Parametric Shape
Analysis via 3-Valued

Logic
Mooly Sagiv, Thomas Reps,
Reinhard Wilhelm

Motivation

m Many shape analysis algorithms developed

m Different abstractions

® Hard to compare

B Parametric Framework

m yacc for shape analysis?

Overview

m Use logic structures to represent stores

m By choosing different predicates, the framework is
instantiated into different shape analysis algorithms.

m Previous approach:

= Define abstraction, give transfer function, prove, implement

m \With the framework:

® Choose predicate, define update formula for instrumentation
predicates, prove correctness of the formulae

m The rest is automatically done by the system

Representation

m [ogical Structures:

B S=<U, 1>
m U: individuals

m 1. maps p(u,, ...u) to 0,1 or 1/2
B Predicates:

m Constituents of shape invariants that can be used to
characterize a data structure

m Core Predicates:
m Tracking Pointer Variables and Pointer-valued fields
m Common to all the shape analysis
m Eg: x(v), n(vl, v2), sm(v)

Representation

m Predicates

® [nstrumentation predicates:

m Properties derived from core semantics, not explicitly part
of the semantics of pointers in a language,

m Different algorithms use different sets of instrumentation
m Fo: 1s(v) (sharing), r (v) (reachability)
m Defining formulae:

©is(v) def Juy, vz : n(v1,v) An(ve, v} Avr 3 vg

¢, (V) def z(v) VI 2(vi) A nt (v1,v)

Representation

m Property-Extraction Principle

m Concrete Store: 2-Valued Logic

m Questions about properties of stores can be answered by
evaluating formulae: 1=>hold, 0=>doesn’t hold

m Abstract store: 3-Valued Logic
m A formulae can evaluate to 1, 0, or 2.
m 1=>hold
m 0=>doesn’t hold

m 15 => don't know

Representation

m Examples

unary preds. binary preds.

wi [I[1[0]0]) jwi [0]J[L [0 T0] wr [1]1]0]0] O]

Usg u3 abstracts
. to
4 U4 —_—

unary preds. binary preds.

Bounded Structures

B Bounded Structures:

® A logical structure where no two individuals
evaluates to the same value for all predicates

m Upper bound on the size of bounded structures:

m Canonical Abstraction:

t_embed.(u) =u (peA|S(p)u)=1},{peAlS(p)(u)=0}

Embedding Theorem

® Embedding:
= A way to relate 2-valued and 3-valued structures

® S can be embedded in S’

m Sutjective function f: US = US

VY, . Sty wp o,y . - -
ol S (p)uq, .. up) E O (p)flur),. ... flup))

® Embedding Theorem:

m If S can be embedded in S’, every piece of information
extracted from S’ via a formula is a conservative
approximation of the information extracted from S.

Predicate-update formula

m Hxpressing semantics using logic

= Predicate-update formulae @,* : Define the new
value of p for every statement st

® Transfer function:

o uk et (for =, v ‘Hk])>

Predicate-update formula

® Core Predicates: the predicate-update formulae 1s
exactly the same for 3-valued logic and 2-valued
logic
® [nstrumentation Predicate:
m Trivial update formula: usually unsatisfactory

m User supplied formula: need to prove it maintains correct
instrumentation.

Predicate-update formula

m Core Predicates:

t

t->sel

¢t (0) & Fu; ¢ tvy) Asel (vy,v)

x->sel = NULL

g def
¢l (vq, vg) = sel (vy, vg) A —x(v7)

X->sel = t

(assuming that
x->sel == NULL)

s def
go:qu (v1, Ug) = sel (vy, Uy) V (x(v1) A t(vy))

x = malloc()

@;t({;) d:ef isNew(v)
¢t) L z(v) A —isNew(v), for each z € (PVar — {x})

. def : . .
Sﬁ:fz (v1, v9) = sel(vq, vy) A —isNew(vy) A —isNew(vy) for each sel € PSel

Predicate-update formula

m [nstrumentation predicate

(assuming that
x->n == NULL)

s(V) A gigln = @31 if W' x(W') AR, v)

otherwise

Cdef | 18(V) V @igln — g;f] if vy : t(v) A n(vy, v)

?):

1s(v)

¢t (v) = is(v) A —new(v)

otherwise

The Shape Analysis Algorithm

U {t_embed [st(w)](S) | S € StructSet[w]}
StructSet[v] = { wovEd

if v # start
{(0, Ap. Ay, ... ,uk.1/2)} if v = start

m When analyzing a single procedure, allow an
arbitrary set of 3-valued structures to hold at the
entry of the procedure

The Shape Analysis Algorithm

m BExample:

input
structure

update
formulae

output
structure

A More Precise Abstract Semantics

m Overview
® Focus
® Apply transtfer function

B coerce

A More Precise Abstract Semantics

m Focus: forces a given formula to a definite value

mazimal(X .S) déf

XS-{XeXS|3X'eXS: XC X and X' Z X}

S' € 8-STRUCTIP]
focus ,(S) = mazimal ({S’ S'CS })

for all Z : [¢}§ (Z) #1/2

A More Precise Abstract Semantics

® Focus Example:

RECEN
input . i
structure %Y — @ ------------

Sa

focus
formulae

focused
structures Da,f, Sa,f,1 P01 Sa,f,2 Yo, 1 P00

@ n \‘.’

{wo(v)}, where @o(v) = Fvy : y(v1) A nfv1,v)

A More Precise Abstract Semantics

m Coerce

A compatibility constraint is a term of the form ¢ > @9,
where ¢ 1s an arbitrary 3-valued formula, and ¢y is either an atomic formula
or the negation of an atomic formula over distinct logical variables.

m Sharpen a structure according to Compatibility
Constraints

m Compatibility Constraints from Instrumentation
Predicates

m Compatibility Constraints from Hygience Conditions

A More Precise Abstract Semantics

m An algorithm to generate compatibility constraints

#m Definition Formula:
Yu : (Hv 1, U2 . N (U 1, U) A\ (Uz , U) A\ U1 ;é U9) = 1S (U)
m Extended Horn Clause:
Yu, v1, U9 : —n(vy, 0) vV —n(vg, V) V 11 =g V iS(V)
= Compatibility constraints:
(Jv1, v2 : n(v1, V) A n(vg, V) A U1 F V) B> is(D)
(Jvq : n(v1,v) A vy F£ve A—is(v)) B> —n(vsg, v)

(Jvg : n(ve, V) AU F U2 A —=is(v)) > —=n(vy, V)

(Fv : n(vy, v) A n(vg, V) A —is(V)) B> V] = .

A More Precise Abstract Semantics

m Coerce Example:

update 050 (v)

formulae Fuy : y(v1) An(vy,v)
output
structures

Sa.,o,l

coerced
structures

(dvq : n(v1, V) AUy F£ a2 A—Ls(v)) B> —n(vg, L)

Related work

s K limiting

m Use instrumentation predicates “reachable-from-x-
via-access-path-a”, for |o| <=k

m Storage Shape Graphs [CWZ'90]

m Use core predicates that record the allocation sites of

heap cells
m Doubly-linked list

m Use Instrument Predicate cq (v) and ¢, (V)

Related Work

m Biased versus unbiased static program analysis

® Conventional analysis has one-sided bias:
® May Analysis:

m false => false

B true => may be true/ may be false
® Must Analysis:

B truec —> true

m false => may be true/ may be false

® 3-Valued Logic:

m unbiased

Summary

m A parametric framework
m Hasy to experiment with new algorithms

m For core predicates, abstract semantics falls out
from the concrete semantics

m No need for a proof for a particular instantiation

Limitations

m Size potentially exponential
m Hfficiency
m Usually need to provide predicate-update

formulae for instrumentation predicates and to

prove that these formulae maintains the correct
instrumentation. Is it more or less burdensome?

