Discrete Fourier Transform

Ajit Rajwade
CS 663

Fourier Transform

 You have so far studied the Fourier transform
of a 1D or 2D continuous (analog) function.

* The functions we deal with in practical signal
or image processing are however discrete.

 We need an analog of the Fourier transform of
such discrete signals.

Towards the Discrete Fourier
Transform

* Given a continuous signal f(t), we will consider
signal g(t), obtained by sampling f(t) at
equally-spaced discrete instants.

e So g(t) is the pointwise product of f(t) with an
impulse train s,.{t) given by:

= The impulse functions here are the
SAT (t) — 25(t o nAT) Kronecker delta functions — not the Dirac

N=—o0 delta functions.

g(t) = T(t)s, (1)

Towards the Discrete Fourier

Transform
G(u) = f(g(t)) = F(F(t)s,r (1) = F(u)*S(n)
where|S (,Ll) =— Z 5(/J n/AT) ?ohretchketggr?v?cron
N=—oo for this

.'.G(y)—IF(t)S(u t)dt_—jF(t)Z5(y t—n/AT)dt

N=—o00

ZF(y n/AT)

N=—o0

This shows that the Fourier transform G(u) of the sampled signal g(t) is an infinite periodic
sequence of copies of F(u) which is the Fourier transform of f(t). The periodicity of G(u) is
given by the sampling period AT. Also though g(t) is a sampled function, its Fourier
transform is continuous.

0 I
G(u)
—Z/AT —1/AT 1/AT 2;AT
G(u)
—2/AT —1/AT 0 1/AT 2/AT
G(u)
| | | | | | -

—3/AT —2/AT —1/AT 0 1/AT 2/AT 3/AT

A0 g

FIGURE 4.6

(a) Fourier
transform of a
band-limited
function.

(b)=(d)
Transforms of the
corresponding
sampled function
under the
conditions of
over-sampling,
critically-
sampling, and
under-sampling,
respectively.

Towards the Discrete Fourier
Transform

e Let us now try to derive G(u) directly in terms
of g(t) instead of F(u).

G(u) = F(g(t)) = j g(t)exp(—)2zut)at

f (1)o(t —nAT) exp(— j2zut)dt

I
2 [

]2 f(t)o(t—nAT)exp(—J2zut)dt

v

f exp(—J27zunAT)

>
I
3

Towards the Discrete Fourier
Transform

 We have seen earlier that the Fourier transform
of g(t) is periodic with period AT, so it is of
interest to characterize one period.

* Consider that we take some M equally spaced

samples of G(u) over one period from u =0 to
1/AT.

* This gives us the form u = u/MAT where u =
0,1,2..,M-1.

Towards the Discrete Fourier
Transform

* Plugging these value for n we now have:
M-1
Gu)=F,u)=) f ep(-j2zun/M)
n=0

 This is called the Discrete Fourier Transform of the
sequence {f,} wheren=0,1,...,M-1.

* Given the sequence {F4(u)} whereu=0,1,...M-1, we can
recover {f, }using'

This is the inverse discrete

f (n) — 1:n v Z F (U) eXp(]27ZUﬂ/ M) fourier transform (IDFT).

Towards the Discrete Fourier
Transform

Consider:

G(u)=F,(u)= Mz_:lfn exp(—j2zun/ M)

f(n) =$MZ:1FC, (u)exp(j2zun/ M)

It can be proved that plugging in the expression for f(n) into
the expression for F,(u) yields the identity F, (u) = F,(u).

Also plugging in the expression for F,(u) into the expression
for f(n) yields the identity f(n) = f(n).

Towards the Discrete Fourier
Transform

* In some books, the following expressions are used:

1 & .
F,(uUy=——) f exp(—Jj2zun/M)

f(n)zﬁZFd (U)exp(j22un/ M)

* Note that the above expressions can be written in the
following matrix vector format:

f = UF > Vectors of size M by 1

F U'f / U turns out to be an orthonormal M by M matrix — called the
discrete Fourier basis matrix or DFT matrix. The square root of M
in the denominator is required for U to be orthonormal, else it
would be proportional to an orthonormal matrix.

f = UF, Vectorsof size M by 1

Fd — UTf U is an orthonormal M by M matrix — called the discrete
Fourier basis matrix or DFT matrix. The square root of M is
required for U to be orthonormal, else it would be
proportional to an orthonormal matrix.

f=UF,,feR" F, eC" ,UecC"";C =complex domain, R = real domain

f (0) ai27(0)(0)/M ai27(0X1)/M C pizmO(M-D/M F, (0)
f (1) . ai27(1)(0)/M ai27(1)1)/M pl2zr@M-D/M F, (1)
M
f(M —1) pl22(M-1(O)/M gjzz(M-DW)/M pj2a(M-1)(M-D)/M F, (M 1)
ai27(0)(0)/M ai27(0)X1)/M ai27(0)(M-1)/M
ai27(1)0)/M ai27z(1)D)/M ai27(M(M-1)/M
1 1 1
—— F,(0) + —— Fo L)+ +—— F, (M —1)
- d - d - d
VM VM VM
j27(M-1)(0)/M j27(M-1)(1)/M j27(M-1)(M-1)/M
e e e

Notice in the last equality how the signal f is being represented as a linear combination of column vectors
of the DFT matrix. The coefficients of the linear combination are the discrete Fourier coefficients!

Sampling in time and frequency

« Remember that the function g(t) was created by
sampling f(t) with a period of AT.

* And the spacing between the samples in the
frequency domain (to get the DFT from G(p)) is

1/ AT since p = u/MAT where u =0,1,2...,M-1.

* Likewise the range of frequencies spanned by the
DFT is also inversely proportional to AT.

DFT properties
Linearity: Flaf+bg)(u) = a F{f)(u) + b F{g)(u)
Periodicity: F(u) = F(u + kM) for integer k,
And so is the inverse DFT since f(n) = f(n+kM).

The DFT is in general complex. Hence it has a
magnitude |F(u)| and a phase.

Clarification about DFT

We have seen earlier that the Fourier transform G(u) of the sampled version g(t) of analog
signal f(t) is continuous.

We also saw earlier that we take some M equally spaced samples of G(u) over one period
from u=0to 1/AT.

This way the DFT and the discrete signal both were vectors of M elements.

Obtaining the DFT given the signal (or the signal given its DFT) is an efficient operation owing
to the orthonormality of the discrete fourier matrix (why efficient? Because for an
orthonormal matrix, inverse = transpose).

Why don’t we take more than M samples in the frequency domain?

If we did, the aforementioned computational efficiency would be lost. The inverse transform
would require a matrix pseudo-inverse which is costly.

Also the columns of the orthonormal matrix U'(size M x M) constitute a basis: i.e. any vector
in M-dimensional space can be uniquely represented using linear combination of the
columns of that matrix. If you took more than M samples in the frequency domain, that
uniqgueness would be lost as UTwould now have size M’ x M where M’ > M.

Convolution of discrete signals
* Discrete equivalent of the convolution is:
M-1
(f *h)(n)=>_ f(m)h(n—m)
m=0

* Due to the periodic nature of the DFT and IDFT,
the convolution will also be periodic.

* The above formula represents one period of that
periodic resultant signal.

Convolution of discrete signals

* The convolution theorem from continuous signals has
an extension to the discrete case as well:

F(t*h)u) =F(u)H(u)

* Therefore discrete convolution can be implemented
using product of DFTs followed by an IDFT.

* Butin doing so, one has to account for periodicity
issues to avoid wrap-around artifacts (see next slide).

Convolution of discrete signals

Consider the discrete convolution:

(f *h)(n):Zf(l)h(n—l)

To convolve f with h, you need to (1) flip h about
the origin, (2) translate the flipped signal by an
amount n, and (3) compute the sum in the above
formula.

Steps 2 and 3 are repeated for each value of n.

The variable n ranges over all integers required to
completely slide h over f.

If h and f have size M, then n has to range up to
2M-1.

Convolution of discrete signals

In other words, the resultant signal must have length of
2M-1.

The convolution can be implemented in the
time/spatial domain — and MATLAB has a routine called
conv which does the job for you!

Now imagine you tried to implement the convolution
using a DFT of M-point signals followed by an M-point
IDFT.

Owing to the assumed periodicity, you would get an
undesirable wrap-around effect. See next slide for an
illustration.

3 “E 3 - % -
- m H I
0 200 400 0 200 400
h(m) h(m)
‘ y
2 . . 9 :-))
I : : = n....i ;ll"_"" ;I ' j N
0 200 400 0 200 400
e H(-m)
‘ I
——— m { |L i i
0 200 400 0 200 400
hix — m) hx — m)
! F
— | X[—-— . N .)
——— - m H JI | H § .
0 200 400 0 200 400
f(x)* g(x) f(x)*g(x)
1200 . 12(10 | |
fﬂﬂ -__"““",-' 600"*- “"-.... -‘_'ﬁ““ *...
Nttt x I
0 200 400 600 800 0 200 400

| Range of ™
Fourier transform
computation

Lo o
el =l =

e]

FIGURE 4.28 Left
column:
convolution of
two discrete
functions
obtained using the
approach
discussed in
Section 3.4.2. The
result in (e) is
correct. Right
column:
Convolution of
the same
functions, but
taking into
account the
periodicity
implied by the
DFT. Note in (j)
how data from
adjacent periods
produce
wraparound error,
yielding an
incorrect
convolution
result. To obtain
the correct result,

function paddin
must be useq,

Convolution of discrete signals

e How does one deal with this conundrum?

* |f f has length M and h has length K, then you
should zero-pad both sequences so that they
now have length at least M+K-1.

 Then compute M+K-1 point DFT for both,
multiply the DFTs and compute the M+K-1
point IDFT.

I I I I I

Convolution of discrete signals: 2
methods

Consider you want to convolve signal f having N elements with signal h having
K elements.

You can use the conv routine in MATLAB — which by default produces a signal
of N+K-1 elements for you. It takes care of zero-padding internally for you.

The other (equivalent) alternative is to:

Append f with K-1 zeros.

Append h with N-1 zeros.

Compute the N+K-1 point DFT of f and h (using fft).

Multiply the two DFTs point-wise.

Compute the IDFT of the result — this gives you a signal with N+K-1 elements.

In both cases, you may wish to extract the first N elements of the resultant
signal (note that the trailing K-1 elements may not be zeros!).

Why convolution using Fourier
transforms?

* The time complexity of computing the
convolution of a signal of length M with
another of length M is O(M?).

 With a DFT computed naively, it would remain
O(M?) — the complexity of multiplying a M x M
matrix with a M x 1 vector.
f = UF,
F,=U"f

Why convolution using Fourier
transforms?

But there’s a smarter way of doing the same which
computes the DFT in O(M log M) time.

That is called the Fast Fourier Transform, discovered by
Cooley and Tukey in 1965.

It is based on a divide and conquer algorithmic strategy.

The same strategy can be used to compute the IDFT in O(M
log M) time.

Hence convolution can now be computed in O(M log M)
time.

Towards the Fast Fourier Transform

M-1 M-1
Fu)=> f exp(—j2zun/M)=>" fW,"
n=0 n=0

whereW,, =exp(—J27 /M)

Let M =2" = 2K Evenindices Odd indices
2K-1

Fu)= D fW)
n=0 ,

K-1 K-1
S F(u) = Z fanrg(n) T Z f2n+1Wrg(n)\N2uK '.'WZUK(ZH) :le(”)
n=0 n=0

Towards the Fast Fourier Transform

K-1 K-1
LB =0 W DWW,
n=0 n=0

K-1 K-1
Deﬁne I:even (U) = Z onWIg(n)’ |:odd (U) — Z 1:2n+1WIg(n)
n=0 n=0

~Fu)=F,., (u+F,WW, foru=01,..,K-1
and F(u+K)=F,, (u)-F,,,uWW,, foru=01,...,K-1
as W, ‘ :WZUKWZ}Ii =W, exp(—j27K [2K) = -W,,

The M-point DFT computation for F is split up into two halves. The first half requires

two M/2-point DFT computations — one for F,,, one for F_,,. The second half follows
directly without any additional transform evaluations once F

ovenand F_ 4 are computed.
Now F,,.,and F_,4 can be further split up recursively.

Towards the Fast Fourier Transform

The M-point DFT computation for F is split up into two halves. The first half
requires two M/2-point DFT computations — one for F_,., one for F_ 4. The
second half follows directly without any additional transform evaluations once
Foven @nd F 44 are computed. Now F,., and F_ 44 can be further split up
recursively.

This gives:

2400

T (1) = ¢ (constant)
T(M)ZZT(M/2)+M 1800 |—
=22T(M/4)+M [2)+ M =2°T(M /2°) + 2M

T(M) 1200 |- .

= 2T (M /2*) +kM
ZO(M |Og|\/|) 0

600 — —

| I I
1 2 3

A

4 5 6 7 8 9 10 11 12 13 14 15
M

There is also a fast inverse Fourier transform which works quite similarly in

O(M log M) time. The speedup achieved by the fast fourier transform over a
naive DFT computation is rather dramatic for large M!

MATLAB implementation

 The Fast Fourier Transform is implemented in
MATLAB directly — there are the routines fft
and ifft for the inverse.

2D-DFT

* Given a 2D discrete signal (image) f(x,y) of size
W, by W,, its DFT is given as:

W, —1W,—1

F,(u,v) = \/Vﬁ D> (% y)exp(— j2a(ux/W, +vy/W,))

x=0 y=0

W, —1W,—1

f(x,y)= \/Vﬁ D> F(u,v)exp(j2(ux /W, +vy/W,))

u=0 v=0

2D-DFT computation

* Given a 2D discrete signal (image) f(x,y) of size
W, by W,, its DFT is given as:

1 Wl

F(u,v) = A (X, y)exp(=J2zvy /W,)exp (- J27ux /W)
d W, x:OyZ:(; 2 1

Compute row-wise FFT, followed by a column-wise
FFT. Overall complexity is W, W, log(W,W,).

W, —1W,—1

f(x,y)= \/Vﬁ > > F(u,v)exp(j2(ux /W, +vy/W,))

u=0 v=0

MATLAB implementation

 The FFT for 2D arrays or images is
implemented in MATLAB routines fft2 and
ifft2.

2D-DFT properties

* Linearity: Flaf+bg)(u,v) = a F(f)(u,v) + b Hg)(u,v)
where a and b are scalars.

* Periodicity: F(u,v)=F(u+ k,W,v)=Fu,v+k,W,)=
Flu+ k,W,v + k,W,) for integer k, and k,.

* And so is the inverse DFT since f(x,y) = f(x +
k,W.,y)=flxy+k,W,)=1f(x+k,W,y+ k,W,) for
integer k, and k..

2D-DFT: Magnitude and phase

* The phase carries very critical information.

* |f you retain the magnitude of the Fourier
transform of an image, but change its phase,
the appearance drastically changes.

Magnitude of FT of
Salman Khan, and
phase of PV Sindhu

Magnitude of FT of P
V Sindhu, and phase
of Salman Khan

2D-DFT properties

 Translation:

FEXX=Xo, Y= Yo))(U,V) = F(u,v) exp(— 27z (ux, /W, + vy, /W,))
F(u—uy,v—v,) =T (x y)exp(J2z(xu, /W, + yv, /W,))

* Note that translation of a signal does not
change the magnitude of the Fourier
transform — only its phase.

2D-DFT properties

* The Fourier transform of a rotated image
vields a rotated version of its Fourier
transform
Fx y)u,v)=F(u,v) -

F(f(xcosg—ysing,xsing+ycosg))(u,v) =
F (ucos¢—vsin g, usin ¢+ VCcos @)

* |f you consider conversion to polar

coordinates, then we have:
X=rcosd,y=rsiné FAXYIUV) =FUV) =
U = ©C0SO.V = »sin F(f(rcos(@+¢),rsin(@+¢)))(u,v) =
F(wcos(6 + @), wsin(6 + ¢))

2D-DFT visualization in MATLAB

In the formula for the DFT, the frequency range from u
= 0 to u = M-1 actually represents two half periods
back to back meeting at M/2 (see next slide).

It is more convenient to instead view a complete
period of the DFT instead.

For that purpose we visualize F(u-M/2) instead of F(u)
in 1D, and F(u-W,/2,v-W,/2) instead of F(u,v) in 2D.
Thereby frequency u =0 or u = v =0 now occurs at the
center of the displayed Fourier transform.

Note that F(u-W,/2,v-W,/2) = ‘FHf(x,y)(-1)*¥)(u,v), so
the centering operation is easy to implement.

F()

Y

0
F(p)

One fulkperiod

|

2/AT

—2/AT —1/AT 0 1/AT
F(p) TvJo half periods — back to back
A
I i i i -
—2/AT —1/AT 0 1/AT 2/AT
F(u)

\i

[| [
—3/AT —2/AT —1/AT

0

|
1/AT

[
2/AT

3/AT

oo o

FIGURE 4.6

(a) Fourier
transform of a
band-limited
function.

(b)-(d)
Transforms of the
corresponding
sampled function
under the
conditions of
over-sampling,
critically-
sampling, and
under-sampling,
respectively.

F(u)

Two back-to-back
periods meet here.

il
- -
-
- -
- -
- -
hd - -
- "
. .

|'-.-"'.".'-, LT | RPN L - U
I I I =
— M2 0 M/2—1—/\—M/2M—/;\—M
F(u)
4
Two back-to-back
periods meet here.
I .- ._...-.'.‘ ., I_‘.' ..lr\.-_-.- -
0 M-1
|<— One period (M samples) —|
| | | | |
S [LI e A -
I				
	o			
			0,0 IN/2 = N—1—	
R ~1T 0 _T""("Z} : ——"				
	o			
D) N . A				
: :Four back-to-back: :				
Iperiods meet here.!				
pel‘lo M_]. F(u ,v)				
			s	
R . Eal -
. . . YU

-—

| = Periods of the DFT.

periods meet here.

D = M X N data array, F(u, v).

Four back-to-back /

a
b

cd

FIGURE 4.23
Centering the
Fourier transform.
(a) A 1-D DFT
showing an infinite
number of periods.
(b) Shifted DFT
obtained by
multiplying f(x)
by (—1)* before
computing F(u).
(c) A2-D DFT
showing an infinite
number of periods.
The solid area is
the M X N data
array, F(u,v),
obtained with Eq.
(4.5-15). This array
consists of four
quarter periods.
(d) A Shifted DFT
obtained by
multiplying f(x, y)
by (—1)**

before computing
F(u,v).The data
now contains one
complete, centered
period, as in (b).

2D-DFT visualization in MATLAB

* To visualize the DFT of an image, we visualize the

Mma

gnitude of the DFT.

e The Fourier transform is first centered as

me

ntioned on the previous slide.

* Due to the large range of magnitude values, the

DF]
sca

" magnitudes are visualized on a logarithmic
e, i.e. we view log(|F(u,v)|+1) where the 1is

added for stability.

Without centering
the fft

fim2 = fft2(im2);

absfim2 = log(abs(fim2)+1);
imshow(absfim1,[-1 18]);
colormap (jet); colorbar;

The (0,0) frequency lies at the
top left corner

With centering
the fft

fim2 = fftshift(fft2(im2));
absfim2 = log(abs(fim2)+1);
imshow(absfim1,[-1 18]);
colormap (jet); colorbar;

The (0,0) frequency lies in t}{e
Center.

Vv

“Viewing” the rotation property of the
DFT

a b
c d

FIGURE 4.25

(a) The rectangle
in Fig. 4.24(a)
translated,

and (b) the
corresponding
spectrum.

(c) Rotated
rectangle,

and (d) the
corresponding
spectrum. The
spectrum
corresponding to
the translated
rectangle is
identical to the
spectrum
corresponding to
the original image
in Fig. 4.24(a).

2D convolution

* |n MATLAB, 2D convolution can be
implemented using the routine conv2.

* This can be very expensive if the signals you
wish to convolve another with, are of large
Size.

e Hence one resorts to the convolution theorem
which holds in 2D as well.

2D convolution

The convolution theorem applies to 2D-DFTs as
well:

F(f*h)(u,v)=F(u,v)H(u,v)
Consider an image f of size W, x W, which you

want to convolve with a kernel k of size K, x K,
using the DFT method.

Then you should symmetrically zero-pad f and k
so that they acquire size W,+K,-1 x W,+K,-1.

Compute the DFTs of the zero-padded images
using the FFT algorithm, point-wise multiply them
and obtain the IDFT of the result.

Extract the central W, x W, portion of the result —
for the final answer.

Image Filtering: Frequency domain

* You have studied image filters of various types:

mean filter, Gaussian filter, bilateral filter, patch-
based filter.

e The former two are linear filters and the latter
two aren’t.

* Linear filters are represented using convolutions
and hence have a frequency domain
interpretation as seen on the previous slides.

Image Filtering: Frequency domain

* Hence such filters can also be desighed in the
frequency domain.

* |n certain applications, it is in fact more intuitive
to design filters directly in the frequency domain.

* Why? Because you get to design directly which
frequency components to weaken/eliminate and
which ones to boost, and by how much.

Low pass filters

Edges and fine textures in images contribute
significantly to the high frequency content of an image.

When you smooth/blur an image, these edges and
textures are weakened (or removed).

Such filters allow only the low frequencies to remain
intact and are called as low pass filters.

In the frequency domain, an ideal low pass filter can be
represented as follows:

H(u,v) =1, if u2+v2 < pD? Note: we are assuming (0,0) to be the center (lowest)
frequency. Frequencies outside a radius of D from the

= 0 otherwise center frequency are eliminated.

Low pass filters

H(u, v) H(u, v)
— \
1

pA T

= D (u, v)

bl e

FIGURE 4.40 (a) Perspective plot of an ideal lowpass-filter transfer function. (b) Filter displayed as an image.
(c) Filter radial cross section.

Low pass filters

* To apply such a filter to an image f to create a filtered
image g, we do as follows:

H(u,v) =1, if u* +v* < D?
= 0 otherwise
G(u,v) =F(u,v)H(u,v)

* Dis adesign parameter of the filter — often called the
cutoff frequency.

* This is called the ideal low pass filter as it completely
eliminates frequencies outside the chosen radius.

Low pass filters

conmEN -
coe - .
N

aaaaaaad " — 4
il] |

aaaaaaadd

ab

FIGURE 4.41 (a) Test pattern of size 688 X 688 pixels, and (b) its Fourier spectrum. The
spectrum is double the image size due to padding but is shown in half size so that it fits
in the page. The superimposed circles have radii equal to 10, 30, 60, 160, and 460 with
respect to the full-size spectrum image. These radii enclose 87.0, 93.1, 95.7, 97.8, and
99.2% of the padded image power, respectively.

.
“ae

Notice the ringing artifacts around
the edges!

@

NI 1
aaaaadadd .aaaaaadd

ab
cd
e f

FIGURE 4.42 (a) Original image. (b)—~(f) Results of filtering using ILPFs with cutoff
frequencies set at radii values 10, 30, 60, 160, and 460, as shown in Fig. 4.41(b). The
power removed by these filters was 13,6.9.4.3,2.2, and 0.8% of the total, respectively.

Low pass filters

. : . Sombrero function
The ringing artifacts can be explained

by the convolution theorem.

The corresponding spatial domain
filter is called the jinc function.

The jinc is a 2D and circularly
symmetric version of the sinc
function — see also the next slide.

https://en.wikipedia.org/

Any cross section of the jinc is wiki/Sombrero function
basically a sinc function.

https://en.wikipedia.org/wiki/Sombrero_function
https://en.wikipedia.org/wiki/Sombrero_function

ab

FIGURE 4.43
(a) Representation
in the spatial
domain of an
ILPF of radius 5
and size
1000 X 1000.
/\v/ (b) Intensity
profile of a
horizontal line
passing through
the center of the
image.

An image can be regarded as a weighted sum of Kronecker delta functions
(impulses). Convolving with a sinc function means placing copies of the
sinc function at each impulse. The central lobe of the sinc function causes
the blurring and the smaller lobes give rise to the “ripple artifacts” or
ringing.

Low pass filters: other types

* These ringing artifacts can be quite undesirable.

* Hence the ideal low pass filter is replaced by other
types of low pass filters which weaken but do not
totally eliminate the higher frequencies.

* For example:

Butterworth filter:
D = cutoff frequency,
n = order of the filter

H(u,v)=

,(n, D) = filter parameters

1
1+ (Vu® +v* /D)*"

H (u,v) =exp(—(u® +Vv?) /(26?)), (o) = filter parameters Gaussian filter

H(u, v)

v 10
0.5
-,
{

u

abc

D(u, v)

FIGURE 4.44 (a) Perspective plot of a Butterworth lowpass-filter transfer function. (b) Filter displayed as an

image. (c) Filter radial cross sections of orders 1 through 4.

- | - CHO)
L A

abcd

FIGURE 4.46 (a)—(d) Spatial representation of BLPFs of order 1,2, 5, and 20, and corresponding intensity

profiles through the center of the filters (the size in all cases is 1000 x 1000 and the cutoff frequency is 5).
Observe how ringing increases as a function of filter order.

ceamEE -
sod
I

aaaaaaad

RRL L L BIEEEEREY])

S8 v|a
I I

sa200000 | 2aaaaaad

NI e T e

aaaaaaad aaaaaaad

ab

cd

ef

FIGURE 4.45 (a) Original image. (b)—(f) Results of filtering using BLPFs of order 2,
with cutoff frequencies at the radii shown in Fig. 4.41. Compare with Fig, 4.42.

Low pass filters: Butterworth

 As D increases, the Butterworth filter allows
more frequencies to pass through without
weakening (see previous slide).

* Asthe order n increases, the Butterworth
filter weakens the higher frequencies more
aggressively (why?) — which actually increases
ringing artifacts (see previous slide).

H(u, v)
1.0

H(u, v)

—=

Dy=10
Dy=20
Dy = 40

/D.): 100

0.667

=

abc
FIGURE 4.47 (a) Perspective plot of a GLPF transfer function. (b) Filter displayed as an image. (c) Filter

radial cross sections for various values of Dj.

abec
FIGURE 4.50 (a) Original image (784 X 732 pixels). (b) Result of filtering using a GLPF with D, = 100.

(c) Result of filtering using a GLPF with Dy = 80. Note the reduction in fine skin lines in the magnified

sections in (b) and (c).

I

aaaaaaad

= D(u, v)

A |
i

auaaaaaa

SE il] |

O |
I

l“n.d“"‘

a
I

aaaaaaad

g
IS

aaaaaaad

FIGURE 4.48 (a) Original image. (b)—~(f) Results of filtering using GLPFs with cutoff
frequencies at the radii shown in Fig. 4.41. Compare with Figs 4.42 and 4.45.

Low pass filters: Gaussian

* The spatial domain representation for the
Gaussian LPF is basically a Gaussian.

* |n fact, the following are Fourier transform
pairs:

1 — X° —u?
900 = o2 exp(ZO'Zj(_)G(u) B eXp(Z(l/O'Z))

http://www.cse.yorku.ca/~kosta/CompVis Notes/fourier transform Gaussian.pdf

Notice from the equations that a spatial domain Gaussian with high standard deviation
corresponds to a frequency domain Gaussian with low cut off frequency! The extreme case
of this is a constant intensity signal (Gaussian with very high standard deviation — infinite as
such) whose Fourier transform is an impulse at the origin of the Frequency plane). Another
extreme case is a spatial domain signal which is just an impulse — its Fourier transform has
constant amplitude everywhere.

http://www.cse.yorku.ca/~kosta/CompVis_Notes/fourier_transform_Gaussian.pdf

High pass filter

* |tis a filter that allows high frequencies and
eliminates or weakens the lower frequencies.

* The equation for the frequency response of an
ideal high pass filter is given as:

H(u,v) =0, if u® +v* < D
=1 otherwise

* |n fact, given an LPF, an HPF can be constructed
from it using:

HHP(U’V) =1- HLP(U’V)

TABLE 4.5

Highpass filters. Dy is the cutoff frequency and 7 is the order of the Butterworth filter.

Ideal Butterworth Gaussian
1 it D(u,v) = D, 1 ; 2
H(u,v) = . ’ H(u,v) = H(u,v) =1 — ¢ Dw2)2Ds
(s v) 0 it D(u,v) > Dy (u,v) 1 + [Dy/D(u, v)]" (u,)
Hu, v)
— U 107
J, D(u, v)
Hu, v) H(u, v)
—= 1.0
. | D(u, v)
‘ Hu, v)
-V 10
abc
de f D(u, v)
g h i 113

FIGURE 4.52 Top row: Perspective plot, image representation, and cross section of a typical ideal highpass

filter. Middle and bottom rows: The same sequence for typical Butterworth and Gaussian highpass filters.

abec

FIGURE 4.53 Spatial representation of typical (a) ideal, (b) Butterworth, and (c) Gaussian frequency domain
highpass filters, and corresponding intensity profiles through their centers.

Ringing
artifacts for
an ldeal HPF!

alibllc

FIGURE 4.54 Results of highpass filtering the image in Fig. 4.41(a) using an IHPF with D, = 30, 60, and 160.

Ringing
artifacts
gone!

abec

FIGURE 4.55 Results of highpass filtering the image in Fig. 4.41(a) using a BHPF of order 2 with D, = 30, 60,
and 160, corresponding to the circles in Fig. 4.41(b). These results are much smoother than those obtained
with an IHPE.

Ringing
artifacts for
an ldeal HPF!

alibilc
FIGURE 4.54 Results of highpass filtering the image in Fig. 4.41(a) using an IHPF with D, = 30, 60, and 160.

Ringing
artifacts
gone!

abc

FIGURE 4.56 Results of highpass filtering the image in Fig. 4.41(a) using a GHPF with D, = 30, 60, and 160,
corresponding to the circles in Fig. 4.41(b). Compare with Figs. 4.54 and 4.55.

High pass filters

* Note that any gradient-based operation on
images is essentially a type of high-pass filter.

 This includes first order derivative filters or
the Laplacian filter.

 Why? Consider the first order derivative filter
in y direction.

g(x,y)=1(xy+1)-1(x,y) G(u,0) =0
G(u,v) = I (u,v)(L—e 2™

High pass filters

* Consider the Laplacian filter:

g, y) =X y+)+1(x+Ly)+1(x,y=-D)+1(x=-1,y)-41(x,y))/4
(e—jZﬂv/M _|_e—j27zu/M _|_ej27zv/M _|_ej27zu/M _4)
u,v) =

B

G(0,0)=0

G(1 (u,Vv)

Boosting high frequencies

* |n some applications, you neither wish to weaken
the higher frequencies nor the lower frequencies.

* For example, in image sharpening applications
you wish to boost the edges or textures (basically
higher frequencies).

* |In that case you wish to perform operations of
the following form:

g(x, y) = FA+kH (U, v))F(u,v)

ab
clid

FIGURE 4.59 (a) A chest X-ray image. (b) Result of highpass filtering with a Gaussian
filter. (c) Result of high-frequency-emphasis filtering using the same filter. (d) Result of
performing histogram equalization on (¢). (Original image courtesy of Dr. Thomas R.
Gest, Division of Anatomical Sciences, University of Michigan Medical School.)

ab

FIGURE 4.58

(a) Original,
blurry image.

(b) Image
enhanced using
the Laplacian in
the frequency
domain. Compare
with Fig. 3.38(e).

Notch filters

There are applications where images are presented with
periodic noise patterns — e.g. images scanned from old
newspapers (see next slide).

Usually, the amplitudes of the Fourier components of
natural images are seen to decay with frequency.

The Fourier transform of images with periodic patterns
show unnatural peaks — unlike ordinary natural images.

Such images can be restored using notch filters, which
basically weaken or eliminate these unnatural frequency
components (or any frequency components specified by
the user).

a b
c d

FIGURE 4.64

(a) Sampled
newspaper image
showing a

moiré pattern.
(b) Spectrum.

(c) Butterworth
notch reject filter
multiplied by the
Fourier
transform.

(d) Filtered
image.

The yellow ellipses indicate unnatural peaks in
the Fourier transform of the image with the
superimposed interfering pattern. These are
unnatural because typical images do not have
such Fourier transforms. Therefore one can
apply a notch filter to remove the interfering
pattern.

VAT s

\\:‘~- v -

a b
cd

FIGURE 4.65

(a) 674 X 674
image of the
Saturn rings
showing nearly
periodic
interference.

(b) Spectrum: The
bursts of energy
in the vertical axis
near the origin
correspond to the
interference
pattern. (c) A
vertical notch
reject filter.

(d) Result of
filtering. The thin
black border in
(c) was added for
clarity; it is not
part of the data.
(Original image
courtesy

of Dr. Robert

A. West,
NASA/JPL.)

Courtesy: http://www.robots.ox.ac.uk/~az/lectures/ia/lect2.pdf

Example — Forensic application

[F(u,v)|

remove
peaks

Periodic background removed

http://www.robots.ox.ac.uk/~az/lectures/ia/lect2.pdf

Courtesy: http://www.robots.ox.ac.uk/~az/lectures/ia/lect2.pdf

Example — Image processing

Lunar orbital image (1966)

—

|F'(u,v)] remove join lines
peaks removed

http://www.robots.ox.ac.uk/~az/lectures/ia/lect2.pdf

Notch filters

* The expression for a notch filter frequency
response is given as follows (Q = number of
frequency components to suppress):

Q . .
H . (u,v) = | | H, (u,v;u®” v R)
i=1

H:(U,V; u® v R)=0if (u-— u(i))2 + (v —V(i))2 < R? |deal notch reject filter
=1otherwise

H(u,v;u®” v R) =1—exp (— ((u—uM)? +(v—v)?)/ RZ) Gaussian notch reject filter

Algorithm for frequency domain
filtering

Consider you have to filter an image f of size H x W using one of the filters
described in these slides.

Zero pad the image symmetrically to create a new image f’ of size 2H x
2W.

Compute the Fourier transform of f’ and center it using fftshift. Let the
Fourier transform be F'(u,v).

Design a frequency domain filter H(u,v) of size 2H x 2W with the zero
frequency at index (H,W) of the 2D filter array.

Compute the product F’'(u,v)H(u,v).

Compute the inverse Fourier transform of the product after applying
ifftshift (to undo the effect of fftshift).

Consider only the real part of the inverse Fourier transform and extract
the central portion of size H x W.

That gives you the final filtered image.

Note that the zero padding is important. To understand the difference, see
the results on the next slide with and without zero-padding.

Original image

Effect of Gaussian LPF
with appropriate zero
padding

Effect of Gaussian LPF
without appropriate zero
padding — zero the
border artifacts!

Interpreting the DFT of Natural Images

* |In a few cases, one can guess some structural
properties of an image by looking at its Fourier
transform.

* Most natural images have stronger low frequency
components as compared to higher frequency
components. This is generally true, although its
not a strictly monotonic relationship.

* For example, how does the DFT of a vertical edge
image look like?

There is a sinc function along the u axis!

2

A strong edge in direction 0 in
XY plane = a strong response in
the direction perpendicular to 6
in UV plane

ab

FIGURE 4.29 (a) SEM image of a damaged integrated circuit. (b) Fourier spectrum of
(a). (Original image courtesy of Dr. J. M. Hudak, Brockhouse Institute for Materials
Research, McMaster University, Hamilton, Ontario, Canada.)

Interpreting the DFT

* For an image (or any 2D array) with Fourier
transform F(u,v), F(0,0) is proportional to the
average value of the image intensity — why?

 The DFT of a non-zero constant intensity
image is basically an impulse at the zero
frequency. What is the height of the impulse?

DFT limitations

* A strong response at frequency (u,v) (i.e. a large magnitude
for F(u,v)) indicates the presence of a sinusoid with frequency
(u,v) and with large amplitude somewhere in the image.

* In general, the Fourier transform cannot and does not tell us
where in the image the sinusoid is located (read section 1 of
http://users.rowan.edu/~polikar/WAVELETS/WTpartl.html).

* For that, you need to compute separate Fourier transforms
over smaller regions of the image (Short time Fourier
transform) — that will tell you which region(s) contained a
particular sinusoidal component.

http://users.rowan.edu/~polikar/WAVELETS/WTpart1.html

Fun with Fourier: Hybrid images

Hybrid images are a superposition of an image J; with
strong low frequency components and weak higher
frequency components, and an image J, with stronger
higher frequency components and weak lower frequency
components.

J, = apply LPF with some cutoff frequency D on an image.

J, = apply HPF with some cutoff frequency D on another
image.

The appearance of the hybrid image changes with viewing
distance!

Figure 3: Perceptual grouping between edges and blobs. The three images are perceived as a tiger when seen up-close and as a cheetah from
far away. The differences among the three images is the degrees of alignment between the edges and blobs. Image a) contains two images
superimposed without alignment. In image b), the eyes are aligned. And in image c), the head pose and the locations of eyes and mouth are
aligned. Under proper alignment, the residual frequency band does not manage to build a percept. When seen up-close, it is difficult to see
the cheetah’s face, which is perfectly masked by the tiger’s face. From far away, the tiger’s edges are assimilated to the cheetah’s face.

Tiger — when seen up-close, Cheetah — when seen from far

Einstein from nearby,
Marilyn Monroe from
far away (or if you
squint)!

Refer to:

http://cvcl.mit.edu/hybrid gallery/monroe einstein.html
http://cvcl.mit.edu/publications/OlivaTorralb Hybrid SiggraphO
6.pdf (paper from a graphics journal!)

http://cvcl.mit.edu/hybrid_gallery/monroe_einstein.html
http://cvcl.mit.edu/publications/OlivaTorralb_Hybrid_Siggraph06.pdf
http://cvcl.mit.edu/publications/OlivaTorralb_Hybrid_Siggraph06.pdf

