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Fourier Transform

• You have so far studied the Fourier transform 
of a 1D or 2D continuous (analog) function.

• The functions we deal with in practical signal 
or image processing are however discrete.

• We need an analog of the Fourier transform of 
such discrete signals.



Towards the Discrete Fourier 
Transform

• Given a continuous signal f(t), we will consider 
signal g(t), obtained by sampling f(t) at 
equally-spaced discrete instants.

• So g(t) is the pointwise product of f(t) with an 
impulse train sΔT(t) given by:
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The impulse functions here are the 
Kronecker delta functions – not the Dirac 
delta functions.



Towards the Discrete Fourier 
Transform
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This shows that the Fourier transform G(μ) of the sampled signal g(t) is an infinite periodic 
sequence of copies of F(μ) which is the Fourier transform of f(t). The periodicity of G(μ) is 
given by the sampling period ΔT. Also though g(t) is a sampled function, its Fourier 
transform is continuous. 

Check the book 
for the derivation 
for this
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Towards the Discrete Fourier 
Transform

• Let us now try to derive G(μ) directly in terms 
of g(t) instead of F(μ). 
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Towards the Discrete Fourier 
Transform

• We have seen earlier that the Fourier transform 
of g(t) is periodic with period ΔT, so it is of 
interest to characterize one period.

• Consider that we take some M equally spaced 
samples of G(μ) over one period from μ = 0 to 
1/ΔT.  

• This gives us the form μ = u/MΔT where u = 
0,1,2…,M-1. 



Towards the Discrete Fourier 
Transform

• Plugging these value for μ we now have:

• This is called the Discrete Fourier Transform of the 
sequence {fn} where n = 0,1,…,M-1.

• Given the sequence {Fd(u)} where u = 0,1,…M-1, we can 
recover {fn} using:
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This is the inverse discrete 
fourier transform (IDFT).



Towards the Discrete Fourier 
Transform

• Consider:

• It can be proved that plugging in the expression for f(n) into 
the expression for Fd (u) yields the identity Fd (u) = Fd (u).

• Also plugging in the expression for Fd (u) into the expression 
for f(n) yields the identity f(n) = f(n). 
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Towards the Discrete Fourier 
Transform

• In some books, the following expressions are used:

• Note that the above expressions can be written in the 
following matrix vector format:

)/2exp(
1

)(
1

0

Munjf
M

uF
M

n

nd  




)/2exp()(
1

)(
1

0

MunjuF
M

nf
M

u

d 






fUF

UFf

d

d

T

 Vectors of size M by 1

U turns out to be an orthonormal M by M matrix – called the 
discrete Fourier basis matrix or DFT matrix. The square root of M 
in the denominator is required for U to be orthonormal, else it 
would be proportional to an orthonormal matrix.
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 Vectors of size M by 1

U is an orthonormal M by M matrix – called the discrete 
Fourier basis matrix or DFT matrix. The square root of M is 
required for U to be orthonormal, else it would be 
proportional to an orthonormal matrix.

Notice in the last equality how the signal f is being represented as a linear combination of column vectors 
of the DFT matrix. The coefficients of the linear combination are the discrete Fourier coefficients!



Sampling in time and frequency

• Remember that the function g(t) was created by 
sampling f(t) with a period of ΔT.

• And the spacing between the samples in the 
frequency domain (to get the DFT from G(μ)) is 

1/ ΔT since μ = u/MΔT where u = 0,1,2…,M-1.

• Likewise the range of frequencies spanned by the 
DFT is also inversely proportional to ΔT.



DFT properties

• Linearity: F(af+bg)(u) = aF(f)(u) + bF(g)(u)

• Periodicity:  F(u) = F(u + kM) for integer k, 

• And so is the inverse DFT since f(n) = f(n+kM).

• The DFT is in general complex. Hence it has a 
magnitude |F(u)| and a phase. 



Clarification about DFT
• We have seen earlier that the Fourier transform G(μ) of the sampled version g(t) of analog 

signal f(t) is continuous.

• We also saw earlier that we take some M equally spaced samples of G(μ) over one period 
from μ = 0 to 1/ΔT.  

• This way the DFT and the discrete signal both were vectors of M elements.

• Obtaining the DFT given the signal (or the signal given its DFT) is an efficient operation owing 
to the orthonormality of the discrete fourier matrix (why efficient? Because for an 
orthonormal matrix, inverse = transpose).

• Why don’t we take more than M samples in the frequency domain?

• If we did, the aforementioned computational efficiency would be lost. The inverse transform 
would require a matrix pseudo-inverse which is costly.

• Also the columns of the orthonormal matrix UT(size M x M) constitute a basis: i.e. any vector 
in M-dimensional space can be uniquely represented using linear combination of the 
columns of that matrix. If you took more than M samples in the frequency domain, that 
uniqueness would be lost as UT would now have size M’ x M where M’ > M.



Convolution of discrete signals

• Discrete equivalent of the convolution is:

• Due to the periodic nature of the DFT and IDFT, 
the convolution will also be periodic.

• The above formula represents one period of that 
periodic resultant signal.
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Convolution of discrete signals

• The convolution theorem from continuous signals has 
an extension to the discrete case as well:

• Therefore discrete convolution can be implemented 
using product of DFTs followed by an IDFT.

• But in doing so, one has to account for periodicity
issues to avoid wrap-around artifacts (see next slide).
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Convolution of discrete signals
• Consider the discrete convolution:

• To convolve f with h, you need to (1) flip h about 
the origin, (2) translate the flipped signal by an 
amount n, and (3) compute the sum in the above 
formula. 

• Steps 2 and 3 are repeated for each value of n.

• The variable n ranges over all integers required to 
completely slide h over f.

• If h and f have size M, then n has to range up to 
2M-1.
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Convolution of discrete signals
• In other words, the resultant signal must have length of 

2M-1.

• The convolution can be implemented in the 
time/spatial domain – and MATLAB has a routine called 
conv which does the job for you!

• Now imagine you tried to implement the convolution 
using a DFT of M-point signals followed by an M-point 
IDFT.

• Owing to the assumed periodicity, you would get an 
undesirable wrap-around effect. See next slide for an 
illustration.





Convolution of discrete signals
• How does one deal with this conundrum?

• If f has length M and h has length K, then you 
should zero-pad both sequences so that they 
now have length at least M+K-1.

• Then compute M+K-1 point DFT for both, 
multiply the DFTs and compute the M+K-1 
point IDFT.



Convolution of discrete signals: 2 
methods

• Consider you want to convolve signal f having N elements with signal h having 
K elements.

• You can use the conv routine in MATLAB – which by default produces a signal 
of N+K-1 elements for you. It takes care of zero-padding internally for you.

• The other (equivalent) alternative is to:

 Append f with K-1 zeros.

 Append h with N-1 zeros.

 Compute the N+K-1 point DFT of f and h (using fft).

 Multiply the two DFTs point-wise.

 Compute the IDFT of the result – this gives you a signal with N+K-1 elements.

• In both cases, you may wish to extract the first N elements of the resultant 
signal (note that the trailing K-1 elements may not be zeros!).



Why convolution using Fourier 
transforms?

• The time complexity of computing the 
convolution of a signal of length M with 
another of length M is O(M2).

• With a DFT computed naively, it would remain 
O(M2) – the complexity of multiplying a M x M
matrix with a M x 1 vector.
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Why convolution using Fourier 
transforms?

• But there’s a smarter way of doing the same which 
computes the DFT in O(M log M) time. 

• That is called the Fast Fourier Transform, discovered by 
Cooley and Tukey in 1965. 

• It is based on a divide and conquer algorithmic strategy.

• The same strategy can be used to compute the IDFT in O(M
log M) time.

• Hence convolution can now be computed in O(M log M) 
time.



Towards the Fast Fourier Transform

)/2exp( where

)/2exp()(
1

0

1

0

MjW

WfMunjfuF

M

un

M

M

n

n

M

n

n







 








KM n 22Let 

)12(

2

1

0

12

)2(

2

1

0

22

12

0

)( 














  nu

K

K

n

n

nu

K

K

n

n

un

K

K

n

n WfWfWfuF

Even indices
Odd indices

u

K

nu

K

K

n

n

nu

K

K

n

n WWfWfuF 2

)(
1

0

12

)(
1

0

2)( 










 )()2(

2

nu

K

nu

K WW 



Towards the Fast Fourier Transform
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The M-point DFT computation for F is split up into two halves. The first half requires
two M/2-point DFT computations – one for Feven, one for Fodd. The second half follows
directly without any additional transform evaluations once Feven and Fodd are computed.
Now Feven and Fodd can be further split up recursively.



Towards the Fast Fourier Transform

The M-point DFT computation for F is split up into two halves. The first half
requires two M/2-point DFT computations – one for Feven, one for Fodd. The
second half follows directly without any additional transform evaluations once
Feven and Fodd are computed. Now Feven and Fodd can be further split up
recursively.
This gives:
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There is also a fast inverse Fourier transform which works quite similarly in 
O(M log M) time. The speedup achieved by the fast fourier transform over a 
naïve DFT computation is rather dramatic for large M!
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MATLAB implementation

• The Fast Fourier Transform is implemented in 
MATLAB directly – there are the routines fft
and ifft for the inverse.



2D-DFT

• Given a 2D discrete signal (image) f(x,y) of size 
W1 by W2, its DFT is given as:
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2D-DFT computation

• Given a 2D discrete signal (image) f(x,y) of size 
W1 by W2, its DFT is given as:
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Compute row-wise FFT, followed by a column-wise 
FFT. Overall complexity is W1W2 log(W1W2).



MATLAB implementation

• The FFT for 2D arrays or images is 
implemented in MATLAB routines fft2 and 
ifft2.



2D-DFT properties

• Linearity: F(af+bg)(u,v) = aF(f)(u,v) + bF(g)(u,v) 
where a and b are scalars.

• Periodicity:  F(u,v) = F(u + k1W1,v) = F(u,v + k2W2)=
F(u + k1W1,v + k2W2) for integer k1 and k2.

• And so is the inverse DFT since f(x,y) = f(x + 
k1W1,y) = f(x,y + k2W2)= f(x + k1W1,y + k2W2) for 
integer k1 and k2.



2D-DFT: Magnitude and phase

• The phase carries very critical information.

• If you retain the magnitude of the Fourier 
transform of an image, but change its phase, 
the appearance drastically changes.



Magnitude of FT of 
Salman Khan, and 
phase of P V Sindhu

Magnitude of FT of P 
V Sindhu, and phase 
of Salman Khan



2D-DFT properties

• Translation:

• Note that translation of a signal does not 
change the magnitude of the Fourier 
transform – only its phase. 
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2D-DFT properties

• The Fourier transform of a rotated image 
yields a rotated version of its Fourier 
transform

• If you consider conversion to polar 
coordinates, then we have:
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2D-DFT visualization in MATLAB

• In the formula for the DFT, the frequency range from u
= 0 to u = M-1 actually represents two half periods 
back to back meeting at M/2 (see next slide).

• It is more convenient to instead view a complete 
period of the DFT instead.

• For that purpose we visualize F(u-M/2) instead of F(u) 
in 1D, and F(u-W1/2,v-W2/2) instead of F(u,v) in 2D. 

• Thereby frequency u = 0 or u = v = 0 now occurs at the 
center of the displayed Fourier transform.

• Note that F(u-W1/2,v-W2/2) = F(f(x,y)(-1)x+y)(u,v), so 
the centering operation is easy to implement.



One full period

Two half periods – back to back





2D-DFT visualization in MATLAB

• To visualize the DFT of an image, we visualize the 
magnitude of the DFT.

• The Fourier transform is first centered as 
mentioned on the previous slide.

• Due to the large range of magnitude values, the 
DFT magnitudes are visualized on a logarithmic 
scale, i.e. we view log(|F(u,v)|+1) where the 1 is 
added for stability. 



fim2 = fft2(im2); 
absfim2 = log(abs(fim2)+1); 
imshow(absfim1,[-1 18]); 
colormap (jet); colorbar;

The (0,0) frequency lies at the 
top left corner

Without centering 
the fft
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fim2 = fftshift(fft2(im2)); 
absfim2 = log(abs(fim2)+1); 
imshow(absfim1,[-1 18]); 
colormap (jet); colorbar;

The (0,0) frequency lies in the
Center.

With centering 
the fft
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“Viewing” the rotation property of the 
DFT



2D convolution

• In MATLAB, 2D convolution can be 
implemented using the routine conv2.

• This can be very expensive if the signals you 
wish to convolve another with, are of large 
size.

• Hence one resorts to the convolution theorem 
which holds in 2D as well.



2D convolution
• The convolution theorem applies to 2D-DFTs as 

well:

• Consider an image f of size W1 x W2 which you 
want to convolve with a kernel k of size K1 x K2
using the DFT method. 

• Then you should symmetrically zero-pad f and k
so that they acquire size W1+K1-1 x W2+K2-1.

• Compute the DFTs of the zero-padded images 
using the FFT algorithm, point-wise multiply them 
and obtain the IDFT of the result.

• Extract the central W1 x W2 portion of the result –
for the final answer.
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Image Filtering: Frequency domain

• You have studied image filters of various types: 
mean filter, Gaussian filter, bilateral filter, patch-
based filter.

• The former two are linear filters and the latter 
two aren’t.

• Linear filters are represented using convolutions 
and hence have a frequency domain 
interpretation as seen on the previous slides. 



Image Filtering: Frequency domain

• Hence such filters can also be designed in the 
frequency domain.

• In certain applications, it is in fact more intuitive 
to design filters directly in the frequency domain.

• Why? Because you get to design directly which 
frequency components to weaken/eliminate and 
which ones to boost, and by how much.



Low pass filters

• Edges and fine textures in images contribute 
significantly to the high frequency content of an image.

• When you smooth/blur an image, these edges and 
textures are weakened (or removed).

• Such filters allow only the low frequencies to remain 
intact and are called as low pass filters.

• In the frequency domain, an ideal low pass filter can be 
represented as follows:

otherwise 0

 if ,1),( 222



 DvuvuH Note: we are assuming (0,0) to be the center (lowest) 
frequency. Frequencies outside a radius of D from the 
center frequency are eliminated.



Low pass filters



Low pass filters

• To apply such a filter to an image f to create a filtered 
image g, we do as follows:

• D is a design parameter of the filter – often called the 
cutoff frequency.

• This is called the ideal low pass filter as it completely 
eliminates frequencies outside the chosen radius.

),(),(),(

otherwise 0

 if ,1),( 222

vuHvuFvuG

DvuvuH









Low pass filters

Notice the ringing artifacts around 
the edges!



Low pass filters

• The ringing artifacts can be explained 
by the convolution theorem.

• The corresponding spatial domain 
filter is called the jinc function. 

• The jinc is a 2D and circularly 
symmetric version of the sinc
function – see also the next slide.

• Any cross section of the jinc is 
basically a sinc function.

https://en.wikipedia.org/
wiki/Sombrero_function

https://en.wikipedia.org/wiki/Sombrero_function
https://en.wikipedia.org/wiki/Sombrero_function


An image can be regarded as a weighted sum of Kronecker delta functions 
(impulses). Convolving with a sinc function means placing copies of the 
sinc function at each impulse. The central lobe of the sinc function causes 
the blurring and the smaller lobes give rise to the “ripple artifacts” or 
ringing. 



Low pass filters: other types

• These ringing artifacts can be quite undesirable. 

• Hence the ideal low pass filter is replaced by other 
types of low pass filters which weaken but do not 
totally eliminate the higher frequencies. 

• For example:

parametersfilter ),(,
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1
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parametersfilter )()),2/()(exp(),( 222  vuvuH

Butterworth filter:
D = cutoff frequency, 
n = order of the filter

Gaussian filter





Low pass filters: Butterworth

• As D increases, the Butterworth filter allows 
more frequencies to pass through without 
weakening (see previous slide).

• As the order n increases, the Butterworth 
filter weakens the higher frequencies more 
aggressively (why?) – which actually increases 
ringing artifacts (see previous slide). 





Low pass filters: Gaussian

• The spatial domain representation for the 
Gaussian LPF is basically a Gaussian.

• In fact, the following are Fourier transform 
pairs:
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http://www.cse.yorku.ca/~kosta/CompVis_Notes/fourier_transform_Gaussian.pdf

Notice from the equations that a spatial domain Gaussian with high standard deviation 
corresponds to a frequency domain Gaussian with low cut off frequency! The extreme case 
of this is a constant intensity signal (Gaussian with very high standard deviation – infinite as 
such) whose Fourier transform is an impulse at the origin of the Frequency plane). Another 
extreme case is a spatial domain signal which is just an impulse – its Fourier transform has 
constant amplitude everywhere.

http://www.cse.yorku.ca/~kosta/CompVis_Notes/fourier_transform_Gaussian.pdf


High pass filter

• It is a filter that allows high frequencies and 
eliminates or weakens the lower frequencies.

• The equation for the frequency response of an 
ideal high pass filter is given as:

• In fact, given an LPF, an HPF can be constructed 
from it using:

otherwise 1

 if ,0),( 222



 DvuvuH
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Ringing 
artifacts for 
an Ideal HPF!

Ringing 
artifacts 
gone!



Ringing 
artifacts for 
an Ideal HPF!

Ringing 
artifacts 
gone!



High pass filters

• Note that any gradient-based operation on 
images is essentially a type of high-pass filter.

• This includes first order derivative filters or  
the Laplacian filter. 

• Why? Consider the first order derivative filter 
in y direction. 
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High pass filters

• Consider the Laplacian filter:
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Boosting high frequencies

• In some applications, you neither wish to weaken 
the higher frequencies nor the lower frequencies.

• For example, in image sharpening applications 
you wish to boost the edges or textures (basically 
higher frequencies).

• In that case you wish to perform operations of 
the following form:

),()),(1(),( 1 vuFvukHyxg HP F





Notch filters

• There are applications where images are presented with 
periodic noise patterns – e.g. images scanned from old 
newspapers (see next slide).

• Usually, the amplitudes of the Fourier components of 
natural images are seen to decay with frequency.

• The Fourier transform of images with periodic patterns 
show unnatural peaks – unlike ordinary natural images.

• Such images can be restored using notch filters, which 
basically weaken or eliminate these unnatural frequency 
components (or any frequency components specified by 
the user).



The yellow ellipses indicate unnatural peaks in 
the Fourier transform of the image with the 
superimposed interfering pattern. These are 
unnatural because typical images do not have 
such Fourier transforms. Therefore one can 
apply a notch filter to remove the interfering 
pattern.





Courtesy: http://www.robots.ox.ac.uk/~az/lectures/ia/lect2.pdf

http://www.robots.ox.ac.uk/~az/lectures/ia/lect2.pdf


Courtesy: http://www.robots.ox.ac.uk/~az/lectures/ia/lect2.pdf

http://www.robots.ox.ac.uk/~az/lectures/ia/lect2.pdf


Notch filters

• The expression for a notch filter frequency 
response is given as follows (Q = number of 
frequency components to suppress):
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Ideal notch reject filter
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NR  Gaussian notch reject filter



Algorithm for frequency domain 
filtering

• Consider you have to filter an image f of size H x W using one of the filters 
described in these slides.

• Zero pad the image symmetrically to create a new image f’ of size 2H x 
2W. 

• Compute the Fourier transform of f’ and center it using fftshift. Let the 
Fourier transform be F’(u,v).

• Design a frequency domain filter H(u,v) of size 2H x 2W with the zero 
frequency at index (H,W) of the 2D filter array.

• Compute the product F’(u,v)H(u,v).
• Compute the inverse Fourier transform of the product after applying 

ifftshift (to undo the effect of fftshift).
• Consider only the real part of the inverse Fourier transform and extract 

the central portion of size H x W.
• That gives you the final filtered image.
• Note that the zero padding is important. To understand the difference, see 

the results on the next slide with and without zero-padding.



Effect of Gaussian LPF 
with appropriate zero 
padding

Original image

Effect of Gaussian LPF 
without appropriate zero 
padding – zero the 
border artifacts!



Interpreting the DFT of Natural Images

• In a few cases, one can guess some structural 
properties of an image by looking at its Fourier 
transform.

• Most natural images have stronger low frequency 
components as compared to higher frequency 
components. This is generally true, although its 
not a strictly monotonic relationship.

• For example, how does the DFT of a vertical edge 
image look like?
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There is a sinc function along the u axis!



 

 

2

4

6

8

10

12

14

16

Strong horizontal and vertical edges = strong responses along u and v axes in the Fourier plane!

A strong edge in direction θ in 
XY plane = a strong response in 
the direction perpendicular to θ
in UV plane



Interpreting the DFT

• For an image (or any 2D array) with Fourier 
transform F(u,v), F(0,0) is proportional to the 
average value of the image intensity – why? 

• The DFT of a non-zero constant intensity 
image is basically an impulse at the zero 
frequency. What is the height of the impulse?



DFT limitations

• A strong response at frequency (u,v) (i.e. a large magnitude 
for F(u,v)) indicates the presence of a sinusoid with frequency 
(u,v) and with large amplitude somewhere in the image.

• In general, the Fourier transform cannot and does not tell us 
where in the image the sinusoid is located (read section 1 of 
http://users.rowan.edu/~polikar/WAVELETS/WTpart1.html ).

• For that, you need to compute separate Fourier transforms 
over smaller regions of the image (Short time Fourier 
transform) – that will tell you which region(s) contained a 
particular sinusoidal component.

http://users.rowan.edu/~polikar/WAVELETS/WTpart1.html


Fun with Fourier: Hybrid images

• Hybrid images are a superposition of an image J1 with 
strong low frequency components and weak higher 
frequency components, and an image J2 with stronger 
higher frequency components and weak lower frequency 
components.

• J1 = apply LPF with some cutoff frequency D on an image.
• J2 = apply HPF with some cutoff frequency D on another 

image.

• The appearance of the hybrid image changes with viewing 
distance!



Tiger – when seen up-close, Cheetah – when seen from far

Einstein from nearby, 
Marilyn Monroe from 
far away (or if you 
squint)!

Refer to:
http://cvcl.mit.edu/hybrid_gallery/monroe_einstein.html
http://cvcl.mit.edu/publications/OlivaTorralb_Hybrid_Siggraph0
6.pdf (paper from a graphics journal!)

http://cvcl.mit.edu/hybrid_gallery/monroe_einstein.html
http://cvcl.mit.edu/publications/OlivaTorralb_Hybrid_Siggraph06.pdf
http://cvcl.mit.edu/publications/OlivaTorralb_Hybrid_Siggraph06.pdf

