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Program Analysis: An Example
 int  x = 0, y = 0, z;
 read(z);
 while ( f(x, z)  > 0) {

    if ( g(z, y)  > 10) {

       x = x + 1;  y = y + 100;

    }

    else if ( h(z)  > 20) {

        if (x >= 4) {

            x = x + 1; y = y + 1;

         }

     }

}

   

              IDEAS?
Run test cases
Get code analyzed by 

many people 
Convince yourself by ad-

hoc reasoning

What is the relation
between x and y on 
exiting while loop?



Program Verification: An Example
 int  x = 0, y = 0, z;
 read(z);
 while ( f(x, z)  > 0) {

    if ( g(z, y)  > 10) {

       x = x + 1;  y = y + 100;

    }

    else if ( h(z)  > 20) {

        if (x >= 4) {

            x = x + 1; y = y + 1;

         }

     }

}

assert( x < 4  OR y >= 2 ); 

INVARIANT or PROPERTY

              IDEAS?
Run test cases
Get code analyzed by 

many people 
Convince yourself by ad-

hoc reasoning



Verification & Analysis: Close Cousins

Both investigate relations between program variables at 
different program locations

Verification: A (seemingly) special case of analysis
 Yes/No questions
 No simpler than program analysis

Both problems undecidable (in general) for languages 
with loops, integer addition and subtraction
 Exact algorithm for program analysis/verification that 

works for all programs & properties: an impossibility
 But why care about arbitrary programs?



Hope for Real-Life Software

Certain classes of analyses/property-checking of real-life 
software feasible in practice
 Uses domain specific techniques, restrictions on program 

structure…
 “Safety” properties of avionics software, device drivers, …

A practitioner’s perspective

Automation

“Complex” 
Properties

“Large”
Programs

Currently,
can get any 2

 out of 3



Some Driving Factors 

Compiler design and optimizations
 Since earliest days of compiler design

Performance optimization 
 Renewed importance for embedded systems

Testing, verification, validation 
 Increasingly important, given criticality of software

Security and privacy concerns
Distributed and concurrent applications
 Human reasoning about all scenarios difficult



Successful Approaches in Practical 
Software Verification 
Use of sophisticated abstraction and refinement 

techniques
 Domain specific as well as generic

Use of constraint solvers
 Propositional, quantified boolean formulas, first-order 

theories, …
Use of scalable symbolic reasoning techniques
 Several variants of decision diagrams, combinations of 

decision diagrams & satisfiability solvers …
Incomplete techniques that scale to real programs



Focus of today’s talk

Abstract Interpretation Framework 
  Elegant unifying framework for several program  

 analysis & verification techniques
  Several success stories

●  Checking properties of avionics code in Airbus
●  Checking properties of device drivers in Windows
●  Many other examples

● Medical, transportation, communication … 
  But, NOT a panacea
  Often used in combination with other techniques



Sequential Program State

 Given sequential program P
 State: information necessary to determine complete 

future behaviour 
 (pc, store, heap, call stack)
 pc: program counter/location
 store: map from program variables to values
 heap: dynamically allocated/freed memory and 

pointer relations thereof
 call stack: stack of call frames



Programs as State Transition Systems

 A simple program:

State = (pc, store)
heap, stack unchanged within func

State (pc, x, y, a, b )
void func(int a, int b)
{ int x, y;

   L1: x = 0; 
   L2: y = 1;
   L3: if (a >= b + 2) 
   L4:   a = y;
         else
   L5:   b = x; 
   L6: return;
}      

L1, 2, 7, 2, 0

L2, 0, 7, 2, 0

L3, 0, 1, 2, 0

L4, 0, 1, 2, 0

L6, 0, 1, 1, 0



Programs as State Transition Systems

void func(int a, int b)
{ int x, y;

   L1: x = 0; 
   L2: y = 1;
   L3: if (a >= b + 2) 
   L4:   a = y;
       else
   L5:   b = x; 
   L6: return;
}      

void func(int a, int b)
{ int x, y;

   L1: x = 0; 
   L2: y = 1;
   L3: if (a >= b + 2) 
   L4:   a = y;
       else
   L5:   b = x; 
   L6: return;
}      

L1, 2, 7, 2, 0

L1, -1, 10, 9, 1

L1, 3, 20, 8, 7

L4, 0, 1, 9, 1 L5, 0, 1, 8, 7

L6, 0, 1, 1, 0

L4, 0, 1, 2, 0

L6, 0, 1, 1, 1 L6, 0, 1, 8, 0

State (pc, x, y, a, b )



Transition
L3: if (a >= b+2)
L4: …
    else
L5:

Programs as State Transition Systems

void func(int a, int b)
{ int x, y;

   L1: x = 0; 
   L2: y = 1;
   L3: if (a >= b + 2) 
   L4:   a = y;
       else
   L5:   b = x; 
   L6: return;
}      

(L4, 0, 1, 5, 2)

State: pc,  x, y,  a, b

(L3, 0, 1, 5, 2)



Assertion Checking as Reachability

Path from an initial to an assertion violating state ?
   Absence of path: System cannot exhibit error
   Presence of path: System can exhibit error
What happens with procedure calls/returns?  

Initial
States

Assertion 
violating 
states



State Space: How large is it?

 State = (pc, store, heap, call stack)
 pc: finite valued 
 store: finite if all variables have finite types
 Every program statement effects a state transition
 enum {wait, critical, noncritical} pr_state  (finite)
 int a, b, c  (infinite)
 bool *p, *q  (infinite)
 heap: unbounded in general
 call stack: unbounded in general 

 Bad news: State space infinite in general



Concrete states

Dealing with State Space Size

 Infinite state space
 Difficult to represent using state transition diagram
 Can we still do some reasoning?

 Solution: Use of abstraction
 Naive view

● Bunch sets of states together “intelligently”
● Don't talk of individual states, talk of a representation of a set 

of states
● Transitions between state set representations 

 Granularity of reasoning shifted
 Extremely powerful general technique

● Allows reasoning about large/infinite state spaces

Abstract states



Simple Abstractions

void func(int a, int b)
{ int x, y;

   L1: x = 0; 
   L2: y = 1;
   L3: if (a >= b + 2) 
   L4:   a = y;
       else
   L5:   b = x; 
   L6: return;
}      

a < 5

a >= 5

Group states 
according to values of 
variables and pc

Group
states 
with 
same pc

State: pc,  x, y,  a, b

L1, 2, 7, 2, 0

L1, -1, 10, 9, 1

L1, 3, 20, 8, 7



Programs as State Set Transformers

void func(int a, int b)
{ int x, y;

   L1: x = 0; 
   L2: y = 1;
   L3: if (a >= b + 2) 
   L4:   a = y;
       else
   L5:   b = x; 
   L6: return;
}      

a < 5

a >= 5

Group states 
according to values of 
variables and pc

Group
states 
with 
same pc



 Recall: Set of (potentially infinite) concrete states is an 
abstract state

 Think of program as abstract state transformer
 

Programs as Abstr State Transformers

L4: a = y

State: pc, x, y,  a, b

Program statement
as concrete state
transformer

L4, 2, 7, 2, 0

L4, -1, 10, 9, 1

L4, 3, 20, 8, 7

L6, 2, 7, 7, 0

L6, -1, 10, 10, 1

L6, 3, 20, 20, 7



 Recall: Set of (potentially infinite) concrete states is an 
abstract state

 Think of program as abstract state transformer
 

Programs as Abstr State Transformers

L4: a = y

Program statement
as abstract state
transformer

Abstract state a1

Abstract state a2

Central problem: 
Compute a2 from a1 and prog stmt
(abstract state transitions)



Set of abstract statesSet of concrete states

A Generic View of Abstraction

 Every subset of concrete states mapped to 
unique abstract state

 Desirable to capture containment relations
 Transitions between state sets (abstract states)

Abstraction (

Concretization 



 Set of concrete states:  S
 Concrete lattice C = 

Mathematical Foundations of 
Abstract Interpretation

Powerset of S

Partial order

Least upper bound

Greatest lower bound

Top element

Bottom
 element



 Abstract lattice  A = 


 Abstraction function

● Monotone:                                               for all
●

 Concretization function

● Monotone:                                                 for all  
●

Mathematical Foundations of
Abstract Interpretation



     and     form a Galois connection
 First view:                                for all   

                      

Mathematical Foundations of Abstract 
Interpretation

Set of abstract statesSet of concrete states

C A

S1







    and      form a Galois connection
 First view:                                 for all 

Mathematical Foundations of Abstract 
Interpretation

Set of abstract statesSet of concrete states

C Aa1

for all







     and      form a Galois connection
 Second (equivalent) view:

Mathematical Foundations of Abstract 
Interpretation

Set of abstract statesSet of concrete states

C A

S1

a1



for all



 Concrete state set transformer function
 Example:     

Computing Abstract State Transformers

L4:   a = y

S1

S2

S1 = { (L4, x, y, a, b) | ….. }: set of concr. states

S2 =  { (L6, x, y, a’, b) | (L4, x, y, a, b)  S1     a’ = y}
     =  FC (S1) : set of concrete states 

Monotone concrete 
state set transformer 
function for stmt at L4



 Abstract state transformer function
 Example:     

Computing Abstract State Transformers

L4:   a = y

a2 A

a1  A

 a2 = ( FC ((a1)))  ideally, but  FA(a1)     ( FC ((a1))) often 
used 

Set of concrete states

FC





FA



 Abstract state transformer for if-then-else
 Example:     

Computing Abstract State Transformers

L3:  if (a >= b+2) goto L4 else goto L5

a2  A

a1  A

                            a2 = a1    acond         a3 = a1     acondb
                            pc in a2: L4                 pc in a3: L5

a3  A

acond  = 

  ({(x, y, a, b)   |  a >= b+2}

acondb =

({(x, y, a, b)  |  a < b+2}



 Example:   ….
             L1 :   while (a > b) do 
                       L2:  <loop body>
             L9:    end while

Dealing with Loops
a>b?

a>b?

a>b?

L1

L1

L1

L2: …

L2: …

L2: …
L9

No

No

No

Yes

Yes

Yes

Given

FA  : abstr state transformer of loop body, 
a   : abstr state at L1 the first time L1 is reached
 

What is the abstract loop invariant at L1?
 



FA  

Dealing with Loops

FA 

L1

L1

L1

L9

No

No

No

Yes

Yes

Yes

Given

FA : abstr state transformer of loop body, 
a   : abstr state at L1 the first time L1 is reached
 
What is the abstract loop invariant at L1?
 

acond?

acond?

acond?

a

FA 

acond = ( {s | s is a concrete state with a > b} )

 Current view of abstract loop invariant



Dealing with Loops
Given

FA  : abstr state transformer of loop body, 
a   : abstr state at L1 the first time L1 is reached
 
What is the abstract loop invariant at L1?
 

FA  

FA  

FA  

L1

L1

L9

No

No

Yes

Yes

Yes

acond?

acond?

acond?

a z0

FA (         acond)

acond = ( {s | s is a concrete state with a > b} )

 Current view of abstract loop invariant

=



Dealing with Loops
Given

FA : abstr state transformer of loop body, 
a   : abstr state at L1 the first time L1 is reached
 
What is the abstract loop invariant at L1?
 

FA  

FA  

FA  

L1

L1

L1

L9

No

No

Yes

Yes

Yes

acond?

acond?

acond?

a z0

FA (         acond)

No

FA (         acond)acond = ( {s | s is a concrete state with a > b} )

 Current view of abstract loop invariant

=



Dealing with Loops
Given

FA : abstr state transformer of loop body, 
a   : abstr state at L1 the first time L1 is reached
 
What is the abstract loop invariant at L1?
 

FA  

FA  

FA  

L1

L1

L1

L9

No

No

Yes

Yes

Yes

acond?

acond?

acond?

a z0

FA (         acond)

No

FA (         acond)acond = ( {s | s is a concrete state with a > b} )

 Abstract loop invariant



Dealing with Loops
Given

FA : abstr state transformer of loop body, 
a   : abstr state at L1 the first time L1 is reached
 
What is the abstract loop invariant at L1?
 

acond =  ( {s | s is a concrete state with a > b } )

Loop invariant at L1 is limit of the sequence:
   z0 = a
   

FA  

FA  

FA  

L1

L1

L1

L9

No

No

No

Yes

Yes

Yes

acond?

acond?

acond?

a z0



Dealing with Loops
Given

FA : abstr state transformer of loop body, 
a   : abstr state at L1 the first time L1 is reached
 
What is the abstract loop invariant at L1?
 

acond =  ( {s | s is a concrete state with a > b } )

Loop invariant at L1 is limit of the sequence:
   z0 = a
   z1 = a       FA  (z0      acond)
       FA  

FA  

FA  

L1

L1

L1

L9

No

No

Yes

Yes

Yes

acond?

acond?

acond?

a z0

FA (         acond)



Dealing with Loops
Given

FA : abstr state transformer of loop body, 
a   : abstr state at L1 the first time L1 is reached
 
What is the abstract loop invariant at L1?
 

acond =  ( {s | s is a concrete state with a > b } )

Loop invariant at L1 is limit of the sequence:
   z0 = a
   z1 = a      FA  (z0      acond)
       ……

   z
i+1

 = a      FA  (z
i 
     acond)

FA  

FA  

FA  

L1

L1

L1

L9

No

No

Yes

Yes

Yes

acond?

acond?

acond?

a z0

FA (         acond)

No

FA(         acond)



 Loop invariant at L1 is limit of the sequence:
 z

0
 = a, …,  z

i+1
 = a    FA (z

i
     acond)

 The limit exists and is the least fixpoint of g:           
where g(z) = a    FA (z     acond)

 Difficult to compute if A has infinite ascending chains
 Use an extrapolation (widen) operator r

 w
0
 = z

0
,  and  w

i+1
 = w

i
  z

i+1   
for all i >= 0

 By definition of , 
● Sequence of w

i
 ’s stationary after finitely many i’s

● Stationary value w* overapproximates limit of sequence of z
i
’s

 Theory of abstract interpretation guarantees that
w*) overapproximates loop invariant at L1

Dealing with loops



 Given a program P and an assertion at location L
 Choose an abstract lattice (domain) A with a  operator
 Compute abstract invariant at each location of P
 If abstract invariant at L is a

L
, check if   (a

L
) satisfies 

 The theory of abstract interpretation guarantees that
(a

L
)concrete invariant at l

Putting It All Together

Bird’s eye-view of program verification by 
abstract  interpretation







A Simple Abstract Domain



 Simplest domain for analyzing numerical programs
 Represent values of each variable separately using intervals
 Example:
L0:  x = 0; y = 0;
L1:  while (x < 100) do
        L2:  x = x+1;
        L3:  y = y+1;
L4:  end while
If the program terminates, does x have the value 100 on 
termination?

Interval Abstract Domain 



 Abstract states: pairs of intervals (one for each of x, y)
 [-10, 7] ,  (-1, 20]
       relation: Inclusion of intervals
 [-10, 7] ,  (-1, 20]      [-20, 9],  (-1, +)
     and    : union and intersection of intervals
 [a, b] x [c, d] = [e, f], where 

● e = a if c >= a, and e = - otherwise
● f = b if d <= b, and f = + otherwise

  y similarly defined, and  is simply (x, y)
      is empty interval of x and y
      is (-, +), (-, +)

Interval Abstract Domain



Analyzing our Program

L0:  x = 0; y = 0;

L1:  while (x < 100) do

        L2:  x = x+1;

        L3:  y = y+1;

L4:  end while



 Abstract interpretation: a fundamental technique for 
analysis of programs

 Choice of right abstraction crucial
 Often getting the right abstraction to begin with is very 

hard
 Need automatic refinement techniques

 Very active area of research


Some Concluding Remarks
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