
Face Recognition

CS 663



Importance of face recognition

• The most common way for humans to 
recognize each other

• Study of the process of face recognition has 
applications in 

(1) security/surveillance/authentication, 

(2) understanding of visual psychology,

(3) automated tagging on Facebook



Face recognition: problem statement

• Given a database of face images of people, and a 
new test image, answer the following question:

“The test image contains the face of which 
individual from the database?”





A naïve method

• Compare the test image with each database 
image in terms of SSD (sum of squared 
differences).

• Choose the closest match (i.e., in terms of 
squared difference)!

This method is fraught with problems!
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Challenges in face recognition: 
detection

http://iomniscient.com/newsletters/HTML/EN/image/FR.gif

Where is (are) the face(s) in 
the picture?

http://iomniscient.com/newsletters/HTML/EN/image/FR.gif


Challenges in face recognition: pose 
variation

http://www4.comp.polyu.edu.hk/~biometrics/polyudb_face.files/image010.jpg

Images are 2D, face is a 3D object. There will be out of plane rotations (profile 
versus front), change in apparent size due to change in distance from camera.

http://www4.comp.polyu.edu.hk/~biometrics/polyudb_face.files/image010.jpg


Challenges in face recognition: 
illumination variation

http://www1.uwe.ac.uk/et/images/raw_v_Variation_2.jpg

• Multiple light sources
• Change in direction of lighting sources
• Change in intensity/color/type of light source
• Shadows, specular reflections

http://www1.uwe.ac.uk/et/images/raw_v_Variation_2.jpg


Challenges in face recognition: 
expression variation

Varied expressions: smile, anger, frown, sadness, surprise, closed 
eyes, confusion, etc.

http://www.idealtest.org/userfiles/image/3d-facev1-fig.3.jpg

http://www.idealtest.org/userfiles/image/3d-facev1-fig.3.jpg
http://www.idealtest.org/userfiles/image/3d-facev1-fig.3.jpg
http://www.idealtest.org/userfiles/image/3d-facev1-fig.3.jpg
http://www.idealtest.org/userfiles/image/3d-facev1-fig.3.jpg
http://www.idealtest.org/userfiles/image/3d-facev1-fig.3.jpg


Challenges in face recognition: age 
variation

http://www.healthcentral.com//common/images/8/8691_13380_5.jpg

http://www.healthcentral.com/common/images/8/8691_13380_5.jpg


Challenges in face recognition: 
variation of facial accessories

http://gps-tsc.upc.es/GTAV/ResearchAreas/UPCFaceDatabase/Imatges/FaceOcclusionID1.jpg

Spectacles, beard and moustache, scarves, ear-rings, change of hair-styles, etc.

http://gps-tsc.upc.es/GTAV/ResearchAreas/UPCFaceDatabase/Imatges/FaceOcclusionID1.jpg
http://gps-tsc.upc.es/GTAV/ResearchAreas/UPCFaceDatabase/Imatges/FaceOcclusionID1.jpg
http://gps-tsc.upc.es/GTAV/ResearchAreas/UPCFaceDatabase/Imatges/FaceOcclusionID1.jpg


Challenges in face recognition: 
caricatures/paintings

http://www.embedded-vision.com/sites/default/files/news/ff_caricature4_f.jpg?1313157764

http://www.embedded-vision.com/sites/default/files/news/ff_caricature4_f.jpg?1313157764
http://www.embedded-vision.com/sites/default/files/news/ff_caricature4_f.jpg?1313157764
http://www.embedded-vision.com/sites/default/files/news/ff_caricature4_f.jpg?1313157764


Challenges in face recognition: 
blur/noise/scanner artifacts

http://people.csail.mit.edu/celiu/FaceHallucination/soccer.jpg

http://people.csail.mit.edu/celiu/FaceHallucination/soccer.jpg


And more!

• Even ignoring changes of pose, illumination, 
expression, etc., we tend to look different at 
different periods of time! Recognition still 
remains a challenge!



Face Recognition system: block 
diagram

(1) Collect database of face 
images of people. Record one 
or multiple images per person 
(called “gallery image(s)” of 
the person)

(2) Normalize the images: (manually) 
crop out the face from the overall 
image background, correct for pose 
variation or lighting changes

(4) Label the features extracted from 
the image with that person’s identity, 
and store in a database

(3) Extract relevant features from the 
normalized face image (more on this 
later!)

TRAINING PHASE!



Face Recognition system: block 
diagram

(1) Collect an image of the person 
whose identity is to be determined* –
called the probe image. In most cases 
the time gap between acquisition of 
probe and gallery images is significant 
(months/years)

(2) Normalize the probe image: 
(manually) crop out the face from the 
overall image background, correct for 
pose variation or lighting changes

(4) Find the gallery image whose 
features most closely match (nearest 
neighbor search) those of the probe 
image. That tells you the identity.

(3) Extract the same features from 
the normalized face image (more on 
this later!) as from the gallery images

TESTING PHASE!

*For now, we assume that the 
person whose identity was to be 
determined, has images recorded 
in the gallery database



Problems related to face recognition
• Face verification: given two face images, determine 

whether they belong to the same individual (without 

concern for the individual’s identity)..



Problems related to face recognition

• Ethnicity/gender identification from face 
images

• Is the given face image a photo or is it a 
painting/caricature?



What features to extract for face 
recognition? Many methods

• (1) Detect visible features: eyes, nose, mouth, 
high-points of the cheek, chin, eyebrows, etc. 
Not very robust!

• (2) Statistical holistic approaches: extract 
features using statistical method. These 
features may not necessarily have a physical 
interpretation (in terms of, say, eyes, nose, 
mouth, etc.)



Eigenfaces!

• We focus on the latter group of techniques in 
these lectures. 

• One such technique for face recognition –
called Eigenfaces – uses a statistical method 
called Principal Components Analysis (PCA).



Principal Components Analysis (PCA)

• Consider N vectors (or points) xi, each containing 
d elements, each represented as a column 
vector. 

• We say:              . d could be very large – like 
250,000 or more.

• Our aim is to extract some k features from each 
xi, k << d.

• Effectively we are projecting the original vectors 
from a d-dimensional space to a k-dimensional 
space. This is called dimensionality reduction. 
PCA is one method of dimensionality reduction.

dRi  ix,



PCA

• How do we pick the ‘k’ appropriate features?

• We look into a notion of “compressibility” –
how much can the data be compressed, 
allowing for some small errors. 



PCA: Algorithm

1. Compute the mean of the given points:

2. Deduct the mean from each point:

3. Compute the covariance matrix of these 
mean-deducted points:
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PCA: algorithm

4. Find the eigenvectors of C:

5. Extract the k eigenvectors corresponding to the k
largest eigenvalues. This is called the extracted 
eigenspace:
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There is an implicit assumption here that the first k indices 
indeed correspond to the k largest eigenvalues. If that is not 
true, you would need to pick the appropriate indices.



PCA: algorithm

6.  Project each point onto the eigenspace, 
giving a vector of k eigen-coefficients for that 
point.
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We are representing each face as a linear combination of the k eigenvectors 
corresponding to the k largest eigenvalues. The coefficients of the linear combination 
are the eigen-coefficients.

Note that αik is a vector of the eigencoefficients of the i-th sample point, and it 
has k elements. The j-th element of this vector is denoted as αik (j).



PCA and Face Recognition: Eigen-faces
• Consider a database of cropped, frontal face images (which we 

will assume are aligned and under the same illumination). These 
are the gallery images. 

• We will reshape each such image (a 2D array of size H x W after 
cropping) to form a column vector of d = HW elements. Each 
image will be a vector xi, as per the notation on the previous two 
slides.

• And then carry out the six steps mentioned before.

• The eigenvectors that we get in this case are called eigenfaces. 
Each eigenvector has d elements. If you reshape those 
eigenvectors to form images of size H x W, those images look 
like (filtered!) faces.



Example 1

A face database

http://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/s2011/bjh78_caj65/b
jh78_caj65/



Top 25 Eigen-faces for this database!

http://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/s2011/bjh78_caj65/b
jh78_caj65/



PCA and Face recognition: 
Eigenfaces

• For each gallery image, you compute the 
eigen-coefficients. You then store the eigen-
coefficients and the identity of the person in a 
database.

• You also store         in the database. 

• During the testing phase, you are given a 
probe image (say) zp in the form of a column 
vector of HW elements.

• You deduct the mean image from zp: 
xzz pp 

x,Vk
ˆ



PCA and Face recognition: 
Eigenfaces

• You then project the mean-deducted face image onto 
the eigen-space:

• Now, compare αp with all the αik (eigen-coefficients of 
the gallery images) in the database.

• Find the closest match in terms of the squared distance 
between the eigen-coefficients. That gives you the 
identity (see next slide).

p

T

kp zVα ˆ
Eigen-coefficients of the probe image zp.



PCA and Face recognition: 
Eigenfaces

2

2
minarg lplpj αα 

Eigen-coefficients 
of the probe 
image zp.

Eigen-coefficients 
of the l-th gallery 
image xl.

Note: other distance measures (different from sum of squared differences) 
may also be employed. One example is sum of absolute differences, given as 
follows:

Another could be normalized dot product (and this distance measure should 
be maximized!):

1lp αα 
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PCA and Face recognition: eigenfaces

• The eigen-face images contain more and more 
high frequency information as the corresponding 
eigen-values decrease.

• Although PCA is a technique known for a long 
time, it’s application in face recognition was 
pioneered by Turk and Pentland in a classic paper 
in 1991.

M. Turk and A. Pentland (1991). Eigenfaces for 
recognition, Journal of Cognitive Neuroscience, 
3(1): 71–86. 



http://www.cs.ucsb.edu/~mturk/

http://web.media.mit.edu/~sandy/

http://www.cs.ucsb.edu/~mturk/
http://web.media.mit.edu/~sandy/


PCA and Face recognition: eigenfaces
• We can regard the k eigenfaces as key 

signatures.

• We express each face image as a linear 
combination of these eigenfaces, i.e. the 
average face + (say) 3 times eigenface 1 + (say) 
5 times eigenface 2 + (say) -1 times eigenface
3 and so on. (note: 3,5,-1 here are the eigen-
coefficients, and some of them can be 
negative).
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One word of caution: Eigen-faces

• The algorithm described earlier is 
computationally infeasible for eigen-faces, as it 
requires storage of a d x d Covariance matrix (d –
the number of image pixels - could be more than 
10,000). And the computation of the eigen-
vectors of such a matrix is a O(d3) operation!

• We will study a modification to this that will bring 
down the computational cost drastically. 



Eigen-faces: reducing computational 
complexity.

• Consider the covariance matrix:

• It will require too much memory if d is large, and 
computing its eigenvectors will be a horrendous task!

• Consider the case when N is much less than d. This is very 
common in face recognition applications. The number of 
training images is usually much smaller than the size of the 
image. 
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Eigen-faces: reducing computational 
complexity.

• In such a case, the rank of C is at the most N-1. 
So C will have at the most N-1 non-zero eigen-
values.

• We can write C in the following way:
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Back to Eigen-faces: reducing 
computational complexity.

• Consider the matrix XTX (size N x N) instead of 
XXT (size d x d). Its eigenvectors are of the 
form:
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Xw is an eigenvector of C=XXT! Computing all eigenvectors of C will now 
have a complexity of only O(N3) for computation of the eigenvectors of 
XTX + O(N x dN) for computation of Xw from each w = total of O(N3 + 
dN2) which is much less than O(d3). Note that C has at most only min(N-
1,d) eigenvectors corresponding to non-zero eigen-values (why?). 



Eigenfaces: Algorithm (N << d case)

1. Compute the mean of the given points:

2. Deduct the mean from each point:

3. Compute the following matrix:
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Eigen-faces: Algorithm (N << d case)

4. Find the eigenvectors of L:

5. Obtain the eigenvectors of C from those of L:

6. Unit-normalize the columns of V.

7. C will have at most only N eigenvectors corresponding 
to non-zero eigen-values*. Out of these you pick the 
top k (k < N) corresponding to the largest eigen-values. 

* Actually this number is at most N-1 – this is due to the 
mean subtraction, else it would have been at most N.
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Example 1

A face database

http://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/s2011/bjh78_caj65/b
jh78_caj65/

http://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/s2011/bjh78_caj65/bjh78_caj65/
http://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/s2011/bjh78_caj65/bjh78_caj65/


Top 25 Eigen-faces for this database!

http://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/s2011/bjh78_caj65/b
jh78_caj65/

http://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/s2011/bjh78_caj65/bjh78_caj65/
http://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/s2011/bjh78_caj65/bjh78_caj65/


Example 2

The Yale Face database



Top 25 eigenfaces from 
the previous database

Reconstruction of a face image 
using the top 1,8,16,32,…,104 
eigenfaces (i.e. k varied from 1 to 
104 in steps of 8)
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What if both N and d are large?

• This can happen, for example, if you wanted 
to build an eigenspace for face images of all 
people in Mumbai.

• Divide people into coherent groups based on 
some visual attributes (eg: gender, age group 
etc) and build separate eigenspaces for each 
group.



PCA: A closer look

• PCA has many applications – apart from 
face/object recognition – in image 
processing/computer vision, statistics, 
econometrics, finance, agriculture, and you 
name it!

• Why PCA? What’s special about PCA? See the 
next slides!



PCA: what does it do?

• It finds ‘k’ perpendicular directions (all passing 
through the mean vector) such that the 
original data are approximated as accurately
as possible when projected onto these ‘k’ 
directions. 

• We will see soon why these ‘k’ directions are 
eigenvectors of the covariance matrix of the 
data!



PCA

Look at this scatter-plot of points in 2D. The 
points are highly spread out in the direction of 
the light blue line.



PCA

This is how the data would look if they were rotated in such a way that the major axis of 
the ellipse (the light blue line) now coincided with the Y axis. As the spread of the X 
coordinates is now relatively insignificant (observe the axes!), we can approximate the 
rotated data points by their projections onto the Y-axis (i.e. their Y coordinates alone!). This 
was not possible prior to rotation!



PCA

• As we could ignore the X-coordinates of the 
points post rotation and represent them just 
by the Y-coordinates, we have performed 
some sort of lossy data compression – or 
dimensionality reduction.

• The job of PCA is to perform such a rotation as 
shown on the previous two slides!



PCA

• Aim of PCA: Find the line     passing through 
the sample mean (i.e.    ), such that the 
projection of any mean-deducted point  

onto     , most accurately approximates it.
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PCA
• Summing up over all points, we get:
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PCA
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variance of the data points 
when projected onto the 
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PCA
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PCA
• PCA thus projects the data onto that direction 

that minimizes the total squared difference 
between the data-points and their respective 
projections along that direction.  

• This equivalently yields the direction along which 
the spread (or variance) will be maximum.

• Why? Note that the eigenvalue of a covariance 
matrix tells you the variance of the data when 
projected along that particular eigenvector:
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PCA
• But for most applications (including face recognition), just a 

single direction is absolutely insufficient!

• We will need to project the data (from the high-
dimensional, i.e. d-dimensional space) onto k (k << d) 
different mutually perpendicular directions. 

• What is the criterion for deriving these directions? 

• We seek those k directions for which the total 
reconstruction error of all the N images when projected on 
those directions is minimized.



PCA
• We seek those k directions for which the total 

reconstruction error of all the N images when projected on 
those directions is minimized.

• One can prove that these k directions will be the 
eigenvectors of the S matrix (equivalently covariance matrix 
of the data) corresponding to the k-largest eigenvalues. 
These k directions form the eigen-space. 

• If the eigenvalues of S are distinct, these k directions are 
defined uniquely (up to a sign factor) 

2

21 1

1 ))()()}({  
 

 
N

i

k

j

tk

jJ jijij exx(exxe



PCA
• One can prove that these k directions will be the eigenvectors of 

the S matrix (equivalently covariance matrix of the data) 
corresponding to the k-largest eigenvalues. These k directions 
form the eigen-space. 

• Sketch of the proof: 

 Assume we have found e1 and are looking for e2 (where e2 is 
perpendicular to e1 and e2 has unit magnitude).

 Write out the objective function with the two constraints.

 Minimize it and do some algebra to see that e2 is the eigenvector 
of S with the second largest eigenvalue.

 Proceed similarly for other directions.



How to pick k in an actual application?

• Trial and error. Usually between 50 to 100 for 
images of size 200 x 200. 

• Divide your training set into two parts – A and B
(B is usually called the validation set). Pick the 
value of k that gives the best recognition rate on 
B when you train on A.

• Stick to that value of k.

• Note: a larger k implies a better reconstruction 
but it may even cause a decrease in the 
recognition accuracy!



How to pick k in an actual application?

• Note: a larger k implies a better 
reconstruction but it may even cause a 
decrease in the recognition accuracy!

• Why – because throwing out some of the 
eigenvectors may lead to filtering of the data, 
removing some unnecessary artifacts for 
example.



Some observations about PCA for face 
images

• The matrix V (with all columns) is 
orthonormal. Hence the squared error 
between any image and its approximation 
using just top k eigenvectors is given by:

?)(

?)(
~

?)()
~

(~

1

2

22

why

why

whyV

d

kj

ii

iiii










2

iα

αα

ααxx

This error is small on an average for a well-aligned group of face images – we will 
see why on the next slide.



The eigenvalues of the covariance matrix typically decay fast in value (if the faces were 
properly normalized). Note that the j-th eigenvalue is proportional to the variance of the j-th
eigencoefficient, i.e. 
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What this means is that the data have low variance when projected along most of the 
eigenvectors, i.e. effectively the data are concentrated in a lower-dimensional subspace of 

the d-dimensional space.



Person-specific eigen-faces

• So far, we built one eigen-space for the whole 
database – consisting of multiple images each of 
multiple people.

• Alternative approach: Construct one eigen-space 
(i.e. a set of some k eigenvectors) for each of the 
M people. Assume we have multiple gallery 
images per person, possibly under different 
poses, illumination conditions and expressions.



Person-specific eigen-space

• Let the eigen-space for the r-th person be 
denoted as Vk

(r) and the corresponding mean 
image be denoted as       .

• The eigen-coefficients of a probe image onto 
the r-th eigen-space are given as:

• For every r, determine the following:
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A measure of how well ‘k’ eigen-vectors 
from the eigen-space for person r, are 
capable of reconstructing the probe image. 
Note that k ≤ number of gallery images for 
the r-th person (why?)



Person-specific eigen-space

• An alternative distance measure is:

• The identity of the probe image is given by the 
eigen-space ‘r’ for which d(r) was the 
minimum.

2

)( (r)

p

(r) ββ rd
Average eigen-coefficient vector of all 
gallery images belonging to the r-th person



Face recognition under varied lighting

• The appearance variation over images of the 
same person under different illuminations is 
much greater than the variation over images 
of different people under the same lighting 
condition!



• Given a database of images of M people each 
under L lighting conditions, create an 
eigenspace and remove the top 3 principal 
components for better face recognition!

• Why – we will understand the real reason in a 
computer vision class!

Face recognition under varied lighting



A word of clarification

• PCA ≠ magic. It has no in-built ability to perform pose 
normalization.

• For pose normalization, you can build pose-specific eigen-
spaces or person-specific eigen-spaces using multiple 
images of a person under different poses.

• For (partial) illumination normalization, you can use the 
trick mentioned on the previous slide.

• However, in general pose normalization is a major problem 
in face recognition from 2D images.



Another word of clarification

• PCA at its core is a reconstruction algorithm. 

• It is not a classification algorithm and is not designed 
to be one.

• But it showed very good results for face recognition 
and hence became popular in this community.

• There are other methods (eg: Linear Discriminant
Analysis) which are designed for the purpose of good 
classification – on face images or other datasets.



PCA: Compression of a set of images

• Consider a database of N images that are 
“similar” (eg: all are face images, all are car 
images, etc.)

• Build an eigen-space from some subset of 
these images (could be all images, as well)

• We know that these images can often be 
reconstructed very well (i.e. with low error) 
using just a few eigenvectors.



PCA: Compression of a set of images

• Use this fact for image compression.

• Original data storage = d pixels x N images = Nd bytes 
(assume one byte per pixel intensity) = 8Nd bits.

• After PCA: Nk x number of bits to store each eigen-
coefficient = 32Nk bits (remember k << d, example: d ~ 
250,000 and k ~ 100).

• Plus storage of eigenvectors = 32dk bits (remember k
<< M as well).

• Plus mean image = 8d bits.

• Total: 32(N+d)k + 8d bits 



PCA: Compression of a set of images

• Example: N= 5000, d = 250000, k = 100

• Original size/(size after PCA compression) ~ 
12.2.

• Note: we allocated 32 bits for every element 
of the eigen-vector. This is actually very 
conservative and you can have further savings 
using several tricks.



PCA: Compression of a set of images

• This differs a lot from JPEG compression.

• JPEG uses discrete cosine transform (DCT) as the 
basis. PCA tunes the basis to the underlying 
training data! If you change the training data, the 
basis changes!

• The performance of the PCA compression 
algorithm will depend on how compactly the 
eigen-space can represent the data.

• We will study image compression using JPEG and 
other standards later on in the course.



Face Recognition: Other types of 
images

• From range data – called as 3D face 
recognition 
(http://www.wired.com/2008/12/german-
security/ )

http://www.wired.com/2008/12/german-security/
http://www.wired.com/2008/12/german-security/
http://www.wired.com/2008/12/german-security/


Face Recognition: Other types of 
images

• From video!



Face recognition: from the FBI

• http://www.fbi.gov/about-
us/cjis/fingerprints_biometrics/biometric-
center-of-excellence/files/face-recognition.pdf

http://www.fbi.gov/about-us/cjis/fingerprints_biometrics/biometric-center-of-excellence/files/face-recognition.pdf
http://www.fbi.gov/about-us/cjis/fingerprints_biometrics/biometric-center-of-excellence/files/face-recognition.pdf
http://www.fbi.gov/about-us/cjis/fingerprints_biometrics/biometric-center-of-excellence/files/face-recognition.pdf
http://www.fbi.gov/about-us/cjis/fingerprints_biometrics/biometric-center-of-excellence/files/face-recognition.pdf
http://www.fbi.gov/about-us/cjis/fingerprints_biometrics/biometric-center-of-excellence/files/face-recognition.pdf
http://www.fbi.gov/about-us/cjis/fingerprints_biometrics/biometric-center-of-excellence/files/face-recognition.pdf
http://www.fbi.gov/about-us/cjis/fingerprints_biometrics/biometric-center-of-excellence/files/face-recognition.pdf
http://www.fbi.gov/about-us/cjis/fingerprints_biometrics/biometric-center-of-excellence/files/face-recognition.pdf
http://www.fbi.gov/about-us/cjis/fingerprints_biometrics/biometric-center-of-excellence/files/face-recognition.pdf
http://www.fbi.gov/about-us/cjis/fingerprints_biometrics/biometric-center-of-excellence/files/face-recognition.pdf
http://www.fbi.gov/about-us/cjis/fingerprints_biometrics/biometric-center-of-excellence/files/face-recognition.pdf


Conclusion

• We studied:

 Face recognition and related problem statements

 Eigenfaces algorithm – faster and slower versions

 Derivation of the algorithm

 Modifications for face 
detection/verification/person-specific eigenfaces

Application for compression of images
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Appendix: Covariance matrix

• In probability and statistics, the expected 
value of a scalar random variable x is called its 
mean: 

• The variance of a scalar random variable is the 
expected value of its squared deviation 
around the mean:
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Appendix: Covariance matrix

• The expected value of a vector random 
variable is called its mean vector: 
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Appendix: Covariance matrix

• The variance is now replaced by a covariance 
matrix. Each entry contains the covariance 
between two elements of the vector:
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Appendix: A word about Lagrange 
Multipliers

• Consider you want to find the minimum or 
maximum of f(x,y).

• Normally, you take the derivative and set it to 
0 and check the sign of the second derivative. 

• Now you want to find the optimum subject to 
a constraint that h(x,y) = 0.



Appendix: A word about Lagrange 
Multipliers

• Physical analogy: if you drop a pebble into a 
parabola-shaped bowl, the pebble will fall to 
the bottom-most point.

• But if you placed a wooden plank into the 
bowl, the pebble will settle somewhere on the 
plank!
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Suppose we are walking from (x1,y1) to (x2,y2) along the constraint curve h(x,y) = 0. Initially, the tangent
vector along h(x,y) = 0 has a component along –grad(f), and hence there is a decrease in the value of
f(x,y) as we move along h(x,y) = 0. If the point (x*,y*) is a local minimum of f(x,y), a small motion along
h(x,y) = 0 from (x*,y*) will have no component along grad(f), else it would cause an increase in the value
of f. Hence the tangent to h(x,y) = 0 at (x*,y*) will be perpendicular to grad(f). As we move further,
motion along h(x,y) = 0 will have a component along +grad(f) leading to an increase in the value of
f(x,y). At the minimum point, we have grad(f) perpendicular to the tangent , i.e. grad(f) and grad(h) are
collinear. Hence, there exists some value λ (the Lagrange multiplier ) such that we have:

0*))*,(*)*,((*)*,(*)*,(  yxhyxfyxhyxf 

http://www.cs.iastate.edu/~cs577/handouts/lagr
ange-multiplier.pdf

http://www.cs.iastate.edu/~cs577/handouts/lagrange-multiplier.pdf
http://www.cs.iastate.edu/~cs577/handouts/lagrange-multiplier.pdf
http://www.cs.iastate.edu/~cs577/handouts/lagrange-multiplier.pdf
http://www.cs.iastate.edu/~cs577/handouts/lagrange-multiplier.pdf
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