
Chapter preprint of the second edition of the Handbook of Satisfiability (2021)
Armin Biere, Marijn Heule, Hans van Maaren and Toby Walsh (Eds.)
Published by IOS Press. The print edition can be ordered at
https://www.iospress.nl/book/handbook-of-satisfiability-2/
The published electronic chapters (Version of Record) are available at
https://ebooks.iospress.nl/ISBN/978-1-64368-161-0/

Chapter 26

Approximate Model Counting
Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi

26.1. Introduction

Model counting, or counting the solutions to a set of constraints, is a funda-
mental computational problem with applications in diverse areas spanning prob-
abilistic inference, network reliability estimation, statistical physics, explainable
AI, security vulnerability analysis, and the like [Rot96, DH07, XCD12, ABB15,
DOMPV17, LSS17, BEH+18, ZQRZ18, NSM+19, BSS+19]. While exact counting
is known to be computationally hard (see Chapter 25 for more details on exact
counting), a large class of applications can benefit even if approximate model
counts are available. Approximate counting algorithms have therefore been stud-
ied in great depth by both theoreticians and practitioners. In this chapter, we
discuss some of the key ideas behind modern approximate model counters for
propositional constraints.

We begin with some notation and terminology. Let φ be a propositional
formula. We use |φ| to denote the size of φ presented as a string to a Turing
machine, and call the set of all variables in φ the support of φ, or Sup(φ). Fol-
lowing standard terminology, a variable or its negation is called a literal, a clause
is a disjunction of literals, and a cube is a conjunction of literals. We say φ is in
conjunctive normal form (CNF) if it is a conjunction of clauses. Similarly, we say
φ is in disjunctive normal form (DNF) if it is a disjunction of cubes. A satisfying
assignment, solution, or model of φ is an assignment of truth values to all vari-
ables in Sup(φ) such that φ evaluates to True. We use Sol(φ) to denote the set
of all models of φ. The model counting problem asks: Given φ, find |Sol(φ)|.

26.1.1. A historical perspective

Approximate model counting techniques, at least for CNF formulas, have mostly
evolved hand-in-hand with techniques for exact model counting, except in the
last decade or so, when a few innovations triggered a large body of work in the
broad area of approximate counting and sampling. The real value-addition of
approximate counters has always been in cases that lie beyond the reach of exact
counters, given computational resource constraints. Scalability has therefore been

1

https://www.iospress.nl/book/handbook-of-satisfiability-2/
https://ebooks.iospress.nl/ISBN/978-1-64368-161-0/

a key consideration throughout the history of the development of approximate
model counters. It was widely believed until recently (circa 2006) that this scala-
bility can be achieved only by weakening or sacrificing approximation guarantees.
As a consequence, most applications used approximate counting techniques with
weak or no guarantees at all. An example of such usage is that of Monte Carlo
estimators for model counting where the number of Monte Carlo steps is trun-
cated heuristically before the theory-mandated mixing of states happen [WS05].
Fortunately, work done over the last decade has convincingly demonstrated that
by striking a fine balance between theoretical and practical considerations, it is
indeed possible to design approximate model counters that provide strong guar-
antees while also scaling to problem instances that are orders of magnitude larger
than what was possible earlier. To get a sense of where we stand in 2019, state-
of-the-art approximate model counters can solve problem instances with half a
million propositional variables in less than 2 hours on a single high-end computing
node, yielding estimates that are provably within a factor of 1.8 of the true count
with at least 99% confidence [SM19].

Some of the key theoretical results pertaining to approximate counting were
already known as early as the mid 1980s [Sto83, JVV86]. In a seminal pa-
per [Sto83], Stockmeyer used universal hash functions [CW77] to solve the ap-
proximate counting problem using polynomially many NP oracle calls. While
theoretically elegant, the proposed technique suffered from the requirement of a
prohibitively large number of invocations of NP oracle to perform symbolic rea-
soning on formulas with very large numbers of variables. Jerrum, Valiant, and
Vazirani demonstrated inter-reducibility of approximate counting and almost-
uniform sampling in [JVV86]. Almost a decade later, Bellare, Goldreich, and
Petrank reported an almost uniform generator of models using hash-functions of
high degree of universality [BGP00]. Technically, this could be used to approx-
imately count models using Jerrum et al.’s result [JVV86]. Unfortunately, our
attempt in this direction [CMV13a] showed that this approach did not scale be-
yond formulas with more than 20 propositional variables. The major stumbling
block was the requirement of inverting a hash function with a high degree of
universality.

After a long period of relatively incremental improvements in approximate
counting techniques, in 2006, Gomes, Sabharwal and Selman [GSS06] reported
a parameterized approximate counting algorithm that used random parity con-
straints as universal hash functions and harnessed the power of a state-of-the-art
CNF satisfiability solver in the backend. They showed that if the right com-
bination of parameters was chosen by the user (this is not always easy), this
approach could solve problems much larger than what was possible earlier, and
yet provide guarantees on the quality of the estimate. Subsequently, this work
was developed further in [GHSS07b, GHSS07a]. In 2013, two independent pa-
pers [CMV13b, EGSS13b] reported highly scalable approximate counting algo-
rithms in two different settings, guaranteeing (1 + ε)-factor approximation with
confidence at least 1− δ for any user-provided values of ε and δ. The dependence
on the user to provide the right combination of parameters was removed in these
algorithms and their implementations benefitted from the then newly-proposed
SAT solver CryptoMiniSat that could handle parity constraints natively [SNC09].

2

Since then, there has been a large body of work in this area, as detailed later in
the chapter.

Interestingly, the history of development of approximate model counters for
DNF formulas followed a different trajectory. As early as 1983, Karp and Luby
showed that it is possible to approximate the model count of DNF formulas ef-
ficiently and with strong guarantees using Monte Carlo sampling [KL83]. While
there have been several follow-up works that built and improved on this algorithm,
the success of these techniques could not be lifted to the case of CNF formulas
due to key steps that exploit the fact that the input formula is in DNF. Monte
Carlo techniques have dominated the landscape of approximate counters for DNF
formulas since Karp and Luby’s early work. It is only recently that an alternative
approach using universal hash functions has been found to achieve the same guar-
antees and the same asymptotic time complexity [CMV16, MSV17, MSV19] as
the best-known Monte Carlo algorithm. As observed, however, in [MSV19], the
empirically observed runtime of approximate DNF counting algorithms is much
more nuanced and hard to predict.

26.1.2. An overview of the complexity landscape

Exact model counting, and even some variants of approximate counting are com-
putationally hard in a formal sense. To appreciate this better, we review a few
concepts from complexity theory. The reader is assumed to be familiar with
the notions of Turing machines, as well as the complexity classes P, NP, coNP
and their generalization to the polynomial hierarchy (PH). A detailed exposition
on these can be found in [AB09]. Given an instance of a problem in NP, the
corresponding counting problem asks how many accepting paths exist in the non-
deterministic Turing machine that solves the problem. The complexity class #P
is defined to be the set of counting problems associated with all decision problems
in NP. Toda showed that a single invocation of a #P-oracle suffices to solve every
problem in the polynomial hierarchy efficiently [Tod89]. Formally, PH ⊆ P#P,
where CC2

1 denotes the class of problems that can be solved by a Turing machine
for a problem in C1 when equipped with an oracle for a complete problem in
C2. A consequence of Toda’s theorem is that problems in #P (viz. exact model
counting) are likely much harder than those in PH.

A probabilistic Turing machine is a non-deterministic Turing machine with
specially designated “coin-tossing” states. When the machine reaches one of these
states, it can choose between alternative transitions based on a probability distri-
bution of coin tosses. For our purposes, the probability distribution is assumed
to be uniform. Computing with probabilistic Turing machines gives rise to prob-
abilistic complexity classes like RP, BPP etc. The reader is referred to [AB09]
for more details on these classes. In a functional problem like model counting,
for every input x, we seek an answer f(x) ∈ N of size polynomial in |x|. A fully
polynomial randomized approximation scheme (FPRAS) for such a problem is a
probabilistic Turing machine that takes as input x and a parameter ε (> 0). It
then generates an estimate c that lies within f(x) · (1 + ε)−1 and f(x) · (1 + ε)
with probability strictly greater than 1

2 , while taking time polynomial in |x| and
1
ε . Given an FPRAS for a functional problem, the probability of generating an es-
timate outside the tolerance window can be reduced below any desired confidence

3

threshold δ (0 < δ ≤ 1) by running the FPRAS O
(
log 1

δ

)
times independently

and by choosing the median estimate.
Valiant showed that exact model counting is #P-complete for both CNF and

DNF formulas [Val79]. Therefore, it is unlikely that any efficient algorithm exists
for exact model counting. This has motivated significant research on different
variants of approximate model counting over the past four decades. To have a
unified view of these variants, we introduce some notation. Let Z be a random
variable with a specified probability distribution. Let ▷◁ ∈ {=,≤, <,>,≥} be
a relational operator and let a be a value in the range of Z. We use Pr [Z ▷◁ a]
to denote the probability that Z ▷◁ a holds. We also use E [Z] and Var [Z] to
denote the expectation and variance, respectively, of Z. An approximate model
counter takes as input a formula φ (along with possibly tolerance and confidence
parameters) and returns an estimate c that approximates |Sol(φ)|. Depending
on whether the algorithm is deterministic or randomized, and depending on the
type of approximation used, we can identify several variants of approximate model
counters. In the following discussion, unless specified otherwise, ε (> 0) represents
a (additive or multiplicative) tolerance used in approximating |Sol(φ)|, and δ (0 <
δ ≤ 1) represents a confidence bound for a randomized algorithm.

A deterministic additive approximate model counter takes a formula φ and
an additive tolerance ε (> 0) as inputs, and returns an estimate c (≥ 0) such that
(|Sol(φ)| − ε) ≤ c ≤ (|Sol(φ)|+ ε). A probabilistic additive approximate model
counter takes an additional confidence parameter δ (0 < δ ≤ 1) as input, and finds
a random estimate c (≥ 0) such that Pr [(|Sol(φ)| − ε) ≤ c ≤ (|Sol(φ)|+ ε)] ≥
1 − δ. Unfortunately, if ε ≤ 2

|Sup(φ)|
2 −2, both versions of additive approximate

model counting are computationally hard. Specifically, the deterministic version
continues to be #P-complete, while the probabilistic version lies beyond PH,
unless the entire PH collapses [CMV19]. Thus, additive approximations do not
simplify the problem of counting from a worst-case complexity perspective, and we
choose not to elaborate further on this class of counters. It is worth mentioning,
however, that approximate counters with additive tolerance have been used in
some applications, viz. [SVP+16] and [FHO13].

Counters with multiplicative approximations have been much more exten-
sively studied. A deterministic multiplicative approximate model counter takes
as inputs a formula φ and a multiplicative tolerance ε (> 0) and returns an
estimate c (≥ 0) such that |Sol(φ)| · (1 + ε)−1 ≤ c ≤ |Sol(φ)| · (1 + ε).
A probabilisitc multiplicative approximate model counter , also called a probably
approximately correct (PAC) model counter, takes an additional confidence pa-
rameter δ (0 < δ ≤ 1) as input and returns a random estimate c (≥ 0) such
that Pr

[
|Sol(φ)| · (1 + ε)−1 ≤ c ≤ |Sol(φ)| · (1 + ε)

]
≥ 1 − δ. In a seminal pa-

per, Stockmeyer showed that approximate counting with multiplicative tolerance
can be solved by a deterministic algorithm that makes polynomially many calls
to a ΣP

2 oracle [Sto83]. Therefore, practically efficient deterministic algorithms
for approximate counting can be designed if we have access to ΣP

2 solvers (also
called 2QBF solvers) that can solve large problem instances efficiently in prac-
tice. Unfortunately, despite significant advances in 2QBF solving, this has not
yet yielded practically efficient deterministic approximate counters yet. Building
on Stockmeyer’s work, Jerrum et al. [JVV86] showed that approximate counting

4

with PAC guarantees can be achieved by a probabilistic Turing machine in poly-
nomial time with access to an NP oracle. Given the spectacular improvement in
performance of propositional SAT solvers over the past few decades, research in
practically useful approximate model counting has largely focused on variants of
approximate counters with PAC guarantees.

The variants of approximate counting discussed above require the estimate
to lie within a specified tolerance window on either side of the exact count.
The required approximation guarantees are therefore two-sided. In some ap-
plications this may not be needed, and one-sided approximation guarantees (viz.
c ≥ |Sol(φ)| · (1 + ε)−1) may be sufficient. Therefore, approximate counting with
one-sided guarantees has also been studied in the literature. In this chapter,
however, we focus on approximate counters with two-sided guarantees, since they
provide the strongest approximation guarantees while still scaling to large prob-
lem instances in practice. The interested reader is referred to Chapter 25 for more
details on counters with one-sided approximation guarantees and guarantee-less
approximate counters.

A brief examination of the differences between approximate model counting
for CNF and DNF formulas is in order here. It was Karp and Luby [KL83]
who first showed that DNF model counting admits an FPRAS. Their algorithm
and analysis were subsequently improved in [KLM89]. Recently, it was re-proved
in [CMV16, MSV17] that DNF counting admits an FPRAS using techniques
different from those used in [KL83, KLM89]. Unfortunately, as observed in [KL83,
KL85], CNF model counting cannot admit an FPRAS unless NP = RP – a long-
standing unresolved question in complexity theory. The best we know at present is
that approximate counting for CNF formulas with PAC guarantees can be solved
by a probabilistic Turing machine with access to an NP oracle in time polynomial
in |φ|, 1

ε and log 1
δ . Therefore, approximate model counting for CNF and DNF

formulas present different sets of challenges and we discuss them separately.

The problems of approximate counting with PAC guarantees and almost uni-
form generation of models are intimately related to each other. Given φ and a
tolerance ε (≥ 0), let α(φ) be a real number in (0, 1] that depends only on φ. An
almost uniform generator is a probabilistic Turing machine that takes as inputs
a formula φ and a tolerance ε (> 0), and outputs a random assignment π to vari-
ables in Sup(φ) such that α(φ) · (1+ ε)−1 ≤ Pr [π is output] ≤ α(φ) · (1+ ε) if π is
a solution of φ, and Pr [π is output] = 0 otherwise. Jerrum et al. [JVV86] showed
that approximate counting with PAC guarantees and almost uniform generation
are polynomially inter-reducible. Thus, an almost uniform generator can be used
as a sub-routine to obtain a approximate counter for φ and vice versa. Further-
more, the time-complexity of each problem is within a polynomial factor of that
of the other. It turns out, however, that all practically efficient almost uniform
generators developed so far already use an approximate counter (or some variant
of it) internally in an intermediate step. Hence, using such a sampler to obtain
an approximate counter again is not very meaningful.

5

26.2. Approximate Model Counting for CNF

In this section, we discuss algorithms for computing a PAC estimate of |Sol(φ)|,
where φ is a CNF formula. Significantly, all state-of-the-art algorithms for this
problem make use of probabilistic hash functions. Therefore, we first present
a generic framework for approximate model counting using probabilistic hash
functions. We then show how different algorithms developed over the years [Sto83,
GSS06, CMV13b, IMMV15, AD16, CMV16, ZCSE16, AT17, AHT18, SM19] can
be viewed as instantiations and optimizations of this framework.

26.2.1. Probabilistic hash-based counting

A probabilistic hash function maps elements of a given domain, viz. {0, 1}n, to
random buckets or “cells” from a finite range, viz. {0, 1}i where 0 ≤ i ≤ n.
This is achieved by choosing a hash function uniformly at random from a family
of functions, each of which maps {0, 1}n to {0, 1}i. In probabilistic hash-based
counting, the solution space of φ is randomly partitioned into approximately
equal-sized “small” cells using probabilistic hash functions. Suppose each hash
function in a family has a range of 2i cells, and we choose one of these at random.
By carefully designing the hash family, we can ensure that the count of solutions
of φ in an arbitrary cell of the induced partitioning of Sol(φ) is an unbiased
estimator of |Sol(φ)|

2i with small variance. Therefore, if we count the solutions of
φ in a single cell and scale it by 2i, we obtain an estimate of |Sol(φ)|.

In order to formalize the above intuition, we need some additional notation.
Let {x1, . . . xn} be the support of φ. Let hi denote a hash function that maps
elements of {0, 1}n to {0, 1}i, where 0 ≤ i ≤ n1. Let Hi be a (sub-)family of such
hash functions mapping {0, 1}n to {0, 1}i. We use H to denote the family of hash
functions obtained by taking the union of all Hi for i ∈ {0, . . . n}.

The general structure of a probabilistic hash-based approximate counter is
shown in Algorithm 1. The algorithm takes as inputs a formula φ, a tolerance
bound ε (> 0) and a confidence bound δ (0 < δ ≤ 1). It returns an estimate c
such that Pr

[
|Sol(φ)| · (1 + ε)−1 ≤ c ≤ |Sol(φ)| · (1 + ε)

]
≥ 1 − δ. Let us ignore

lines 1 through 4 of Algorithm 1 for now. In line 5, we commit to using a family
of hash functions, say H. In general, H has sub-families Hi as discussed above.
In line 8, we choose n+1 hash functions, one from each sub-family Hi in H. Let
these hash functions be hi : {0, 1}n → {0, 1}i for i ∈ {0, . . . n}. Depending on the
counter, each hi may be chosen independently of hj (for j 6= i), or the choice of
hi may be correlated with the choice of hj . Note that each hi partitions Sol(φ)
into 2i cells. Furthermore, for every a ∈ {0, 1}i, the set Sol(φ ∧ h−1

i (a)) consists
of exactly those solutions of φ that are mapped to the cell a by hi.

The core of Algorithm 1 consists of the loop in lines 10–15. This loop searches
for the smallest index i in {1, . . . n} such that the partitioning induced by hi yields
“small” cells with only a few solutions of φ per cell, with high probability. Since
the choice of a cell to check for the count of solutions is arbitrary, we focus on
the cell labeled all 0s, i.e. 0i. The maximum number of solutions in a cell for
it to be considered “small” is defined by a parameter thresh that is determined

1We assume h0 maps elements of {0, 1}n to a singleton set, chosen to be {0}.

6

Algorithm 1 HashCounter(φ, ε, δ)
1: thresh← FindSmallCellSize(ε); ▷ Size threshold for a cell to be considered “small”
2: smc← SaturatingCounter(φ, thresh); ▷ Saturated model count of φ
3: if (smc ̸= ⊤) then return smc; ▷ Easy case: Solution space of φ itself is “small”
4: itercount← FindRepetitionCount(δ); ▷ # repetitions to amplify confidence
5: H ← ChooseHashFamily();
6: CountEst← EmptyList; ▷ List of model count estimates from different iterations
7: repeat itercount times
8: (h0, . . . hn)← ChooseHashFunctions(H, n); ▷ n is # variables in φ
9: InitializeArray(CellSize, n); ▷ CellSize is an array of size n+ 1

▷ CellSize[i] records (saturated) model count in cell 0i induced by hi; CellSize[0] = ⊤
10: repeat until AllIndicesAssigned(CellSize)
11: i← ChooseUnassignedIndex(CellSize); ▷ Choose i s.t. CellSize[i] = ⊥
12: CellSize[i]← SaturatingCounter(φ ∧ h−1

i (0i), thresh);
13: if (CellSize[i] < thresh ∧ CellSize[i− 1] = ⊤) then ▷ Found right “small” cell
14: Append CellSize[i]× 2i to CountEst; ▷ Current model count estimate
15: go to line 7; ▷ Repeat to amplify confidence
16: return ComputeMedian(CountEst);

in line 1 of Algorithm 1. In general, thresh depends polynomially on 1
ε , where ε

is the tolerance bound of our PAC estimate. We assume access to a sub-routine
SaturatingCounter that counts the solutions of a formula, but only upto
a specified bound. Specifically, SaturatingCounter(ψ, c) returns a special
symbol > (denoting saturation of count) if ψ has c or more solutions. Otherwise,
it returns the exact count of solutions of ψ. Thus, SaturatingCounter(ψ, c)
always returns a value in {0, c − 1} ∪ {>}. We call this a saturated count of the
solutions of ψ. Algorithm 1 uses SaturatingCounter at two places. In lines 2
through 3, we check if the saturated count of solutions of φ is itself within thresh−
1; if so, we return this count directly. Otherwise, we use SaturatingCounter
in line 12 to find the saturated count of solutions of φ in cell 0i induced by hi
for an appropriately chosen i ∈ {1, . . . n}. This count is then recorded in the ith
element of an array named CellSize. The sub-routine InitializeArray is used
to initialize CellSize prior to starting the iterations of the loop in lines 10–15.
Specifically, InitializeArray sets CellSize[0] to > (since the saturated model
count of φ is > if the check in line 3 fails) and CellSize[i] to ⊥, representing a
value that has not been assigned yet, for 1 ≤ i ≤ n.

Recall that the count of solutions of φ in a cell induced by hi is an unbiased
estimator of |Sol(φ)|

2i . Therefore, this count reduces (in expectation) as i increases.
In order to find the smallest i where this drops below thresh, we check in line 13 if
the count induced by hi is less than thresh, whereas that induced by hi−1 is thresh
or more (i.e. saturated at >). If so, we identify i as the smallest index for which
the partitioning of Sol(φ) by hi yields “small” cells. We also record the value
of CellSize[i] × 2i as the current estimate of |Sol(φ)| in a list of estimates named
CountEst. If, however, the check in line 13 fails, we conclude that the cells induced
by hi are either too small (CellSize[i − 1] 6= >) or too large (CellSize[i] = >). In
this case, we continue the search by choosing another index i ∈ {1, . . . n} such that
CellSize[i] has not been assigned yet, i.e. has the value ⊥. Different hash-based
model counters use different strategies for choosing the next unassigned index.
This is represented by an invocation of sub-routine ChooseUnassignedIndex

7

in line 11 of Algorithm 1.
While the loop in lines 10–15 of Algorithm 1 provides an estimate of |Sol(φ)|

within a specified tolerance, the confidence may not be as high as required. The
loop in lines 7–15 followed by computation of the median of all estimates in the list
CountEst serves to amplify the probability of success to the desired level. Every
iteration of this loop is required to be independent of all previous and subsequent
iterations. The number of iterations needed to achieve the desired confidence is
a linear function of log 1

δ and is calculated in line 4.
In the following subsections, we discuss how different choices of H and of the

subroutines used in Algorithm 1 affect the performance and guarantees of various
probabilistic hash-based counting algorithms. We start with a brief overview of
the theoretical tools and techniques necessary to analyze different choices.

26.2.2. Theoretical tools and analysis

Let Cell⟨φ,hi⟩ denote the random set {y ∈ Sol(φ) | hi(y) = 0i}. Now con-
sider an arbitrary iteration of the loop in lines 7–15 of Algorithm 1. We say
that the iteration fails if either no estimate of the model count is appended to
CountEst in line 14, or if the estimate that is appended does not lie in the interval[
|Sol(φ)|
1+ε , |Sol(φ)| · (1 + ε)|

]
. Let IterError denote the event that the iteration fails

in the above sense. Furthermore, let Ti denote the event
(
|Cell⟨φ,hi⟩| < thresh

)
,

and let Li and Ui denote the events
(
|Cell⟨φ,hi⟩| × 2i < |Sol(φ)|

(1+ε)

)
and

(
|Cell⟨φ,hi⟩| >

|Sol(φ)|(1 + ε)), respectively. It now follows from the definition of IterError that
Pr [IterError] = Pr

[⋂n
j=0 Tj ∪

⋃n
i=1

(
Ti−1 ∩ Ti ∩ (Li ∪ Ui)

)]
. A key component

of the analysis of Algorithm 1 concerns bounding Pr [IterError] from above by a
constant strictly less than 1

2 . Once this bound is established, standard arguments
for probability amplification via median of independent random variables can be
used to bound Pr [Error], where Error denotes the event that Algorithm 1 doesn’t
yield a count within the prescribed tolerance bound ε.

To see how probability amplification happens, suppose the loop in lines 7–15
is iterated r independent times. Since we compute the median in line 16, the
event Error can happen only if IterError happens for at least (r/2) + 1 iterations,
where we have assumed r to be even for simplicity. For notational simplicity,
let ρ (< 1

2) denote Pr [IterError]. Then, Pr [Error] =
∑r
i=(r/2)+1

(
r
i

)
ρi(1 − ρ)r−i.

Since
(
r
i

)
≤

(
r
r/2

)
≤ 2r, algebraic simplification yields Pr [Error] <

(
1−ρ
1−2ρ

)
×(

2
√
ρ(1− ρ)

)r
. Therefore, in order to ensure Pr [Error] ≤ δ, we need r ≥ C(ρ)×

(̇ log 1
δ +D(ρ)), where C(ρ) and D(ρ) depend only on ρ. This is what sub-routine

FindRepetitionCount computes in line 4 of Algorithm 1.
To obtain a good upper bound of ρ, i.e. Pr [IterError], we need to find good

bounds of probabilities of the events Ti, Li, and Ui. In general, different tech-
niques are used to compute these bounds, depending on the choice of H, and of
sub-routines ChooseHashFamily and ChooseHashFunctions. The follow-
ing three standard probability bounds are particularly useful in reasoning about
|Cell⟨φ,hi⟩|, where 0 < β < 1, and µi and σi denote the mean and standard

8

deviation respectively, of |Cell⟨φ,hi⟩|.

• (Chebyshev) Pr
[
| |Cell⟨φ,hi⟩| − µi | ≥ βµi

]
≤ (1+β)2σ2

i

β2µ2
i

• (Payley-Zygmund)Pr
[
|Cell⟨φ,hi⟩| ≤ βµi

]
≤ σ2

i

σ2
i+(1−β)2µ2

i

• (Markov) Pr
[
|Cell⟨φ,hi⟩| ≥

µi

β

]
≤ β

The recipe for obtaining good upper bounds of the probabilities of Ti, Li, and
Ui is to use appropriate values of β in the above inequalities, and to use hash-
family specific properties to obtain expressions for σ2

i and µi. Existing techniques
typically rewrite the expression for Pr [IterError] so that the above bounds can be
used for µi > 1. Significantly, the choice of thresh informs the need for bounding
either the coefficient of variation, i.e., σ

2
i

µ2
i
, or the dispersion index, σ

2
i

µi
, as discussed

below.

26.2.3. Choice of threshold

For an algorithm focused on a problem as hard as (approximately) counting the
number of solutions of a CNF formula, it is pleasing to note that except the
SaturatingCounter query in line 12, Algorithm 1 is fairly simple to imple-
ment and execute. Therefore, it is no surprise that practical implementations
of the algorithm spend most of their time in SaturatingCounter queries in
line 12 [SM19]. A straightforward way of implementing SaturatingCounter
with modern SAT solvers is to enumerate solutions one by one, using block-
ing clauses for already found solutions, until either thresh solutions are gener-
ated or there are no more solutions. A more generic approach to implementing
SaturatingCounter is described in Section 26.2.6. In all of these approaches,
the number of times an underlying SAT solver has to be invoked is linear in thresh.
Therefore, it is important to ensure that thresh grows polynomially in n and 1

ε .
There is a fundamental tradeoff between thresh and the tolerance bound ε

that every approximate counter obtained as an instance of Algorithm 1 must
respect. To understand this, suppose a hypothetical algorithm M computes a
multiplicative (1 + ε)-approximation of a model count that lies in the interval
[1, 2n]. The minimum cardinality of the set of possible output values of M has
an inverse logarithmic relation with (1 + ε). Specifically, in order to minimize
the count of output values of M, we must divide the interval [1, 2n] into non-
overlapping sub-intervals such that the ratio of the upper bound to the lower
bound of each sub-interval is (1 + ε)2. Since the model count being estimated
can be anywhere in [1, 2n], algorithm M must have the ability to output at least
one value from each of the above sub-intervals. If t denotes the number of sub-
intervals, then we must have 2n(

(1+ε)2
)t < 1, i.e. t > n

2 log(1+ε) . This gives the

minimum count of possible estimates that algorithm M must return. Notice
that the estimated count appended to CountEst in the loop in lines 10–15 of
Algorithm 1 can be viewed as c × 2i for some 1 ≤ c < thresh and i ∈ [0, n].
Therefore, the cardinality of the set of possible values returned by Algorithm 1 is
n× thresh. It follows that n× thresh ≥ n

2 log2(1+ε)
, i.e., thresh ≥ 1

2 log2(1+ε)
.

9

The lower bound of thresh derived above may not be achievable in a given
instantiation of Algorithm 1, and typically larger values of thresh are used. For
example, Chakraborty et al [CMV13b, CMV16] have used thresh in O(1/ε2) to
ensure a multiplicative (1 + ε)-approximation. Ermon et al. [EGSS14], Asteris
and Dimakis [AD16], and Achlioptas and Theodoropoulos [AT17] have, however,
used thresh in O(1/ε) for the same purpose. Not surprisingly, the choice of thresh
affects the choice of hash functions that can be used in Algorithm HashCounter.
Specifically, with thresh ∈ O(1/ε2), the dispersion index of |Cell⟨φ,hi⟩|, i.e. σ2

i

µi
,

must be bounded above by a constant. In contrast, when thresh ∈ O(1/ε), the
coefficient of variation of |Cell⟨φ,hi⟩|, i.e. σ2

i

µ2
i
, must be bounded by a constant.

26.2.3.1. Multiplicative approximation amplification

The above discussion implies that as ε decreases, thresh must increase if we as-
pire to obtain a multiplicative (1 + ε)-factor approximation. If thresh becomes
too large, the running time of SaturatingCounter may become a bottleneck.
It is therefore interesting to ask if we can avoid increasing thresh at the cost of
increasing the size of the formula fed as input to SaturatingCounter, while
still obtaining a (1 + ε)-factor approximation. In 1983, Stockmeyer [Sto83] ob-
served that this can indeed be done: one can transform an algorithm that pro-
vides a constant-factor approximation into one that gives a multiplicative (1+ε)-
approximation. To see how this can be achieved, suppose an algorithm M com-
putes model counts with a 2-approximation. Given an input formula φ over the
set of variables X, suppose we make two copies of the formula with disjoint sets
of variables, i.e. ψ(X,Y) = φ(X) ∧ φ(Y) where φ(Y) is the same formula as
φ(X), but with variables X replaced by a new set of variables Y . It is easy
to see that |Sol(ψ)| = |Sol(φ)|2. Furthermore, if |Sol(ψ)|

4 ≤ c ≤ 4|Sol(ψ)|, then
|Sol(φ)|

2 ≤
√
c ≤ 2|Sol(φ)|. Thus, we have effectively reduced the constant multi-

plicative factor in approximating |Sol(φ)|. Extending this argument, if we want
an (1 + ε)-approximation of |Sol(φ)| for small values of ε, we can construct ψ
by conjoining k = O(1/ε) copies of φ, each with a disjoint set of variables, and
compute the k-th root of the estimate of |Sol(ψ)| returned by algorithm M. There-
fore, thresh can be set to a constant when computing an (1+ ε)-approximation of
|Sol(φ)| if we are willing to invoke Algorithm 1 over a new formula obtained by
conjoining O(1/ε) copies of φ.

The need for multiple copies of the given formula, however, leads to larger
queries, to which SAT solvers are highly sensitive. For classes of formulas not
closed under conjunction, the query SaturatingCounter

(
ψ ∧ h−1

i (0i), thresh
)

may not even lie in the same complexity class as SaturatingCounter
(
φ ∧

h−1
i (0i), thresh

)
. As an example, the class of DNF formulas is not closed under

conjunction. If φ is a DNF formula and ψ is a conjunction of DNF formulas, the
query SaturatingCounter

(
φ∧h−1

i (0i), thresh
)

can be answered in polynomial
time, while the query SaturatingCounter

(
ψ ∧ h−1

i (0i), thresh
)

is NP-hard in
general. This is a crucial consideration for the design of hashing-based FPRAS
techniques, which are discussed in detail in Section 26.4.

10

26.2.4. Choice of hash family

Extending the notation introduced earlier, let hi
R←− Hi denote the probability

space induced by choosing a function hi : {0, 1}n → {0, 1}i uniformly at random
from the sub-family Hi.

Definition 26.2.1. A sub-family of hash functions Hi is said to be uniform if
for all x ∈ {0, 1}n, α ∈ {0, 1}i and hi

R←− Hi, Pr[hi(x) = α] = 1
2i .

Definition 26.2.2. [CW77] A sub-family of hash functions Hi is said to be
strongly 2-universal if for all x, y ∈ {0, 1}n and hi

R←− Hi, Pr[hi(x) = hi(y)] =
1
2i

Uniform and strongly 2-universal hash functions play a central role in the
design and analysis of probabilistic hash-based approximate counters.

Early work on probabilistic hash-based counting, viz. [GSS06, GHSS07b,
GHSS07a], made the important observation that properties of strongly 2-universal
hash families allow one to design approximate counters with PAC guarantees.
Specifically, using strongly 2-universal hash families ensures that the dispersion
index of |Cell⟨F,hi⟩|, i.e., σ

2
i

µi
, is bounded above by a constant. Note that if µi > 1,

this also implies that the coefficient of variation is bounded above by a constant.
Furthermore, it was observed that there exist strongly 2-universal hash families
for which the problem of finding a y ∈ h−1

i (0i) is in NP, and hence can be solved
using SAT solvers. Among various hash families that have been studied over the
years, two have featured predominately in the literature on hashing-based model
counting. These are the families of random XOR-based hash functions, denoted
Hxor, and Toeplitz matrix [Gra06] based hash functions, denoted HT . If we view
the variables x1, x2, . . . xn in the support of the formula φ as a vector X of di-
mension n× 1, a hash function hi : {0, 1}n 7→ {0, 1}i chosen from either Hxor or
HT can be represented as hi(X) = AX + b, where A is an m × n 0-1 matrix,
b is m × 1 0-1 vector and all operations are in GF2. Regardless of whether we
use Hxor or HT , the vector b is chosen uniformly at random from the space of
all m× 1 0-1 vectors. The way in which A is chosen, however, differs depending
on whether we are using the family Hxor or HT . In case we are using Hxor, A is
chosen uniformly at random from the space of all m× n 0-1 matrices. If, on the
other hand, we are using HT , A is chosen uniformly at random from the space
of all m × n Toeplitz 0-1 matrices. Note that Toeplitz 0-1 matrices form a very
small subset of all 0-1 matrices. While no significant performance difference has
been reported for probabilistic hash-based approximate counters using these two
families of hash functions, the family Hxor seems to be the hash family of choice
in the existing literature.

When using the family Hxor, the random selection of hi can be achieved
by choosing each entry of A to be 1 with probability p = 1/2. On an average,
this gives n

2 1’s in each row of A. The invocation of SaturatingCounter in
Algorithm 1 necessitates usage of a SAT solver to solve the formula φ∧(AX+b =
0). Thus, the SAT solver needs to reason about formulas that are presented as a
conjunction of usual (i.e., OR) clauses and XOR clauses, and each XOR clause has
an average size of n2 . Gomes et al. [GHSS07b] have observed that the performance
of SAT solvers, however, degrades with an increase in the size of XOR clauses.

11

Therefore recent efforts have focused on the design of sparse hash functions where
the count of 1’s in every row is � n

2 [EGSS14, IMMV15, AD16, AT17, AHT18].
Building on the classical notion of definability due to Beth [Bet56], one can

define the notion of an independent support of a Boolean formula. Specifically,
I ⊆ X is an independent support of φ if whenever two solutions π1 and π2 of φ
agree on I, then π1 = π2 [LM08, CMV14, LLM16]. Chakraborty et al. [CMV14]
observed that strongly 2-universal hash functions defined only over I (instead of
X) lend themselves to exactly the same reasoning as strongly 2-universal hash
functions defined over the whole of X, when used to partition the solution space
of φ. The importance of this observation comes from the fact that for many
important classes of problems, the size of I can be one to two orders of magnitude
smaller than that of X. This in turn leads to XOR clauses that are one to two
orders of magnitude smaller than that obtained by using strongly 2-universal hash
functions defined over X [IMMV15]. Ivrii et al. have proposed an algorithmic
technique, called MIS, to determine the independent support of a given formula
via a reduction to the Group-oriented Minimal Unsatisfiable Subformula (GMUS)
problem [LS08, Nad10]. Given the hardness of GMUS, the proposed technique
MIS can scale to a few tens of thousands of variables, and designing scalable
techniques for GMUS is an active area of research.

Gomes et al. [GHSS07b] observed that for some classes of formulas, setting
the expected fraction p of 1’s in each row of the matrix A to be significantly
smaller than 1/2 can still provide counts close to those obtained using p = 1/2. A
straightforward calculation shows that if we choose hi(X) = AX + b, with every
entry in A set to 1 with probability p, then for any two distinct vectors x, y ∈
{0, 1}n, Pr[hi(x) = hi(y)] = (1/2+1/2(1−2p)w)i = q(w) where w is the Hamming
weight of x − y, i.e., the number of ones in x − y. Note that for p < 1/2, such
a family is not strongly 2-universal. Ermon et al. [EGSS14] observed, however,
that using a strongly 2-universal hash family is not a necessary requirement to
bound the coefficient of variation from above by a constant. Furthermore, for a
given x ∈ {0, 1}n and for any k ∈ {1, . . . n}, the count of y ∈ {0, 1}n such that
Pr[h(x) = h(y)] = q(k) is bounded from above by

(
n
k

)
. This allowed Ermon et

al. to analytically compute values of p that are less than 1
2 , although obtaining

a closed-from expression remained elusive. The gap between analytical bounds
and closed form bounds was bridged by Zhao et al. [ZCSE16] and Asteris and
Dimakis [AD16], who showed that having p ∈ O(log ii) suffices to upper bound
the coefficient of variation when i ∈ Θ(n). Observe that the smaller the value of
p, the sparser the matrix A.

Motivated by the use of sparse matrices in the design of efficient error-
correcting codes, Achlioptas and Theodoropoulos [AT17] showed that one could
randomly choose A from an ensemble of Low-Density Parity Check (LDPC) ma-
trices. Achlioptas, Hammoudeh, and Theodoropoulos [AHT18] put forth the
observation that an approximate counter strives to compute an estimate c that
satisfies two bounds: (i) a lower bound: c ≤ |Sol(φ)| · (1 + ε) and (ii) an upper
bound: c ≥ Sol(φ)

1+ε . Achlioptas et al. [AT17, AHT18] and Gomes et al. [GHSS07b]
further observed that obtaining good lower bounds requires the hash family H
to be uniform, while obtaining good upper bounds requires H to ensure that the
coefficient of variation of |Cell⟨φ,hi⟩| is bounded from above by a constant.

12

There are a few issues that arise when translating the above ideas to a hash-
based approximate counter with PAC guarantees that also scales in practice.
First, the bounds achieved with p ∈ O(log ii) hold only for i ∈ Θ(n), while for
most practical applications i � n. Second, bounding the coefficient of varia-
tion suffices to provide constant-factor approximation guarantees. In order to
guarantee (1 + ε)-approximation, Stockmeyer’s technique [Sto83] of reducing the
tolerance must be used, which in turn leads to large formulas being fed to the
SAT solver underlying SaturatingCounter.

In a departure from earlier works [EGSS14, AD16, ZCSE16] where the fo-
cus was to use analytical methods to obtain upper bound on the variance of
|Cell⟨φ,hi⟩|, Meel r⃝Akshay [MA20] focused on searching for the set Sol(F) that
would achieve the maximum variance of |Cell⟨φ,hi⟩|. This allowed them to observe
an elegant connection between the maximization of variance as well as dispersion
index of |Cell⟨φ,hi⟩| and minimization of the “t-boundary” (the number of pairs
with Hamming distance at most t) of sets of points on the Boolean hypercube on n
dimensions. Utilizing this connection, they introduced a new family of hash func-
tions, denoted by HRennes , which consists of hash functions of the form Ay + b,
where every entry of A[i] is set to 1 with pi = O(log2 i

i). The construction of the
new family marks a significant departure from prior families in that the density of
1’s in the matrix A is dependent on the row index of the matrix. Meel r⃝Akshay
demonstrated that usage of HRennes can lead to significant speedup in runtime
while preserving PAC guarantees [MA20].

26.2.5. Using dependent hash functions

Recall that in line 8 of Algorithm 1, the vector of hash functions (h0, . . . hn) is cho-
sen such that hi maps {0, 1}n to {0, 1}i. As already discussed in Section 26.2.2, an
analysis and proof of correctness of an instantiation of Algorithm 1 requires us to
bound Pr [IterError], which in turn involves analyzing expressions involving Li, Ui,
and Ti for different values of i. Since, the dependence of Li, Ui, and Ti across
different values of i stems from the choice of (h0, . . . hn), a natural alternative is
to choose each hi uniformly randomly from the sub-family Hi, but independently
of the choice of hj for all j 6= i. This minimizes the dependence among events that
correspond to different values of i. Not surprisingly, early work on probabilistic
hash-based counting relied on this independence of the chosen hash functions for
theoretical analysis. Interestingly, independence in the choice of hi’s necessitates
a linear search among the indices to find the smallest i that satisfies the check in
line 13. This is because with independently chosen hi’s, one cannot rule out the
possibility that CellSize[i − 1] < thresh but CellSize[i] = >. Independence in the
choice of hi’s, therefore, requires that sub-routine ChooseUnassignedIndex
chooses indices in sequential order from 1 through n. Indeed, it is not known
whether we can do better than linear search when hi’s are chosen independently.

At this point, one may ask if there is anything to be gained from dependence
among hash functions. In this context, the prefix hash family, used in [CMV16], is
worth examining. Let α ∈ {0, 1}i be a vector. For 1 ≤ j ≤ i, we use α[j] to denote
the jth component of α, and α[1..j] to denote the projection of α on the first j
dimensions, i.e (α[1], . . . α[j]). For every hash function hi : {0, 1}n → {0, 1}i, we

13

now define the jth prefix-slice of hi, denoted hi[1..j] as a map from {0, 1}n to
{0, 1}j such that hi[1..j](x) = hi(x)[1..j], for all x ∈ {0, 1}n.

Definition 26.2.3. [CMV16] A family of hash functions {H1, . . .Hn} is called a
prefix-family if for all hi ∈ Hi, the jth prefix-slice of hi is inHj for all j ∈ {1, . . . i},.
Thus, for all hi ∈ Hi, there exists hi−1 ∈ Hi−1 such that for every x ∈ {0, 1}n,
hi(x) is simply hi−1(x) augmented with the ith component of hi(x).

Suppose the hash functions (h0, . . . hn) are chosen from a prefix family such
that hi = hn[1..i] for 1 ≤ i ≤ n (h0 : {0, 1}n → {0} leaves no choice in design).
It is easy to see that with this choice of hash functions, |Cell⟨φ,hi⟩| ≤ |Cell⟨φ,hi−1⟩|
for all i ∈ {1, . . . n}. Therefore, one can perform a binary search to find the
smallest (and unique) i such that CellSize[i] < thresh but CellSize[i− 1] = >. The
runtime of known implementations of SaturatingCounter(φ ∧ h−1

i (0i)) has,
however, been empirically observed to significantly increase with i. Therefore, a
galloping search performs significantly better than binary search. Furthermore,
notice that if C is the set of clauses learnt (as by a CDCL SAT solver) while
solving φ ∧ h−1

i (0i), the dependence among different hash functions facilitates
incremental SAT solving. In other words, the clauses learnt while solving (φ ∧
h−1
i (0i)) are sound (and hence, can be re-used) for solving (φ∧h−1

j (0j)) for j > i.
While this sounds promising, one needs to re-think theoretical proofs of PAC
guarantees, when using such dependent hash functions. Indeed, the dependence
among different events may force usage of union bounds over linear (in n) terms
when computing Pr [IterError], leading to overall weaker bounds. By a carefully
constructed sequence of arguments, Chakraborty et al. showed in [CMV16] that
one can indeed use dependence to one’s advantage even for the theoretical analysis
of PAC guarantees. In particular, they showed that when hi’s are chosen from a
prefix family as described above, Pr [IterError] ≤ 0.36. The work of Achlioptas and
Theodoropoulos [AT17, AHT18], in which LDPC matrices were used to define
hash functions, also provides another example where dependence between hi’s
have been used to advantage in designing better hash-based approximate model
counters.

26.2.6. Counting up to a threshold

Finally, we discuss the key sub-routine SaturatingCounter used in Algo-
rithm 1. Recall that SaturatingCounter is used to find the saturated count
(upto thresh) of models of φ∧ h−1

i (0i). Computationally, this is the most expen-
sive step of Algorithm 1. We now show that if satisfiability checking of φ∧h−1

i (0i)
is self-reducible, then SaturatingCounter can be implemented with at most
O (n · thresh) calls to a satisfiability checker for φ ∧ h−1

i (0i). Fortunately, satisfi-
ability checking is indeed self-reducible for a large class of formulas φ and hash
functions hi.

While a general definition of self-reducibility can be found in [Bal88], our
requirement can be stated simply as follows. Let C be a class of propositional
formulas, viz. CNF, DNF, CNF+XOR, DNF+XOR, etc. and let ψ be a formula
in C. As an example, if φ is in CNF and h−1

i (0i) is a conjunction of XOR clauses,
then φ ∧ h−1

i (0i) is a formula in the CNF+XOR class. Let x1, . . . xn be the

14

variables in ψ and let (π1, . . . πn) ∈ {0, 1}n be an assignment of these variables.
Let ψ|x1...xi=π1...πi

denote the formula obtained by substituting πj for xj in ψ,
for all j ∈ {1, . . . i}. We say that satisfiability checking is self-reducible for the
class C if for every formula ψ ∈ C, the following hold: (i) ψ|x1=π1

is in C, and (ii)
(π1, . . . πn) |= ψ ⇔ (π2, . . . πn) |= ψ|x1=π1

. Continuing with our earlier example,
let C denote the CNF+XOR class and ψ denote the formula φ ∧ h−1

i (0i) in class
C. It is easy to see that (i) ψ|x1=π1 continues to be a CNF+XOR formula, and
(ii) (π1, . . . πn) |= ψ ⇔ (π2, . . . πn) |= ψ|x1=π1 . Hence, satisfiability checking is
self-reducible for the CNF+XOR class.

Suppose we have access to a satisfiability checker for formulas in C. If ψ is
unsatisfiable, a single invocation of the checker suffices to detect it. Otherwise,
using a standard self-reducibility argument, a solution of ψ can be obtained using
at most O (n) calls to the satisfiability checker. Let π = (π1, . . . πn) be such
a solution. For 1 ≤ i ≤ n, let π̃i denote (π1, . . . πi−1, πi), where 1 = 0 and
0 = 1. Following a technique used by Murty [Mur68], we can now partition
Sol(ψ) into n + 1 (possibly empty) sets Z0, . . . Zn, where Z0 = {π} and Zi =
{π̃iτ | τ ∈ Sol(ψ|x1...xi=π̃i

)} for 1 ≤ i ≤ n− 1, with π̃iτ denoting the assignment
obtained by concatenating π̃i and τ . Finally, Zn = {π̃n} if π̃n |= ψ and Zn = ∅
otherwise. As an example, if n = 3 and π = (0, 1, 1), then Sol(ψ) is partitioned
into four sets: (i) Z0 = {(0, 1, 1)}, (ii) Z1 = {(1, τ1, τ2) | (τ1, τ2) ∈ Sol(ψ|x1=1),
(iii) Z2 = {(0, 0, τ ′1) | τ ′1 ∈ Sol(ψ|x1,x2=0,0), and (iv) Z3 = {(0, 1, 0)} assuming
(0, 1, 0) |= ψ. Observe that starting with a formula ψ with n variables, the
above step yields one solution (viz., π) and n self-reduced problem instances (viz.
ψ|x1...xi=π̃i

for 1 ≤ i ≤ n), each with strictly fewer than n variables in their
support.

In order to implement SaturatingCounter, i.e. count the solutions of ψ
upto thresh, we apply the same step as above to each of the self-reduced problem
instances. We stop when a total of thresh solutions of ψ have been generated
or when all remaining self-reduced problem instances are unsatisfiable. Observe
that whenever a new satisfying assignment is found, O (n) self-reduced problem
instances are generated. Since at most thresh solutions of ψ are generated (and
counted) by SaturatingCounter, only O (n · thresh) self-reduced problem in-
stances can be generated. For each of these, we either detect unsatisfiability
using a single satisfiability check or obtain a solution using O (n) satisfiability
checks. The latter can, however, happen at most thresh times. Therefore, the
total number of calls to the satisfiability checker is in O (n · thresh).

The above technique of implementing SaturatingCounter using at most
O (n · thresh) invocations of a satisfiability checker works for all class of prob-
lems for which satisfiability checking is self-reducible. This includes cases like
DNF+XOR formulas, perfect matchings in bi-partite graphs etc.

If C is a class of propositional formulas for which satisfiability checking is
NP-complete, then checking satisfiability of φ ∧ h−1

i (0i), where φ ∈ C, is also
NP-complete. In such cases, we are often interested in the query complexity of
SaturatingCounter, given access to an NP oracle. Interestingly, the tech-
nique of implementing SaturatingCounter as discussed above may not yield
optimal query complexity in such cases. Observe that the above technique not
only finds the saturated count of solutions but also generates the corresponding

15

set of solutions. Bellare, Goldreich, and Petrank [BGP00] observed that if we
are interested only in the saturated count, then SaturatingCounter can be
implemented with O(thresh) queries to an NP oracle. Bellare et al.’s technique,
however, constructs queries of size O(|φ| · thresh). While this is a polynomial
blow-up in the size of the formula fed to the oracle, the performance of modern
SAT solvers can be significantly impacted by such a blow up.

It is worth noting here that while an NP oracle simply provides a Yes/No
answer to a decision query, modern SAT solvers either provide a satisfying as-
signment for an input formula or report unsatisfiability of the formula. Given this
difference, it is interesting to ask how many invocations of a SAT solver would be
needed in order to implement SaturatingCounter. To formalize this question,
we introduce the notion of a SAT oracle that takes a propositional formula φ as
input, and returns a solution σ if φ is satisfiable and ⊥ is φ is unsatisfiable. We
can now implement SaturatingCounter by simply enumerating the satisfying
assignments of an input formula φ using a SAT oracle, until the oracle either
returns ⊥ or we have already found thresh solutions. It is not hard to see that
this requires O(thresh) invocations of the SAT oracle, and the largest size of a
formula used in any invocation is O(|φ|+ thresh · |Sup(φ)|).

ApproxMC: A specific hash-based approximate counter

As discussed earlier, state-of-the-art probabilistic hash-based approximate coun-
ters (for CNF formulas) can be viewed as (optimized) instances of the generic
Algorithm 1. One such counter is ApproxMC [CMV16], obtained with the follow-
ing specific choices in Algorithm 1.

• In line 1 of the algorithm, thresh is set to O(1/ε2).
• In line 4, itercount is set to O(log2 δ−1).
• In line 5, the prefix hash family Hxor is chosen.
• In line 8, individual hash functions are chosen such hi = hn[1..i] for 1 ≤
i ≤ n, with h0 : {0, 1}n → {0}.

• SaturatingCounter(φ, thresh) is implemented using O(thresh) invoca-
tions of a SAT oracle (a SAT solver, CryptoMiniSat, in practice).

It is shown in [CMV16] that the resulting algorithm provides the following PAC
guarantee.

Theorem 26.2.1. Given a formula φ, tolerance ε (> 0), and confidence param-
eter δ (0 ≤ δ < 1), invocation of ApproxMC(φ, ε, δ) returns a count c such that
Pr[|Sol(φ)| · (1 + ε)−1 ≤ c ≤ |Sol(φ)|(1 + ε)] ≥ 1 − δ. Furthermore, ApproxMC
makes O

(
log n · ε−2 · log δ−1

)
calls to a SAT oracle.

26.3. Handling CNF+XOR Constraints

Given the extensive reliance on XOR clauses for partitioning the solution space of
φ, it is desirable that the underlying SAT solver in SaturatingCounter have
native support for conjunctions of XOR clauses. While a system of only XOR
clauses can be solved in polynomial-time via Gauss-Jordan Elimination (GJE),

16

predominant CDCL SAT solvers are known to have poor performance in their
ability to handle XORs [BM00]. Given the importance and usage of XOR clauses
in cryptanalysis, there is a rich and long history of building hybrid solvers that
perform CDCL and/or lookahead reasoning for CNF clauses and Gauss-Jordan
elimination for XOR clauses [BM00, HDVZVM04, Che09, SNC09, Soo10, LJN10,
LJN11, LJN12].

Soos, Nohl and Catelluccia [SNC09] proposed an elegant architecture, best
viewed as an instance of CDCL(XOR), that keeps CNF and XOR clauses sepa-
rately. It performs Gauss-Jordan Elimination on XORs while performing CDCL
reasoning on CNF constraints, with support for sharing of the learnt clauses from
XOR-based reasoning to CNF-based reasoning. This architecture formed the ba-
sis of the widely used SAT solver CryptoMiniSat. Han and Jiang [HJ12] observed
that performing Gauss-Jordan Elimination ensures that the matrix representing
XORs is in row echelon form, which allows for lazy and incremental matrix up-
dates. While the separation of CNF and XOR clauses shares similarities to the
architecture of modern SMT solvers that separate different theory clauses, there
are important differences as well. The primary difference stems from the fact
that SMT solvers reason about clauses over different theories with disjoint sig-
natures, while CNF and XOR clauses are defined over the same set of variables.
Han and Jiang [HJ12] observed that partial interpolant generation can still be
achieved in the presence of mixed CNF and XOR clauses, and the generated in-
terpolants improve the runtime performance of the solver. Laitinen, Junttila, and
Niemelä [LJN12] observed that XOR reasoning can be significantly improved by
splitting XORs into different components that are connected to each other only
by cut variables. The decomposition ensures that full propagation for each of the
components guarantee propagation for the entire set of XORs. Such a decompo-
sition has been empirically shown to improve the memory usage when solving a
conjunction of mixed CNF and XOR clauses.

The architecture of separating XOR and CNF clauses, however, comes at
the cost of disabling execution of in-processing steps. Upon closer inspection,
the separation of CNF and XOR clauses does not fundamentally imply lack of
soundness of in-processing steps. Nevertheless, a sound implementation of in-
processing steps is a daunting task, given the need for extensive studies into the
effect of every in-processing step on XOR clauses. The lack of usage of pre- and
in-processing steps significantly hurts the performance of the backend SAT solver
in SaturatingCounter since these techniques have been shown to be crucial
to the performance of state-of-the-art SAT solvers.

To allow seamless integration of pre- and in-processing steps, it is important
that the solver has access to XOR clauses in CNF form while ensuring native
support for XORs to perform Gauss-Jordan elimination. To achieve such integra-
tion, Soos and Meel [SM19] recently proposed a new architecture called BIRD (an
acronym for Blast, In-process, Recover, and Destroy). A high-level pseudocode
for BIRD is shown in Algorithm 2.

Note that Algorithm BIRD exits its main loop as soon as it finds a solution
or proves that the formula is unsatisfiable. Furthermore, if the benchmarks have
XOR clauses encoded in CNF, BIRD can efficiently recover such XORs and use
Gauss-Jordan elimination on such recovered XORs. The primary challenge for

17

Algorithm 2 BIRD(φ) ▷ φ has a mix of CNF and XOR clauses
1: Blast XOR clauses into normal CNF clauses
2: In-process (and pre-process) over CNF clauses
3: Recover simplified XOR clauses
4: Perform CDCL on CNF clauses with on-the-fly Gauss-Jordan Elimination on XOR clauses

until: (a) in-processing is scheduled, (b) a solution is found, or (c) formula is found to be
unsatisfiable

5: Destroy XOR clauses and goto line 2 if conditions (b) or (c) above don’t hold. Otherwise,
return solution or report unsatisfiable.

BIRD is to ensure that line 3 can be executed efficiently. Towards this end, the core
idea of the recovery algorithm proposed by Soos and Meel is to choose a clause,
say base cl, and recover the unique XOR defined exactly over the variables in
base cl, if such an XOR exists. For example, if base cl is (x1 ∨ x2 ∨ x3), then
the only XOR defined over x1, x2, x3 in which base cl can possibly participate is
x1⊕x2⊕x3 = 1. Observe that the right hand side of the XOR clause (i.e., 0 or 1)
can be obtained by computing the parity of the variables in base cl. The key idea
behind the search for XORs over variables in base cl, say of size t, is to perform
a linear pass and check whether there exists a subset of CNF clauses that would
imply the 2t−1 combination of CNF clauses over t variables that corresponds to
the desired XOR clause over these t variables.

Note that a clause may imply multiple CNF clauses over t variables. For
example, let base cl := (x1∨x2∨x3), then a clause cl := (x1) would imply 4 clauses
over {x1, x2, x3}, i.e. {(x1∨x2∨¬x3), (x1∨x2∨x3), (x1∨¬x2∨x3), (x1∨¬x2∨¬x3)}.
To this end, Soos and Meel maintain an array of possible combinations of size 2t.
They update the entry, indexed by the binary representation of the clause for a
fixed ordering of variables, corresponding to a clause cl′ to 1 if cl → cl′. Similar
to other aspects of SAT solving, efficient data structures are vital to perform the
above mentioned checks and updates efficiently. The interested reader is referred
to [SM19, SGM20] for a detailed discussion.

26.4. Approximate Model Counting for DNF

We now turn our attention to computing a PAC estimate for |Sol(φ)|, where φ is
a DNF formula. While the problem of exact counting for DNF formulas is #P-
complete, Karp and Luby showed in their seminal work [KL83] that there exists an
FPRAS for the problem. Specifically, their work used the Monte Carlo framework
to arrive at an FPRAS for DNF counting. Subsequently, there have been several
follow-up works based on Monte Carlo counting techniques [KLM89, DKLR00,
Vaz13, Hub17, HJ19]. These have yielded an improved theoretical understanding
of DNF counting and also algorithms that have improved performance in practice.
Recently, Chakraborty et al. [CMV16] and Meel, Shrotri, and Vardi [MSV17]
showed that the hashing-based framework discussed in Section 26.2.1 could also
be adapted to yield an FPRAS for DNF counting. Thus, we have two different
approaches for obtaining an FPRAS for DNF counting. These are discussed in
detail below.

We fix some notation before delving into the details. A DNF formula φ is

18

given as a disjunction of cubes. We assume the cubes are indexed by natural
numbers, and we denote the ithcube by φi. Thus φ = φ1 ∨ . . . ∨ φm. We use
n and m to denote the number of variables and cubes, respectively, in the input
DNF formula. The width of a cube φi refers to the number of literals in φi and is
denoted by width(φi). We use w to denote the minimum width, minimized over
all cubes of the formula, i.e. w = mini width(φ

i).

26.4.1. DNF counting via Monte Carlo framework

Approximate counting algorithms designed using the Monte Carlo approach effec-
tively determine the value of an estimator through multiple independent random
samples. The seminal work of Karp and Luby [KL83] can be viewed as a Monte
Carlo algorithm using a 0-1 estimator, as shown in Algorithm 3. This algorithm

Algorithm 3 Monte-Carlo-Count(A,U) ▷ A ⊆ U
1: Y ← 0
2: repeat N times
3: Select an element t ∈ U uniformly at random
4: if t ∈ A then
5: Y ← Y + 1

6: until
7: Z ← Y

N
× |U|

8: return Z

estimates the cardinality of a set A in the universe U , given access to a sub-routine
that samples uniformly from U and a sub-routine that tests if a randomly chosen
element is in the set A. Here, Y

N is an unbiased estimator for ρ = |A|
|U| and Z is an

unbiased estimator for |A|. It can be shown [R7́0] that if N ≥ 1
ρε2 · ln(

2
δ), then

Pr[(1 − ε) · |A| ≤ Z ≤ (1 + ε) · |A|] ≥ 1 − δ. Algorithm 3 is an FPRAS if the
number of samples N , and the times taken by the sampler in line 3 and by the
inclusion checker in line 4, are polynomial in the size of the input.

In the context of counting solutions of DNF formulas, the set U is the set of
all assignments over n variables, and A = Sol(φ). In this case, the ratio ρ is also
called the density of solutions. A trivial lower bound on |Sol(φ)| is 2n−w. Thus,
1
ρ ≤ 2w. If w is bounded above by a logarithmic function of n and m, then 1

ρ is
polynomial in n and m and we need polynomially many samples. Nevertheless,
since the above requirement may not always hold, this straightforward algorithm
does not give an FPRAS.

Karp and Luby [KL83] observed that the dependence of N on w can be
avoided if, instead of using A = Sol(φ) and U = {0, 1}n, we use suitably defined
alternate sets Â and Û , while ensuring that |Sol(φ)| = |Â| and 1

ρ̂ = |Û |/|Â| is
bounded polynomially in m and n. This is a powerful technique and researchers
have used this idea and its variants over the years to achieve improvement in
runtime performance and quality of approximations of Monte Carlo DNF coun-
ters. We mention below three variants of Monte Carlo approximate DNF counting
algorithms.

Karp and Luby’s counter Karp and Luby [KL83] developed the first FPRAS for
DNF counting, which we refer to as KL Counter. They defined a new universe

19

Û = {(σ, φi) | σ |= φi}, and the corresponding solution space Â = {(σ, φi) | σ |=
φi and ∀j < i, σ 6|= φj} for a fixed ordering of the cubes. They showed that
|Sol(φ)| = |Â| and the ratio |Û|

|Â|
≤ m. Furthermore, executing Step 3 of Algo-

rithm 3 takes O(n) time, while executing Step 4 takes O(mn) time. Consequently,
the time complexity of KL Counter is in O(m

2n2

ε2 · log(
1
δ)). Karp and Luby showed

that by designing a slightly different unbiased estimator, this complexity can
indeed be reduced to O(m

2n
ε2 log(1δ)).

Karp, Luby and Madras’ counter Karp, Luby and Madras [KLM89] proposed an
improvement of KL Counter by employing a non 0-1 estimator. Towards this end,
the concept of coverage of an assignment σ in U was introduced as cover(σ) =

{j|σ |= φj}. The first key insight of Karp et al. was that |Â| =
∑

(σ,φi)∈U
1

|cover(σ)|
. Their second key insight was to define an estimator for 1/|cover(σ)| using the
geometric distribution. They were then able to show that the time complexity of
the resulting Monte-Carlo algorithm, which we call KLM Counter, is in O(mnε2 ·
log(1δ)) – an improvement over KL Counter.

Vazirani’s counter A variant of KLM Counter, called Vazirani Counter, was de-
scribed in Vazirani [Vaz13], where |cover(σ)| is computed exactly by iterating over
all cubes, avoiding the use of the geometric distribution in [KLM89]. The advan-
tage of Vazirani Counter is that it is able to utilize ideas for optimal Monte Carlo
estimation proposed in [DKLR00]. Consequently, Vazirani Counter requires fewer
samples than KL Counter to achieve the same error bounds. The time for gen-
erating a sample, however, can be considerably more since the check for σ |= φj

has to be performed for all cubes.

26.4.2. DNF Counting via Hashing-based Approach

While Monte Carlo techniques have been the predominant paradigm for approx-
imate DNF counting, it turns out that the universal hashing based approach
also yields an FPRAS for DNF counting. Recall that Algorithm HashCounter,
described in Section 26.2.1 is a randomized approximation scheme that makes
polynomially many invocations to SaturatingCounter. It has been observed
in [CMV16, MSV17] that SaturatingCounter can be designed to run in time
polynomial in the size of the input formula and the threshold, if the input for-
mula is in DNF. To see why this is true, observe that satisfiability checking of
φ∧ h−1

i (0i) is self-reducible if h−1
i (0i) is a conjunction of XOR constraints and φ

is a DNF formula. Furthermore, the satisfiability of φ∧h−1
i (0i) can be checked in

polynomial time by iterating over all the cubes of the input formula, substituting
the forced assignments induced by each cube into the XOR constraints separately,
and using Gauss-Jordan Elimination to check satisfiability of the simplified XOR
constraints. Interestingly, we can even avoid appealing to the self-reducibility of
satisfiability checking of φ∧ h−1

i (0i) by simply enumerating solutions of the sim-
plified XOR constraints. Note that at no step, one would have to enumerate more
than thresh solutions. Concretely, this leads to an FPRAS, called DNFApproxMC
in [MSV17], for DNF formulas with complexity O((mn3+mn2/ε2) log n log(1/δ)).

20

The existence of universal hashing-based FPRAS for DNF counting leads
to an obvious question: can these algorithms match the asymptotic complexity
of Monte Carlo based FPRAS for DNF counting? Towards this end, Meel et
al. [MSV17] sought to avoid the need for Gauss-Jordan elimination originating due
to the usage of Hxor or HT . Specifically, they proposed a new class of hash func-
tions HRex such that every hash function h ∈ HRex that maps {0, 1}n 7→ {0, 1}m
can be represented as Ax + b, where A is a 0-1 random matrix of dimension
m× n in row-echelon form and b is a random 0-1 matrix of dimension m× 1. In
particular, we can represent A as A = [I : D], where I is the identity matrix
of size m ×m and D is a random 0-1 matrix of size m × (n −m). In follow-up
work, Meel et al. [MSV19] sought to avoid the complexity bottleneck presented
by the requirement of having to enumerate up to thresh solutions in every call
to SaturatingCounter. Towards this end, they proposed the search for the
right number (m) of cells in reverse order starting from m = n instead of from
m = 0. This helps in ensuring that only O(thresh) solutions are enumerated
during the entire iteration of the loop in lines 7–15 of Algorithm HashCounter
(see Algorithm 1).

In a series of papers [MSV17, MSV19], Meel et al. proposed several other
improvements, eventually resulting in a universal hashing-based DNF counting al-
gorithm, called SymbolicDNFApproxMC, that runs in time Õ(mnε2 log(1/δ)). Note
that this matches the asymptotic complexity bound for Monte Carlo techniques
discussed above. One would expect that the asymptotic complexity of different
FPRAS correlates positively with their empirical run-time behavior when com-
paring the performance of different FPRAS on a large set of benchmarks. In a
rather surprising twist, however, the landscape of empirically observed run-time
behavior turns out to be far more nuanced than that captured by worst-case
analysis, as shown in [MSV19]. In particular, there is no single algorithm that
outperforms all others for all classes of formulas and input parameters. Interest-
ingly, Meel et al. observed that the algorithm, DNFApproxMC, with one of the
worst-time complexities ended up solving the largest number of benchmarks.

It is worth noting that there has been a long gap of 34 years between Karp
and Luby’s Monte Carlo-based FPRAS for DNF counting, and the discovery of
hashing-based FPRAS for DNF counting. This is despite the fact that hashing
techniques for CNF counting have been known at least since Stockmeyer’s seminal
work in 1983. Interestingly, Stockmeyer’s technique for transforming an algorithm
with a constant-factor approximation to one with an (1+ε)-factor approximation
does not work for DNF counting. This is because conjoining a set of DNF formulas
(a key component of Stockmeyer’s technique) does not always yield a formula
representable in DNF without an exponential blow-up. In contrast, in hashing-
based approximate counting (ref. Algorithm HashCounter), a (1 + ε)-factor
approximation is easily achieved by choosing thresh to be in O(1/ε2).

26.5. Weighted Counting

A natural extension of model counting is to augment the formula φ with a weight
function ρ that assigns a non-negative weight to every assignment of values to
variables. The problem of weighted model counting, also known as discrete in-

21

tegration, seeks to compute the weight of φ, defined as the sum of the weight
of all its solutions. Note that if ρ assigns weight 1 to each assignment, then the
corresponding problem is simply model counting.

Formally, let ρ : {0, 1}n → Q+∩[0, 1] be a weight function mapping each truth
assignment to a non-negative rational number in [0, 1] such that (i) ∀σ ∈ {0, 1}n,
ρ(σ) is computable in polynomial time, and (ii) ∀σ ∈ {0, 1}n, ρ(σ) is written in
binary representation with p bits. We extend the weight function to sets of truth
assignments and Boolean formulas in the obvious way. If Y is a subset of {0, 1}n,
the weight of Y is defined as the cumulative weight of the truth assignments in
Y : ρ(Y) =

∑
σ∈Y ρ(σ). By definition, the weight of the empty set is 0. The

weight of a formula φ is defined as the cumulative weight of its solutions, i.e.,
ρ(φ) =

∑
σ|=F ρ(σ). Given ρ and φ, the problem of weighted model counting

seeks to compute ρ(φ). The polynomial-time computability of ρ(σ) implies that
the problem of weighted counting is #P-complete.

The recent success of approximate (unweighted) model counters has inspired
several attempts for approximate weighted model counting as well [EGSS13a,
EGSS13b, CFM+14, EGSS14, AJ15, AD16, dCM19]. Despite impressive advances
made by these attempts, the inherent hardness of weighted model counting has
repeatedly manifested itself as a scalability challenge. This highlights the need
and opportunity for both algorithmic and systems-oriented research in this area.

In order to present a unified view of different algorithms proposed for weighted
model counting, we follow the treatment of Ermon et al [EGSS13b] and de Colnet
and Meel [dCM19], and introduce two additional notions: the tail function and
effective weight function. The tail function τ maps the space of weights (i.e.
Q+ ∩ [0, 1]) to N. Informally, τ(u) counts the number of models of φ with weight
at least as large as u. Formally, τ(u) =

∣∣{σ ∈ {0, 1}n | σ |= φ and ρ(σ) ≥ u}
∣∣. The

effective weight function w, which is the dual of the tail function, can be intuitively
thought of as mapping non-zero natural numbers to weights. Informally, w(t)
gives the largest weight of a model σ of φ that has at least t models of larger
or equal weight. For technical reasons, we formally define w as a mapping from
the positive reals (instead of positive natural numbers) to the space of weights
as follows: w(t) = maxσ{w(σ) | σ |= φ and τ(ρ(σ)) ≥ t}. Note that both the
effective weight function and the tail function are non-increasing functions of their
argument. It can be shown [EGSS13b, dCM19] that the weighted model count
ρ(φ) is exactly the area under the τ(u) (plotted against u) curve, as well as that
under the w(t) (plotted against t) curve. In other words, ρ(φ) =

∫
τ(u)du =∫

w(t)dt. Both of these are integrals of non-increasing functions defined over R+

and are of finite support.
Recent work on approximate weighted model counting can now be broadly

described as following a two-step strategy. In the first step, the task of weighted
counting is reduced to an integration problem for a suitable real-valued non-
increasing function. In the second step, methods based on upper and lower
rectangle approximations or Monte Carlo integrators are used to approximate
the integral of a real function. We describe below two different approaches that
follow this strategy, effectively reducing weighted counting to optimization and
unweighted counting respectively.

22

26.5.1. From weighted counting to optimization

Ermon et al. [EGSS13a, EGSS13b] used the rectangle approximation of
∫
τ(u)du

to reduce the problem of weighted counting to one of optimization. The first step
in this process is the partitioning of the weight (i.e., u) axis into O(n) intervals,
where n = |Sup(φ)|. Specifically, the axis is split at the weights q0, q1 . . . , qn,
where qi is the maximal weight such that τ(qi) ≥ 2i; we call these qi’s quantile
weights. Observe that the quantile weights are all well-defined, and form a non-
increasing sequence. Furthermore, for each positive quantile weight qi, there
exists some truth assignment such that qi = ρ(σ).

The partitioning of the u axis in
∫
τ(u)du at the quantile weights gives

ρ(φ) = qn2
n+

∑n
i=1

∫ qi−1

qi
τ(u)du where

∫ qi−1

qi
represents the integral on (qi, qi−1].

Note that if u is in (qi, qi−1], then we have 2i−1 ≤ τ(u) ≤ 2i. Therefore,
2i−1 (qi−1 − qi) ≤

∫ qi−1

qi
τ(u)du ≤ 2i (qi−1 − qi). Summing all bounds together

and rearranging the terms, we obtain q0 +
∑n−1
i=0 qi+12

i ≤ ρ(φ) ≤ q0 +
∑n−1
i=0 qi2

i.
Thus, if W1 denotes q0 +

∑n−1
i=0 qi+12

i, we have W1 ≤ ρ(φ) ≤ 2W1.
Given q0, · · · , qn, the estimate W1 can be computed in polynomial time. Re-

call that for all i, the weight qi is defined as max
{
ρ(σ) | σ |= φ and τ(ρ(σ)) ≥ 2i

}
.

Therefore the task of approximating the weighted model count ρ(φ) has effectively
been transformed to n + 1 optimization problems. While computing qi exactly
is intractable, we can obtain a good approximation of qi via the usage of 2-
universal hash functions. Similar to hashing-based counting, the core technical
idea is to employ 2-universal hash functions to partition the space of solutions,
viz. {0, 1}n, into approximately equal-sized 2i cells. We then choose an arbitrary
cell and use an optimization query (viz. MPE query in [EGSS13b] or MaxSAT
query in [dCM19]) to find a solution of φ with maximum weight in the chosen
cell. Let us call this σmax. The 2-universality property of the hash family ensures
that ρ(σmax) ∈ [qi−2, qi+2] with probability greater than 1

2 . Therefore, we can
choose ρ(σmax) as an estimate q̂i of qi. As in the case of counting, the above
process of randomly partitioning the space of solutions and finding an estimate
of qi can be repeated an appropriate number (linear in log 1

δ and log n) of times,
and the median of the estimates used with high enough confidence. The esti-
mate Ŵ1 of W1 computed using the median estimates of qis can be shown to
be a 16-factor approximation with confidence at least 1− δ [EGSS13b, dCM19].
To obtain a (1 + ε)-factor approximation, Stockmeyer’s technique, as outlined in
Section 26.2.3.1, can be applied.

26.5.2. From weighted counting to counting

We now discuss techniques that effectively use rectangular approximations of∫
w(t)dt to estimate a weighted model count. The work of Chakraborty et

al. [CFM+14] and de Colnet and Meel [dCM19] belong to this category. As
in the previous subsection, the first step is to partition the tail (i.e., t) axis. To-
wards this end, we choose a non-decreasing sequence τ0 ≤ τ1 ≤ . . . ≤ τp such
that τi = τ(1/2i) and p is the number of bits in binary representation of ρ(σ) as
mentioned in Section 26.5. We call these τi’s splitting tails.

23

The partitioning of the integral
∫
w(t)dt at the splitting tails gives ρ(φ) =

τ0 +
∑p−1
i=0

∫ τi+1

τi
w(t)dt, where

∫ τi+1

τi
represents the integral on (τi, τi+1]. If t is in

(τi, τi+1], then 2−i−1 ≤ w(t) ≤ 2−i. So we bound the tails in each interval (τi, τi+1]
within a factor of 2 as 2−i−1 (τi+1 − τi) ≤

∫ τi+1

τi
w(t)dt ≤ 2−i (τi+1 − τi) Note

that the bound holds even when (τi, τi+1] is empty (i.e. τi = τi+1). Summing all
bounds together and rearranging the terms, we obtain τp2−p +

∑p−1
i=0 τi2

−(i+1) ≤
ρ(φ) ≤ τp2−p+

∑p−1
i=0 τi+12

−(i+1). Let W2 denote τp2−p+
∑p−1
i=0 τi2

−(i+1). Then,
we have W2 ≤ ρ(φ) ≤ 2W2. As in the previous subsection, if we are given
{τ0, · · · , τp}, the estimate W2 can be computed in polynomial time. Furthermore,
recall that the tail τi is defined to be

∣∣{σ | σ |= φ and ρ(σ) ≥ 2−i}
∣∣ Therefore, the

problem of estimating ρ(φ) is now transformed to p + 1 counting sub-problems.
Note that each sub-problem requires us to count not just models of φ, but mod-
els with a specified minimum weight. In special cases, where the weight of an
assignment is the product or sum of weights of corresponding literals, the set of
models of φ with weight at least 2−i can be represented using a Pseudo-Boolean
constraint, as has been done in [CFM+14]. Estimating the model count of such a
constraint can be accomplished using the same hashing-based technique discussed
earlier, by partitioning the solution space using random XOR constraints. Let τ̂i
denote the estimate of τi obtained in this manner. Chakraborty et al. [CFM+14]
and de Colnet and Meel [dCM19] have shown that the estimate Ŵ2 of W2 ob-
tained by using τ̂i instead of τi is a constant-factor approximation with confidence
at least 1-δ [dCM19]. As before, Stockmeyer’s technique can be used to obtain a
(1 + ε)-factor approximation of ρ(φ).

In a separate line of work, Chakraborty et al. [CFMV15] and Dudek, Fried,
and Meel [DFM20] investigated reduction from weighted model counting to un-
weighted model counting for a specific class of weight functions called literal weight
functions. In this case, weights are assigned to individual literals, and the weight
of an assignment is simply the product of weights of its literals. For a variable
xi in the support of φ and a weight function ρ(·), let ρ(x1i) and ρ(x0i) denote the
weights of the positive and negative literals respectively, of xi. Without loss of
generality, we assume that ρ(x1i) + ρ(x0i) = 1, and that each ρ(x1i) =

ki
ℓi

, where
ki, ℓi ∈ N and ki ≤ ℓi. The key idea in [CFMV15, DFM20] is to transform a
given formula φ into another formula φ̂ such that ρ(φ) = Cρ · |Sol(φ̂)|, where Cρ
depends only on ℓi’s, and not on φ. Once the above transformation is achieved,
the problem of estimating ρ(φ) reduces to that of counting models of φ̂. To
achieve the transformation, Chakraborty et al used a gadget called chain for-
mulas [CFMV15]. The chain formula ψki,ℓi represents a Boolean formula with
ki solutions over dlog2 ℓie fresh variables. The transformed formula φ̂ is then
obtained as φ∧

∧n
i=1 ((xi → ψki,ℓi) ∧ (¬xi → ψℓi−ki,ℓi)). An approximate count-

ing technique, viz. Algorithm HashCounter, can now be invoked to obtain a
(1+ ε)-approximation of |Sol(φ̂)| with confidence 1− δ. Since Cρ is polynomially
computable from the ℓi’s, this gives us a PAC estimate of ρ(φ) = Cρ · |Sol(φ̂)|.

26.5.3. Scalability challenges

Both the algorithmic approaches to weighted counting outlined above provide
rigorous theoretical guarantees on the quality of computed estimates. They have

24

been implemented and demonstrated to scale to problems involving several thou-
sand propositional variables. Nevertheless, there are factors that have impeded
scaling them up to even larger problem sizes. Some of these factors include:

1. The lack of highly efficient MaxSAT or MPE solvers capable of handling
constraints with XOR clauses.

2. The lack of solvers capable of handling formulas expressed as a conjunction
of CNF, Pseudo-Boolean constraints, and XOR constraints [PJM19].

3. The reduction proposed by Chakraborty et al. [CFMV15] suffers from a
linear increase in the number of variables. This results in large XOR con-
straints when using hash-based approximate counting techniques. Large
XOR constraints are known to present scalability hurdles to state-of-the-
art satisfiability solvers.

Given these bottlenecks, the spectacular progress witnessed in recent years in
MaxSAT, MPE and pseudo-Boolean constraint solving present significant oppor-
tunities for pushing the frontiers of the weighted model counting. In addition, the
use of short XOR clauses without weakening theoretical guarantees and the in-
tegration of Gaussian elimination in MaxSAT, MPE and pseudo-Boolean solvers
(akin to what has been done for CNF solvers) present promising research direc-
tions to pursue.

26.6. Conclusion

Model counting is a fundamental computational problem with a wide variety of
applications. It is not surprising therefore that it has attracted the attention
of theoreticians and practitioners for the past four decades. This has resulted
in a rich bouquet of algorithms with differing characteristics in terms of guaran-
tees on the quality of estimates and runtime performance. Among them, universal
hashing-based approximate counting has emerged as the dominant paradigm over
the past decade. The success of hashing-based counters can be attributed to two
primary reasons: (i) properties of universal hash functions that allow these algo-
rithms to provide (ε, δ) guarantees, and (ii) the spectacular advances in modern
satisfiability solving techniques that allow counting algorithms to scale to con-
straints involving hundreds of thousands of variables.

While we focused on counting all models of a formula φ in this chapter, the
hashing-based techniques described in the preceding sections also generalize to the
related problem of projected model counting, wherein given X ⊆ Sup(φ), the task
is to compute |Sol(∃Xφ)| [SM19]. Given that usage of the existential quantifier
(∃) can give exponentially succinct formulas vis-a-vis equivalent formulas written
without quantifiers, the problem of projected model counting has been employed
in several applications ranging from network (un)reliability to neural network
verification [DOMPV17, BSS+19, NSM+19].

The promise exhibited by state-of-the-art approximate model counters has led
to the study of several extensions and generalizations: maximum model count-
ing [FRS17], weighted model integration [BPVdB15, KMS+18], stochastic satis-
fiability [LWJ17], and counting over string and bit-vector constraints [LSSD14,
ABB15, CMMV16, CDM17]. Each of these generalizations have necessitated the

25

development of new techniques and have attracted newer applications. Further-
more, approximate model counting and almost-uniform sampling are known to
be inter-reducible [JVV86]. The close relationship has led to a long line of fruitful
work extending several hashing-based techniques discussed in this chapter to the
context of uniform sampling [CMV13a, CMV14, CFM+14, CFM+15, MVC+16,
Mee17].

The promise and progress in the development of approximate model counters
has opened several new directions of research, that is evident from the recent
flurry of activity in the research community studying approximate counting and
its applications. The availability of implementations that both scale to large in-
puts and also provide strong approximation guarantees has ignited interest among
practitioners in seeking new applications for counting. Therefore, we look opti-
mistically to the future where the groundwork laid by hashing-based techniques
will lead to the development of new paradigms and practical applications of ap-
proximate model counting.

References

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A
Modern Approach. Cambridge Univ. Press, 2009.

[ABB15] Abdulbaki Aydin, Lucas Bang, and Tevfik Bultan. Automata-
based model counting for string constraints. In Proc. of CAV,
pages 255–272. Springer, 2015.

[AD16] Megasthenis Asteris and Alexandros G Dimakis. LDPC codes
for discrete integration. Technical report, Technical report, UT
Austin, 2016.

[AHT18] Dimitris Achlioptas, Zayd Hammoudeh, and Panos Theodoropou-
los. Fast and flexible probabilistic model counting. In Proc. of
SAT, pages 148–164. Springer, 2018.

[AJ15] Dimitris Achlioptas and Pei Jiang. Stochastic integration via error-
correcting codes. In UAI, pages 22–31, 2015.

[AT17] Dimitris Achlioptas and Panos Theodoropoulos. Probabilistic
model counting with short XORs. In International Conference
on Theory and Applications of Satisfiability Testing, pages 3–19.
Springer, 2017.

[Bal88] José Luis Balcázar. Self-reducibility structures and solutions of NP
problems. Departament de Llenguatges i Sistemes Informàtics [de
la] Universitat, 1988.

[BEH+18] Fabrizio Biondi, Michael A. Enescu, Annelie Heuser, Axel Legay,
Kuldeep S. Meel, and Jean Quilbeuf. Scalable approximation of
quantitative information flow in programs. In Proc. of VMCAI,
2018.

[Bet56] Evert W Beth. On Padoa’s method in the theory of definition.
Journal of Symbolic Logic, 21(2):194–195, 1956.

[BGP00] Mihir Bellare, Oded Goldreich, and Erez Petrank. Uniform gener-
ation of NP-witnesses using an NP-oracle. Information and Com-
putation, 163(2):510–526, 2000.

26

[BM00] Peter Baumgartner and Fabio Massacci. The taming of the (X)OR.
In Proc. of CL, pages 508–522. Springer, 2000.

[BPVdB15] Vaishak Belle, Andrea Passerini, and Guy Van den Broeck. Proba-
bilistic inference in hybrid domains by weighted model integration.
In Proc. of IJCAI, pages 2770–2776, 2015.

[BSS+19] Teodora Baluta, Shiqi Shen, Shweta Shine, Kuldeep S. Meel, and
Prateek Saxena. Quantitative verification of neural networks and
its security applications. In Proc. of CCS, 2019.

[CDM17] Dmitry Chistikov, Rayna Dimitrova, and Rupak Majumdar. Ap-
proximate counting in SMT and value estimation for probabilistic
programs. Acta Informatica, 54(8):729–764, 2017.

[CFM+14] Supratik Chakraborty, Daniel J. Fremont, Kuldep S. Meel, San-
jit A. Seshia, and Moshe Y. Vardi. Distribution-aware sampling
and weighted model counting for SAT. In Proc. of AAAI, pages
1722–1730, 2014.

[CFM+15] Supratik Chakraborty, Daniel J. Fremont, Kuldeep S. Meel, San-
jit A. Seshia, and Moshe Y. Vardi. On parallel scalable uniform
sat witness generation. In Proc. of TACAS, pages 304–319, 2015.

[CFMV15] Supratik Chakraborty, Dror Fried, Kuldeep S Meel, and Moshe Y
Vardi. From weighted to unweighted model counting. In Proc. of
AAAI, pages 689–695, 2015.

[Che09] Jingchao Chen. Building a hybrid SAT solver via conflict-driven,
look-ahead and XOR reasoning techniques. In Proc. of SAT, pages
298–311. Springer, 2009.

[CMMV16] Supratik Chakraborty, Kuldeep S. Meel, Rakesh Mistry, and
Moshe Y. Vardi. Approximate probabilistic inference via word-
level counting. In Proc. of AAAI, 2016.

[CMV13a] Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. A
scalable and nearly uniform generator of SAT witnesses. In Proc.
of CAV, pages 608–623, 2013.

[CMV13b] Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. A
scalable approximate model counter. In Proc. of CP, pages 200–
216, 2013.

[CMV14] Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. Bal-
ancing scalability and uniformity in SAT witness generator. In
Proc. of DAC, pages 1–6, 2014.

[CMV16] Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. Al-
gorithmic improvements in approximate counting for probabilistic
inference: From linear to logarithmic SAT calls. In Proc. of IJCAI,
2016.

[CMV19] Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. On
the hardness of probabilistic inference relaxations. In Proc. of
AAAI, 2019.

[CW77] J Lawrence Carter and Mark N Wegman. Universal classes of hash
functions. In Proc. of STOC, pages 106–112. ACM, 1977.

[dCM19] Alexis de Colnet and Kuldeep S. Meel. Dual hashing-based algo-
rithms for discrete integration. In Proc. of CP, 10 2019.

27

[DFM20] Jeffrey Dudek, Dror Fried, and Kuldeep S. Meel. Taming discrete
integration via the boon of dimensionality. In Proc. of NeurIPS,
2020.

[DH07] Carmen Domshlak and Jörg Hoffmann. Probabilistic planning via
heuristic forward search and weighted model counting. Journal of
Artificial Intelligence Research, 30(1):565–620, 2007.

[DKLR00] Paul Dagum, Richard M. Karp, Michael Luby, and Sheldon Ross.
An optimal algorithm for Monte Carlo estimation. SIAM Journal
on Computing, 29(5):1484–1496, 2000.

[DOMPV17] Leonardo Duenas-Osorio, Kuldeep S Meel, Roger Paredes, and
Moshe Y Vardi. Counting-based reliability estimation for power-
transmission grids. In Proc. of AAAI, pages 4488–4494, 2017.

[EGSS13a] Stefano Ermon, Carla P. Gomes, Ashish Sabharwal, and Bart Sel-
man. Optimization with parity constraints: From binary codes to
discrete integration. In Proc. of UAI, 2013.

[EGSS13b] Stefano Ermon, Carla P. Gomes, Ashish Sabharwal, and Bart Sel-
man. Taming the curse of dimensionality: Discrete integration by
hashing and optimization. In Proc. of ICML, pages 334–342, 2013.

[EGSS14] Stefano Ermon, Carla P. Gomes, Ashish Sabharwal, and Bart Sel-
man. Low-density parity constraints for hashing-based discrete
integration. In Proc. of ICML, pages 271–279, 2014.

[FHO13] Robert Fink, Jiewen Huang, and Dan Olteanu. Anytime approxi-
mation in probabilistic databases. The VLDB Journal, 22(6):823–
848, Dec 2013.

[FRS17] Daniel J Fremont, Markus N Rabe, and Sanjit A Seshia. Maximum
model counting. In Proc. of AAAI, 2017.

[GHSS07a] Carla P Gomes, Jörg Hoffmann, Ashish Sabharwal, and Bart Sel-
man. From sampling to model counting. In Proc. of IJCAI, pages
2293–2299, 2007.

[GHSS07b] Carla P. Gomes, Jörg Hoffmann, Ashish Sabharwal, and Bart Sel-
man. Short XORs for model counting: From theory to practice.
In Proc. of SAT, pages 100–106, 2007.

[Gra06] Robert M. Gray. Toeplitz And Circulant Matrices: A Review
(Foundations and Trends(R) in Communications and Information
Theory). Now Publishers Inc., Hanover, MA, USA, 2006.

[GSS06] Carla P. Gomes, Ashish Sabharwal, and Bart Selman. Model
counting: A new strategy for obtaining good bounds. In Proc.
of AAAI, volume 21, pages 54–61, 2006.

[HDVZVM04] Marijn Heule, Mark Dufour, Joris Van Zwieten, and Hans
Van Maaren. March eq: Implementing additional reasoning into
an efficient look-ahead sat solver. In Proc. of SAT, pages 345–359.
Springer, 2004.

[HJ12] Cheng-Shen Han and Jie-Hong Roland Jiang. When Boolean sat-
isfiability meets Gaussian elimination in a simplex way. In Proc.
of CAV, pages 410–426. Springer, 2012.

[HJ19] Mark Huber and Bo Jones. Faster estimates of the mean of
bounded random variables. Mathematics and Computers in Sim-

28

ulation, 161:93–101, 2019.
[Hub17] Mark Huber. A Bernoulli mean estimate with known relative error

distribution. Random Structures and Algorithms, 50(2):173–182,
2017.

[IMMV15] Alexander Ivrii, Sharad Malik, Kuldeep S. Meel, and Moshe Y.
Vardi. On computing minimal independent support and its appli-
cations to sampling and counting. Constraints, pages 1–18, 2015.

[JVV86] Mark R. Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random
generation of combinatorial structures from a uniform distribution.
Theoretical Computer Science, 43(2-3):169–188, 1986.

[KL83] Richard M. Karp and Michael Luby. Monte-carlo algorithms for
enumeration and reliability problems. Proc. of FOCS, 1983.

[KL85] Richard M. Karp and Michael Luby. Monte-carlo algorithms for
the planar multiterminal network reliability problem. Journal of
Complexity, 1(1):45–64, 1985.

[KLM89] Richard M. Karp, Michael Luby, and Neal Madras. Monte-carlo
approximation algorithms for enumeration problems. Journal of
Algorithms, 10(3):429 – 448, 1989.

[KMS+18] Samuel Kolb, Martin Mladenov, Scott Sanner, Vaishak Belle, and
Kristian Kersting. Efficient symbolic integration for probabilistic
inference. In Proc. of IJCAI, pages 5031–5037, 2018.

[LJN10] Tero Laitinen, Tommi A Junttila, and Ilkka Niemelä. Extending
clause learning DPLL with parity reasoning. In Proc. of ECAI,
volume 2010, pages 21–26, 2010.

[LJN11] Tero Laitinen, Tommi Junttila, and Ilkka Niemela. Equivalence
class based parity reasoning with DPLL (XOR). In Prof. of ICTAI,
pages 649–658. IEEE, 2011.

[LJN12] Tero Laitinen, Tommi Junttila, and Ilkka Niemelä. Conflict-driven
XOR-clause learning. In Proc. of SAT, pages 383–396. Springer,
2012.

[LLM16] Jean-Marie Lagniez, Emmanuel Lonca, and Pierre Marquis. Im-
proving model counting by leveraging definability. In Proc. of
IJCAI, pages 751–757, 2016.

[LM08] Jérôme Lang and Pierre Marquis. On propositional definability.
Artificial Intelligence, 172(8-9):991–1017, 2008.

[LS08] Mark H. Liffiton and Karem A. Sakallah. Algorithms for com-
puting minimal unsatisfiable subsets of constraints. Journal of
Automated Reasoning, 40(1):1–33, 2008.

[LSS17] Jingcheng Liu, Alistair Sinclair, and Piyush Srivastava. The Ising
partition function: Zeros and deterministic approximation. CoRR,
abs/1704.06493, 2017.

[LSSD14] Loi Luu, Shweta Shinde, Prateek Saxena, and Brian Demsky. A
model counter for constraints over unbounded strings. ACM SIG-
PLAN Notices, 49(6):565–576, 2014.

[LWJ17] Nian-Ze Lee, Yen-Shi Wang, and Jie-Hong R Jiang. Solving
stochastic Boolean satisfiability under Random-Exist quantifica-
tion. In Proc. of IJCAI, pages 688–694, 2017.

29

[MA20] Kuldeep S Meel and S Akshay. Sparse hashing for scalable approx-
imate model counting: Theory and practice. In Proc. of LICS,
pages 728–741, 2020.

[Mee17] Kuldeep S. Meel. Constrained Counting and Sampling: Bridging
the Gap between Theory and Practice. PhD thesis, Rice University,
2017.

[MSV17] Kuldeep S. Meel, Aditya A. Shrotri, and Moshe Y. Vardi. On
hashing-based approaches to approximate DNF-counting. In Proc.
of FSTTCS, 12 2017.

[MSV19] Kuldeep S. Meel, Aditya A. Shrotri, and Moshe Y. Vardi. Not
all FPRASs are equal: Demystifying FPRASs for DNF-counting.
Constraints, 24(3-4):211–233, 2019.

[Mur68] Katta G. Murty. An algorithm for ranking all the assignments
in order of increasing cost. Operations Research, 16(3):682–687,
1968.

[MVC+16] Kuldeep S Meel, Moshe Vardi, Supratik Chakraborty, Daniel J
Fremont, Sanjit A Seshia, Dror Fried, Alexander Ivrii, and Sharad
Malik. Constrained sampling and counting: Universal hashing
meets SAT solving. In Proc. of Beyond NP Workshop, 2016.

[Nad10] Alexander Nadel. Boosting minimal unsatisfiable core extraction.
In Proc. of FMCAD, pages 221–229, 2010.

[NSM+19] Nina Narodytska, Aditya A. Shrotri, Kuldeep S. Meel, Alexey Ig-
natiev, and Joao Marques-Silva. Assessing heuristic machine learn-
ing explanations with model counting. In Proc. of SAT, pages
267–278, 2019.

[PJM19] Yash Pote, Saurabh Joshi, and Kuldeep S. Meel. Phase transition
behavior of cardinality and XOR constraints. In Proc. of IJCAI,
8 2019.

[R7́0] Alfréd Rényi. Probability Theory. North Holland, Amsterdam,
1970.

[Rot96] Dan Roth. On the hardness of approximate reasoning. Artificial
Intelligence, 82(1):273–302, 1996.

[SGM20] Mate Soos, Stephan Gocht, and Kuldeep S Meel. Tinted, detached,
and lazy CNF-XOR solving and its applications to counting and
sampling. In Proc. of CAV, pages 463–484. Springer, 2020.

[SM19] Mate Soos and Kuldeep S Meel. BIRD: Engineering an efficient
CNF-XOR SAT solver and its applications to approximate model
counting. In Proc. of AAAI, 2019.

[SNC09] Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending
SAT solvers to cryptographic problems. In Proc. of SAT, pages
244–257, 2009.

[Soo10] Mate Soos. Enhanced Gaussian elimination in DPLL-based SAT
solvers. In Proc. of Pragmatics of SAT Workshop, pages 2–14,
2010.

[Sto83] Larry Stockmeyer. The complexity of approximate counting. In
Proc. of STOC, pages 118–126, 1983.

[SVP+16] Somdeb Sarkhel, Deepak Venugopal, Tuan Anh Pham, Parag

30

Singla, and Vibhav Gogate. Scalable training of Markov logic
networks using approximate counting. In Proc. of AAAI, pages
1067–1073, 2016.

[Tod89] Seinosuke Toda. On the computational power of PP and (+)P. In
Proc. of FOCS, pages 514–519. IEEE, 1989.

[Val79] Leslie G. Valiant. The complexity of enumeration and reliability
problems. SIAM Journal on Computing, 8(3):410–421, 1979.

[Vaz13] Vijay V. Vazirani. Approximation algorithms. Springer Science &
Business Media, 2013.

[WS05] Wei Wei and Bart Selman. A new approach to model counting. In
Proc. of SAT, pages 2293–2299. Springer, 2005.

[XCD12] Yexiang Xue, Arthur Choi, and Adnan Darwiche. Basing decisions
on sentences in decision diagrams. In Proc. of AAAI, 2012.

[ZCSE16] Shengjia Zhao, Sorathan Chaturapruek, Ashish Sabharwal, and
Stefano Ermon. Closing the gap between short and long XORs for
model counting. In Proc. of AAAI, 2016.

[ZQRZ18] Ziqiao Zhou, Zhiyun Qian, Michael K Reiter, and Yinqian Zhang.
Static evaluation of noninterference using approximate model
counting. In Proc. of IEEE Symposium on Security and Privacy,
pages 514–528. IEEE, 2018.

31

	Approximate Model Counting
	XXXSupratik Chakraborty, Kuldeep S. Meel, Moshe Y. Vardi
	Introduction
	Approximate Model Counting for CNF
	Handling CNF+XOR Constraints
	Approximate Model Counting for DNF
	Weighted Counting
	Conclusion
	References

