CS615 Quiz 2

Time: 30 mins

- Be brief, complete and stick to what has been asked.
- Unless asked for explicitly, you may cite results/proofs covered in class without reproducing them.
- If you need to make any assumptions, state them clearly.
- Do not copy solutions from others. Penalty for offenders: FR grade.

1 Problem

Consider the following program P in which all variables are of type int or bool.

```
int x, y, z; bool b;
LO: while (z > 0) do {
L1: if (x = y) then {
L2: z := 2*x;
L3: b := true;
L4: x := x - 1;
L5: }
L6: else {
        z := x + y;
        b := false;
    }
    z := z - 1;
L10: }
```

Assume that the pre-condition for this program is $\{x>0 \wedge y>0 \wedge z>0\}$.
We wish to use a new abstract domain to analyze this program. In this domain, each abstract element is a triple (C, P_{1}, P_{2}), where C is a boolean condition and P_{1} and P_{2} are convex polyhedra over the numeric variables in the program. As an example, the following is a (rather arbitrarily chosen) abstract element describing a set of concrete states of the above program: $((b \vee(x=y)),(z=2 x+1) \wedge(y>0),(z=x+y) \wedge(y \geq 0))$, where $b \vee(x=y)$ is the boolean condition C, and the polyhedra P_{1} and P_{2} are $(z=2 x+1) \wedge(y>0)$ and $(z=x+y) \wedge(y \geq 0)$ respectively.
Intuitively, an abstract element $\left(C, P_{1}, P_{2}\right)$ represents the set of states "if (C) then P_{1} else P_{2} ". More formally, the concretization function γ is given by:

$$
\gamma\left(\left(C, P_{1}, P_{2}\right)\right)=\left\{s: s \models\left(\left(C \wedge P_{1}\right) \vee\left(\neg C \wedge P_{2}\right)\right)\right\},
$$

where s represents a concrete state. You may choose to use any appropriate abstraction function α that, along with γ, satisfies the definition of a Galois connection.
Notice that the above abstract domain strictly generalizes the polyhedra domain, since any polyhedron P can always be expressed in the new domain as (C, P, P), where C is an arbitrary boolean condition.

Question [20 marks]: Compute as strong an abstract loop invariant (in the new abstract domain described above) at LO as you can using techniques studied in class. You can either guess the abstract loop invariant at LO and then prove using Hoare logic rules that it is indeed a loop invariant, or derive the abstract loop invariant using abstract interpretation techniques studied in class.

2 Solution

Important note: The following is not the only way to solve the problem. It is perfectly possible that you have come up with a completely different, yet correct, way to solve the problem. Please let the instructor know if you have solved the problem in a different way.

- We will use the technique of abstract interpretation to compute the abstract loop invariant.
- Recall that if the initial abstract state (when we reach L0 for the first time) is a_{0}, then the abstract loop invariant at LO can be computed as the limit of the following sequence of a_{i} 's:
- $a_{0}, a_{1}=a_{0} \nabla x_{1}, a_{2}=a_{1} \nabla x_{2}, a_{3}=a_{2} \nabla x_{3} \ldots$, where $x_{0}=a_{0}, x_{1}=G\left(a_{0}\right), x_{2}=G\left(a_{1}\right), x_{3}=G\left(a_{2}\right), \ldots$ and $G(a)=a_{0} \sqcup F(a \sqcap \alpha(B))$.
- In the above sequence, we could use \sqcup for calculating the first few (fixed number of) a_{i} 's, and then fall back on ∇. As discussed in class, this doesn't affect the property of the sequence becoming stable after a finite number of indices (or steps). You might also recall from the discussion in class that F is the abstract state transformer (or an overapproximation of it) corresponding to the body of the loop, and B is the loop condition.
- Now, let's compute the above sequence of a_{i} 's for the specific problem in this quiz. You'll notice that we need to define the \sqcup and \sqcap operators, also the transformer F, but let's postpone these definitions to the point where we really need them.
- Since the pre-condition is $(x>0) \wedge(y>0) \wedge(z>0)$, we could use $a_{0}=(C, P, P)$, where C is any arbitrary boolean condition and P is the polyhedron represented by $(x>0) \wedge(y>$ $0) \wedge(z>0)$. Note that this choice of a_{0} does not require us to freeze C at this point. In fact, we can choose C to be something convenient for us, as we proceed further.
- Therefore $x_{0}=a_{0}=(C, P, P)$. To compute x_{1}, we need to evaluate

$$
G\left(a_{0}\right)=a_{0} \sqcup F\left(a_{0} \sqcap \alpha(z>0)\right) .
$$

- What is $\alpha(z>0)$? A minute's thinking will convince you that $\gamma\left(\left(C^{\prime}, z>0, z>0\right)\right)$ represents the set of concrete states $\{s: s \models z>0\}$, for any arbitrary boolean condition C^{\prime}. Therefore, we can use ($\left.C^{\prime}, z>0, z>0\right)$ for $\alpha(z>0)$, where C^{\prime} is any boolean condition that we are free to choose (and we should choose this in a way later that simplifies our calculations).
- Assuming $a=\left(C, P_{1}, P_{2}\right)$ in the general case, what is $a \sqcap \alpha(z>0)$? By definition, $\gamma\left(\left(C, P_{1} \wedge\right.\right.$ $\left.\left.(z>0), P_{2} \wedge(z>0)\right)\right)$ represents the set of concrete states $\left\{s: s \vDash\left(C \wedge P_{1} \wedge(z>0)\right) \vee(\neg C \wedge\right.$ $\left.\left.P_{2} \wedge(z>0)\right)\right\}$. It is easy to see that this is nothing but $\left\{s: s \models\left(C \wedge P_{1}\right) \vee\left(\neg C \wedge P_{2}\right)\right\} \cap\left\{s^{\prime}: s^{\prime} \models\right.$ $z>0\}$. In other words, $\gamma\left(\left(C, P_{1} \wedge(z>0), P_{2} \wedge(z>0)\right)\right)=\gamma\left(C, P_{1}, P_{2}\right) \cap\left\{s^{\prime}: s^{\prime} \models z>0\right\}$. Therefore, we will consider $a \sqcap \alpha(z>0)$ to be $\left(C, P_{1} \wedge(z>0), P_{2} \wedge(z>0)\right)$. Note that in this case we could use $z>0$ to constrain each of P_{1} and P_{2} because $z>0$ admits a polyhedral representation.
- Notice also that we got away without defining \square in its full generality. We only defined it for the case we needed.
- If $a=\left(C, P_{1}, P_{2}\right)$, we now need to compute $F(a \sqcap \alpha(z>0))$, or equivalently $F\left(\left(C, P_{1}^{\prime}, P_{2}^{\prime}\right)\right.$, where P_{1}^{\prime} is $P_{1} \wedge(z>0)$ and P_{2}^{\prime} is $\left.\left.P_{2} \wedge(z>0)\right)\right)$. Let $\mathrm{SP}^{a}\left(\left(C, P_{1}^{\prime}, P_{2}^{\prime}\right)\right.$, Prog) denote the strongest abstract post-condition of $\left(C, P_{1}^{\prime}, P_{2}^{\prime}\right)$ with respect to the program fragment Prog. Recall from our discussion in class that if SP^{c} denotes the strongest concrete post-condition operator, then we must have $\alpha \circ \mathrm{SP}^{c} \circ \gamma \sqsubseteq \mathrm{SP}^{a}$.
- In our case, the body of the while loop has two branches of an if-then-else statement. For the "then" branch, the abstract post-condition at L5 is $\mathrm{SP}^{a}\left(\left(C, P_{1}^{\prime}, P_{2}^{\prime}\right) \sqcap \alpha(x=y), \operatorname{Prog}_{\text {then }}\right)$, where $\operatorname{Prog}_{\text {then }}$ is $\mathrm{z}:=2 * \mathrm{x} ; \mathrm{b}:=$ true; $\mathrm{x}:=\mathrm{x}-1$;. Using the same reasoning as above for computing \sqcap, we can write $\left(C, P_{1}^{\prime}, P_{2}^{\prime}\right) \sqcap \alpha(x=y)$ as $\left(C, P_{1}^{\prime} \wedge(x=y), P_{2}^{\prime} \wedge(x=y)\right)$. Further, recalling that SP^{a} is (an overapproximation) of $\alpha \circ \mathrm{SP}^{c} \circ \gamma$, the desired result is the abstraction of $\left\{s: s \models \operatorname{SP}^{c}\left((x=y) \wedge\left(\left(C \wedge P_{1}^{\prime}\right) \vee\left(\neg C \wedge P_{2}^{\prime}\right)\right), \operatorname{Prog}_{\text {then }}\right)\right\}$. Let R_{1} denote the polyhedral abstraction (over x, y and $z)$ of $\mathrm{SP}^{c}\left((x=y) \wedge C \wedge P_{1}^{\prime}, \operatorname{Prog}_{\text {then }}\right)$, and let R_{2} denote the polyhedral abstraction (over x, y and z) of $\mathrm{SP}^{c}\left((x=y) \wedge \neg C \wedge P_{2}^{\prime}, \operatorname{Prog}_{\text {then }}\right)$. Therefore, $\left.\mathrm{SP}^{c}\left((x=y) \wedge\left(\left(C \wedge P_{1}^{\prime}\right) \vee\left(\neg C \wedge P_{2}^{\prime}\right)\right), \operatorname{Prog}_{\text {then }}\right)\right\}$ is abstracted by $\mathrm{CH}\left(R_{1}, R_{2}\right)$, where $\mathrm{CH}(\cdot, \cdot)$ represents the convex hull operator for polyhedra.
- Using a similar reasoning for the "else" branch, the abstract post-condition at L 8 is $\mathrm{SP}^{a}\left(\left(C, P_{1}^{\prime}, P_{2}^{\prime}\right) \sqcap\right.$ $\left.\alpha(x \neq y), \operatorname{Prog}_{\text {else }}\right)$, where $\operatorname{Prog}_{\text {else }}$ is $\mathrm{z}:=\mathrm{x}+\mathrm{y} ; \mathrm{b}:=\mathrm{false} ;$. Unfortunately, the polyhedral abstraction of $x \neq y$ is $\top_{\text {poly }}$ (top element in the polyhedra domain), since it is not possible to express $x \neq y$ as a conjunction of linear inequalities. Therefore, for the "else" branch, we need to compute $\mathrm{SP}^{a}\left(\left(C, P_{1}^{\prime}, P_{2}^{\prime}\right), \operatorname{Prog}_{\text {else }}\right)$. The corresponding concrete post-condition is $\left\{s: s \models \mathrm{SP}^{c}\left(\left(C \wedge P_{1}^{\prime}\right) \vee\left(\neg C \wedge P_{2}^{\prime}\right), \operatorname{Prog}_{\text {else }}\right)\right\}$. Let R_{3} denote the polyhedral abstraction (over x, y and z) of $\mathrm{SP}^{c}\left(C \wedge P_{1}^{\prime}, \operatorname{Prog}_{\text {else }}\right)$, and let R_{4} denote the polyhedral abstraction (over x, y and z) of $\mathrm{SP}^{c}\left(\neg C \wedge P_{2}^{\prime}, \operatorname{Prog}_{\text {else }}\right)$. Therefore, $\mathrm{SP}^{c}\left(\left(C \wedge P_{1}^{\prime}\right) \vee\left(\neg C \wedge P_{2}^{\prime}\right), \operatorname{Prog}_{\text {else }}\right)$ is abstracted by $\mathrm{CH}\left(R_{3}, R_{4}\right)$.
- We must now join the abstract mid-conditions at L5 and L8 to obtain the abstract midcondition at L9. Since b is set to true along the "then" branch, and to false along the "else" branch, we can use b as the boolean condition in the abstract post-condition at L9 to get ($\left.b, \mathrm{CH}\left(R_{1}, R_{2}\right), \mathrm{CH}\left(R_{3}, R_{4}\right)\right)$). Note that this is more precise than simply taking the convex hull of the polyhedra $\mathrm{CH}\left(R_{1}, R_{2}\right)$ and $\left.\mathrm{CH}\left(R_{3}, R_{4}\right)\right)$). The conditional nature of what each abstract element represents ("if C then P_{1} else P_{2} ") allows us to represent both P_{1} and P_{2} in the same abstract element, without taking their convex hull.
- Let $\widehat{P_{1}}$ and $\widehat{P_{2}}$ denote the convex polyhedra $\mathrm{CH}\left(R_{1}, R_{2}\right)$ and $\left.\mathrm{CH}\left(R_{3}, R_{4}\right)\right)$ respectively. On executing the statement at L9, i.e $\mathbf{z}:=\mathrm{z}-1$, starting from the pre-condition $\left(b, \widehat{P_{1}}, \widehat{P_{2}}\right)$ computed above, the corresponding concrete post-condition at L10 would be $\mathrm{SP}^{c}\left(\left(b \wedge \widehat{P_{1}}\right) \vee\right.$
$\left.\left(\neg b \wedge \widehat{P_{2}}\right), \mathbf{z}:=\mathbf{z}-1\right)$. Since the assignment statement doesn't modify b, we can write the above as $\left(b \wedge \mathrm{SP}^{c}\left(\widehat{P_{1}}, \mathrm{z}:=\mathrm{z}-1\right) \vee\left(\neg b \wedge \mathrm{SP}^{c}\left(\widehat{P_{1}}, \mathrm{z}:=\mathrm{z}-1\right)\right.\right.$. Therefore, if $\widehat{P_{1}}$ and $\widetilde{P_{2}}$ represent the polyhedral abstractions of $\mathrm{SP}^{c}\left(\widehat{P_{1}}, \mathrm{z}:=\mathrm{z}-1\right)$ and $\mathrm{SP}^{c}\left(\widehat{P_{1}}, \mathrm{z}:=\mathrm{z}-1\right)$ respectively, the abstract post-condition at L 10 can be written as $\left(b, \widetilde{P_{1}}, \widetilde{P_{2}}\right)$.
- To summarize, given $a=\left(C, P_{1}, P_{2}\right)$, the value of $F(a \sqcap \alpha(z>0))$ giving the abstract postcondition for the loop body in our program, can be obtained as follows:

1. Let R_{1} be the polyhedral abstraction of $\mathrm{SP}^{c}\left((x=y) \wedge C \wedge P_{1} \wedge(z>0)\right.$, $\left.\operatorname{Prog}_{\text {then }}\right)$.
2. Let R_{2} be the polyhedral abstraction of $\mathrm{SP}^{c}\left((x=y) \wedge \neg C \wedge P_{2} \wedge(z>0), \operatorname{Prog}_{\text {then }}\right)$.
3. Let R_{3} be the polyhedral abstraction of $\mathrm{SP}^{c}\left(C \wedge P_{1} \wedge(z>0), \operatorname{Prog}_{e l s e}\right)$.
4. Let R_{4} be the polyhedral abstraction of $\mathrm{SP}^{c}\left(\neg C \wedge P_{2} \wedge(z>0)\right.$, $\left.\operatorname{Prog}_{\text {else }}\right)$.
5. Let $\widehat{P_{1}}$ and $\widehat{P_{2}}$ denote the convex polyhedra $\mathrm{CH}\left(R_{1}, R_{2}\right)$ and $\left.\mathrm{CH}\left(R_{3}, R_{4}\right)\right)$ respectively.
6. Let $\widetilde{P_{1}}$ and $\widetilde{P_{2}}$ represent the polyhedral abstractions of $\mathrm{SP}^{c}\left(\widehat{P_{1}}, \mathbf{z}:=\mathbf{z}-1\right)$ and $\mathrm{SP}^{c}\left(\widehat{P_{2}}, \mathbf{z}:=\mathbf{z}-1\right)$ respectively.
7. Then $F(a \sqcap \alpha(z>0))=\left(b, \widetilde{P_{1}}, \widetilde{P_{2}}\right)$.

- Now to compute $G(a)=a_{0} \cup F(a \sqcup \alpha(z>0))$, we need to figure out how to compute the least upper bound (or an overapproximation of it) of a_{0} with an abstract element of the form ($b, \widetilde{P}_{1}, \widetilde{P}_{2}$). Since we had a free choice of C in the representation (C, P, P) of a_{0}, it is beneficial to identify C with b, so that we only need to compute least upper bounds of the form $\left(b, P_{1}, P_{2}\right) \sqcup\left(b, P_{3}, P_{4}\right)$. As you can see, this is really trying to represent the set of concrete states $\left\{s: s \models\left(b \wedge P_{1}\right) \vee\left(\neg b \wedge P_{2}\right) \vee\left(b \wedge P_{3}\right) \vee\left(\neg b \wedge P_{4}\right)\right\}$. This set is simply $\left\{s: s \models\left(b \wedge\left(P_{1} \vee P_{3}\right)\right) \vee\left(\neg b \wedge\left(P_{2} \vee P_{4}\right)\right)\right\}$. Therefore, it should come as no surprise that our choice of $\left(b, P_{1}, P_{2}\right) \sqcup\left(b, P_{3}, P_{4}\right)$ is $\left(b, \mathrm{CH}\left(P_{1}, P_{3}\right), \mathrm{CH}\left(P_{2}, P_{4}\right)\right)$.
- So, now we have all the ingredients to compute the sequence of a_{i} 's for our problem. Given below is a step-by-step calculation of the a_{i} 's using the ideas described above. This tabular form is really what you are expected to write in your solution.

a_{0}	(b, P, P), where P is $(x>0) \wedge(y>0) \wedge(z>0)$.
x_{0}	Same as a_{0}
x_{1}	$\begin{gathered} \text { Computing } G\left(a_{0}\right)=a_{0} \sqcup F\left(a_{0} \sqcap \alpha(z>0)\right) \text { : } \\ R_{1}=(z=2 x+2) \wedge(x=y-1) \wedge(x \geq 0) \wedge(y>0) \wedge(z \geq 2) \\ R_{3}=(z=x+y) \wedge(x>0) \wedge(y>0) \wedge(z \geq 2) \\ R_{2}=R_{1} \text { and } R_{4}=R_{3} \\ \widehat{P_{1}}=R_{1} \text { and } \widehat{P_{2}}=R_{3} \\ \widetilde{P_{1}}=(z=2 x+1) \wedge(x=y-1) \wedge(x \geq 0) \wedge(y>0) \wedge(z \geq 1), \text { and } \\ \widetilde{P_{2}}=(z=x+y-1) \wedge(x>0) \wedge(y>0) \wedge(z \geq 1) \\ \text { Therefore, } F\left(a_{0} \sqcap \alpha(z>0)\right)=\left(b, \widetilde{P_{1}}, \widetilde{P_{2}}\right) \\ \text { Finally, } G\left(a_{0}\right)=a_{0} \sqcup F\left(a_{0} \sqcap \alpha(z>0)\right)=(b, P, P) \sqcup\left(b, \widetilde{P}_{1}, \widetilde{P}_{2}\right) \\ =\left(b, P_{3}, P\right), \text { where } P_{3} \text { is }(x \geq 0) \wedge(y>0) \wedge(z>0) \end{gathered}$
a_{1}	We'll use \sqcup instead of ∇ for the first few steps. Hence, $a_{1}=a_{0} \sqcup x_{1}=\left(b, P_{3}, P\right)=x_{1}$
x_{2}	$\begin{gathered} \text { Computing } G\left(a_{1}\right)=a_{0} \sqcup F\left(a_{1} \sqcap \alpha(z>0)\right) \text { : } \\ R_{1}=(z=2 x+2) \wedge(x=y-1) \wedge(x \geq 0) \wedge(y>0) \wedge(z \geq 2) \\ R_{2}=R_{1} \\ R_{3}=(z=x+y) \wedge(x \geq 0) \wedge(y>0) \wedge(z \geq 1) \\ R_{4}=(z=x+y) \wedge(x>0) \wedge(y>0) \wedge(z \geq 2) \\ \widehat{P_{1}}=R_{1} \text { and } \widehat{P_{2}}=R_{3} \\ \widetilde{P_{1}}=(z=2 x+1) \wedge(x=y-1) \wedge(x \geq 0) \wedge(y>0) \wedge(z \geq 1), \text { and } \\ \widetilde{P_{2}}=(z=x+y-1) \wedge(x \geq 0) \wedge(y>0) \wedge(z \geq 0) \\ \text { Therefore, } F\left(a_{1} \sqcap \alpha(z>0)\right)=\left(b, \widetilde{P}_{1}, \widetilde{P}_{2}\right) \\ \text { Finally, } G\left(a_{1}\right)=a_{0} \sqcup F\left(a_{1} \sqcap \alpha(z>0)\right)=(b, P, P) \sqcup\left(b, \widetilde{P_{1}}, \widetilde{P_{2}}\right) \\ =\left(b, P_{3}, P_{4}\right), \text { where } P_{3} \text { is }(x \geq 0) \wedge(y>0) \wedge(z 0) \text { and } \\ P_{4}=(x \geq 0) \wedge(y>0) \wedge(z \geq 0) \end{gathered}$
a_{2}	We'll use \sqcup instead of ∇ for the first few steps. Hence, $a_{2}=a_{1} \sqcup x_{2}=\left(b, P_{3}, P_{4}\right)=x_{2}$
x_{3}	Computing $G\left(a_{2}\right)=a_{0} \sqcup F\left(a_{2} \sqcap \alpha(z>0)\right)$: Note that $a_{2} \sqcap \alpha(z>0)$ represents the same concrete states as $a_{1} \sqcap \alpha(z>0)$ Hence $G\left(a_{2}\right)=G\left(a_{1}\right)=x_{2}$
a_{3}	We'll use \sqcup instead of ∇ for the first few steps. Hence, $a_{3}=a_{2} \sqcup x_{3}=a_{2} \sqcup x_{2}=x_{2}=a_{2}$

Since $a_{3}=a_{2}$, the sequence of a_{i} 's has stabilized and we have reached a post-fixpoint that represents a loop invariant. We can try to obtain a better abstract loop invariant by applying $G(\cdot)$ further. In this case, since $a_{3}=a_{2}=x_{2}$, therefore $G\left(a_{3}\right)=G\left(a_{2}\right)=x_{2}=a_{3}$. Hence, a_{3} is a fixpoint of G and represents an abstract loop invariant.

The abstract loop invariant is $(b,(x \geq 0) \wedge(y>0) \wedge(z>0),(x \geq 0) \wedge(y>0) \wedge(z \geq 0))$.

