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Image Compression

• Process of converting an image file into 
another image file that occupies less storage 
space, without sacrificing its visual content as 
far as possible.

• Useful for saving storage space, and 
transmission costs.



Types of compression

• Lossless: the compressed image can be 
converted back with zero error.

• Lossy: the compressed image cannot be 
converted back to the original without error. 
The amount of error is inversely proportional 
to the storage space (usually) and can be 
controlled by the user.



Lossless compression - examples

• LZW method (used in Winzip)

• Huffman encoding (part of the JPEG 
algorithm, although overall JPEG is lossy)

• Run-length encoding (also part of the JPEG 
algorithm, although JPEG is lossy overall)



Lossy compression

• JPEG

• MPEG (for video)

• MP3 (for audio)

• Machine learning based techniques for 
compression of images or video (not covered 
in this course).



Lossy image compression

• Compression of text files or exe files cannot 
afford to be lossy.

• But some portion of image content is often 
not very noticeable to the human eye, 
especially the higher frequencies. Discarding 
this extraneous information leads to 
compression without significant loss of visual 
appeal. 



Source: Article on compressive sensing by Candes and Wakin, from IEEE Signal Processing 
Magazine, 2008

DCT coefficients or



JPEG compression method

• JPEG = Joint Photographic Experts Group
• One of the most popular standards for 

compression of photographic images – widely 
used on the internet.

• Widely used in digital cameras.
• Implemented in all standard image processing 

software (MATLAB, OpenCV, etc.)
• Essentially lossy (though there are some lossless 

variants)
• Applicable for color as well as grayscale images.



JPEG image compression

• User specifies a quality factor (Q) between 0 and 
100 (higher Q means better quality)

• JPEG algorithm compresses the image based on 
the user-provided Q.

• Higher the Q, less will be the compression rate 
(but higher image quality). Lower Q will give 
higher compression rate (but poorer image 
quality).

• JPEG can achieve 1/10 or 1/15 compression rate 
with little loss of quality.



JPEG image compression

• How is the loss of quality measured?

• As MSE between original (uncompressed) and 
reconstructed images:
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Q = 100, 
compression 
rate = 1/2.6

Q = 50, 
compression 
rate = 1/15

Q = 25, 
compression 
rate = 1/23

Q = 1, 
compression 
rate = 1/144

Q = 10, 
compression 
rate = 1/46

http://en.wikipedia.org/wiki/JPEG

http://en.wikipedia.org/wiki/JPEG


Steps of the JPEG algorithm (encoder): 
Overview (approximate)

1. Divide the image into non-overlapping 8 x 8 blocks and 
compute the discrete cosine transform (DCT) of each 
block. This produces a set of 64 “DCT coefficients” per 
block. 

2. Quantize these DCT coefficients, i.e. divide by some 
number and round off to nearest integer (that’s why it is 
lossy). Many coefficients now become 0 and need not be 
stored!

3. Now run a lossless compression algorithm (typically 
Huffman encoding) on the entire set of integers. 

We will go through each step in detail in the several slides 
to follow.





STEP 1: Discrete Cosine 
Transform (DCT)



Discrete Cosine Transform (DCT) in 1D
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Discrete Cosine Transform (DCT) in 1D
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DCT

• Expresses a signal as a linear combination of 
cosine bases (as opposed to the complex 
exponentials as in the Fourier transform). 

• The coefficients of this linear combination are 
called DCT coefficients.

• Is real-valued unlike the Fourier transform!

• Discovered by Ahmed, Natarajan and Rao
(1974)
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• DCT basis matrix is orthonormal. The dot product of any row (or column) with itself 
is 1. The dot product of any two different rows (or two different columns) is 0. The 
inverse is equal to the transpose.

• Being orthonormal, it preserves the squared norm, i.e. 

• DCT is NOT the real part of the Fourier!

• DCT basis matrix is NOT symmetric. 

• Columns of the DCT matrix are called the DCT basis vectors.
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Digression: matrix view of a discrete orthonormal
transform (Fourier transform used as example here)

• Remember:

• In matrix form, we write:
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Fourier matrix: in any row, the 
value of x is fixed, the value of 
u ranges from 0 to M-1
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DCT in 2D




















1

0

1

0

1

0

~),(),(

),(),(

N

u

unvm

NM

N

n

unvm

NM

M

m

avuFmnf

amnfvuF

unvm

NM

unvm

NM

unvm

NM

aa

Mv)(vMv

Nu)(uNu

MvNu
M

vm

N

un
vua

DCT














 







 


~

/2)( else ,0 /1)(

/2)( else ,0 /1)(

1...0,1...0,
2

)12(
cos

2

)12(
cos)()(

:








The DCT matrix is this case will have size 
MN x MN, and it will be the Kronecker
product of two DCT matrices – one of size 
M x M, the other of size N x N. The DCT 
matrix for the 2D case is also 
orthonormal, it is NOT symmetric and it is 
NOT the real part of the 2D DFT.



What is a 2D Fourier Matrix?

• It is of the following form:
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What is a 2D Fourier Matrix?
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Consider a matrix A of size N1 x N2 and a matrix B of size M1 x M2. The size of their 
Kronecker product is given by N1 M1 x N2 M2. The Kronecker product is 
constructed by creating a rectangular grid of size N1 x N2 . In each cell of the grid, 
you place B. The copy of B in the cell at grid location (i,j) is multiplied by Aij. 
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This big matrix is nothing but the Kronecker product of two 
2 x 2 Fourier matrices.



How do the DCT bases look like? (1D 
case)



How do the DCT bases look like? (2D-
case) 

The DCT transforms an 8×8 block of 
input values to a linear 
combination of these 64 patterns. The 
patterns are referred to as the two-
dimensional DCT basis vectors, and 
the output values are referred to as 
transform coefficients. Here each 
basis vector is reshaped to form an 
image.

http://en.wikipedia.org/wiki/JPEG

http://en.wikipedia.org/wiki/Linear_combination
http://en.wikipedia.org/wiki/Linear_combination
http://en.wikipedia.org/wiki/JPEG


Again: DCT is NOT the real part of the 
DFT

http://en.wikipedia.org/wiki/JPEG

Real part of DFT DCT

http://en.wikipedia.org/wiki/JPEG


DCT on grayscale image patches

• The DCT coefficients of natural image patches 
have an amazing property. 

• It is observed that most of the signal energy is 
concentrated in only a small number of 
coefficients. 

• This is good news for compression! Store only 
a few coefficients, and throw away the rest.

• The corresponding error will be small, due to 
the orthonormal nature of the DCT. 



149    74    92    74    74    74   149   162
87    74   117    30    74   105   180   130
30   117   105    43   105   130   149   105
74   162   105    74   105   117   105   105
117   149    74   117    74   105    74   149
149    87    74    87    74    74   117   180
105    74   105    43    61   117   180   149
74    74   105    74   105   130   149   105

IMAGE PATCH

828.3750 -106.7827  126.4183   -8.2540 -57.3750   -0.5311   -2.1682   29.8472
-6.0004    2.5328    8.3779   -7.1377  -17.3419   -6.9695  -11.1366   22.7612
-6.5212  -56.2336   23.5930   16.3746 -5.5436   74.2016   23.1543   65.2328
17.2141 29.9058   91.3782  -19.9119  106.2541   37.4804   15.8409 -25.1828
14.1250   53.2562  -30.5477   -0.8891   30.8750  -23.2787   -9.4005  -41.8019
5.7938   -2.9468   10.0191    2.8929  -16.5056   -2.4595   -5.1284   12.7364
-3.6579    2.3417  -14.8457   -0.7304   34.6327 -10.3257   -7.3430   -5.6082
-1.7071   -9.8264   -6.4722   -1.3611  -10.5811   -4.5081   -0.4332  -20.6615

DCT COEFFICIENTS

HISTOGRAM OF DCT 
COEFFICIENTS



Original image Image reconstructed after 
discarding all DCT coefficients 
of non-overlapping 8 x 8 
patches with absolute value 
less than 10, and then 
computing inverse DCT

Number of DCT coefficients of non-
overlapping 8 x 8 patches with absolute 
value less than 10 was 34,377 out of a total 
of 65536 (64 coefficients for each 8 x 8 
patch, totally 1024 such patches). This is 
more than 50%. Corresponding percentage 
for DFT was 1%.

Image reconstructed after 
discarding all DCT coefficients 
of non-overlapping 8 x 8 
patches with absolute value 
less than 20, and then 
computing inverse DCT

Number of DCT coefficients of non-
overlapping 8 x 8 patches with absolute 
value less than 20 was 51,045 out of a 
total of 65536 (64 coefficients for each 8 
x 8 patch, totally 1024 such patches). 
This is more than 78%. Corresponding 
percentage for DFT was 7%.



Why DCT? DFT and DCT comparison

DFT DCT

Orthonormal Yes Yes

Real/complex Complex Real

Separable in 2D Yes Yes

Norm-
preserving

Yes Yes

Inverse exists Yes Yes

Fast 
implementation

Yes (fft) Yes (uses fft)

Energy 
compaction for 
natural images

Good/Fair Much Better



DCT has better energy compaction than DFT because…

Recall that the DFT of a sequence is equal to the Discrete Fourier Series (DFS) of a periodic 
extension of that sequence. In computing the DFT of a signal of length n, there is the implicit 
extension of several copies of the signal placed one after the other (n-point periodicity). The 
resultant discontinuities require several frequencies for good representation in the DFS. As 
against this, the discontinuities are reduced in a DCT because a reflected copy of the signal is 
appended to it (2n-point periodicity) before computing the DFS. 



DCT has better energy compaction 
than DFT because…



DCT computational complexity

• Naïve implementation (matrix times vector) is 
O(N2) for a vector of N elements.

• You can speed this up to O(N log N) using the 
FFT as shown on next slide.
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Only the first N frequencies are picked.

f
~

Reflected version of f, appended to f.

10),)(
~

()()))((( )2/(   NuufDFTeuFunfDCT Nunj

In MATLAB, you have the commands called dct and idct (in 1D) 
and dct2 and idct2 (in 2D).

(with some caveats – next slide)
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You would noticed that the constant 
factors sqrt(1/N) and sqrt(2/N) are 
missing in this expression. These 
factors are essential for the DCT 
matrix to be orthonormal, but their 
presence doesn’t allow for this 
relationship between DCT and DFT.

http://en.wikipedia.org/wiki/Discrete_
cosine_transform
http://www.ecsutton.ece.ufl.edu/dip/h
andouts/dct.pdf

http://en.wikipedia.org/wiki/Discrete_cosine_transform
http://en.wikipedia.org/wiki/Discrete_cosine_transform
http://www.ecsutton.ece.ufl.edu/dip/handouts/dct.pdf
http://www.ecsutton.ece.ufl.edu/dip/handouts/dct.pdf


Which is the best orthonormal basis?

• Consider a set of M data-points (e.g. image 
patches in a vectorized form) represented as a 
linear combination of column vectors of an 
ortho-normal basis matrix:

• Suppose we reconstruct each patch using only 
a subset of some k coefficients as follows:
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Which is the best orthonormal basis?

• For which orthonormal basis U is the following 
error the lowest:
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Which is the best orthonormal basis?

• The answer is the PCA basis, i.e. the set of k
eigenvectors of the correlation matrix C, 
corresponding to the k largest eigen-values. 
Here is C is defined as:
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PCA: separable 2D version
• Find the correlation matrix CR of row vectors from 

the patches.

• Find the correlation matrix CC of column vectors 
from the patches.

• The final PCA basis is the Kronecker product of the 
individual bases:
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But PCA is not used in JPEG, because…

• It is image-dependent, and the basis matrix 
would need to be computed afresh for each 
image.

• The basis matrix would need to be stored for 
each image. 

• It is expensive to compute – O(n3) for a vector 
with n elements.

The DCT is used instead! 



DCT and PCA

• DCT can be computed very fast using fft.

• It is universal – no need to store the DCT bases 
explicitly.

• DCT has very good energy compaction 
properties, only slightly worse than PCA.



Experiment

• Suppose you extract M ~ 100,000 small-sized (8 x 8) patches from a set of 
images.

• Compute the column-column and row-row correlation matrices.

• Compute their eigenvectors VR and VC.
• The eigenvectors will be very similar to the columns of the 1D-DCT matrix! 

(as evidenced by dot product values).
• Now compute the Kronecker product of VR and VC and call it V. Reshape 

each column of V to form an image. These images will appear very similar 
to the DCT bases.
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Code: http://www.cse.iitb.ac.in/~ajitvr/CS663_Fall2016/DCT_PCA/

http://www.cse.iitb.ac.in/~ajitvr/CS663_Fall2016/DCT_PCA/


0.3536    0.4904    0.4619    0.4157    0.3536    0.2778    0.1913    0.0975
0.3536    0.4157    0.1913   -0.0975   -0.3536   -0.4904   -0.4619   -0.2778
0.3536    0.2778   -0.1913   -0.4904   -0.3536    0.0975    0.4619    0.4157
0.3536    0.0975   -0.4619   -0.2778    0.3536    0.4157   -0.1913   -0.4904
0.3536   -0.0975   -0.4619    0.2778    0.3536   -0.4157   -0.1913    0.4904
0.3536   -0.2778   -0.1913    0.4904   -0.3536   -0.0975    0.4619   -0.4157
0.3536   -0.4157    0.1913    0.0975   -0.3536    0.4904   -0.4619    0.2778
0.3536   -0.4904    0.4619   -0.4157    0.3536   -0.2778    0.1913   -0.0975

DCT matrix: dctmtx
command from MATLAB (see 
code on website)

0.3517   -0.4493   -0.4278    0.4230    0.3754    0.3247   -0.2250   -0.1245
0.3534   -0.4366   -0.2276   -0.0110   -0.3078   -0.4746    0.4732    0.2975
0.3543   -0.3101    0.1728   -0.4830   -0.3989    0.0498   -0.4299   -0.4109
0.3546   -0.1115    0.4799   -0.3005    0.3342    0.4102    0.1856    0.4761
0.3547    0.1141    0.4823    0.2944    0.3301   -0.4182    0.1745   -0.4771
0.3543    0.3104    0.1771    0.4834   -0.3977   -0.0322   -0.4308    0.4103
0.3535    0.4357   -0.2319    0.0143   -0.3009    0.4656    0.4851   -0.2975
0.3520    0.4468   -0.4328   -0.4204    0.3686   -0.3253   -0.2342    0.1261

0.3520   -0.4461   -0.4305    0.4224    0.3696    0.3247    0.2342    0.1283
0.3537   -0.4338   -0.2345   -0.0114   -0.3000   -0.4671   -0.4814   -0.3028
0.3545   -0.3086    0.1662   -0.4896   -0.4007    0.0359    0.4261    0.4102
0.3548   -0.1145    0.4763   -0.3031    0.3339    0.4198   -0.1800   -0.4713
0.3548    0.1056    0.4839    0.2926    0.3349   -0.4194   -0.1766    0.4733
0.3543    0.3043    0.1863    0.4833   -0.4028   -0.0354    0.4269   -0.4097
0.3532    0.4389   -0.2269    0.0180   -0.3008    0.4654   -0.4811    0.3037
0.3512    0.4562   -0.4300   -0.4126    0.3694   -0.3242    0.2335   -0.1319

VC: Eigenvectors of column-
column correlation matrix

VR: Eigenvectors of row-row 
correlation matrix

1.0000    0.0007    0.0032    0.0002    0.0013    0.0001    0.0005    0.0000
0.0007    0.9970 0.0097    0.0689    0.0009    0.0322    0.0003    0.0110
0.0033    0.0106    0.9968 0.0118    0.0713    0.0004    0.0334    0.0025
0.0002    0.0718    0.0124    0.9926 0.0007    0.0927    0.0017    0.0276
0.0010    0.0001    0.0737    0.0004    0.9942 0.0008    0.0780    0.0010
0.0000    0.0261    0.0015    0.0962    0.0005    0.9934 0.0011    0.0569
0.0003    0.0007    0.0276    0.0021    0.0802    0.0010    0.9964 0.0013
0.0000    0.0076    0.0026    0.0227    0.0012    0.0596    0.0015    0.9979

1.0000 0.0002    0.0029    0.0001    0.0010    0.0000    0.0004    0.0000
0.0002    0.9965 0.0028    0.0766    0.0005    0.0314    0.0009    0.0107
0.0029    0.0025    0.9969 0.0046    0.0728    0.0017    0.0304    0.0013
0.0001    0.0795    0.0044    0.9923 0.0029    0.0916    0.0015    0.0243
0.0008    0.0003    0.0747    0.0026    0.9948 0.0061    0.0696    0.0004
0.0000    0.0246    0.0021    0.0949    0.0069    0.9940 0.0131    0.0452
0.0003    0.0004    0.0252    0.0003    0.0715    0.0137    0.9970 0.0002
0.0000    0.0076    0.0013    0.0207    0.0001    0.0476    0.0009    0.9986

Absolute value of dot products between the columns of DCT matrix and columns of VR (left) and VC (right)



DCT bases64 columns of V – each reshaped to form an 8 x 
8 image, and rescaled to fit in the 0-1 range. 
Notice the similarity between the DCT bases and 
the columns of V. Again, V is the Kronecker
product of VR and VC.



DCT and PCA

• DCT is very close to PCA when the patches 
come from what is called as a stationary first 
order Markov process, i.e.
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DCT and PCA

• One can show that the eigenvectors of the correlation 
matrix of the form seen on the previous slide are the 
DCT basis vectors!

• Natural images approximate this first order Markov 
model, and hence DCT is almost as good as PCA for 
compression of a large ensemble of image patches. 

• DCT has the advantage of being a universal basis and 
also the DCT coefficients are more efficiently 
computable than PCA coefficients (because DCT 
computation uses FFT).



1.0000    0.9902    0.9795    0.9733    0.9682    0.9639    0.9604    0.9570
0.9902    1.0005    0.9908    0.9795    0.9734    0.9684    0.9643    0.9605
0.9795    0.9908    1.0010    0.9908    0.9796    0.9735    0.9689    0.9646
0.9733    0.9795    0.9908    1.0005    0.9904    0.9793    0.9735    0.9686
0.9682    0.9734    0.9796    0.9904    1.0004    0.9903    0.9794    0.9734
0.9639    0.9684    0.9735    0.9793    0.9903    1.0001    0.9903    0.9793
0.9604    0.9643    0.9689    0.9735    0.9794    0.9903    1.0004    0.9904
0.9570    0.9605    0.9646    0.9686    0.9734    0.9793    0.9904    1.0002

1.0000    0.9888    0.9770    0.9704    0.9648    0.9599    0.9554    0.9510
0.9888    1.0004    0.9891    0.9768    0.9703    0.9646    0.9596    0.9548
0.9770    0.9891    1.0004    0.9886    0.9764    0.9698    0.9640    0.9587
0.9704    0.9768    0.9886    0.9994    0.9878    0.9755    0.9687    0.9627
0.9648    0.9703    0.9764    0.9878    0.9986    0.9870    0.9746    0.9676
0.9599    0.9646    0.9698    0.9755    0.9870    0.9978    0.9861    0.9734
0.9554    0.9596    0.9640    0.9687    0.9746    0.9861    0.9967    0.9847
0.9510    0.9548    0.9587    0.9627    0.9676    0.9734    0.9847    0.9951

CR/CR(1,1) -
Notice it can be 
approximated by the 
form shown two slides 
before, with ρ~0.99

CC/CC(1,1) -
Notice it can be 
approximated by the 
form shown two slides 
before, with ρ~0.9888

More results from the previous experiment. See code:

http://www.cse.iitb.ac.in/~ajitvr/CS663_Fall2016/DCT_PCA/

http://www.cse.iitb.ac.in/~ajitvr/CS663_Fall2016/DCT_PCA/


Computation of DCT coefficients in 
JPEG

• Before computation, the value 128 (midpoint 
of the range 0 to 255) is subtracted from every 
pixel value.

• This changes the range of intensity values 
from 0 to 255, to -128 to 127.

• This also changes the range of DCT coefficient 
values from 0 to 2048, to -1024 to +1024.



STEP 2: Quantization



Quantization

• The DCT coefficients are floating point 
numbers and storing them in a file will 
produce no compression. So they need to be 
quantized.

• The human eye is not sensitive to changes in 
the higher frequency content. 

• So we can have cruder quantization for the 
higher frequency coefficients and a finer one 
for the lower frequency coefficients.



Quantization

• Quantization is performed by dividing the DCT 
coefficient matrix element-wise by a quantization 
matrix and rounding off to the nearest integer.

• The quantization matrix on the next slide is for 
quality factor Q = 50. 

• Matrices for lower Q values are obtained by scaling 
the Q = 50 matrix with a constant 50/Q – which 
increases the values in the quantization matrix.

• Matrices for higher Q values are obtained by scaling 
the Q = 50 matrix with a constant 50/Q – which 
decreases the values in the quantization matrix.



)/(round uvuvuv MGB Quantization matrix for Q = 50: 
notice the higher values in the 
matrix for higher frequency 
coefficients

M

Most of the values in B are 0! 
They need not be stored! Only 
the non-zero values in B will be 
stored!



How was this quantization matrix 
picked?

• The quantization error is given by

where                                               . 

• The maximum possible value of the error is given by 
Muv/2.

• Psychophysical studies have been performed to find 
threshold values of DCT coefficients, i.e. for each 
frequency (u,v), these studies have determined the 
smallest DCT coefficient value that yielded a visible 
signal. This threshold is called tuv. 

• We set Muv = 2tuv so that the errors remain invisible.

uvuvuvuv MBGe -

)/(round uvuvuv MGB 



STEP 3: Lossless compression steps: 
Huffman encoding and Run length 

encoding 



Huffman encoding

• Input: a set of non-zero quantized DCT coefficients from all 
the different blocks of the image (values lying between -
1024 to +1024).

• Output: a set of encoded coefficients with length (in terms 
of number of bits) less than that of the original set.

• Principles behind Huffman encoding:
(1) Encode the more frequently occurring coefficients with 

fewer bits. Encode the rarely occurring coefficients with 
more bits. This will reduce the average bit-length. 

(2) Ensure that the encoding for no coefficient is a strict prefix 
of the encoding of any other coefficient (to be explained 
on next slide). This is called a “prefix-free code”.



Huffman encoding example

• Consider a set of alphabets {a,e,q}. Let the frequency of an 
alphabet x be denoted as p(x). 

• Assume p(e) > p(a) > p(q) [actually true in the English 
language].

• Consider the following code-word assignment: e – 0, a – 1, 
q – 01 (note: we assigned more bits for q). Now consider 
the encoded stream: 001. It can be interpreted as ‘eea’ or 
‘eq’.

• The reason for this ambiguity is that the code for ‘e’ is a 
strict prefix of the code for ‘q’.

• For unambiguous decoding, we need prefix-free codes. 
Example e – 0, a – 10, q – 11 is one example of a prefix-free 
code.



Huffman encoding example

• The Huffman encoding algorithm asks the 
following question:

Given a set of n alphabets A = {ai} with 
corresponding frequencies {p(ai)} (each 
frequency lies from 0 to 1), what prefix-free
encoding yields the least average bit length? 
That is, which set of code-words {λ(ai)} will 
minimize

|)(|)()})(({
1

i

n

i

ii aapaL  


 Length of the code-
word λ(ai)



Algorithm
1. Sort alphabets in increasing order of frequency. Create a leaf 

node from each alphabet. These leaf nodes will belong to a 
binary tree called the Huffman tree.

2. Combine the two lowest frequency nodes s1 and s2 to create a 
parent node s12. s1 and s2 will be the left and right child of s12. 
The frequency of s12 is given by p(s12) = p(s1) + p(s2).

3. Label the edge from s12 to s1 with a ‘0’ and the edge from s12 to 
s2 with a ‘1’.

4. Delete s1 and s2 from the sorted list of alphabets and insert the 
node s12, i.e. root node of the tree (s12,s1,s2) in the correct 
place depending on the value of p(s12).

5. Repeat steps 2 to 4 until there is only one node in the list. This 
will be the root node of the final Huffman tree.

6. Traverse the tree from the root node until each leaf and collect 
all the binary symbols along every edge into a string. This string 
will form the code word for that symbol. 



Example
www.cis.upenn.edu/~matuszek/cit594-2002/Slides/huffman.ppt

1

2

3

4

10

10

0

1

0

0
1

1
1

0

1

1

1

1

0

0

0

A = 0
B = 100
C = 1010
D = 1011
R = 11

This is a prefix-free code. No 
leaf node is on the path to 
any other node.

0.4 0.2 0.1 0.1 0.2

0.4 0.2 0.1 0.1 0.2

0.4 0.2 0.1 0.1 0.2

0.4 0.2 0.1 0.1 0.2

0.2

0.4

0.6

1.00
0.4

0.2

0.2

0.4

0.6

0

0.2

http://www.cis.upenn.edu/~matuszek/cit594-2002/Slides/huffman.ppt
http://www.cis.upenn.edu/~matuszek/cit594-2002/Slides/huffman.ppt
http://www.cis.upenn.edu/~matuszek/cit594-2002/Slides/huffman.ppt
http://www.cis.upenn.edu/~matuszek/cit594-2002/Slides/huffman.ppt
http://www.cis.upenn.edu/~matuszek/cit594-2002/Slides/huffman.ppt


1

1

1

1

0

0

0

0.4 0.2 0.1 0.1 0.2

0.2

0.4

0.6

1.00

A = 0
B = 100
C = 1010
D = 1011
R = 11

Input string: RABBCDR
Encoded bit stream: 
11-0-100-100-1010-1011-11
Decoded string: RABBCDR

To perform encoding, we maintain an initially empty encoded bit stream. Read a symbol 
from the input, traverse the Huffman tree from root node to the leaf node for that 
symbol, collecting all the bit labels on the traversed path, and appending them to the 
encoded bit stream. Repeat this for every symbol from the input. Example: for R, we 
write 11.

To perform decoding, read the encoded bit stream, and traverse the Huffman tree from 
the root node toward a leaf node, following the path as indicated by the bit stream. For 
example, if you read in 11, you would travel to the leaf node R. When you reach a leaf 
node, append its associated symbol to the decoded output. Go back to the root node 
and traverse the tree as per the remaining bits from the encoded bit stream.  

0

Average code length here
= 1 * p(A) + 3 * p(B) + 4 * p(C) + 4*p(D) 
+ 2 *p(R) = 0.4 + 0.6 + 0.4 + 0.4 + 0.4 = 
2.2.  



About the algorithm

• This is a greedy algorithm, which is guaranteed to 
produce the prefix-free code with minimal 
average length (proof beyond the scope of the 
course).

• There could be multiple sets of code words with 
the same average bit length. Huffman encoding 
produces one of them, depending on the order in 
which the nodes were combined, and the 
convention for labeling the edges with a 0 or a 1.



Huffman Trees and Entropy

• The average code length as computed by this 
algorithm satisfies
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Entropy of the random variable (set of 
alphabets) – measure of uncertainty of 
the random variable, or the measure of 
how much a random variable surprises 
you, or the average number of bits 
required to store a random variable.

Recall: Entropy is minimum in the case 
where the random variable takes on only 
one value. It is the maximum when it can 
take on any one of some k different 
values, each with equal probability.

Note: Entropy is also the average number 
of bits required to encode the values of 
the random variable. It is not possible to 
code the intensity values of an image 
with fewer bits per pixel than its 
entropy. 



Zig-zag ordering

• The quantized DCT coefficients are arranged 
now in a zigzag order as follows. The zig-zag
pattern leaves a bunch of consecutive zeros at 
the end.

−26

−3 0

−3 −2 −6

2 −4 1 −3

1 1 5 1 2

−1 1 −1 2 0 0

0 0 0 −1 −1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0

0 0

0



Run length encoding

• The non-zero re-ordered quantized DCT 
coefficients (except for the DC coefficient) are 
written down in the following format: 

• run-length (number of zeros before this coefficient), 
• size (no. of bits to store the Huffman code for the 
coefficient), 
• actual Huffman code of the coefficient

4 bits each

We refer to the above set as a triple. In case there are more than 15 zeros in between 
2 non-zero AC coefficients, a special triple is inserted. That triple is (15,0,0). If there 
are a large number of trailing zeros at the end of a block, we but in an “end of block”
triple given as (0,0).



−26

−3 0

−3 −2 −6

2 −4 1 −3

1 1 5 1 2

−1 1 −1 2 0 0

0 0 0 −1 −1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0

0 0

0

(0, 2)(-3); (1, 2)(-3); (0, 2)(-2); (0, 3)(-6); (0, 
2)(2); (0, 2)(-4); (0, 1)(1); (0, 2)(-3); (0, 1)(1);
(0, 1)(1); (0, 3)(5); (0, 1)(1); (0, 2)(2); (0, 1)(-1); 
(0, 1)(1); (0, 2)(2); (5, 1)(-1); (0, 1)(-1); (0, 0).



Encoding DC coefficients

• The difference between the DC coefficient of 
the current and previous patch is encoded and 
stored. 

• These difference values are Huffman encoded 
using a separate table (different from the 
Huffman table used for AC coefficients).

• The DC coefficient of the first patch is stored 
explicitly. 



JPEG encoded file

• Begins with a header that contains 
information such as size of file, whether color 
or grayscale, the table of different alphabets 
(i.e. DCT coefficient values and their Huffman 
codes) and the quantization matrix.

• This is followed by a bit stream containing 
triples of the form: (run-length, the length of 
the Huffman code of the coefficient, and the 
Huffman code for the coefficient). 



JPEG DECODER



JPEG decoding

• Perform Huffman decoding and obtain the DCT coefficients 
(AC).  

• Multiply the AC coefficients point-wise with the entries in 
the quantization matrix. 

• Compute the DC coefficients for each patch using the 
differences between the DC coefficients of successive 
patches. Multiply by the appropriate entry from the 
quantization matrix.

• Reconstruct the image patches of size 8 x 8 using the 
inverse DCT. Add 128 to the intensity values in the patch.

• Note: During JPEG encoding, the round-off errors from the 
quantization step can never be recovered again. Hence 
JPEG is overall a lossy algorithm.



JPEG for color images



JPEG for color images

• The RGB values are converted to the YCbCr color space 
using:

• Encode the Y, Cb, and Cr channels separately, using the 
“grayscale” JPEG algorithm on each channel. The Cb
and Cr channels (the chrominance channels) are down-
sampled by a factor of 2 in X and Y direction to further 
save storage space.

• The Y channel (luminance) is not down-sampled. This is 
because the human eye is much more sensitive to 
luminance than to chrominance information.
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PCA on RGB values

• Why can you not separately compress the R,G,B 
images – instead of converting to Y, Cb, Cr?

• The answer lies in PCA!

• Suppose you take N color images and extract RGB 
values of each pixel (3 x 1 vector at each 
location). 

• Now, suppose you build an eigenspace out of this 
– you get 3 eigenvectors, each corresponding to 3 
different eigenvalues.



PCA on RGB values

• The eigenvectors will look typically as follows:

0.5952    0.6619    0.4556

0.6037    0.0059   -0.7972

0.5303  -0.7496  0.3961 

• Exact numbers are not important, but the first 
eigenvector is like an average of RGB. It is 
called as the Luminance Channel (Y). It is 
similar to the intensity in the HSI space.



PCA on RGB values

• The second eigenvector is like Y-B, and the third is 
like Y-G. These are called as the Chrominance 
Channels.

• The Y-Cb-Cr color space is related to this PCA-
based space (though there are some details in 
the relative weightings of RGB to get Luminance 
and Chrominance – denoted by Cb and Cr).

• The values in the three channels Y, Cb and Cr are 
decorrelated, similar to the values projected onto 
the PCA-based channels. 



PCA on RGB values

• Why does PCA produce decorrelated values (i.e. why are 
the values of the eigencoefficients decorrelated)?

• Recall: in PCA, we built the correlation matrix C from N
original data-points {xi}, 1 ≤ i ≤ N. 

• Recall that                       . 

• The eigencoefficients are given as {αi}, 1 ≤ i ≤ N where xi = 
Vαi where C = VΛVT.

• The correlation matrix of the eigencoefficients is given by:
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PCA on RGB values

• The correlation matrix of the eigencoefficients is 
given by:

• This is a diagonal matrix (of eigenvalues). 

• Which means that the different elements of the 
vector of eigencoefficients are decorrelated.
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PCA on RGB values

• Why is it important to have decorrelated values in 
compression?

• Because if the variables were not decorrelated, any 
operations you perform on one variable have an effect on 
the other variables.

• So if you compressed the R image, G image and B image 
separately, a change in the R values (due to quantization) 
unintentionally affects the G and B values (and vice versa).

• To prevent this, you convert the color values from RGB to a 
decorrelated color space such as YCbCr.



PCA on RGB values

• The luminance channel (Y) carries most information 
from the point of view of human perception, and the 
human eye is less sensitive to changes in chrominance.

• This fact can be used to assign coarser quantization 
levels (i.e. fewer bits) for storing or transmitting Cb and 
Cr values as compared to the Y channel. This improves 
the compression rate.

• The JPEG standard for color image compression uses 
the YCbCr format. For an image of size M x N x 3, it 
stores Y with full resolution (i.e. as an M x N image), 
and Cb and Cr with 25% resolution, i.e. as M/2 x N/2 
images.



R channel

G channel

B channel



Image containing eigencoefficient value corresponding to 1st eigenvector (with maximum eigenvalue)



Image containing eigencoefficient value corresponding to 2nd eigenvector (with second largest eigenvalue)



The variances of the three eigen-coefficient values: 
8411, 159.1, 71.7

Image containing eigencoefficient value corresponding to 3rd eigenvector (with least eigenvalue)



Y channel



Cb channel



Cr channel



RGB and its corresponding Y, Cb, Cr channels

)214.18786.93112(128
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http://upload.wikimedia.org/wikipedia/commons/d/d9/Barns_grand_tetons_YCbCr_separation.jpg


http://www.cse.iitd.ernet.in/~pkalra/siv864/pdf/session-11-4.pdf

http://www.cse.iitd.ernet.in/~pkalra/siv864/pdf/session-11-4.pdf
http://www.cse.iitd.ernet.in/~pkalra/siv864/pdf/session-11-4.pdf
http://www.cse.iitd.ernet.in/~pkalra/siv864/pdf/session-11-4.pdf
http://www.cse.iitd.ernet.in/~pkalra/siv864/pdf/session-11-4.pdf
http://www.cse.iitd.ernet.in/~pkalra/siv864/pdf/session-11-4.pdf


Down-sampling of Cb and 
Cr in X and Y directions by 
a factor of 2

No down-sampling of 
chrominance or luminance 
channels

Cb channel under different down-
sampling factors

Down-sampling of Cb and 
Cr only in X direction by a 
factor of 2

https://en.wikipedia.org/wi
ki/Chroma_subsampling#/
media/File:Colorcomp.jpg

https://en.wikipedia.org/wiki/Chroma_subsampling
https://en.wikipedia.org/wiki/Chroma_subsampling
https://en.wikipedia.org/wiki/Chroma_subsampling


Modes of JPEG compression

• Sequential: encoding and decoding of patches 
takes place in left to right, top to bottom 
order.

• Progressive: encoding and decoding in 
multiple scans, each one with finer 
quantization levels.

• Hierarchical: encoding and decoding 
performed at different scales.



http://www.cse.iitd.ernet.in/~pkalra/siv864/pdf/session-11-4.pdf

Commonly seen in 
web applications (e.g.: 
Facebook)

http://www.cse.iitd.ernet.in/~pkalra/siv864/pdf/session-11-4.pdf
http://www.cse.iitd.ernet.in/~pkalra/siv864/pdf/session-11-4.pdf
http://www.cse.iitd.ernet.in/~pkalra/siv864/pdf/session-11-4.pdf
http://www.cse.iitd.ernet.in/~pkalra/siv864/pdf/session-11-4.pdf
http://www.cse.iitd.ernet.in/~pkalra/siv864/pdf/session-11-4.pdf


JPEG artifacts
• Seam artifacts at patch boundaries (more 

prominent for lower Q values).

• Ringing artifacts around edges.

• Some loss of edge and textural detail.

• Color artifacts



Video Compression



Need for video compression

• Huge data – typical HDTV has frames of size 
1920 x 1080 and 30 fps frame-rate. That is 
more than 1 GB per second.

• Network channel bandwidths are limited 
(around 20 Mbps).

• We need large rates of compression (around 
1:80)!



Motion JPEG

• Encode each frame using JPEG. 

• That will yield only around 1:10 compression.

• This makes use of only spatial redundancy, no 
temporal redundancy.



MPEG (Motion Pictures Expert Group)

• Heavy use of temporal redundancy!

• Uses a process called predictive coding.

• Consider pixel f(x,y,t) in frame t. We try to 
predict its value, denoted as g(x,y,t), using a 
linear combinations of the values from 
previous k frames, i.e. f(x,y,t-k),…,f(x,y,t-1).

• We simply store the error e(x,y,t) = f(x,y,t)-
g(x,y,t).



Differential coding (First order 
predictive coding)

• In this method, k = 1, i.e. you encode the 
differences between consecutive frames, i.e. 
e(x,y,t) = f(x,y,t) – f(x,y,t-1).

• For most frames, the errors are highly sparse.





Errors are not always sparse 

• Exceptions: (1) camera zoom-in and zoom-out, 
(2) sudden changes in viewpoint or scene 
content, or fade-in/fade-out effects. In such 
cases, the errors will be large!



Motion compensation
• For each macro-block (typically 16 x 16 or 8 x 8 in size) in 

the frame to be encoded, find the most similar macro-
block in a reference frame (which could be the previous 
frame, but not necessarily so).

• The difference between the pixel locations of the top-left 
corner of the two macro-blocks is called the motion 
vector.

• The motion vector is considered to be constant within a 
macro-block.

• Search for similar macro-blocks is restricted to a small 
search window around the original macro-block. 

• The search window is rectangular – broader than taller 
(why?).





Motion Compensation
• For many macro-blocks, the motion vectors will be 0. 

• The search for similar macro-blocks is performed at a 
sub-pixel level (1/2 pixel or ¼ pixel) for more 
accuracy. In this case, image intensity values need to 
be interpolated.

• Macro-block similarity measure is one of the 
following:
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In color videos, only 
luminance (i.e. Y) 
channel is used in 
similarity measure



Motion compensation

• Many a time, there are more than one similar block. In such 
cases, the spatially closest block is chosen.

• Note: we are not concerned with the accuracy of the 
motion estimate. It is only a means towards the larger goal 
– of compression.

• The inter-frame differences are computed after motion 
compensation. This hugely improves the sparsity of these 
differences. 

• In other words, don’t blindly compute the difference 
between macro-blocks at corresponding locations in frames 
t and t-1. Compute the difference between the current 
macro-block in frame t and its most similar match in frame 
t-1. 
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Motion Compensation

• For each macro-block (typically 16 x 16 or 8 x 8 in size) 
in the frame to be encoded, find the most similar 
macro-block in a reference frame.

• If the reference frame is the previous one or the 
previous reference frame (see two slides later for more 
details), the current frame (the one being encoded) is 
called the P-frame.

• If the reference frame is a combination of the previous 
frame and the next one, the current frame is called the 
B-frame.

• A B-frame can use two motion vectors – one for 
previous and one for next frame.
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Example: why do we need B-frames?
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No Motion Compensation here!

• For some frames that rest on shot-boundaries 
(i.e. sudden changes in content), there is no 
advantage to performing motion compensation. 

• Such frames are called I-frames (independent 
frames). These usually act as reference frames for 
other frames to be differentially encoded.

• I-frames can be detected by the presence of very 
frequently low similarity values during search for 
macro-blocks.



MPEG encoder

http://www.cse.iitd.ernet.in/~pkalra/siv864/pdf/session-11-5.pdf

Note:
•YUV is a color-space 
very similar to YCbCr.
• MV = motion vector
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MPEG encoder
• The I-frames are encoded using JPEG.

• The B-frames and P-frames are also encoded using JPEG, but the 
DCT is computed on macro-blocks from the motion-
compensated residual image as follows:

o We have already computed motion vectors w.r.t. the reference 
frame.

o Compute a residual image by calculating differences between 
macro-blocks in the current frame and the most-similar 
matching macro-blocks (as given by the motion vector) from the 
reference image. This is called motion-compensated frame 
differencing.

o Note: the motion vector for the macro-block also needs to be 
stored. For this, motion-vectors from several macro-blocks are 
collected together and Huffman-encoded. Only the non-zero 
motion vectors are encoded. 
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Display Order and Transmission Order (or order in which frames are 
compressed) may be different!
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MPEG decoder

Note:
•YUV is a color-space 
very similar to YCbCr.


