
Discrete Fourier Transform

Ajit Rajwade

CS 663

Fourier Transform

• You have so far studied the Fourier transform
of a 1D or 2D continuous (analog) function.

• The functions we deal with in practical signal
or image processing are however discrete.

• We need an analog of the Fourier transform of
such discrete signals.

Towards the Discrete Fourier
Transform

• Given a continuous signal f(t), we will consider
signal g(t), obtained by sampling f(t) at
equally-spaced discrete instants.

• So g(t) is the pointwise product of f(t) with an
impulse train sΔT(t) given by:

)()()(

)()(

tstftg

Tntts

T

n

T











 
The impulse functions here are the
Kronecker delta functions – not the Dirac
delta functions.

Towards the Discrete Fourier
Transform















n

T

Tn
T

S

SFtstftgG

)/(
1

)(where

)(*)())()(())(()(



 FF



 


























n

n

TnF
T

dtTnttF
T

dttStFG

)/(
1

)/()(
1

)()()(





This shows that the Fourier transform G(μ) of the sampled signal g(t) is an infinite periodic
sequence of copies of F(μ) which is the Fourier transform of f(t). The periodicity of G(μ) is
given by the sampling period ΔT. Also though g(t) is a sampled function, its Fourier
transform is continuous.

Check the book
for the derivation
for this

G(μ)

G(μ)

G(μ)

Towards the Discrete Fourier
Transform

• Let us now try to derive G(μ) directly in terms
of g(t) instead of F(μ).

)2exp(

)2exp()()(

)2exp()()(

)2exp()())(()(

Tnjf

dttjTnttf

dttjTnttf

dttjtgtgG

n

n

n

n













 

































 F

Towards the Discrete Fourier
Transform

• We have seen earlier that the Fourier transform
of g(t) is periodic with period ΔT, so it is of
interest to characterize one period.

• Consider that we take some M equally spaced
samples of G(μ) over one period from μ = 0 to
1/ΔT.

• This gives us the form μ = u/MΔT where u =
0,1,2…,M-1.

Towards the Discrete Fourier
Transform

• Plugging these value for μ we now have:

• This is called the Discrete Fourier Transform of the
sequence {fn} where n = 0,1,…,M-1.

• Given the sequence {Fd(u)} where u = 0,1,…M-1, we can
recover {fn} using:

)/2exp()()(
1

0

MunjfuFuG
M

n

nd  




)/2exp()(
1

)(
1

0

MunjuF
M

fnf
M

u

dn 





This is the inverse discrete
fourier transform (IDFT).

Towards the Discrete Fourier
Transform

• Consider:

• It can be proved that plugging in the expression for f(n) into
the expression for Fd (u) yields the identity Fd (u) = Fd (u).

• Also plugging in the expression for Fd (u) into the expression
for f(n) yields the identity f(n) = f(n).

)/2exp()()(
1

0

MunjfuFuG
M

n

nd  




)/2exp()(
1

)(
1

0

MunjuF
M

nf
M

u

d 






Towards the Discrete Fourier
Transform

• In some books, the following expressions are used:

• Note that the above expressions can be written in the
following matrix vector format:

)/2exp(
1

)(
1

0

Munjf
M

uF
M

n

nd  




)/2exp()(
1

)(
1

0

MunjuF
M

nf
M

u

d 






fUF

UFf

d

d

T

 Vectors of size M by 1

U turns out to be an orthonormal M by M matrix – called the
discrete Fourier basis matrix or DFT matrix. The square root of M
in the denominator is required for U to be orthonormal, else it
would be proportional to an orthonormal matrix.

)1(

.

.
1

...)1(

.

.
1

)0(

.

.
1

)1(

.

.

)1(

)0(

..

.....

.....

..

..

1

)1(

.

.

)1(

)0(

domain realdomain,complex ;,,,

/)1)(1(2

/)1)(1(2

/)1)(0(2

/)1)(1(2

/)1)(1(2

/)1)(0(2

/)0)(1(2

/)0)(1(2

/)0)(0(2

/)1)(1(2/)1)(1(2/)0)(1(2

/)1)(1(2/)1)(1(2/)0)(1(2

/)1)(0(2/)1)(0(2/)0)(0(2




































































































































































MF

e

e

e

M
F

e

e

e

M
F

e

e

e

M

MF

F

F

eee

eee

eee

M

Mf

f

f

d

MMMj

MMj

MMj

d

MMj

Mj

Mj

d

MMj

Mj

Mj

d

d

d

MMMjMMjMMj

MMjMjMj

MMjMjMj

MMM

d

M

d

























RCCCR UFfUFf

fUF

UFf

d

d

T

 Vectors of size M by 1

U is an orthonormal M by M matrix – called the discrete
Fourier basis matrix or DFT matrix. The square root of M is
required for U to be orthonormal, else it would be
proportional to an orthonormal matrix.

Notice in the last equality how the signal f is being represented as a linear combination of column vectors
of the DFT matrix. The coefficients of the linear combination are the discrete Fourier coefficients!

Sampling in time and frequency

• Remember that the function g(t) was created by
sampling f(t) with a period of ΔT.

• And the spacing between the samples in the
frequency domain (to get the DFT from G(μ)) is

1/ ΔT since μ = u/MΔT where u = 0,1,2…,M-1.

• Likewise the range of frequencies spanned by the
DFT is also inversely proportional to ΔT.

DFT properties

• Linearity: F(af+bg)(u) = aF(f)(u) + bF(g)(u)

• Periodicity: F(u) = F(u + kM) for integer k,

• And so is the inverse DFT since f(n) = f(n+kM).

• The DFT is in general complex. Hence it has a
magnitude |F(u)| and a phase.

Clarification about DFT
• We have seen earlier that the Fourier transform G(μ) of the sampled version g(t) of analog

signal f(t) is continuous.

• We also saw earlier that we take some M equally spaced samples of G(μ) over one period
from μ = 0 to 1/ΔT.

• This way the DFT and the discrete signal both were vectors of M elements.

• Obtaining the DFT given the signal (or the signal given its DFT) is an efficient operation owing
to the orthonormality of the discrete fourier matrix (why efficient? Because for an
orthonormal matrix, inverse = transpose).

• Why don’t we take more than M samples in the frequency domain?

• If we did, the aforementioned computational efficiency would be lost. The inverse transform
would require a matrix pseudo-inverse which is costly.

• Also the columns of the orthonormal matrix UT(size M x M) constitute a basis: i.e. any vector
in M-dimensional space can be uniquely represented using linear combination of the
columns of that matrix. If you took more than M samples in the frequency domain, that
uniqueness would be lost as UT would now have size M’ x M where M’ > M.

Convolution of discrete signals

• Discrete equivalent of the convolution is:

• Due to the periodic nature of the DFT and IDFT,
the convolution will also be periodic.

• The above formula represents one period of that
periodic resultant signal.







1

0

)()())(*(
M

m

mnhmfnhf

Convolution of discrete signals

• The convolution theorem from continuous signals has
an extension to the discrete case as well:

• Therefore discrete convolution can be implemented
using product of DFTs followed by an IDFT.

• But in doing so, one has to account for periodicity
issues to avoid wrap-around artifacts (see next slide).

)()())(*(uHuFuhf F

Convolution of discrete signals
• Consider the discrete convolution:

• To convolve f with h, you need to (1) flip h about
the origin, (2) translate the flipped signal by an
amount n, and (3) compute the sum in the above
formula.

• Steps 2 and 3 are repeated for each value of n.

• The variable n ranges over all integers required to
completely slide h over f.

• If h and f have size M, then n has to range up to
2M-1.







1

0

)()())(*(
M

l

lnhlfnhf

Convolution of discrete signals
• In other words, the resultant signal must have length of

2M-1.

• The convolution can be implemented in the
time/spatial domain – and MATLAB has a routine called
conv which does the job for you!

• Now imagine you tried to implement the convolution
using a DFT of M-point signals followed by an M-point
IDFT.

• Owing to the assumed periodicity, you would get an
undesirable wrap-around effect. See next slide for an
illustration.

Convolution of discrete signals
• How does one deal with this conundrum?

• If f has length M and h has length K, then you
should zero-pad both sequences so that they
now have length at least M+K-1.

• Then compute M+K-1 point DFT for both,
multiply the DFTs and compute the M+K-1
point IDFT.

Convolution of discrete signals: 2
methods

• Consider you want to convolve signal f having N elements with signal h having
K elements.

• You can use the conv routine in MATLAB – which by default produces a signal
of N+K-1 elements for you. It takes care of zero-padding internally for you.

• The other (equivalent) alternative is to:

 Append f with K-1 zeros.

 Append h with N-1 zeros.

 Compute the N+K-1 point DFT of f and h (using fft).

 Multiply the two DFTs point-wise.

 Compute the IDFT of the result – this gives you a signal with N+K-1 elements.

• In both cases, you may wish to extract the first N elements of the resultant
signal (note that the trailing K-1 elements may not be zeros!).

Why convolution using Fourier
transforms?

• The time complexity of computing the
convolution of a signal of length M with
another of length M is O(M2).

• With a DFT computed naively, it would remain
O(M2) – the complexity of multiplying a M x M
matrix with a M x 1 vector.

fUF

UFf

d

d

T



Why convolution using Fourier
transforms?

• But there’s a smarter way of doing the same which
computes the DFT in O(M log M) time.

• That is called the Fast Fourier Transform, discovered by
Cooley and Tukey in 1965.

• It is based on a divide and conquer algorithmic strategy.

• The same strategy can be used to compute the IDFT in O(M
log M) time.

• Hence convolution can now be computed in O(M log M)
time.

Towards the Fast Fourier Transform

)/2exp(where

)/2exp()(
1

0

1

0

MjW

WfMunjfuF

M

un

M

M

n

n

M

n

n







 








KM n 22Let 

)12(

2

1

0

12

)2(

2

1

0

22

12

0

)(














  nu

K

K

n

n

nu

K

K

n

n

un

K

K

n

n WfWfWfuF

Even indices
Odd indices

u

K

nu

K

K

n

n

nu

K

K

n

n WWfWfuF 2

)(
1

0

12

)(
1

0

2)(










)()2(

2

nu

K

nu

K WW 

Towards the Fast Fourier Transform

u

K

nu

K

K

n

n

nu

K

K

n

n WWfWfuF 2

)(
1

0

12

)(
1

0

2)(












u

K

u

K

K

K

u

K

Ku

K

u

Koddeven

u

Koddeven

nu

K

K

n

nodd

nu

K

K

n

neven

WKKjWWWW

KuWuFuFKuF

KuWuFuFuF

WfuFWfuF

22222

2

2

)(
1

0

12

)(
1

0

2

)2/2exp(as

1,...,1,0for)()()(and

1,...,1,0for)()()(

)(,)(Define

























The M-point DFT computation for F is split up into two halves. The first half requires
two M/2-point DFT computations – one for Feven, one for Fodd. The second half follows
directly without any additional transform evaluations once Feven and Fodd are computed.
Now Feven and Fodd can be further split up recursively.

Towards the Fast Fourier Transform

The M-point DFT computation for F is split up into two halves. The first half
requires two M/2-point DFT computations – one for Feven, one for Fodd. The
second half follows directly without any additional transform evaluations once
Feven and Fodd are computed. Now Feven and Fodd can be further split up
recursively.
This gives:

)log(

)2/(2

...

2)2/(2)2/)4/(2(2

)2/(2)(

(constant))1(

22

MMO

kMMT

MMTMMMT

MMTMT

cT

kk













There is also a fast inverse Fourier transform which works quite similarly in
O(M log M) time. The speedup achieved by the fast fourier transform over a
naïve DFT computation is rather dramatic for large M!

M

T(M)

MATLAB implementation

• The Fast Fourier Transform is implemented in
MATLAB directly – there are the routines fft
and ifft for the inverse.

2D-DFT

• Given a 2D discrete signal (image) f(x,y) of size
W1 by W2, its DFT is given as:

))//(2exp(),(
1

),(21

1

0

1

021

1 2

WvyWuxjyxf
WW

vuF
W

x

W

y

d  










))//(2exp(),(
1

),(21

1

0

1

021

1 2

WvyWuxjvuF
WW

yxf
W

u

W

v

 










2D-DFT computation

• Given a 2D discrete signal (image) f(x,y) of size
W1 by W2, its DFT is given as:

)/2exp()/2exp(),(
1

),(12

1

0

1

021

1 2

WuxjWvyjyxf
WW

vuF
W

x

W

y

d   








))//(2exp(),(
1

),(21

1

0

1

021

1 2

WvyWuxjvuF
WW

yxf
W

u

W

v

 










Compute row-wise FFT, followed by a column-wise
FFT. Overall complexity is W1W2 log(W1W2).

MATLAB implementation

• The FFT for 2D arrays or images is
implemented in MATLAB routines fft2 and
ifft2.

2D-DFT properties

• Linearity: F(af+bg)(u,v) = aF(f)(u,v) + bF(g)(u,v)
where a and b are scalars.

• Periodicity: F(u,v) = F(u + k1W1,v) = F(u,v + k2W2)=
F(u + k1W1,v + k2W2) for integer k1 and k2.

• And so is the inverse DFT since f(x,y) = f(x +
k1W1,y) = f(x,y + k2W2)= f(x + k1W1,y + k2W2) for
integer k1 and k2.

2D-DFT: Magnitude and phase

• The phase carries very critical information.

• If you retain the magnitude of the Fourier
transform of an image, but change its phase,
the appearance drastically changes.

Magnitude of FT of
Salman Khan, and
phase of P V Sindhu

Magnitude of FT of P
V Sindhu, and phase
of Salman Khan

2D-DFT properties

• Translation:

• Note that translation of a signal does not
change the magnitude of the Fourier
transform – only its phase.

))//(2exp(),(),(

))//(2exp(),(),))(,((

201000

201000

WyvWxujyxfvvuuF

WvyWuxjvuFvuyyxxf







F

2D-DFT properties

• The Fourier transform of a rotated image
yields a rotated version of its Fourier
transform

• If you consider conversion to polar
coordinates, then we have:

)cossin,sincos(

),))(cossin,sincos((

),(),))(,((





vuvuF

vuyxyxf

vuFvuyxf







F

F





sin,cos

sin,cos





vu

ryrx

))sin(),cos((

),)))(sin(),cos(((

),(),))(,((











F

vurrf

vuFvuyxf

F

F

2D-DFT visualization in MATLAB

• In the formula for the DFT, the frequency range from u
= 0 to u = M-1 actually represents two half periods
back to back meeting at M/2 (see next slide).

• It is more convenient to instead view a complete
period of the DFT instead.

• For that purpose we visualize F(u-M/2) instead of F(u)
in 1D, and F(u-W1/2,v-W2/2) instead of F(u,v) in 2D.

• Thereby frequency u = 0 or u = v = 0 now occurs at the
center of the displayed Fourier transform.

• Note that F(u-W1/2,v-W2/2) = F(f(x,y)(-1)x+y)(u,v), so
the centering operation is easy to implement.

One full period

Two half periods – back to back

2D-DFT visualization in MATLAB

• To visualize the DFT of an image, we visualize the
magnitude of the DFT.

• The Fourier transform is first centered as
mentioned on the previous slide.

• Due to the large range of magnitude values, the
DFT magnitudes are visualized on a logarithmic
scale, i.e. we view log(|F(u,v)|+1) where the 1 is
added for stability.

fim2 = fft2(im2);
absfim2 = log(abs(fim2)+1);
imshow(absfim1,[-1 18]);
colormap (jet); colorbar;

The (0,0) frequency lies at the
top left corner

Without centering
the fft

0

2

4

6

8

10

12

14

16

18

0

2

4

6

8

10

12

14

16

18

fim2 = fftshift(fft2(im2));
absfim2 = log(abs(fim2)+1);
imshow(absfim1,[-1 18]);
colormap (jet); colorbar;

The (0,0) frequency lies in the
Center.

With centering
the fft

u

v

u

v

“Viewing” the rotation property of the
DFT

2D convolution

• In MATLAB, 2D convolution can be
implemented using the routine conv2.

• This can be very expensive if the signals you
wish to convolve another with, are of large
size.

• Hence one resorts to the convolution theorem
which holds in 2D as well.

2D convolution
• The convolution theorem applies to 2D-DFTs as

well:

• Consider an image f of size W1 x W2 which you
want to convolve with a kernel k of size K1 x K2
using the DFT method.

• Then you should symmetrically zero-pad f and k
so that they acquire size W1+K1-1 x W2+K2-1.

• Compute the DFTs of the zero-padded images
using the FFT algorithm, point-wise multiply them
and obtain the IDFT of the result.

• Extract the central W1 x W2 portion of the result –
for the final answer.

),(),(),)(*(vuHvuFvuhf F

Image Filtering: Frequency domain

• You have studied image filters of various types:
mean filter, Gaussian filter, bilateral filter, patch-
based filter.

• The former two are linear filters and the latter
two aren’t.

• Linear filters are represented using convolutions
and hence have a frequency domain
interpretation as seen on the previous slides.

Image Filtering: Frequency domain

• Hence such filters can also be designed in the
frequency domain.

• In certain applications, it is in fact more intuitive
to design filters directly in the frequency domain.

• Why? Because you get to design directly which
frequency components to weaken/eliminate and
which ones to boost, and by how much.

Low pass filters

• Edges and fine textures in images contribute
significantly to the high frequency content of an image.

• When you smooth/blur an image, these edges and
textures are weakened (or removed).

• Such filters allow only the low frequencies to remain
intact and are called as low pass filters.

• In the frequency domain, an ideal low pass filter can be
represented as follows:

otherwise 0

 if ,1),(222



 DvuvuH Note: we are assuming (0,0) to be the center (lowest)
frequency. Frequencies outside a radius of D from the
center frequency are eliminated.

Low pass filters

Low pass filters

• To apply such a filter to an image f to create a filtered
image g, we do as follows:

• D is a design parameter of the filter – often called the
cutoff frequency.

• This is called the ideal low pass filter as it completely
eliminates frequencies outside the chosen radius.

),(),(),(

otherwise 0

 if ,1),(222

vuHvuFvuG

DvuvuH







Low pass filters

Notice the ringing artifacts around
the edges!

Low pass filters

• The ringing artifacts can be explained
by the convolution theorem.

• The corresponding spatial domain
filter is called the jinc function.

• The jinc is a 2D and circularly
symmetric version of the sinc
function – see also the next slide.

• Any cross section of the jinc is
basically a sinc function.

https://en.wikipedia.org/
wiki/Sombrero_function

https://en.wikipedia.org/wiki/Sombrero_function
https://en.wikipedia.org/wiki/Sombrero_function

An image can be regarded as a weighted sum of Kronecker delta functions
(impulses). Convolving with a sinc function means placing copies of the
sinc function at each impulse. The central lobe of the sinc function causes
the blurring and the smaller lobes give rise to the “ripple artifacts” or
ringing.

Low pass filters: other types

• These ringing artifacts can be quite undesirable.

• Hence the ideal low pass filter is replaced by other
types of low pass filters which weaken but do not
totally eliminate the higher frequencies.

• For example:

parametersfilter),(,
)/(1

1
),(

222



 Dn

Dvu
vuH

n

parametersfilter)()),2/()(exp(),(222  vuvuH

Butterworth filter:
D = cutoff frequency,
n = order of the filter

Gaussian filter

Low pass filters: Butterworth

• As D increases, the Butterworth filter allows
more frequencies to pass through without
weakening (see previous slide).

• As the order n increases, the Butterworth
filter weakens the higher frequencies more
aggressively (why?) – which actually increases
ringing artifacts (see previous slide).

Low pass filters: Gaussian

• The spatial domain representation for the
Gaussian LPF is basically a Gaussian.

• In fact, the following are Fourier transform
pairs:








 








 


)/1(2
exp)(

2
exp

2

1
)(

2

2

2

2



u
uG

x
xg

http://www.cse.yorku.ca/~kosta/CompVis_Notes/fourier_transform_Gaussian.pdf

Notice from the equations that a spatial domain Gaussian with high standard deviation
corresponds to a frequency domain Gaussian with low cut off frequency! The extreme case
of this is a constant intensity signal (Gaussian with very high standard deviation – infinite as
such) whose Fourier transform is an impulse at the origin of the Frequency plane). Another
extreme case is a spatial domain signal which is just an impulse – its Fourier transform has
constant amplitude everywhere.

http://www.cse.yorku.ca/~kosta/CompVis_Notes/fourier_transform_Gaussian.pdf

High pass filter

• It is a filter that allows high frequencies and
eliminates or weakens the lower frequencies.

• The equation for the frequency response of an
ideal high pass filter is given as:

• In fact, given an LPF, an HPF can be constructed
from it using:

otherwise 1

 if ,0),(222



 DvuvuH

),(1),(vuHvuH LPHP 

Ringing
artifacts for
an Ideal HPF!

Ringing
artifacts
gone!

Ringing
artifacts for
an Ideal HPF!

Ringing
artifacts
gone!

High pass filters

• Note that any gradient-based operation on
images is essentially a type of high-pass filter.

• This includes first order derivative filters or
the Laplacian filter.

• Why? Consider the first order derivative filter
in y direction.

)1)(,(),(

),()1,(),(

/2 MvjevuIvuG

yxIyxIyxg




0)0,(uG

High pass filters

• Consider the Laplacian filter:

),(
4

)4(
),(

4/)),(4),1()1,(),1()1,((),(

/2/2/2/2

vuI
eeee

vuG

yxIyxIyxIyxIyxIyxg

MujMvjMujMvj 




 

0)0,0(G

Boosting high frequencies

• In some applications, you neither wish to weaken
the higher frequencies nor the lower frequencies.

• For example, in image sharpening applications
you wish to boost the edges or textures (basically
higher frequencies).

• In that case you wish to perform operations of
the following form:

),()),(1(),(1 vuFvukHyxg HP F

Notch filters

• There are applications where images are presented with
periodic noise patterns – e.g. images scanned from old
newspapers (see next slide).

• Usually, the amplitudes of the Fourier components of
natural images are seen to decay with frequency.

• The Fourier transform of images with periodic patterns
show unnatural peaks – unlike ordinary natural images.

• Such images can be restored using notch filters, which
basically weaken or eliminate these unnatural frequency
components (or any frequency components specified by
the user).

The yellow ellipses indicate unnatural peaks in
the Fourier transform of the image with the
superimposed interfering pattern. These are
unnatural because typical images do not have
such Fourier transforms. Therefore one can
apply a notch filter to remove the interfering
pattern.

Courtesy: http://www.robots.ox.ac.uk/~az/lectures/ia/lect2.pdf

http://www.robots.ox.ac.uk/~az/lectures/ia/lect2.pdf

Courtesy: http://www.robots.ox.ac.uk/~az/lectures/ia/lect2.pdf

http://www.robots.ox.ac.uk/~az/lectures/ia/lect2.pdf

Notch filters

• The expression for a notch filter frequency
response is given as follows (Q = number of
frequency components to suppress):

),,;,(),()()(

1

RvuvuHvuH ii
Q

i

NNR 




otherwise 1

)()(if 0),,;,(22)(2)()()(



 RvvuuRvuvuH iiii

NR
Ideal notch reject filter

 22)(2)()()(/))()((exp1),,;,(RvvuuRvuvuH iiii

NR  Gaussian notch reject filter

Algorithm for frequency domain
filtering

• Consider you have to filter an image f of size H x W using one of the filters
described in these slides.

• Zero pad the image symmetrically to create a new image f’ of size 2H x
2W.

• Compute the Fourier transform of f’ and center it using fftshift. Let the
Fourier transform be F’(u,v).

• Design a frequency domain filter H(u,v) of size 2H x 2W with the zero
frequency at index (H,W) of the 2D filter array.

• Compute the product F’(u,v)H(u,v).
• Compute the inverse Fourier transform of the product after applying

ifftshift (to undo the effect of fftshift).
• Consider only the real part of the inverse Fourier transform and extract

the central portion of size H x W.
• That gives you the final filtered image.
• Note that the zero padding is important. To understand the difference, see

the results on the next slide with and without zero-padding.

Effect of Gaussian LPF
with appropriate zero
padding

Original image

Effect of Gaussian LPF
without appropriate zero
padding – zero the
border artifacts!

Interpreting the DFT of Natural Images

• In a few cases, one can guess some structural
properties of an image by looking at its Fourier
transform.

• Most natural images have stronger low frequency
components as compared to higher frequency
components. This is generally true, although its
not a strictly monotonic relationship.

• For example, how does the DFT of a vertical edge
image look like?

0

2

4

6

8

10

12

14

16

18

There is a sinc function along the u axis!

2

4

6

8

10

12

14

16

Strong horizontal and vertical edges = strong responses along u and v axes in the Fourier plane!

A strong edge in direction θ in
XY plane = a strong response in
the direction perpendicular to θ
in UV plane

Interpreting the DFT

• For an image (or any 2D array) with Fourier
transform F(u,v), F(0,0) is proportional to the
average value of the image intensity – why?

• The DFT of a non-zero constant intensity
image is basically an impulse at the zero
frequency. What is the height of the impulse?

DFT limitations

• A strong response at frequency (u,v) (i.e. a large magnitude
for F(u,v)) indicates the presence of a sinusoid with frequency
(u,v) and with large amplitude somewhere in the image.

• In general, the Fourier transform cannot and does not tell us
where in the image the sinusoid is located (read section 1 of
http://users.rowan.edu/~polikar/WAVELETS/WTpart1.html).

• For that, you need to compute separate Fourier transforms
over smaller regions of the image (Short time Fourier
transform) – that will tell you which region(s) contained a
particular sinusoidal component.

http://users.rowan.edu/~polikar/WAVELETS/WTpart1.html

Fun with Fourier: Hybrid images

• Hybrid images are a superposition of an image J1 with
strong low frequency components and weak higher
frequency components, and an image J2 with stronger
higher frequency components and weak lower frequency
components.

• J1 = apply LPF with some cutoff frequency D on an image.
• J2 = apply HPF with some cutoff frequency D on another

image.

• The appearance of the hybrid image changes with viewing
distance!

Tiger – when seen up-close, Cheetah – when seen from far

Einstein from nearby,
Marilyn Monroe from
far away (or if you
squint)!

Refer to:
http://cvcl.mit.edu/hybrid_gallery/monroe_einstein.html
http://cvcl.mit.edu/publications/OlivaTorralb_Hybrid_Siggraph0
6.pdf (paper from a graphics journal!)

http://cvcl.mit.edu/hybrid_gallery/monroe_einstein.html
http://cvcl.mit.edu/publications/OlivaTorralb_Hybrid_Siggraph06.pdf
http://cvcl.mit.edu/publications/OlivaTorralb_Hybrid_Siggraph06.pdf

