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Abstract

A group-labeled graph is a graph whose vertices and edges have been assigned
labels from some abelian group. The weight of a subgraph of a group-labeled
graph is the sum of the labels of the vertices and edges in the subgraph. A
group-labeled graph is said to be balanced if the weight of every cycle in the
graph is zero. We give a characterization of balanced group-labeled graphs
that generalizes the known characterizations of balanced signed graphs and
consistent marked graphs. We count the number of distinct balanced la-
bellings of a graph by a �nite abelian group � and show that this number
depends only on the order of � and not its structure. We show that all bal-
anced labellings of a graph can be obtained from the all-zero labeling using
simple operations. Finally, we give a new constructive characterization of
consistent marked graphs and markable graphs, that is, graphs that have a
consistent marking with at least one negative vertex.
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1. Introduction

The study of signed and marked graphs has a long history and diverse
applications [10, 13]. A signed graph is an undirected graph whose edges
are labeled positive or negative. A marked graph is an undirected graph
whose vertices are signed. Signed and marked graphs may be considered to
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be special cases of group-labeled graphs. In this paper, we generalize some
results known for signed and marked graphs to group-labeled graphs. This
generalization also gives some new properties of signed and marked graphs.

Let � be a �nite abelian group. A �-labeled graph is a graph whose
vertices and edges are assigned labels from �. A �-labeled graph is denoted
(G;w), where G is a graph and w : V (G) [ E(G) ! � is an assignment of
labels from � to the vertices and edges of G. Thus a signed graph may be
considered to be a Z2-labeled graph with all vertex labels 0, while a marked
graph has all edge labels 0.

One of the central notions in the study of signed graphs is that of balance.
A signed graph is said to be balanced if every cycle in the graph contains
an even number of edges with negative sign. Similarly, a marked graph is
said to be consistent if every cycle contains an even number of vertices with
negative sign. We generalize the notions of balance and consistency and their
characterizations to group-labeled graphs.

Let (G;w) be a group-labeled graph. The weight of a subgraph H of G,
denoted by w(H), is

P
x2V (H)[E(H)w(x). The graph (G;w) is said to be a

balanced group-labeled graph and w is a balanced labeling of G if w(C) = 0
for all cycles C in G. Thus balanced Z2-labeled graphs include both balanced
signed graphs and consistent marked graphs.

Balanced signed graphs were �rst characterized by Harary [6] who proved
the following theorem.

Theorem 1. A signed graph G is balanced i� there exists a subset A � V (G)
such that an edge has a negative sign i� it has exactly one end vertex in A.

Characterizations of consistent marked graphs were obtained much later.
Initial results were given by Acharya and Rao [1, 2, 8] and a simpler charac-
terization was obtained by Hoede [7], who proved the following theorem.

Theorem 2. A connected marked graph G is consistent i� there exists a

spanning tree T in G such that

(i) Every fundamental cycle with respect to T has even number of vertices

with negative sign.

(ii) Any path in T , which is the intersection of two fundamental cycles, has

end vertices with the same sign.
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Subsequently, Roberts and Xu [11] gave several alternative characteriza-
tions of consistent marked graphs that were similar to Hoede's characteriza-
tion.

Our main result in Section 2 is a generalization of Theorem 2 to group-
labeled graphs. The characterizations of Roberts and Xu also extend to
group-labeled graphs in a natural way. In Section 3 we give a simple formula
for the number of balanced labellings of a graph by a �nite abelian group �.
An interesting observation is that this number depends only on the order of
� and not its structure.

Another characterization of balanced signed graphs is in terms of the
notion of switching [12]. A switch applied to a vertex of a signed graph
changes the sign of edges incident with it, keeping the signs of all other edges
the same. A switch applied to any vertex of a balanced signed graph gives
a balanced signed graph. It follows easily from Theorem 1 that a signed
graph is balanced i� all edges can be made positive by switching a subset of
vertices.

In Section 4 we de�ne some simple operations on group-labeled graphs
that preserve balance, and show that a group-labeled graph is balanced i�
all edge and vertex labels can be made 0 using these operations. These
operations generalize the switching operation for signed graphs.

Beineke and Harary [4] characterized directed graphs whose vertices can
be consistently marked such that at least one vertex has a `�' sign, and in [5],
they left open the same question for undirected graphs. Graphs that admit
such a marking are called markable. Roberts [9] characterized 2-connected
markable graphs in which the longest cycle has length at most �ve. In Section
5 we give a new constructive characterization of consistent marked graphs,
which immediately gives a simple constructive characterization of markable
graphs.

The notation and terminology used is largely standard, however, we clar-
ify a few terms that are frequently required. The graphs that we consider are
�nite and undirected but may have loops and/or multiple edges. We assume
each edge has two end vertices that may possibly be the same, in which case
it is a loop, else it is a link. The vertex set of a graph G is denoted by V (G)
and the edge set by E(G).

A path P is a sequence of distinct vertices and edges v0; e1; v1; : : : ; el; vl
such that the end vertices of ei are vi�1 and vi for 1 � i � l. The path P
is said to be a v0{vl path of length l. The end vertices of P are v0 and vl,
all other vertices are internal. If A � V (G) and v 2 V (G) n A, then an A{v
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path is a u{v path for some u 2 A, whose internal vertices are not in A. A
cycle C is a sequence of vertices and distinct edges v0; e1; v1; : : : ; vl�1; el; vl,
such that v0 = vl and all other vertices are distinct, and ei has end vertices
vi�1 and vi, for 1 � i � l.

A tree T in a graph G is a connected subgraph of G without cycles. If
u; v are vertices in a tree T , we denote by T [u; v] the unique path contained
in T having end vertices u and v. In particular, if P is a path and u; v are
vertices in P , then P [u; v] is the subpath of P with end vertices u; v. If T
is a spanning tree in a graph G, a fundamental cycle with respect to T is
a cycle in G containing exactly one edge not in T . The edges not in T are
called cotree edges. If A � V (G) is a non-empty proper subset of vertices,
then the set of edges having exactly one end vertex in A is called a cut in
the graph.

If G1; G2 are graphs then the graph G1[G2 has vertex set V (G1)[V (G2)
and edge set E(G1) [E(G2). If G1 is a subgraph of a graph G and uv is an
edge in G, let G1 [ uv be the graph with vertex set V (G1) [ fug [ fvg, and
edge set E(G1) [ fuvg.

In this paper, we will consider group-labeled graphs (G;w) whose vertices
and edges are assigned labels from some arbitrary abelian group �. However,
if � �= �1 � �2 for some non-trivial groups �1;�2, then a labeling of G by �
may be considered to be a product of labelings by �1 and �2. The labeling
by � is balanced i� the corresponding labelings by �1 and �2 are balanced,
and the number of balanced labelings by � is the product of the number of
balanced labelings by �1 and �2. Therefore, to understand balanced group-
labeled graphs, it is su�cient to consider the case when � is a cyclic group,
in particular Zk, for some positive integer k. Further, there is no loss of
generality in assuming the graphs being considered are connected. Thus, in
the rest of the paper, a group-labeled graph (G;w) will be a connected graph
G whose vertices and edges have been assigned labels from Zk, for some �xed
positive integer k.

We will assume elements of Zk to be f0; 1; 2; : : : ; k � 1g. However, in all
arithmetic expressions, addition and subtraction is performed using ordinary
integers, and only the �nal label assigned will be reduced modulo k. If k is
odd, we let x=2 denote the unique element y 2 Zk such that 2y � x mod k.
If k is even, and x = 2x0 is also even, let x=2 be the unique element y 2 Zk

such that x0 � y mod k. Thus if k = 4 then x = (2+2)=2 would mean x = 2
rather than x = 0.
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2. Characterization

In this section, we generalize the characterizations of balanced signed
graphs (Theorem 1) and consistent marked graphs (Theorem 2) to group-
labeled graphs.

De�nition 1. Let (G;w) be a group-labeled graph. A u{v path P in G is
said to be good if 2w(P ) = w(u) +w(v): An edge uv is said to be good if the
path of length 1 containing the edge uv is good, that is if 2w(uv) + w(u) +
w(v) = 0. An edge or path that is not good is said to be bad.

Lemma 1. Let (G;w) be a group-labeled graph. Let P be a u{v path in G
and let x be any vertex in P . Suppose P [u; x] is a good path. Then P is good

i� P [x; v] is good.

Proof. Since P [u; x] is good, 2w(P [u; x]) = w(u) + w(x). Then 2w(P ) =
2(w(P [u; x]) +w(P [x; v])�w(x)) = 2w(P [x; v]) +w(u)�w(x) and 2w(P )�
w(u)� w(v) = 2w(P [x; v])� w(x)� w(v). Therefore 2w(P ) = w(u) + w(v)
i� 2w(P [x; v]) = w(x) + w(v). �

Lemma 2. Let (G;w) be a group-labeled graph and let P be any u{v path in

G. Let x1; y1 be two distinct vertices in P , such that jP [u; x1]j < jP [u; y1]j.
Let Q be an x1{y1 path in G that is internally vertex-disjoint from P . Suppose

Q and P [x1; y1] are good paths. Then P is good i� the path P 0 = P [u; x1] [
Q [ P [y1; v] is good.

Proof. This follows from the fact that 2w(P ) � 2w(P 0) = 2w(P [x1; y1]) �
2w(Q) = 0, since 2w(P [x1; y1]) = 2w(Q) = w(x1) + w(y1). Thus 2w(P ) =
w(u) + w(v) i� 2w(P 0) = w(u) + w(v). �

Lemma 3. Let (G;w) be a group-labeled graph in which all edges are good,

that is, 2w(uv) + w(u) + w(v) = 0 for all edges uv. Then (G;w) is balanced

i� k is odd or k is even and there exists a subset A � V (G) such that

w(uv) = �(w(u) + w(v) + �(u) + �(v))=2, where �(x) = 0 if x 2 A and

�(x) = k if x 62 A, for all x 2 V (G).

Proof. First suppose (G;w) is balanced. If k is odd there is nothing to
prove, so suppose k is even. Since 2w(uv) + w(u) + w(v) = 0 for all edges
uv, w(u) and w(v) must have the same parity for all edges uv. Since G
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is connected, all vertex labels must have the same parity. Given w(u) and
w(v) having the same parity, there are two possible values of w(uv) that
satisfy 2w(uv) + w(u) + w(v) = 0 either w(uv) = �(w(u) + w(v))=2 or
w(uv) = �(w(u) + w(v) + k)=2. Since every edge in G is good, by Lemma
1, every path in G is good. A good u{v path is said to be small if w(P ) =
(w(u) + w(v))=2 and large if w(P ) = (w(u) + w(v) + k)=2. Let T be any
spanning tree in G and let r be any �xed vertex in G. Let A � V (G) be
the set of vertices v such that T [r; v] is small. We show that for any edge
uv, w(uv) = �(w(u) + w(v) + �(u) + �(v))=2, where �(x) = 0 if x 2 A and
�(x) = k if x 62 A. Note that r 2 A and for any vertex v, w(T [r; v]) =
(w(r) + w(v) + �(v))=2.

Let uv be any edge in T . We may assume without loss of generality,
that T [r; v] contains u and hence w(T [r; v]) = w(T [r; u]) + w(uv) + w(v).
Then w(uv) = w(T [r; v]) � w(T [r; u]) � w(v) = (w(r) + w(v) + �(v))=2 �
(w(r)+w(u)+�(u))=2�w(v) = �(w(u)+w(v)+�(u)��(v))=2 = �(w(u)+
w(v) + �(u) + �(v))=2. Let uv be an edge not in T . Since w is a balanced
labeling, w(uv) = �w(T [u; v]). Let T [r; x] = T [r; u]\T [r; v]. Then w(T [u; v])
= w(T [r; u]) + w(T [r; v]) � 2w(T [r; x]) + w(x) = (w(r) + w(u) + �(u))=2 +
(w(r)+w(v)+�(v))=2 �w(r)�w(x)+w(x) = (w(u)+w(v)+�(u)+�(v))=2.

Conversely, suppose (G;w) is a group-labeled graph in which all edges are
good. If k is odd, since every edge is good, we must have w(uv) = �(w(u)+
w(v))=2 for every edge uv. Then the weight of any cycle C = v0; e1; : : : ; el; vl,
is
P

1�i�l w(vi)+w(ei) =
P

1�i�l w(vi)�(w(vi�1)+w(vi))=2 = 0. Thus (G;w)
is balanced.

Suppose k is even and there exists such a subset A. Then the weight of
the cycle C is

P
1�i�l w(vi) + w(ei) =

P
1�i�l w(vi) � (w(vi�1) + w(vi) +

�(vi�1) + �(vi))=2 = �
P

1�i�l �(vi) = 0. Thus (G;w) is balanced. �

Note that Lemma 3 can be considered to be a generalization of the charac-
terization of balanced signed graphs, since if all vertex labels in a Z2-labeling
are 0, then all edges are good.

De�nition 2. A spanning tree T in a group-labeled graph (G;w) is good if

(i) Every fundamental cycle with respect to T has weight 0.

(ii) Any path in T that is the intersection of two fundamental cycles is
good.
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Lemma 4. Let (G;w) be a group-labeled graph and suppose it contains a

good spanning tree T . Let P1; P2; P3 be 3 edge-disjoint paths between vertices

u and v in G. Then P1; P2; P3 are good paths in G.

Proof. Let H be the graph P1 [ P2 [ P3. The proof is by induction on the
number of cotree edges in H, that is edges in H that are not in T .

Case 1. First suppose the paths are not internally vertex-disjoint. Without
loss of generality, let x 62 fu; vg be a vertex in V (P1)\V (P2). At least one of
the paths fP1[x; v]; P2[x; v]g, say P1[x; v], contains a cotree edge. Let P 0 be
a u{x path contained in P3 [ P2[x; v]. Then P1[u; x]; P2[u; x]; P

0 are 3 edge-
disjoint paths in G such that the number of cotree edges in the union of the
three paths is less than the number in H. By induction, P1[u; x]; P2[u; x]; P

0

are good paths. By a symmetrical argument, P1[x; v]; P2[x; v]; P
00 are good

paths, where P 00 is an x{v path contained in P3[P1[u; x] or P3[P2[u; x]. By
Lemma 1, P1 and P2 are good paths. If P3 has any internal vertex in common
with either P1 or P2, the same argument implies that P3 is a good path. If
P3 is internally vertex-disjoint from P1 and P2 then P 0 = P3 [ P2[x; v] and
since P 0 and P2[x; v] are good paths, by Lemma 1, P3 is also a good path.

Case 2. Suppose the paths are internally vertex-disjoint.

Case 2.1. Suppose there is a cotree edge xy in H such that the path T [x; y]
is not contained in H. Then we can �nd two distinct vertices x1; y1 in T [x; y]
such that V (T [x1; y1]) \ V (H) = fx1; y1g and E(T [x1; y1]) \ E(H) = ;.

Case 2.1.1. Suppose fx1; y1g � V (P1). We may assume without loss of gen-
erality that jP1[u; x1]j < jP1[u; y1]j. Let P

0
1 be the path P1[u; x1][ T [x1; y1][

P1[y1; v]. Then the number of cotree edges in P 0
1 [ P2 [ P3 is less than the

number in H and by induction P 0
1; P2; P3 are good paths. Since at least one

of fP2; P3g, say P3, contains a cotree edge, by induction, P1[x1; y1], T [x1; y1],
P1[u; x1][P2 [P1[y1; v] are also good paths. By Lemma 2, P1 is also a good
path. A symmetrical argument holds if fx1; y1g � V (Pi) for i 2 f2; 3g.

Case 2.1.2. Suppose x1 2 V (P1) and y1 2 V (P2). Suppose both P1[u; x1]
and P1[x1; v] contain cotree edges. Then, by induction, the 3 edge-disjoint
y1{v paths P2[y1; v], P2[u; y1] [ P3; T [x1; y1] [ P1[x1; v] are good paths. By a
symmetrical argument, P2[u; y1], P2[y1; v] [ P3; T [x1; y1] [ P1[u; x1] are good
u{y1 paths. Lemma 1 now implies that P2 and P3 are also good paths. If P3
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contains a cotree edge, by induction, the 3 edge-disjoint x1{y1 paths T [x1; y1],
P1[u; x1][P2[u; y1], P1[x1; v][P2[y1; v] are good paths. By Lemma 1, P1[u; x1]
is good and so is P1[x1; v]. Applying Lemma 1 again, we can conclude that
P1 is a good path. If P3 does not contain a cotree edge, either P2[u; y1] or
P2[y1; v] must contain a cotree edge. We may assume, by symmetry, that
P2[y1; v] contains a cotree edge. Then, by induction, the 3 edge-disjoint u{
x1 paths P1[u; x1], P2[u; y1] [ T [x1; y1], P3 [ P1[x1; v] are good. By repeated
application of Lemma 1, we conclude that T [x1; y1] and P1 are good paths.

A symmetrical argument holds if both P2[u; y1] and P2[y1; v] contain a
cotree edge. The only other possibility, taking into account symmetry, is
that P1[u; x1], P2[y1; v] and P3 contain a cotree edge. Then, by induction,
we can conclude that the paths P2[y1; v], T [x1; y1] [ P1[x1; v], P2[u; y1] [ P3,
P1[u; x1], P2[u; y1] [ T [x1; y1], P1[x1; v] [ P3, T [x1; y1], P1[u; x1] [ P2[u; y1],
P1[x1; v][P2[y1; v] are good paths. Again by repeated application of Lemma
1, we conclude that P1; P2; P3 are good paths. A symmetrical argument holds
if x1 2 V (Pi) and y1 2 V (Pj) for some i 6= j; fi; jg � f1; 2; 3g.

Case 2.2. Finally suppose that for every cotree edge xy in H, T [x; y] is
contained in H. This is possible if and only if one of the paths P1; P2; P3 is
contained in T and each of the other two paths contains exactly one cotree
edge. We may assume without loss of generality that P1; P2 contain exactly
one cotree edge and P3 is contained in T . Then C1 = P1 [ P3 and C2 =
P2 [ P3 are fundamental cycles with respect to T , whose intersection is the
path P3. Since T is good, P3 is good and w(C1) = w(C2) = 0. Since
w(C1) = w(P1) + w(P3) � w(u) � w(v) = 0 and 2w(P3) = w(u) + w(v), we
get 2w(P1) = 2(w(u) +w(v))� 2w(P3) = w(u) +w(v). Thus P1 is good and
by the same argument P2 is also good.

This completes the proof of Lemma 4. �

Theorem 3. A group-labeled graph (G;w) is balanced i� it contains a good

spanning tree. If (G;w) contains a good spanning tree, then all spanning trees

in (G;w) are good.

Proof. Suppose (G;w) is a balanced group-labeled graph and let T be any
spanning tree in G. By de�nition, every fundamental cycle with respect to T
has weight 0. Let P be a path in T that is the intersection of two fundamental
cycles C1 and C2. Let u; v be the end vertices of P . The symmetric di�erence
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of C1 and C2 is a cycle C3 in G. Then w(C3) = w(C1) + w(C2) � 2w(P ) +
w(u) + w(v). Since w(Ci) = 0 for 1 � i � 3, we have 2w(P ) = w(u) + w(v)
and P is a good path. Thus every spanning tree in G is good.

Conversely, let T be any good spanning tree in (G;w). We show that
every cycle C in G has weight 0. The proof is by induction on the number
of cotree edges in C.

If there is only one cotree edge in C, then C is a fundamental cycle with
respect to T and has weight 0, since T is good.

If there are at least two cotree edges in C, then there exist two distinct
vertices x; y 2 V (C) such that V (T [x; y]) \ V (C) = fx; yg and E(T [x; y]) \
E(C) = ;. Let P1; P2 be the two edge-disjoint x{y paths in C. Then, by
Lemma 4, P1; P2; T [x; y] are good paths. Also, each of P1; P2 contains at
least one cotree edge . Then, by induction, P1 [ T [x; y] and P2 [ T [x; y] are
cycles with weight 0. Hence w(C) = w(P1)+w(P2)�w(x)�w(y) = w(C1)�
w(T [x; y]) +w(x) +w(y) + w(C2)�w(T [x; y]) +w(x) +w(y)�w(x)�w(y)
= w(C1) + w(C2)� 2w(T [x; y]) + w(x) + w(y) = 0. Thus C also has weight
0. Hence (G;w) is balanced and every spanning tree in G is good. �

Note that from Lemma 4 and Theorem 3, we can conclude

Corollary 1. If (G;w) is a balanced group-labeled graph and P1; P2; P3 are

3 edge-disjoint u{v paths in G, then P1; P2; P3 are good paths.

The characterizations given by Roberts and Xu [11] can also be general-
ized in a similar way. Since the proofs are almost the same as in the case
of marked graphs, we mention only one, which follows immediately from
Theorem 3.

Corollary 2. A group-labeled graph (G;w) is balanced i� there is a spanning

tree T in G such that all cycles containing at most two cotree edges have

weight 0.

3. Counting

In this section we give a simple formula for the number of distinct bal-
anced labellings of a graph G by Zk, and hence the number of balanced
labellings of G by an arbitrary �nite abelian group �.
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De�nition 3. A 3-edge-connected component of a graph G is a maximal
subset of vertices of G, such that for any two vertices in the subset there are
3 edge-disjoint paths between them in G.

It is easy to see that distinct 3-edge-connected components of a graph
are disjoint and partition the vertex set. Let c3(G) denote the number of
3-edge-connected components of a graph G. Let W (G; k) denote the set of
balanced labellings of G by Zk and let w(G; k) = jW (G; k)j.

Theorem 4. For any connected graph G and positive integer k

w(G; k) = kjGj+c3(G)�1:

Proof. The proof is by induction on jGj.

Case 1. Suppose there is cut X in G of size 1. Let G1 and G2 be the
components of G � X. Then a balanced labeling of G is obtained from
balanced labellings of G1 and G2 by assigning an arbitrary label to the edge
in X. Thus w(G; k) = w(G1; k) � w(G2; k) � k. Since jGj = jG1j + jG2j,
c3(G) = c3(G1) + c3(G2) the theorem follows by induction.

Case 2. Suppose G is 2-edge-connected and has a 2-edge-cut X. Let G1 and
G2 be the components ofG�X. LetX = fp1p2; q1q2g such that pi; qi 2 V (Gi)
for i 2 f1; 2g. Note that pi may be the same vertex as qi. Let G0

i be the
graph obtained from Gi by adding a new edge ei with end vertices fpi; qig for
i 2 f1; 2g. Then jGj = jG0

1j + jG0
2j, c3(G) = c3(G

0
1) + c3(G

0
2). It is su�cient

to show that w(G; k) = w(G0
1; k) � w(G0

2; k) � k. The theorem then follows
by induction.

We show a bijection F : W (G; k) ! W (G0
1; k) �W (G0

2; k) � Zk. Let w
be any balanced labeling of G by Zk. Let wi be the labeling of G

0
i de�ned by

wi(x) = w(x) for x 2 V (Gi)[E(Gi) and wi(ei) = w(P3�i)+w(p1p2)+w(q1q2),
where Pj is any path between pj and qj in Gj. Note that since w is balanced,
all paths in Gj between pj and qj must have the same weight, so wi is well-
de�ned. This also implies that wi is a balanced labeling of G

0
i. De�ne F (w) =

(w1; w2; w(p1p2)).
Conversely, suppose w1 and w2 are balanced labellings of G0

1 and G0
2

respectively and let a 2 Zk. We show that there is a unique balanced labeling
w of G such that F (w) = (w1; w2; a). De�ne w(x) = wi(x) for all x 2
V (Gi) [ E(Gi) and w(p1p2) = a. Let w(q1q2) = w1(e1) + w2(e2) � a. It is
then easy to check that w is a balanced labeling of G and F (w) = (w1; w2; a).
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Case 3. SupposeG is 3-edge-connected and let w be any balanced labeling of
G by Zk. For every edge uv inG, there are 2 edge-disjoint u{v paths inG�uv,
hence Corollary 1 implies all edges are good, and 2w(uv)+w(u)+w(v) = 0.

By Lemma 3, if k is odd, (G;w) is a balanced graph i� w(uv) = �(w(u)+
w(v))=2 for all edges uv. Since the labels of the vertices can be arbitrary, the
number of distinct balanced labellings is kjGj. Since c3(G) = 1, the theorem
holds.

If k is even, all vertex labels must have the same parity. Again by Lemma
3, (G;w) is balanced i� there exists a subset A of vertices such that for any
edge uv, w(uv) = �(w(u) + w(v) + �(u) + �(v))=2, where �(x) = 0 if x 2 A
and �(x) = k if x 62 A. The labeling obtained is the same if the set A
is replaced by V (G) n A. Thus the total number of balanced labellings is
2� (k=2)jGj � 2jGj�1 = kjGj.

This completes the proof of Theorem 4. �

The following Corollary of Theorem 4 follows immediately by induction.

Corollary 3. The number of distinct balanced labellings of a connected graph

G by an arbitrary �nite abelian group � is j�jjGj+c3(G)�1.

It may be noted that in [3], edge weightings by real numbers in which
all cycles have total weight 0 were considered. It was shown that they form
a vector space of dimension c3(G) � 1. If vertex labels are also allowed the
dimension becomes jGj+ c3(G)� 1. This can be proved in the same way as
Theorem 4.

4. Switching

In this section, we de�ne a few simple operations on group-labeled graphs,
called shifting, that preserve balance, and show that any balanced labeling
of a graph can be obtained from the all-zero labeling using these operations.
Let (G;0) denote the group-labeled graph G with all vertex and edge labels
0.

De�nition 4. We de�ne the following operations on a group-labeled graph
(G;w). Here a denotes an arbitrary element of Zk.
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(i) Let u be any vertex inG. Let (G;w0) be the group-labeled graph de�ned
by w0(u) = w(u) + 2a, w0(e) = w(e)� 2a if e is a loop incident with u,
w0(e) = w(e) � a if e is a link incident with u, and w0(x) = w(x) for
all other vertices and edges x in G. (G;w0) is said to be obtained from
(G;w) by shifting the vertex u by a.

(ii) Let X be a minimal cut of size at most two in G. Let e1 be an edge
in X and let G1 be a component of G �X. Let (G;w0) be the group-
labeled graph de�ned by w0(v) = w(v) + a for all vertices v 2 V (G1),
w0(e) = w(e) � a for all edges e 2 E(G1) [ fe1g and w0(x) = w(x) for
all other vertices and edges x in G. (G;w0) is said to be obtained from
(G;w) by shifting the edge e1 in the cut X by a.

(iii) Let (G;w0) be the group-labeled graph de�ned by w0(v) = w(v) + a for
all vertices v 2 V (G) and w0(e) = w(e) � a for all edges e 2 E(G).
(G;w0) is said to be obtained from (G;w) by shifting the graph G by a.

Note that if k = 2, then switching a vertex is equivalent to shifting it
by 1. A group-labeled graph (G;w) is said to be shift equivalent to the
graph (G;w0) if (G;w0) can be obtained from (G;w) be a sequence of shift
operations.

Theorem 5. A group-labeled graph (G;w) is balanced i� it is shift equivalent

to (G;0).

Proof. It is easy to verify that each of the shifting operations preserves
balance. Thus any group-labeled graph (G;w) that is shift equivalent to
(G;0) is balanced. To prove the converse, suppose (G;w) is a balanced
group-labeled graph.

Let (G;w0) be a group-labeled graph shift equivalent to (G;w) such that
the order of the largest connected component of the spanning subgraph of
(G;w0) consisting of good edges is as large as possible and let H be this
component.

Case 1. Suppose H spans G. We claim that all edges in (G;w0) are good.
If uv is a bad edge, let P be a u{v path in H consisting of good edges. Since
the cycle P [uv has weight 0, 2w(uv) = �2w(P ) and since P is a good path,
2w(P ) = w(u) + w(v). This implies uv is a good edge, a contradiction.

If all edges are good, and k is odd, then for every edge uv, w0(uv) =
�(w0(u)+w0(v))=2. Thus (G;0) can be obtained from (G;w0) by shifting each
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vertex x by �w0(x)=2. If k is even and all edges are good, all vertices have
labels with the same parity, and by Lemma 3, there is a subset A � V (G)
such that for every edge uv, w0(uv) = �(w0(u)+w0(v)+�(u)+�(v))=2, where
for x 2 V (G), �(x) = 0 if x 2 A and �(x) = k if x 62 A. If w0(x) is even
for all vertices x, then (G;0) can be obtained from (G;w0) by shifting vertex
x by �(w0(x) + �(x))=2 for all vertices x. If w0(x) is odd for all vertices x,
then (G;0) can be obtained from (G;w0) by �rst shifting the graph G by 1
and then shifting vertex x by �(w0(x) + 1 + �(x))=2 for all vertices x . This
implies (G;w) is shift equivalent to (G;0).

Case 2. Suppose V (H) � V (G). Since G is connected, there exists an edge
uv in G such that u 2 V (H) and v 62 V (H). Clearly uv is a bad edge. We
claim that G� uv does not contain 2 edge-disjoint V (H){v paths. Suppose
there exist two such paths P1; P2 whose end vertices in V (H) are u1 and u2
(not necessarily distinct). Then there is a vertex x 2 V (H) such that H
contains 3 edge-disjoint paths Q1; Q2; Q3 such that Qi is an x{ui path for
i 2 f1; 2g and Q3 is an x{u path. The vertex x may possibly be one of
fu1; u2; ug. Then Q3[uv, Q1[P1, and Q2[P2 are 3 edge-disjoint x{v paths
in G. By Corollary 1, Q3 [ uv is a good path, and since Q3 is also good, by
Lemma 1, the edge uv is also good, a contradiction.

Therefore there exists a minimal cut X of size at most two containing the
edge uv such that H is a subgraph of some component of G�X. Let (G;w00)
be the group-labeled graph obtained from (G;w0) by shifting the edge uv
contained in the cut X by 2w0(uv) + w0(u) + w0(v). Then all edges in H as
well as the edge uv are good in (G;w00). But this contradicts the choice of
the graph (G;w0) and the component H.

This completes the proof of Theorem 5. �

5. Markable Graphs

In this section, we give a new constructive characterization of consis-
tent marked graphs. This immediately gives a characterization of markable
graphs, that is, graphs for which there exists a consistent marking of the
vertices with at least one vertex having a `�' sign.

Theorem 6. A 2-edge-connected marked graph G is consistent i� it satis�es

one of the following properties.
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(i) G is 3-edge-connected with all vertices positive.

(ii) G is bipartite with all vertices negative.

(iii) G is obtained from a 3-edge-connected graph G0 by subdividing exactly

once all edges in some cut of G0. The vertices in V (G) \ V (G0) are

positive and all other vertices in G, which have degree 2, are negative.

(iv) G is obtained from the disjoint union of consistently marked 2-edge-

connected graphs G1 and G2, by replacing edges p1q1 2 E(G1) and

p2q2 2 E(G2) by edges p1p2 and q1q2.

(v) G is obtained from the disjoint union of consistently marked 2-edge-

connected graphs G1 and G2, by deleting a negative vertex pi of degree
2 in Gi and adding edges q1q2 and r1r2, where qi; ri are the neighbors

of pi in Gi, for i 2 f1; 2g.

Proof. It is easy to verify that a marked graph satisfying any one of the
conditions in Theorem 6 is consistent.

Now we prove the converse. Suppose G is a 2-edge-connected graph and
let w be any consistent marking of G.

Suppose there is a 2-edge-cut X = fp1p2; q1q2g in G. Let G1; G2 be the
components of G � X such that fpi; qig � V (Gi). Since w is a consistent
marking of G, the parity of the number of negative vertices on all p1{q1 paths
in G1 and p2{q2 paths in G2 must be the same.

Suppose all pi{qi paths in Gi have even number of negative vertices. Let
G0
i be the graph obtained from Gi be adding an edge ei with end vertices

pi and qi. Then G0
i is 2-edge-connected, and the marking wi of G

0
i obtained

by restricting w to V (Gi) is a consistent marking of G0
i. Thus G satis�es

property (iv) in Theorem 6.
Suppose all pi{qi paths in Gi have odd number of negative vertices. Sup-

pose both G1 and G2 contain at least two vertices. Let G0
1 and G0

2 be the
graphs obtained from G by contracting the subgraphs G2 and G1, and let
v2 and v1 be the vertices representing the subgraphs G2 and G1 in G0

1 and
G0

2, respectively. Then the marking w1 of G0
1 de�ned by w1(v) = w(v) for

all v 2 V (G1) and w1(v2) = `�' is a consistent marking of G0
1. Similarly,

w2(v) = w(v) for all v 2 V (G2) and w2(v1) = `�' is a consistent marking
of G0

2. Since v1; v2 have degree 2 in G0
2 and G0

1, G satis�es property (v) in
Theorem 6.

We may now assume that if there is a 2-edge-cut X in G, at least one
component of G � X is a single negative vertex. This also implies G does
not contain a positive vertex of degree 2.
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Suppose two negative vertices of degree 2 are adjacent in G. If jGj > 3
then we get a 2-edge-cut X in G such that each component of G�X contains
at least two vertices, a contradiction. If jGj � 3 then either G contains 2
negative vertices joined by two edges or G is K3 with two negative and one
positive vertex. In the �rst case, G satis�es property (ii) in Theorem 6, while
in the second, there is a positive vertex of degree 2, a contradiction.

So we may assume no two negative vertices of degree 2 are adjacent.
Let G0 be the graph obtained from G by replacing every negative vertex v
of degree 2 by an edge having the neighbors of v as end vertices (the two
neighbors of v need not be distinct). Then G0 is 3-edge-connected.

Let (G0; w0) be the Z2-labeled graph, de�ned by w0(v) = 0 if w(v) = `+'
and w0(v) = 1 if w(v) = `�' for all v 2 V (G0), and w0(e) = 0 for edges
e 2 E(G) and w0(e) = 1 for the added edges, that is for e 2 E(G0) n E(G).
Then (G0; w0) is a balanced 3-edge-connected Z2-labeled graph. By Corollary
1, all edges are good and hence all vertex labels have the same parity.

Suppose all vertex labels are 0. Then by Lemma 3, there exists a subset
A � V (G0) such that w0(uv) = 1 i� exactly one of u; v is in A. If A = ;
or A = V (G0), then there is no edge labeled 1, and G is a 3-edge-connected
graph with all vertices positive. Thus G satis�es property (i) in Theorem 6.
If ; � A � V (G0), then G satis�es property (iii) in Theorem 6.

If all vertex labels are 1, then there exists a subset A � V (G0) such that
w0(uv) = 0 i� exactly one of u; v is in A. In this case, G is a bipartite graph
with all vertices negative, and it satis�es property (ii) in Theorem 6. �

As a corollary of Theorem 6, we get a constructive characterization of all
markable 2-edge-connected graphs.

Corollary 4. A 2-edge-connected graph G is markable i� it satis�es one of

the following properties.

(i) G is bipartite.

(ii) G is obtained from a 3-edge-connected graph G0 by subdividing exactly

once all edges in some cut of G0.

(iii) G is obtained from the disjoint union of a markable 2-edge-connected

graph G1 and an arbitrary 2-edge-connected graph G2, by replacing edges

p1q1 2 E(G1) and p2q2 2 E(G2), by edges p1p2 and q1q2.

(iv) G is obtained from the disjoint union of two markable 2-edge-connected

graphs G1 and G2, by deleting a vertex pi in Gi of degree 2, and adding
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edges q1q2 and r1r2, where qi; ri are the neighbors of pi in Gi, for i 2
f1; 2g.
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