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Abstract

Let T be any tree of order d > 1. We prove that every connected graph G with minimum
degree d contains a subtree T’ isomorphic to T" such that G — V(T”) is connected.

1 Introduction.

A subgraph H of a connected graph G is said to be non-separating if G — V(H) is a connected
non-empty graph. It is well-known that every non-trivial connected graph G contains a vertex v
such that G — v is connected. It is also known that every connected graph with minimum degree
two contains a non-separating edge [4] and that every connected graph with minimum degree three
contains a non-separating induced cycle [6].

A non-trivial connected graph G is said to be k-cohesive if for any two distinct vertices u and v,
d(u)+d(v) +d(u,v) > k, where d(u) is the degree of u and d(u,v) is the distance between u and v.
Locke [2] conjectured that for k > 3, every connected 2k-cohesive graph contains a non-separating
copy of every tree of order k, and proved it for paths [3]. Abreu and Locke [1] proved that every
connected (2k + 2)-cohesive graph contains a non-separating copy of every tree of order k and
diameter at most four.

We show that every connected graph of minimum degree d contains a non-separating copy of
every tree of order d. The graph mK,_1 vV K; for m > 3, shows that the degree bound is tight for
any tree of order d. Our result may be considered to be a partial step towards Locke’s conjecture.

The proof is based on a technique used by Mader to prove a completely different result. Mader [5]
showed that every graph with minimum degree d contains an edge uv such that there are d internally
vertex-disjoint paths between v and v in G. We extend this technique slightly to obtain our result.

The notation used is largely standard and follows, for example, [7]. One difference to be noted
is that we will refer to cliques in a graph by K;, where ¢ is an index and not the order of the clique.



2 Main Result

Theorem 1 Let G be a connected graph with minimum degree d > 1. Then for any tree T' of order
d, G contains a subtree T' isomorphic to T such that G — V(T") is connected.

Before proving the theorem, we introduce some definitions to describe Mader’s technique.

An ordered cligue K in a graph G is a complete subgraph of G with an ordering imposed on
the vertices of K. Let K be an ordered clique in a graph G with the ordering vq,vs,...,v; of
its vertices. A subtree T of G is said to be consistent with the ordered clique K if every vertex
v; € V(K)NV(T) has at most one neighbor in 7" that is not contained in {vy,ve,...,v;—1}. We
will be considering ordered pairs of the form (G, K), where K is an ordered clique in a graph G.

Definition 2 Let K be an ordered clique in a graph G and let vy,vs, ..., v be the ordering of the
vertices of K. If K is a proper subgraph of G, the reduction (G, K) of the ordered pair (G, K) is
the pair (G', K') defined as follows.

1. Suppose there is a verter v € V(G) \ V(K) such that v is adjacent to all vertices in K. Then
let G' =G and V(K') = V(K) U {v} with the ordering vi,va,...,vx,v of the vertices of K'.
If there is more than one such vertex, any one may be chosen arbitrarily.

2. Suppose no vertex in V(G) \ V(K) is adjacent to all vertices in K. For each verter w €
V(G)\ V(K), let m(w) be the largest index ¢ such that w is not adjacent to v; € V(K). Then
let K' = K —wvy, V(G') = V(G)\{v} and E(G") = E(G —vg) U{wvg(w)lw € No(vp) \V(K)}.

The reduction defined in Definition 2 can be applied repeatedly to an ordered pair (G, K), until
G — V(K) is empty. Define o?(G, K) = (G, K) and o*(G, K) = a(a* (G, K)) for i > 1.
Some obvious properties of this reduction are noted in Lemma 3.

Lemma 3 Let K be an ordered clique in a graph G and let (G;, K;) = o/ (G, K) for some i > 0.
Then the following statements are true.

1. G; — V(K;) is an induced subgraph of G — V(K).
2. The degree in G; of any vertex in V(G;) \ V(K;) is equal to its degree in G.

3. If S Cc V(G) \V(K;), then (G; — S, K;) = o*(G — S, K).

Let G be a graph with minimum degree d and let v1 be any vertex in G. Let (G;, K;) = o*(G,v1)
for i > 0. Let [ be the smallest number such that G; — V(K)) contains only one vertex. Since the
reduction can be applied until G; — V(K;) is empty, and G is non-trivial, there exists such an [ > 0.

Lemma 4 The vertex vy is the first vertex in each of the ordered cliques K;, for 0 <i <.

Proof: This is true by definition for i = 0. If (G;4+1, K;4+1) is obtained from (G;, K;) by applying
step 1 of the reduction, then the first vertex in K41 is the same as the first vertex in K;. The
same is true if step 2 of the reduction is applied, unless |K;| = 1 and K;;1 is empty. However, in



this case v; has no neighbor in V(G;) \ V(K;). Hence, by Lemma 3, any component of G; — V(K;)
is a component of G not containing vy, contradicting the fact that G is connected. O

Let T be any tree of order d. Let uy,us,...,uq be an ordering of the vertices of T such that u;
is adjacent to exactly one vertex u; with j >4, for 1 <7 <d.

Lemma 5 There exists a sequence of trees Ty, T, ..., T} satisfying the following properties for all
0<e <.

1. T; is a subtree of G; isomorphic to T.
2. The vertex vy is not contained in V (T;).
3. T; s consistent with K;.

4. Every connected component of G; — (V(K;) UV (T};)) contains a vertex w such that |[Ng,(w) N
V(K| > [V(K:) n V(T3]

Proof: We construct the sequence Ty, 11, ...,T; inductively, starting with 7;. Let w be the single
vertex in G; — V(K;). Since the degree of w is at least d in G;, |Kj| > d. Let v, viy,..., 0,
be vertices in K; adjacent to w in G; such that 7; < iy < --- < i4q. Now let the vertex u; of T’
correspond to the vertex v;,,, in Gy for 1 < j < d, and let the vertex ug of T' correspond to the
vertex w in G;. This gives a subtree T} of G; satisfying all properties stated in Lemma 5.

Suppose T;41 is a subtree of G, satisfying all properties in Lemma 5 for some 0 < ¢ < 1. We
show how to construct T; from Tj4.
Case 1.

Suppose G;41 is obtained from G; by applying step 1 of the reduction defined in Definition 2.
Then G; = Gi41, and K; = K;11 — v, where v is the last vertex in the ordering of V(K;11). Let T;
be the same as T;41. Then T; is a subtree of G;, isomorphic to T" and consistent with K.

If v € V(T;41), any component of G; — (V(K;) UV (T;)) is a component of G4 — (V(K;41) U
V(Ti11)). Also, for any vertex w in such a component, | Ng, (w)NV (K;)| > |Ng, ., (w)NV (K;11)|—1.
Since |V (K;)NV(T;)| = |V(Ki+1) NV (T;41)| — 1, by induction, using property 4 in Lemma 5, every
such component contains a vertex w with |Ng,(w) NV (K;)| > |V(K;) NV (T;)|.

If v ¢ V(Ti41), for the component of G; — (V(K;) UV (T;)) that contains v, |[Ng, (v) NV (K;)| >
|[V(K;) NV (T;)|, since v is adjacent to all vertices in K; and vy ¢ V(7;). Any other component of
G; — (V(K;)UV(T;)) is also a component of G;11 — (V(K;4+1) UV (T;41)). For any vertex w in such
a component, |Ng,(w) NV (K;)| = [Ng,,,(w) NV (K;41)|, hence by induction, using property 4 in
Lemma 5, such a component contains a vertex w such that |Ng, (w) NV (K;)| > |V (K;) N V(T3)].
Case 2.

Suppose G;41 is obtained from G; by applying step 2 of the reduction. Then V(G;) = V(G;41)U
{Uk}, V(KZ) = V(KZ+1) @] {Uk} and for some subset X - V(Gl+1) \ V(KZ’+1), E(Gl) = (E(GZ+1) \
{worlw € X}) U{wvglw € X}. Here vy, is the last vertex in the ordering of V(K;) and X =
Ng; (ve) \ V(K;). We call the edges {wvg(y), w € X} bad edges.

If none of the bad edges is contained in T, then let T; be the same as T;,1. Suppose wv; is a
bad edge contained in Tj;1 for some w € X and v; € V(Kj41). Since Tj11 is consistent with K; 1,



and vy € V(Tj41), all other neighbors of v; in Tjy; are contained in {vg,...,v;_1}, hence Tj;; can
contain at most one bad edge incident with v;. Similarly, there is at most one bad edge incident
with a vertex w € X. Let wivj,, wavj,,...,wnvj, be the bad edges contained in Tj 1, such that
J1 < j2 < -+ < jm. By the definition of the reduction, if wv, is a bad edge in G;1, then wv, is an
edge in G; for all p < ¢ < k. Construct T; from T;y1 by replacing the vertex v;, € V(T;41) by the
vertex vj, ., for 1 < p < m, where vj, ,, is vg. This is possible since v;,, is adjacent in G; to all
vertices adjacent to v;, in Tj;1. Since a vertex is replaced by a vertex following it in the ordering,
T; is consistent with K; and vy & V(T;).

If wis a vertex in V(Giy1) \ V(Kiy1), then |[Ng,(w) N V(K;)| = [Ng,,, (w) NV (K;11)| since
any bad edge incident with w is replaced by the edge wvy. Since the connected components of
G; — (V(K;) UV(T;)) are same as the components of Git1 — (V(K;41) U V(T41)), every such
component contains a vertex w such that |[Ng, (w) NV (K;)| > |[V(EK;) NV (Tit1)| = [V (EK:) NV (T;)].
Hence T; is the required tree in G, satisfying the properties in Lemma 5. a

Theorem 1 now follows from Lemma 5. The tree T obtained in Lemma 5 is a subtree of Gg = G,
isomorphic to T" and not containing the vertex v;. Since V(Ky) = {v1}, by property 4 in Lemma
5, every connected component of G — ({v1} UV (T))) contains a vertex adjacent to v;. This implies
Ty is a non-separating subtree of G isomorphic to 7' O
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