Color Models and Color Image Processing

CS 663, Ajit Rajwade

Pouring in color

- Grayscale image: 2D array of size $M \times N$ containing scalar intensity values (graylevels).
- Color image: typically represented as a 3D array of size $M \times N \times 3$ again containing scalar values. But each pixel location now has three values - called as R(red), G(green), B(blue) intensity values.
- All file formats store color images based on this representation.

Questions

- What are RGB? How are red, green, blue determined?
- Are there other ways of representing color?
- How do you distinguish between different intensities of the same color (shades)? Between varying levels of whiteness in a color (tints)?

http://en.wikipedia.org/wiki/Tints_and_shades

More questions

- How would you define an edge in a color image?
- How do you smooth color images?
- What do we know about human color perception?
- Why do we consider only 3 channels (i.e. RGB)? Are there images with more channels? Where are they used?

Color perception and physics

- Human perception of color is not fully understood, but there are some well understood physical principles.
- The color of light is defined by its constituent wavelengths (inverse of frequency).
- The visible part of the electromagnetic spectrum lies between 450 nm (violet) to 700 nm (red).

Color physics

- White light is a blend of several wavelengths of light, which get separated by "dispersive elements" such as prisms.
- Objects which reflect light that is balanced in several visible wavelengths appear "white".
- Objects which reflect light in a narrow range of wavelengths appear "colored" (example: green objects reflect light between 500 to 560 nm).
- No color starts or ends abruptly at a particular wavelength - the transitions are smooth.

Human color perception

- The human retina has two types of receptor cells that respond to light - the rods and the cones.
- The rods work in the low-light regime and are responsible for monochromatic vision.
- The cones respond to brighter light, and are responsible for color perception.
- There are around 5-7 million cones in a single retina.

Human color perception

- There are 3 types of cones. Each type responds differently to light of different wavelengths: L (responsive to long wavelengths, i.e. red), M (medium wavelengths, i.e. green) and \mathbf{S} (short wavelengths, i.e. blue).

Yellow color: L is stimulated a bit more than M and S is not stimulated
Red: L is stimulated much more than M and S is not stimulated
Violet: S is stimulated, M and L are not
Color-blindness: absence of one or more of the three types of cones
Response sensitivity functions for LMS cells

Human color perception

- Consider a beam of light striking the retina. Let its spectral intensity as a function of wavelength λ be given as $I(\lambda)$.
- The three types of cone cells re-weigh the spectral intensity and produce the following response:

$$
\begin{aligned}
& a_{L}=\int I(\lambda) c_{L}(\lambda) d \lambda \approx \sum_{\lambda} I(\lambda) c_{L}(\lambda) \\
& a_{M}=\int I(\lambda) c_{M}(\lambda) d \lambda \approx \sum_{\lambda} I(\lambda) c_{M}(\lambda) \\
& a_{S}=\int I(\lambda) c_{S}(\lambda) d \lambda \approx \sum_{\lambda} I(\lambda) c_{S}(\lambda)
\end{aligned}
$$

$$
\text { 2) } \underset{\text { Vectors of } \mathrm{N}_{\lambda}}{\left(\begin{array}{c}
a_{L} \\
a_{L} \\
a_{L}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{c}_{\mathbf{L}} \\
\mathbf{c}_{\mathbf{M}} \\
\mathbf{c}_{\mathbf{S}}
\end{array}\right)\left(\begin{array}{c}
I_{1} \\
I_{2} \\
\cdot \\
\cdot \\
I_{N_{\lambda}}
\end{array}\right)=}
$$

$$
=\mathrm{CI}
$$

$$
C \text { is a matrix of size } 3 \times N_{\lambda}
$$

$$
\text { and } \boldsymbol{I} \text { is a vector of } N_{\lambda}
$$

Human color perception

- The colors R,G,B are called primary colors their corresponding wavelengths are 435,546 , 700 nm respectively.
- These values were standardized by CIE (International Commission on Illumination Commission Internationale de l'Eclairage).

Display systems (CRT/LCD)

- The interior of a cathode ray tube (CRT) contains an array of triangular dot patterns (triads) containing electron-sensitive phosphor. Each dot in the triad produces light in one of the three primary colors based on the intensity of that primary color.
- Thus the three primary colors get mixed in different proportions by the color sensitive cones of the human eye to perceive different colors.
- Though the electronics of an LCD system is different from CRT, the color display follows similar principles.

Color Models (Color Spaces)

- A purpose of color model is to serve as a method of representing color.
- Some color models are oriented towards hardware (eg: monitors, printers), others for applications involving color manipulation.
- Monitors: RGB, Printers: CMY, human perception: HSI, efficient compression and transmission: YCbCr .

RGB color model

-Defines a cartesian coordinate system for colors - in terms of R,G,B axes.
-Images in the RGB color model consist of three component images, one for each primary color.
-When an RGB image is given as input to a display system, the three images combine to produce the composite image on screen.
-Typically, an 8 bit integer is used to represent the intensity value in each channel, giving rise to $\left(2^{\wedge} 8\right)^{\wedge} 3=1.677 x$ 10^7 colors.

b

FIGURE 6.9
(a) Generating the RGB image of the cross-sectional color plane (127, G, B).
(b) The three hidden surface planes in the color cube of Fig. 6.8.

($R=0$)

($G=0$)
($B=0$)

CMY(K) color space

-The colors cyan, magenta and yellow are "opponents" of red, green and blue respectively, i.e. cyan and red lie on diagonally opposite corners of the RGB cube, i.e.
$\mathrm{C}=255-\mathrm{R}, \mathrm{M}=255-\mathrm{G}, \mathrm{Y}=255-\mathrm{B}$
-Cyan, magenta and yellow are called secondary colors of light, or primary colors of pigments. A cyan colored surface illuminated with white light will not allow the reflection of red light. Likewise for magneta and green, yellow and blue.
-CMY are the colors of ink pigments used in printing industry. Color printing is a subtractive process - the ink subtracts certain color components from white light.
-For purposes of display, white is the full combination of RGB and black is the absence of light. For purposes of printing, white is the absence of any printing, and black is the full combination of CMY.

CMY(K) color space

- The printer puts down dots (of different sizes, shapes) of CMY colors with tiny spacing (of different widths) in between. The spacing is so tiny that our eye perceives them as a single solid color (optical illusion!). This process is called color half-toning.
- While black is a full combination of CMY, it is printed on paper using a separate black-color ink (to save costs). This is the ' K ' of the CMYK model.

Color half-toning

http://en.wikipedia.org/wiki/Halftone

Three examples of color half-toning with CMYK separations. From left to right: The cyan separation, the magenta separation, the yellow separation, the black separation, the combined halftone pattern and finally how the human eye would observe the combined halftone pattern from a sufficient distance.

Digression: Gray-scale half-toning

http://en.wikipedia.org/wiki/Halftone

Left: Halftone dots. Right: How the human eye would see this sort of arrangement from a sufficient distance.

Digression: negative after-images!

http://thebrain.mcgill.ca/flash/a/a_02/a_02_p/a_02_p_vis/a_02_p_vis.html\#

HSI color space

- RGB, CMY are not intuitive from the point of view of human perception/description.
- We don't think naturally of colors in the form of combinations of RGB.
- We tend of think of color as the following components: hue (the "inherent/pure" color red, orange, purple, etc.), saturation (the amount of white mixed in the color, i.e. pink versus magenta), intensity (the amount of black mixed in the color, i.e. dark red versus bright red).

a b

FIGURE 6.12
Conceptual
relationships
between the RGB and HSI color models.

- Intensity increases as we move from black to white on the intensity line.
- Consider a plane perpendicular to the intensity line (in 3D). Saturation of a color increases as we move on that plane away from the point where the plane and the intensity line intersect.
- How to determine hue? Pick any point (e.g. yellow) in the RGB cube, and draw a triangle connecting that point with the white point and black point. All points inside or on this triangle have the same hue. Any such point would be a color corresponding to a convex combination of yellow, black and white, i.e. of the form $a \times$ yellow $+b \times$ black $+c \times$ red, where a, b, c are non-negative and sum to 1 . By rotating this triangle about the intensity axis, you will get different hues.

By rotating the triangle about the intensity axis, you will get different hues. In fact hue is an ANGULAR quantity ranging from 0 to 360 degrees. By convention, red is considered 0 degrees.

HSI space

Primary colors are separated by 120 degrees. The secondary colors (of light) are 60 degrees away from the primary colors.

a
b
FIGURE 6.14 The
HSI color model
based on
circular color planes. The
\square
circles are perpendicular to the vertical intensity axis.
To be very accurate, this HSI spindle is actually hexagonal. But it is approximated as a circular spindle for convenience. This approximation does not alter the notion of hue or intensity and has an insignificant effect on the saturation.

RGB to HSI conversion

- Conversion formulae are obtained by making the preceding geometric intuition more precise:

$$
\begin{aligned}
& \theta=\cos ^{-1}\left(\frac{0.5[(R-G)+(R-B)]}{\sqrt{(R-G)^{2}+(R-B)(G-B)}}\right), \\
& \text { hue }=h=\theta \text { if } B \leq G \\
& =2 \pi-\theta \text { if } B>G \\
& S=1-\frac{3 \min (R, G, B)}{R+G+B} \\
& I=\frac{R+G+B}{3}
\end{aligned}
$$

Refer to textbook for formulae to convert back from HSI to RGB

HSI and RGB

a b c
FIGURE 6.15 HSI components of the image in Fig. 6.8. (a) Hue, (b) saturation, and (c) intensity images.

a b
c d
FIGURE 6.16 (a) RGB image and the components of its corresponding HSI image: (b) hue, (c) saturation, and (d) intensity.

Practical use of hue

$$
\begin{aligned}
& \theta=\cos ^{-1}\left(\frac{0.5[(R-G)+(R-B)]}{\sqrt{(R-G)^{2}+(R-B)(G-B)}}\right), \\
& \text { hue }=h=\theta \text { if } B \leq G \\
& =2 \pi-\theta \text { if } B>G
\end{aligned}
$$

Hue is invariant to:

- Scaling of R,G,B
- Constant offsets added to R,G,B

What does this mean physically?

Practical use of hue

- To understand this, we need to understand a model which tells you the what color is observed at a particular point on a surface of an object illuminated by one or more light sources.
- This color is given by:

Diffuse reflection from an irregular surface

Specular reflection

- Diffuse reflection from a rough surface: "diffuse" means that incident light is reflected in all directions.
- Specular reflection: part of the surface acts like a mirror, the incident light is reflected only in particular directions

Diffuse reflection Diffuse + specular reflection
$I^{(C)}=I_{\text {ambient }}^{(C)}+I_{\text {diffuse }}^{(C)}+I_{\text {specular }}^{(C)} C \in\{R, G, B\}$
$=k_{a} I_{a}+k_{d}^{(C)} L(\hat{n} \bullet \hat{s})+k_{s} L\left(\hat{r_{r}} \bullet \hat{\gamma}\right)^{\alpha}$
Vector normal to the surface at a point

Lighting direction

Viewing direction
$\mathrm{L}=$ Strength of white light source, $\mathrm{k}_{\mathrm{a}}, \mathrm{k}_{\mathrm{d}}, \mathrm{k}_{\mathrm{s}}$: surface reflectivity (fraction of incident light that is reflected off the surface)

For shiny surfaces, α is large.

Practical use of hue

- The ambient and specular components are assumed to be the same across RGB (neutral reflection model). So they get subtracted out when computing R-G,G-B,B-R. Hence hue is invariant to specular reflection!
- Notice: hue is independent of strength of lighting (why?), lighting direction (why?) and viewing direction (why?).
- This makes hue useful in object detection and object recognition or in applications such as detection of faces/foliage in color images.
- Hue is thus said to be an "illumination invariant" feature.

Food for thought

- We've heaped praises on hue, all along. Any ideas on its demerits?
- Suppose we define the following quantities ($\mathrm{r}, \mathrm{g}, \mathrm{b}$) [the chromaticity vector] derived from RGB:

$$
r=\frac{R}{R+G+B}, g=\frac{G}{R+G+B}, b=\frac{B}{R+G+B}
$$

Is the chromaticity vector also an illumination invariant feature? How does it compare to hue?

Digression: Playing with color: seeing is not (!) believing

http://thebrain.mcgill.ca/flash/a/a_02/a_02_p /a_02_p_vis/a_02_p_vis.html\#

Operations on color images

- Color image histogram equalization
- Color image filtering
- Color edge detection

Histogram equalization

- Method 1: perform histogram equalization on RGB channels separately.
- Method 2: Convert RGB to HSI, histogram equalize the intensity, convert back to RGB.
- Method 1 may cause alterations in the hue which is undesirable.
- Method 2 will change only the intensity, leaving hue and saturation unaltered. It is the preferred method.

Top row: original images
Middle row: histogram equalization channel by channel
Bottom row: histogram equalization on intensity (of HSI) and conversion back to RGB

Color image smoothing: bilateral filtering

- Remember the bilateral filter (HW2): an edgepreserving filter for grayscale images.
- It smoothes the image based on local weighted combinations driven by difference between spatial coordinates and intensity values.
$I(x, y)=\frac{\sum_{(i, j) \in N(x, y)} I(i, j) w(i, j)}{\sum_{(i, j) \in N(x, y)} w(i, j)}, w(i, j)=\exp \left(-\left[\frac{(i-x)^{2}+(j-y)^{2}}{\sigma_{s}^{2}}+\frac{(I(i, j)-I(x, y))^{2}}{\sigma_{I}^{2}}\right]\right)$,
$N(x, y)=$ small neighborho od (usually square) centered at (x, y)

Bilateral filtering for color images

- You can filter each channel separately, i.e.
$I_{C}(x, y)=\frac{\sum_{(i, j) \in N(x, y)} I_{C}(i, j) w_{C}(i, j)}{\sum_{(i, j) \in N(x, y)} w_{C}(i, j)}, w_{C}(i, j)=\exp \left(-\left[\frac{(i-x)^{2}+(j-y)^{2}}{\sigma_{s}^{2}}+\frac{\left(I_{C}(i, j)-I_{C}(x, y)\right)^{2}}{\sigma_{I}^{2}}\right]\right)$,
$N(x, y)=$ small neighborho od (usually square) centered at (x, y),
$C \in\{R, G, B\}$

Bilateral filtering for color images

- Or you can filter the three channels in a coupled fashion, i.e. the smoothing weights are same for all three channels and they are derived using information from all three channels.
$I_{C}(x, y)=\frac{\sum_{(i, j) \in N(x, y)} I_{C}(i, j) w(i, j)}{\sum_{(i, j) \in N \in(x, y)} w(i, j)}, w(i, j)=\exp \left(-\left[\frac{(i-x)^{2}+(j-y)^{2}}{\sigma_{s}^{2}}+\frac{\sum_{C \in\{R, G, B]}\left(I_{C}(i, j)-I_{C}(x, y)\right)^{2}}{\sigma_{I}^{2}}\right]\right)$,
$N(x, y)=$ small neighborhood (usually square) centered at (x, y)

What's wrong with separate channel bilateral filtering?

Channel by channel: Color artifacts around edges. RGB channels are highly inter-dependent - you shouldn't treat them as independent.

Separate channel

Coupled

More examples: see figure 4.3 of http://people.csail.mit.edu/sparis/publi/2009/fntcgv/Paris 09 Bilateral filtering.pdf

Color Edges

- A color (RGB) image will have three gradient vectors - one for each channel.
- We could compute edges separately for each channel.
- Option: Combine (add) channel-per-channel edges together to get a composite edge image. Not a good one? Why (see next slide)

Color Edges

- Problem: the two circled points have the same edge strength (mathematically), though one appears to be a stronger edge.

$\begin{array}{lllll}\text { a } & b & c & d \\ \text { e } & \text { f } & \text { g } & h\end{array}$
FIGURE 6.45 (a)-(c) R, G, and B component images and (d) resulting RGB color image. (e)-(g) R, G, and B component images and (h) resulting RGB color image.

Color Edge

- We want to ask the question: along which direction in XY space is the total magnitude of change in intensity the maximum?
- The squared change in intensity in a direction $(\cos \theta, \sin \theta)$ is given by (square of the directional derivative of the intensity):
$E(\theta)=\left(R_{x} \cos \theta+R_{y} \sin \theta\right)^{2}+\left(G_{x} \cos \theta+G_{y} \sin \theta\right)^{2}+\left(B_{x} \cos \theta+B_{y} \sin \theta\right)^{2}$
$=\left(R_{x}^{2}+G_{x}^{2}+B_{x}^{2}\right) \cos ^{2} \theta+\left(R_{y}^{2}+G_{y}^{2}+B_{y}^{2}\right) \sin ^{2} \theta+2 \sin \theta \cos \theta\left(R_{x} R_{y}+G_{x} G_{y}+B_{x} B_{y}\right)$
- We want to maximize this w.r.t Θ. Take derivative with respect to θ and set it to zero.

Color Edge

- This gives the color gradient direction which makes an angle Θ w.r.t. the X axis, given by:

$$
\theta=\frac{1}{2} \tan ^{-1}\left(\frac{2\left(R_{x} R_{y}+G_{x} G_{y}+B_{x} B_{y}\right)}{\left(R_{x}^{2}+G_{x}^{2}+B_{x}^{2}\right)-\left(R_{y}^{2}+G_{y}^{2}+B_{y}^{2}\right)}\right)
$$

- For a grayscale image, this turns out to be

$$
\theta=\frac{1}{2} \tan ^{-1}\left(\frac{2 I_{x} I_{y}}{I_{x}^{2}-I_{y}^{2}}\right)=\frac{1}{2} \tan ^{-1}\left(\frac{\frac{2 I_{y}}{I_{x}}}{1-\left(\frac{I_{y}}{I_{x}}\right)^{2}}\right)=\tan ^{-1}\left(\frac{I_{y}}{I_{x}}\right)
$$

Color Edge

- Consider

$$
\begin{aligned}
& E(\theta)=\left(R_{x}^{2}+G_{x}^{2}+B_{x}^{2}\right) \cos ^{2} \theta+\left(R_{y}^{2}+G_{y}^{2}+B_{y}^{2}\right) \sin ^{2} \theta+2 \sin \theta \cos \theta\left(R_{x} R_{y}+G_{x} G_{y}+B_{x} B_{y}\right) \\
& =\left(\begin{array}{ll}
\cos \theta & \sin \theta
\end{array}\right)\left(\begin{array}{cc}
R_{x}^{2}+G_{x}^{2}+B_{x}^{2} & R_{x} R_{y}+G_{x} G_{y}+B_{x} B_{y} \\
R_{x} R_{v}+G_{x} G_{v}+B_{x} B_{y} & R_{v}^{2}+G_{y}^{2}+B_{y}^{2}
\end{array}\right)\binom{\cos \theta}{\sin \theta}
\end{aligned}
$$

Local color gradient matrix

- It turns out that the Θ (i.e. the color gradient) we derived is given by the eigenvector of this matrix corresponding to the larger eigenvalue. The direction perpendicular to it (i.e. the eigenvector corresponding to the smaller eigenvalue) is the color edge.

a b c
FIGURE 6.47 Component gradient images of the color image in Fig. 6.46. (a) Red component, (b) green component, and (c) blue component. These three images were added and scaled to produce the image in Fig. 6.46(c).

The YCbCr color space

RGB and correlation coefficient

- The RGB space is inefficient from the point of view of image compression or transmission.
- This is because there is high correlation between the R,G,B values at corresponding pixels.
- This is measured by the correlation coefficient which is given as follows:

$$
r(x, y)=\frac{\sum_{i=1}^{N}\left(x_{i}-\mu_{x}\right)\left(y_{i}-\mu_{y}\right)}{\sqrt{\sum_{i=1}^{N}\left(x_{i}-\mu_{x}\right)^{2} \sum_{i=1}^{N}\left(y_{i}-\mu_{y}\right)^{2}}}=\frac{\sum_{i=1}^{N}\left(x_{i}-\mu_{x}\right)\left(y_{i}-\mu_{y}\right)}{(N-1) \sigma_{x} \sigma_{y}}
$$

RGB and correlation coefficient

- This is measured by the correlation coefficient which is given as follows:

$$
r(x, y)=\frac{\sum_{i=1}^{N}\left(x_{i}-\mu_{x}\right)\left(y_{i}-\mu_{y}\right)}{\sqrt{\sum_{i=1}^{N}\left(x_{i}-\mu_{x}\right)^{2} \sum_{i=1}^{N}\left(y_{i}-\mu_{y}\right)^{2}}}=\frac{\sum_{i=1}^{N}\left(x_{i}-\mu_{x}\right)\left(y_{i}-\mu_{y}\right)}{(N-1) \sigma_{x} \sigma_{y}}
$$

- The values of r lie from -1 to 1 . A high absolute value of r indicates high (positive or negative) correlation and a low value (close to 0) indicates low correlation.

RGB and correlation coefficient

- For the following image, the values of $r(\mathrm{R}, \mathrm{G}), r(\mathrm{G}, \mathrm{B})$ and $r(\mathrm{~B}, \mathrm{G})$ were all around 0.9. This is typical for most natural images.

PCA on RGB values

- Suppose you take N color images and extract RGB values of each pixel (3×1 vector at each location).
- Now, suppose you build an eigen-space out of this - you get 3 eigenvectors, each corresponding to 3 different eigenvalues.
- The eigen-coefficients are said to be decorrelated, i.e. the correlation coefficients between them are 0 .

PCA on RGB values

- The eigen-coefficients are said to be decorrelated!
- Why? Because if the covariance matrix of the RGB values if \mathbf{C}, then the covariance matrix of the eigen-coefficients is $\mathrm{V}^{\prime} \mathrm{CV}$ which is a diagonal matrix - which indicates zero values of the correlation coefficients.

PCA on RGB values

- The eigenvectors will look typically as follows:
0.59520 .66190 .4556
$0.60370 .0059-0.7972$
$0.5303-0.74960 .3961$
- Exact numbers are not important, but the first eigenvector is like an average of RGB. It is called as the Luminance Channel (Y). It is similar to the intensity in the HSI space.

PCA on RGB values

- The second eigenvector is like $Y-B$, and the third is like Y-G. These are called as the Chrominance Channels.
- The Y-Cb-Cr color space is related to this PCAbased space (though there are some details in the relative weightings of RGB to get Luminance and Chrominance - denoted by Cb and Cr).
- The values in the three channels Y, Cb and Cr are decorrelated, similar to the values projected onto the PCA-based channels.

PCA on RGB values

- The luminance channel (Y) carries most information from the point of view of human perception, and the human eye is less sensitive to changes in chrominance.
- This fact can be used to assign coarser quantization levels (i.e. fewer bits) for storing or transmitting Cb and Cr values as compared to the Y channel. This improves the compression rate.
- The JPEG standard for color image compression uses the YCbCr format. For an image of size $\mathrm{M} \times \mathrm{N} \times 3$, it stores Y with full resolution (i.e. as an $\mathrm{M} \times \mathrm{N}$ image), and Cb and Cr with 25% resolution, i.e. as $\mathrm{M} / 2 \times \mathrm{N} / 2$ images.

G channel

Image containing eigencoefficient value corresponding to 1 st eigenvector (with maximum eigenvalue)

Image containing eigencoefficient value corresponding to 2 nd eigenvector (with second largest eigenvalue)

The variances of the three eigen-coefficient values: 8411, 159.1, 71.7

Y channel

RGB and its corresponding $\mathrm{Y}, \mathrm{Cb}, \mathrm{Cr}$ channels

$$
\begin{aligned}
& Y=16+(65.481 R+128.553 G+24.966 B) \\
& C_{B}=128+(-37.79 R-74.203 G+112 B) \\
& C_{R}=128+(112 R-93.786 G-18.214 B)
\end{aligned}
$$

Beyond color: Hyperspectral images

- Hyperspectral images are images of the form $M \times N \times L$, where L is the number of channels. L can range from 30 to 30,000 or more.
- Finer division of wavelengths than possible in RGB!
- Can contain wavelengths in the infrared or ultraviolet regime.

Sources of confusion -

- Hyperspectral images are abbreviated as HSI!
- Hyperspectral images are different from multispectral images. The latter contain few, discrete and discontinuous wavelengths. The former contain many more wavelengths with continuity.

Beyond color: Hyperspectral images

- Widely used in remote sensing (satellite images) - often different materials/geographical entities (soil, water, vegetation, concrete, landmines, mountains, etc.) can be detected/classified by spectral properties.
- Also used in chemistry, pharmaceutical industry and pathology for classification of materials/tissues.

FIGURE 11.39
Example multispectral image with 6 bands
Formation of a vector from corresponding pixels in six images.

a b c
d ef
FIGURE 11.38 Multispectral images in the (a) visible blue, (b) visible green, (c) visible red, (d) near infrared, (e) middle infrared, and (f) thermal infrared bands. (Images courtesy of NASA.)

FIGURE 11.40 The six principal component images obtained from vectors computed using Eq. (11.4-6). Vectors are converted to images by applying Fig. 11.39 in reverse.

$\boldsymbol{\lambda}_{\mathbf{1}}$	$\boldsymbol{\lambda}_{\mathbf{2}}$	$\boldsymbol{\lambda}_{\mathbf{3}}$	$\boldsymbol{\lambda}_{\mathbf{4}}$	$\boldsymbol{\lambda}_{\mathbf{5}}$	$\boldsymbol{\lambda}_{\mathbf{6}}$
10344	2966	1401	203	94	31

TABLE 11.6
Eigenvalues of the covariance matrices obtained from the images in Fig. 11.38.

a b c
d e f
FIGURE 11.41 Multispectral images reconstructed using only the two principal component images corresponding to the two principal component images with the largest eigenvalues (variance). Compare these images with the originals in Fig. 11.38.

RGB Image

CASSI Image

Fig. 5. (Color online) Using the GretagMacbeth ColorChecker as a baseline, comparisons were made with white-light sunlight emulation. (a)-(d) compare snapshot versus 4,8 , and 16 frame reconstructions. Nearby colors can bleed into the spectra, as seen in the RGB image, where the blue just to the right of the orange square was dispersed into the orange. Multiple frames eliminate this problem.

Table 2. RMSE of CASSI Spectra versus Reference Spectrometer

Frames	Center				Edge			
	(a)	(b)	(c)	(d)	(a)	(b)	(c)	(d)
1	9.6\%	6.9\%	4.1\%	17.4\%	14.0\%	11.7\%	8.4\%	34.3\%
4	2.7\%	3.6\%	2.4\%	4.5\%	5.3\%	8.1\%	2.7\%	10.2\%
8	3.7\%	3.3\%	2.6\%	5.4\%	2.7\%	3.6\%	2.3\%	8.9\%
16	1.9\%	3.4\%	2.8\%	5.0\%	2.9\%	4.1\%	2.7\%	6.8\%

Fig. 6. (Color online) Multiframe CASSI reconstruction of the GretagMacbeth ColorChecker, showing all the channels from $460-650 \mathrm{~nm}$.

Fig. 8. (Color online) All channels from $500-650 \mathrm{~nm}$ from a 24 -frame reconstruction of the data cube.

