
CS615 Quiz 2

Max marks: 20 Time: 30 mins

• Be brief, complete and stick to what has been asked.

• Unless asked for explicitly, you may cite results/proofs covered in class without reproducing
them.

• If you need to make any assumptions, state them clearly.

• Do not copy solutions from others. Penalty for offenders: FR grade.

1 Problem

Consider the following program P in which all variables are of type int or bool.

int x, y, z; bool b;

L0: while (z > 0) do {

L1: if (x = y) then {

L2: z := 2*x;

L3: b := true;

L4: x := x - 1;

L5: }

L6: else {

L7: z := x + y;

L7: b := false;

L8: }

L9: z := z - 1;

L10: }

Assume that the pre-condition for this program is {x > 0 ∧ y > 0 ∧ z > 0}.
We wish to use a new abstract domain to analyze this program. In this domain, each abstract
element is a triple (C,P1, P2), where C is a boolean condition and P1 and P2 are convex poly-
hedra over the numeric variables in the program. As an example, the following is a (rather
arbitrarily chosen) abstract element describing a set of concrete states of the above program:
((b ∨ (x = y)), (z = 2x+ 1) ∧ (y > 0), (z = x+ y) ∧ (y ≥ 0)), where b ∨ (x = y) is the boolean con-
dition C, and the polyhedra P1 and P2 are (z = 2x + 1) ∧ (y > 0) and (z = x + y) ∧ (y ≥ 0)
respectively.
Intuitively, an abstract element (C,P1, P2) represents the set of states “if (C) then P1 else P2”.
More formally, the concretization function γ is given by:

γ((C,P1, P2)) = {s : s |= ((C ∧ P1) ∨ (¬C ∧ P2))},

1



where s represents a concrete state. You may choose to use any appropriate abstraction function α
that, along with γ, satisfies the definition of a Galois connection.
Notice that the above abstract domain strictly generalizes the polyhedra domain, since any poly-
hedron P can always be expressed in the new domain as (C,P, P ), where C is an arbitrary boolean
condition.

Question [20 marks]: Compute as strong an abstract loop invariant (in the new abstract domain
described above) at L0 as you can using techniques studied in class. You can either guess the abstract
loop invariant at L0 and then prove using Hoare logic rules that it is indeed a loop invariant, or
derive the abstract loop invariant using abstract interpretation techniques studied in class.

2 Solution

Important note: The following is not the only way to solve the problem. It is perfectly
possible that you have come up with a completely different, yet correct, way to solve
the problem. Please let the instructor know if you have solved the problem in a
different way.

• We will use the technique of abstract interpretation to compute the abstract loop invariant.

• Recall that if the initial abstract state (when we reach L0 for the first time) is a0, then the
abstract loop invariant at L0 can be computed as the limit of the following sequence of ai’s:

• a0, a1 = a0∇x1, a2 = a1∇x2, a3 = a2∇x3 . . ., where
x0 = a0, x1 = G(a0), x2 = G(a1), x3 = G(a2), . . . and G(a) = a0 t F (a u α(B)).

• In the above sequence, we could use t for calculating the first few (fixed number of) ai’s, and
then fall back on ∇. As discussed in class, this doesn’t affect the property of the sequence
becoming stable after a finite number of indices (or steps). You might also recall from the
discussion in class that F is the abstract state transformer (or an overapproximation of it)
corresponding to the body of the loop, and B is the loop condition.

• Now, let’s compute the above sequence of ai’s for the specific problem in this quiz. You’ll
notice that we need to define the t and u operators, also the transformer F , but let’s postpone
these definitions to the point where we really need them.

• Since the pre-condition is (x > 0) ∧ (y > 0) ∧ (z > 0), we could use a0 = (C,P, P ), where
C is any arbitrary boolean condition and P is the polyhedron represented by (x > 0) ∧ (y >
0)∧ (z > 0). Note that this choice of a0 does not require us to freeze C at this point. In fact,
we can choose C to be something convenient for us, as we proceed further.

• Therefore x0 = a0 = (C,P, P ). To compute x1, we need to evaluate

G(a0) = a0 t F (a0 u α(z > 0)).

• What is α(z > 0)? A minute’s thinking will convince you that γ((C ′, z > 0, z > 0)) represents
the set of concrete states {s : s |= z > 0}, for any arbitrary boolean condition C ′. Therefore,
we can use (C ′, z > 0, z > 0) for α(z > 0), where C ′ is any boolean condition that we are free
to choose (and we should choose this in a way later that simplifies our calculations).

2



• Assuming a = (C,P1, P2) in the general case, what is a u α(z > 0)? By definition, γ((C,P1 ∧
(z > 0), P2∧ (z > 0))) represents the set of concrete states {s : s |= (C ∧P1∧ (z > 0))∨ (¬C ∧
P2∧(z > 0))}. It is easy to see that this is nothing but {s : s |= (C∧P1)∨(¬C∧P2)}∩{s′ : s′ |=
z > 0}. In other words, γ((C,P1 ∧ (z > 0), P2 ∧ (z > 0))) = γ(C,P1, P2) ∩ {s′ : s′ |= z > 0}.
Therefore, we will consider auα(z > 0) to be (C,P1∧ (z > 0), P2∧ (z > 0)). Note that in this
case we could use z > 0 to constrain each of P1 and P2 because z > 0 admits a polyhedral
representation.

• Notice also that we got away without defining u in its full generality. We only defined it for
the case we needed.

• If a = (C,P1, P2), we now need to compute F (a u α(z > 0)), or equivalently F ((C,P ′
1, P

′
2),

where P ′
1 is P1 ∧ (z > 0) and P ′

2 is P2 ∧ (z > 0))). Let SPa((C,P ′
1, P

′
2), Prog) denote the

strongest abstract post-condition of (C,P ′
1, P

′
2) with respect to the program fragment Prog.

Recall from our discussion in class that if SPc denotes the strongest concrete post-condition
operator, then we must have α ◦ SPc ◦ γ v SPa.

• In our case, the body of the while loop has two branches of an if-then-else statement. For
the “then” branch, the abstract post-condition at L5 is SPa((C,P ′

1, P
′
2) u α(x = y), Progthen),

where Progthen is z := 2*x; b := true; x := x-1;. Using the same reasoning as above
for computing u, we can write (C,P ′

1, P
′
2) u α(x = y) as (C,P ′

1 ∧ (x = y), P ′
2 ∧ (x = y)).

Further, recalling that SPa is (an overapproximation) of α ◦ SPc ◦ γ, the desired result is the
abstraction of {s : s |= SPc((x = y) ∧ ((C ∧ P ′

1) ∨ (¬C ∧ P ′
2)), Progthen)}. Let R1 denote the

polyhedral abstraction (over x, y and z) of SPc((x = y)∧C ∧P ′
1, Progthen), and let R2 denote

the polyhedral abstraction (over x, y and z) of SPc((x = y) ∧ ¬C ∧ P ′
2, Progthen). Therefore,

SPc((x = y) ∧ ((C ∧ P ′
1) ∨ (¬C ∧ P ′

2)), Progthen)} is abstracted by CH(R1, R2), where CH(·, ·)
represents the convex hull operator for polyhedra.

• Using a similar reasoning for the “else” branch, the abstract post-condition at L8 is SPa((C,P ′
1, P

′
2)u

α(x 6= y), Progelse), where Progelse is z := x + y; b := false;. Unfortunately, the polyhe-
dral abstraction of x 6= y is >poly (top element in the polyhedra domain), since it is not possi-
ble to express x 6= y as a conjunction of linear inequalities. Therefore, for the “else” branch,
we need to compute SPa((C,P ′

1, P
′
2), Progelse). The corresponding concrete post-condition is

{s : s |= SPc((C ∧P ′
1)∨ (¬C ∧P ′

2), Progelse)}. Let R3 denote the polyhedral abstraction (over
x, y and z) of SPc(C ∧ P ′

1, Progelse), and let R4 denote the polyhedral abstraction (over x, y
and z) of SPc(¬C ∧P ′

2, Progelse). Therefore, SPc((C ∧P ′
1)∨ (¬C ∧P ′

2), Progelse) is abstracted
by CH(R3, R4).

• We must now join the abstract mid-conditions at L5 and L8 to obtain the abstract mid-
condition at L9. Since b is set to true along the “then” branch, and to false along the “else”
branch, we can use b as the boolean condition in the abstract post-condition at L9 to get
(b,CH(R1, R2),CH(R3, R4))). Note that this is more precise than simply taking the convex
hull of the polyhedra CH(R1, R2) and CH(R3, R4))). The conditional nature of what each
abstract element represents (“if C then P1 else P2”) allows us to represent both P1 and P2 in
the same abstract element, without taking their convex hull.

• Let P̂1 and P̂2 denote the convex polyhedra CH(R1, R2) and CH(R3, R4)) respectively. On
executing the statement at L9, i.e z := z - 1, starting from the pre-condition (b, P̂1, P̂2)
computed above, the corresponding concrete post-condition at L10 would be SPc((b ∧ P̂1) ∨

3



(¬b ∧ P̂2), z := z− 1). Since the assignment statement doesn’t modify b, we can write the
above as (b∧SPc(P̂1, z := z− 1)∨ (¬b∧SPc(P̂1, z := z− 1). Therefore, if P̃1 and P̃2 represent
the polyhedral abstractions of SPc(P̂1, z := z− 1) and SPc(P̂1, z := z− 1) respectively, the
abstract post-condition at L10 can be written as (b, P̃1, P̃2).

• To summarize, given a = (C,P1, P2), the value of F (a u α(z > 0)) giving the abstract post-
condition for the loop body in our program, can be obtained as follows:

1. Let R1 be the polyhedral abstraction of SPc((x = y) ∧ C ∧ P1 ∧ (z > 0), Progthen).

2. Let R2 be the polyhedral abstraction of SPc((x = y) ∧ ¬C ∧ P2 ∧ (z > 0), Progthen).

3. Let R3 be the polyhedral abstraction of SPc(C ∧ P1 ∧ (z > 0), Progelse).

4. Let R4 be the polyhedral abstraction of SPc(¬C ∧ P2 ∧ (z > 0), Progelse).

5. Let P̂1 and P̂2 denote the convex polyhedra CH(R1, R2) and CH(R3, R4)) respectively.

6. Let P̃1 and P̃2 represent the polyhedral abstractions of SPc(P̂1, z := z− 1) and SPc(P̂2, z := z− 1)
respectively.

7. Then F (a u α(z > 0)) = (b, P̃1, P̃2).

• Now to compute G(a) = a0 ∪ F (a t α(z > 0)), we need to figure out how to compute the
least upper bound (or an overapproximation of it) of a0 with an abstract element of the
form (b, P̃1, P̃2). Since we had a free choice of C in the representation (C,P, P ) of a0, it
is beneficial to identify C with b, so that we only need to compute least upper bounds of
the form (b, P1, P2) t (b, P3, P4). As you can see, this is really trying to represent the set of
concrete states {s : s |= (b ∧ P1) ∨ (¬b ∧ P2) ∨ (b ∧ P3) ∨ (¬b ∧ P4)}. This set is simply
{s : s |= (b∧ (P1 ∨ P3))∨ (¬b∧ (P2 ∨ P4))}. Therefore, it should come as no surprise that our
choice of (b, P1, P2) t (b, P3, P4) is (b,CH(P1, P3),CH(P2, P4)).

• So, now we have all the ingredients to compute the sequence of ai’s for our problem. Given
below is a step-by-step calculation of the ai’s using the ideas described above. This tabular
form is really what you are expected to write in your solution.

4



a0 (b, P, P ), where P is (x > 0) ∧ (y > 0) ∧ (z > 0).
x0 Same as a0

x1 Computing G(a0) = a0 t F (a0 u α(z > 0)):
R1 = (z = 2x+ 2) ∧ (x = y − 1) ∧ (x ≥ 0) ∧ (y > 0) ∧ (z ≥ 2)

R3 = (z = x+ y) ∧ (x > 0) ∧ (y > 0) ∧ (z ≥ 2)
R2 = R1 and R4 = R3

P̂1 = R1 and P̂2 = R3

P̃1 = (z = 2x+ 1) ∧ (x = y − 1) ∧ (x ≥ 0) ∧ (y > 0) ∧ (z ≥ 1), and

P̃2 = (z = x+ y − 1) ∧ (x > 0) ∧ (y > 0) ∧ (z ≥ 1)

Therefore, F (a0 u α(z > 0)) = (b, P̃1, P̃2)

Finally, G(a0) = a0 t F (a0 u α(z > 0)) = (b, P, P ) t (b, P̃1, P̃2)
= (b, P3, P ), where P3 is (x ≥ 0) ∧ (y > 0) ∧ (z > 0)

a1 We’ll use t instead of ∇ for the first few steps.
Hence, a1 = a0 t x1 = (b, P3, P ) = x1

x2 Computing G(a1) = a0 t F (a1 u α(z > 0)):
R1 = (z = 2x+ 2) ∧ (x = y − 1) ∧ (x ≥ 0) ∧ (y > 0) ∧ (z ≥ 2)

R2 = R1

R3 = (z = x+ y) ∧ (x ≥ 0) ∧ (y > 0) ∧ (z ≥ 1)
R4 = (z = x+ y) ∧ (x > 0) ∧ (y > 0) ∧ (z ≥ 2)

P̂1 = R1 and P̂2 = R3

P̃1 = (z = 2x+ 1) ∧ (x = y − 1) ∧ (x ≥ 0) ∧ (y > 0) ∧ (z ≥ 1), and

P̃2 = (z = x+ y − 1) ∧ (x ≥ 0) ∧ (y > 0) ∧ (z ≥ 0)

Therefore, F (a1 u α(z > 0)) = (b, P̃1, P̃2)

Finally, G(a1) = a0 t F (a1 u α(z > 0)) = (b, P, P ) t (b, P̃1, P̃2)
= (b, P3, P4), where P3 is (x ≥ 0) ∧ (y > 0) ∧ (z 0) and

P4 = (x ≥ 0) ∧ (y > 0) ∧ (z ≥ 0)
a2 We’ll use t instead of ∇ for the first few steps.

Hence, a2 = a1 t x2 = (b, P3, P4) = x2

x3 Computing G(a2) = a0 t F (a2 u α(z > 0)):
Note that a2 u α(z > 0) represents the same concrete states as a1 u α(z > 0)

Hence G(a2) = G(a1) = x2
a3 We’ll use t instead of ∇ for the first few steps.

Hence, a3 = a2 t x3 = a2 t x2 = x2 = a2
Since a3 = a2, the sequence of ai’s has stabilized and we have reached a post-fixpoint that

represents a loop invariant. We can try to obtain a better abstract loop invariant by applying G(·)
further. In this case, since a3 = a2 = x2, therefore G(a3) = G(a2) = x2 = a3. Hence, a3 is a fixpoint
of G and represents an abstract loop invariant.

The abstract loop invariant is (b, (x ≥ 0) ∧ (y > 0) ∧ (z > 0), (x ≥ 0) ∧ (y > 0) ∧ (z ≥ 0)).

5


