Seeing things that are hard to see: (a) the big world of tiny motions and (b) accidental cameras

> Bill Freeman Massachusetts Institute of Technology December 17, 2012

Joint work with: Fredo Durand, Antonio Torralba, Michael Rubinstein, Neal Wadhwa, Hao-Yu Wu, John Guttag.

ICVGIP 2012

Massachusetts Institute of Technology

Saturday, January 5, 13

Eulerian Video Magnification for Revealing Subtle Changes in the World

with Hao-Yu Wu, Eugene Shih*, John Guttag, Fredo Durand and Bill Freeman MIT CSAIL, and *Quanta Research Cambridge, Inc.

Imperceptible Changes in the World

Respiratory motion

Buildings swaying in wind

Pulse and Blood flow

Magnifying Glass for Temporal Variations

Pulse and Blood flow

Magnifying Glass for Temporal Variations

Respiratory motion

Amplifying Subtle Color Variations

1. Average spatially to overcome sensor and quantization noise

Amplifying Subtle Color Variations

2. Filter Temporally

204 L MANNAN

Color Amplification Results

Source

Color-amplified (x100) 0.83-1 Hz (50-60 bpm) (ideal filtering)

Color Amplification Results

Source

Color-amplified (x120) 0.83-1 Hz (50-60 bpm)

Heart Rate Extraction

Heart Rate Extraction

Thanks to Dr. Donna Brezinski and the Winchester Hospital staff 2.33-2.67 Hz (140-160 bpm)

Saturday, January 5, 13

Related Work on Pulse Detection from Videos

Poh, McDuff and Picard, MIT Media Lab, Non-contact, automated cardiac pulse measurements using video imaging and blind source separation, 2010

Cell Phone Apps Developed Previously by Others...

"Vital Signs Camera" - Philips (proprietary)

"Instant Heart Rate" for Android Photoplethysmography (PPG)

Spatio-temporal variations of pulse onset may reveal medically useful information

Source

Color-amplified (x100) 0.83-1 Hz (50-60 bpm)

The extra motion with the color amplification puzzled us...

Saturday, January 5, 13

Motion Magnification via Temporal Filtering

Linearized motion magnification

Rigid translation

Assume small translation relative to image structures and expand in 1st order Taylor series

Amplify temporally bandpassed signal

Modified signal

Assume the amplified translation is still small relative to image structures to use Taylor series approximation again

$$I(x,t) = f(x+\delta(t))$$
$$I(x,t) \approx f(x) + \delta(t) \frac{\partial f(x)}{\partial x}$$
$$\hat{I}(x,t) = I(x,t) + (\alpha - 1)B_t[I(x,t)]$$

$$\approx f(x) + \alpha \delta(t) \frac{\partial f(x)}{\partial x}$$

$$\approx f(x + \alpha \delta(t))$$

Where we expect this to break down Let's look at it for f(x) being a sinusoid, $\cos(\omega x)$ Exact translation by $\alpha\omega\delta$ $\cos(\omega(x + \alpha\delta)) = \cos(\omega x)\cos(\alpha\omega\delta) - \sin(\omega x)\sin(\alpha\omega\delta)$ $\approx \cos(\omega x) - \alpha\omega\delta\sin(\omega x)$ Linearized

For the motion magnification approximation to hold:

 $\cos(\alpha\omega\delta) \approx 1$ $\sin(\alpha\omega\delta) \approx \alpha\omega\delta$

Condition required for those conditions to be approximately true:

$$\sin(\frac{\pi}{4}) = 0.9\frac{\pi}{4}$$

 $\alpha\omega\delta <$ true displacement spatial frequency magnification amount

Synthetic 1D Examples

System Overview

Amplify spatial frequencies where approximation holds, otherwise fail toward zero

Figure 6: Amplification factor, α , as function of spatial wavelength λ , for amplifying motion. The amplification factor is fixed to α for spatial bands that are within our derived bound (Eq. 14), and is attenuated linearly for higher spatial frequencies.

Source

Motion-magnified (3.6-6.2 Hz, x60)

Motion Magnification Results

Source

Motion-magnified (0.4-3 Hz, x10)

Motion Magnification

Source

Motion-magnified (0.4-3 Hz, x10)

Saturday, January 5, 13

Temporal Filters

- Mostly application dependent
 - Configurable by the user
- Some of the filters we used (and their applications):

Synthetic 2D Example

Selective Motion Magnification in Natural Videos

Saturday, January 5, 13

Motion Magnification Results

Motion-magnified (45-100 Hz, x100)

Source (300 fps)

DSLR Controlled Setup

Previous Work on Motion Magnification

(a) Registered input frame

(d) Motion magnified, showing holes

(b) Clustered trajectories of tracked features

(e) After texture in-painting to fill

+

(c) Layers of related motion and appearance

's modifications to segmentation map in (c)

Motion Magnification

Source

Motion-magnified

Liu, Torralba, Freeman, Durand, Adelson, Motion Magnification, SIGGRAPH 2005

Eulerian vs. Lagrangian Motion Magnification

Source

Eulerian

Lagrangian

Source

Eulerian

Lagrangian

play NSF video

http://www.youtube.com/watch?v=Rm1UMbxnq-8

SIGGRAPH video

http://www.youtube.com/watch?feature=player_embedded&v=ONZcjs1Pjmk

and YouTube video

http://www.youtube.com/watch?v=J1wvFmWv7zY
Main Contributions

- Applying spatial decomposition and temporal filtering to standard videos can enhance details that are difficult or impossible to see with the naked eye
 - Eulerian perspective properties of pixels/voxels over time
- Temporal filtering can be used to amplify spatial motion
 - No explicit motion estimation or tracking required
- There's a big world of tiny motions out there.
- "MIT's New Video Technology Could Give You Superhuman Sight"

Accidental pinhole and pinspeck cameras: Revealing the scene outside the picture

Antonio Torralba William T. Freeman

See project page for videos: <u>http://people.csail.mit.edu/torralba/research/accidentalcameras/</u>

Shadows?

Saturday, January 5, 13

ų

Accidental pinhole camera

Window turned into a pinhole

View outside

Source: wikipedia

Chris Fraser

"a camera obscura has been used ... to bring images from the outside into a darkened room"

Aberlado Morell

Window open

Window turned into a pinhole

Hotel room, contrast enhanced. The view from the window

Accidental pinholes produce images that are unnoticed or misinterpreted as shadows

Accidental pinhole If the window is big then the images recovered are too blurry

Accidental pinhole

Outside scene

See Zomet, A.; Nayar, S.K. CVPR 2006 for a detailed analysis.

Anti-pinhole or Pinspeck

Adam L. Cohen, 1982

OPTICA ACTA, 1982, VOL. 29, NO. 1, 63-67

Anti-pinhole imaging

ADAM LLOYD COHEN

Parmly Research Institute, Loyola University of Chicago, Chicago, Illinois 60626, U.S.A.

(Received 16 April 1981; revision received 8 July 1981)

Abstract. By complementing a pinhole to produce an isolated opaque spot, the light ordinarily blocked from the pinhole image is transmitted, and the light ordinarily transmitted is blocked. A negative geometrical image is formed, distinct from the familiar 'bright-spot' diffraction image. Anti-pinhole, or 'pinspeck' images are visible during a solar eclipse, when the shadows of objects appear crescent-shaped. Pinspecks demonstrate unlimited depth of field, freedom from distortion and large angular field. Images of different magnification may be formed simultaneously. Contrast is poor, but is improvable by averaging to remove noise and subtraction of a d.c. bias. Pinspecks may have application in X-ray space optics, and might be employed in the eyes of simple organisms.

Natural eyes

Lenses

Pinholes

nautilus

Anti-pinholes

Like other Euglenoids, *Euglena* possess a red eyespot, an organelle composed of <u>carotenoid</u> pigment granules. The red spot itself is not thought to be <u>photosensitive</u>. Rather, it filters the sunlight that falls on a light-detecting structure at the base of the flagellum (a swelling, known as the paraflagellar body), allowing only certain wavelengths of light to reach it. As the cell rotates with respect to the light source, the eyespot partially blocks the source, permitting the *Euglena* to find the light and move toward it (a process known as phototaxis).[11]

Shadows Accidental anti-pinhole cameras

Background image

Input video

Negativeof the shadow

Background image

Input video

Negativeof the shadow

Input video

Negative of the shadow

Saturday, January 5, 13

The importance of the size of the occluder

Negative of the shadow

Input

Size of the occluder

Antonio Ball

Input video

Negative of the shadow

Using some single view metrology. A. Criminisi, I. Reid, and A. Zisserman 1999

Body as the occluder

View outside the window

Looking for a small accidental occluder

Reference

=

Looking for a small accidental occluder

Body as the occluder

Hand as the occluder

View outside the window

Accidental cameras reveal

Mirrors

Nishino and Nayar, IJCV 2006

Lenses

Gravitational lensing

Anti-pinholes

Conclusion

Shadows and apertures produce accidental images that are unnoticed most of the time. Accidental cameras can reveal the scene outside the picture.

Applications:

- Image forensics (J. O'Brian & H. Farid, 2012)
- Computer graphics providing better light models

Funding for this work was provided by NSF Career award 0747120 to A.T, and NSF CGV 1111415 and NSF CGV 0964004 to W.T.F.

Saturday, January 5, 13

Small motions and small photometric changes reveal otherwise unseen features of the world both in and outside the picture frame

small motions

small intensity changes

