the set of
predicates P . To score marks, you must make your Boolean program precise enough so
that we can correctly determine whether the assertion at line L5 of the original program
holds for the pre-conditions {h = true} and {h = false}.

(b) [10 marks] Construct the finite state transition diagram corresponding to BP obtained
above.

(c) [5+5 marks] Using the finite state transition diagram obtained, show the following:

i. The assertion at line L5 cannot be violated starting from the pre-condition {h =
true}.

ii. The shortest counterexample trace violating the assertion at line L5 starting from
the pre-condition {h = false} is not a spurious counterexample trace.

2. We have studied in class that given an abstract domain (A,v,t,u,>,⊥,∇), the widening
operator ∇ : A×A → A satisfies the following properties:

1

• For every a, b ∈ A, we have a v a∇b and b v a∇b.
• For every non-decreasing sequence of elements x0 v x1 v . . . in A, the following sequence

of ai’s stabilizes (ceases to change) after finitely many steps:

– a0 = x0

– ai+1 = ai∇xi+1

(a) [10 marks] Show that the above definition doesn’t guarantee monotonicity of the widen
operator. Specifically, give an example of an abstract domain and definition of ∇ that
satisfies all the properties given above, and yet there exist elements a, b, c ∈ A such that
b v c and (b∇a) 6⊆ (c∇a).
[Hint: Think of the different abstract domains studied in class.]

(b) [10 marks] Consider the abstract domain of conditional convex polyhedra used in Quiz
2. In other words, every abstract element is a triple (C,P1, P2), where C is a boolean
condition (over boolean and numerical variables in the program) and P1 and P2 are
convex polyhedra (over numerical variables in the program). As discussed in Quiz 2, the
triple (C,P1, P2) represents “if (C) then P1 else P2”. More formally, γ((C,P1, P2)) = {s :
s |= (C ∧ P1) ∨ (¬C ∧ P2). We will say that (C,P1, P2) v (C ′, P ′

1, P
′
2) iff γ(C,P1, P2) ⊆

γ(C ′, P ′
1, P

′
2).

Let∇poly denote a widen operator in the domain of convex polyhedra. Using∇poly, define
a suitable widen operator in the domain of conditional convex polyhedra. You must show
that all properties required of a widen operator are satisfied by your definition.

3. [5 × 5 marks] In this question, we’ll try to compute the strongest abstract post-conditions
(in the interval abstract domain) of various C-like assignment statements. Assume that all
variables of interest are of type int and the domain of interest is that of intervals. Specifically,
we have an open interval (lx, ux) for every int variable x in the program, where lx ∈ N∪{−∞}
and ux ∈ N ∪ {+∞}. Every program statement computes (potentially new) values of the
bounds lx and ux for every program variable x. The concretization of the interval (lx, ux)
gives all concrete states in which lx < x < ux (note the strict inequalities).

In each of the following sub-problems, you must indicate how the new values of lx and ux
should be computed to obtain as tight an interval abstraction of the post-condition of each
statement, as possible. The expressions for lx and ux can, of course, be C-style expressions in
terms of the (lower and upper) bounds for variables prior to the execution of the statement.
A solved example is given below.

(a) Solved example: x := x + y;

Answer: lx := lx + ly + 1; ux := ux + uy - 1;

(b) x := x*y + z;

(c) x := x/y;

(d) x := (y > 5) ? x : y;

(e) x := x*x + y*y;

(f) x := (x != 0) ? 1: 0;

2

