
Image Restoration

CS 663, Ajit Rajwade



Contents

• Introduction to image restoration

• Inverse filter

• Spread spectrum filters – coded aperture 
camera and flutter-shutter camera

• Wiener filter – aim, assumptions, formula and 
derivation

• Regularized least squares deblurring

• PCA for denoising



What is image restoration?

• Image restoration = task of recovering an image 
from its degraded version assuming some 
knowledge of the degradation phenomenon.

• Models the degradation process and inverts it to 
obtain the original from the degraded (observed) 
image.

• Differs from image enhancement – which does 
not fully account for the nature of the 
degradation.



Degradation Model
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Observed image Underlying image noise

Forward model of the degradation process: note that this is an 
operator
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Common Assumptions on H: 
(1) Linearity, 
(2) Space Invariance 



Degradation Model

• For a linear, space-invariant model, the 
degradation process can be modeled using a 
convolution:

• The problem of estimating f from g and h is 
called as deconvolution.

),(),)(*(),( yxyxfhyxg 

h is the impulse response of the system, i.e. degraded image if f(x,y) 
was a unit impulse image – also called as convolution kernel.



Degradation Model

• Many real-world phenomena can be 
approximated as linear and space-invariant.

• Non-linear and space-variant models are more 
accurate, more general but more complex.

• Even with the simplifying assumption of linearity 
and space-invariance, we will see that inverting 
the degradation model has many challenges.



Models of Blur

• In image restoration, the most commonly 
encountered problem is that of blur removal 
given a known blur model.

• An image is said to be blurred when it is 
convolved with a low-pass filter of a certain 
kind.



Models of Blur

• Defocus blur

• Motion Blur



Defocus Blur

• Occurs when the scene being observed is not 
in focus. It is actually spatially variant 
dependent on the depth of each point (i.e. its 
distance from the camera), but we will model 
it here as spatially uniform for simplicity.

• Its frequency response is:
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Here we are showing plots of 
log(magnitude of Fourier 
transform +1) for easy 
visualization. We will call them 
log-Fourier plots

Log-Fourier plot of  original 
image

Log-Fourier plot of Gaussian-blurred image

Gaussian-blurred image.
Kernel size 15 x 15.
Blur level: 5



Motion blur

• A commonly occurring form of blur – when 
there is relative motion between the camera 
and the object/scene being imaged – during 
the process of image acquisition.



http://blog.londolo
zi.com/2014/01/ho
w-to-capture-
motion-blur-in-a-
photograph/

https://cs.nyu.edu/~fergu
s/papers/deblur_fergus.p
df
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Motion Blur
• A camera gathers the image of a scene as follows: 

 Light from the scene enters the camera during the 
exposure time, i.e. when the shutter is open.

 The light passes through the lens and hits a sensor 
array (CCD array)

 The CCD array performs an integration operation 
during the entire exposure time.

 The image is formed on the CCD array after the 
shutter closes.



Motion Blur
• Imagine an object undergoing motion parallel to the 

plane of the camera sensor array. 

• Let the motion be translation (for simplicity) given by 
x0(t) and y0(t), i.e. the motion is a function of time.

• Let f(x,y) be the intensity at point (x,y) of the true 
(underlying) image.



Motion Blur
• Then the observed image is given by:

dxdyeyxgvuG

dttyytxxfyxg

vyuxj

T

 














)(2

0

00

),(),(

))(),((),(



),(),( ),(

 ),(

0

))()((2

))()((2

0

00

00

vuHvuFdtevuF

dtevuF

T

tvytuxj

tvytuxj

T

















dt } ))(),(({

 ))(),((

0

)(2

00

)(2

0

00

dxdyetyytxxf

dxdyedttyytxxf

T

vyuxj

vyuxj

T

  

  






























Motion Blur

• Let us assume that:

• Then the blur frequency response is: 
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motion blurred 
image (motion in X 
direction)

Log-Fourier plot of motion-blurred image 
(notice the strong response in the vertical 
direction and the sinc-like pattern parallel to 
the X axis!)

Log-Fourier plot of  original 
image

Here we are showing plots of 
log(magnitude of Fourier 
transform +1) for easy 
visualization. We will call them 
log-Fourier plots



Example: Restoration by Inverse 
Filtering
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 Assume no noise (for 
now)

Convolution theorem

If H(u,v) is zero, there is a problem in estimating F(u,v). Otherwise this task is 
completely well-defined.

Known (observed) Known Unknown (to be estimated)



Example: Restoration by Inverse 
Filtering
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• If H(u,v) has small values (this will happen for higher frequencies, i.e. higher values 
of u and v, if h(x,y) is a blur kernel, i.e. a low-pass filter), the corresponding 
estimates of F(u,v) will be hugely erroneous if there is even a tiny amount of noise. 

• This is especially because the Fourier Transform of the noise, i.e. N(u,v) (an 
unknown quantity), may be greater than F(u,v) for high values for high u and v
(why?)

Known (observed) Known Unknown (to be 
estimated)

Unknown noise



ORIGINAL image BLURRED IMAGE RESTORED IMAGE

Image restored using Inverse filter with no noise (ideal, non-realistic scenario)

RESTORED IMAGE UNDER NOISE

Image restored using 
Inverse filter with 0.1% 
noise

RESTORED IMAGE UNDER NOISE + LPF

Image restored using 
Inverse filter with 0.1% 
noise followed by a low-
pass filter



Blurring with Holes

• Let us say we put in a cardboard piece with 
holes inside the camera aperture. 

• The defocus blur can no more approximated 
as a Gaussian function.

• Rather, the blur kernel is now represented as a 
Gaussian dot-multiplied with a binary pattern 
(with values of 1 – wherever there was a hole 
and a 0 wherever there was no hole). 



Source of images:
http://giga.cps.unizar.es/~diegog/ficheros/pdf_papers/
coded_Masia.pdf
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CODED MASK: BLURRED IMAGEORIGINAL image CODED MASK: RESTORED IMAGE

CODED MASK: RESTORED IMAGE UNDER NOISE

Using a coded mask, the restored image 
is of high quality even under noise (same 
0.1% as before). Why does this happen?
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The coded mask preserves higher 
frequencies. It also is a spread-
spectrum kernel, i.e. it is not a pure 
low-pass filter. Hence its higher 
frequency components have larger 
amplitudes and division (in the inverse 
filter) does not blow up the noise.



Flutter Shutter Camera

• The same principle is used in the flutter shutter 
camera to deal with motion blur.

• The shutter of a normal camera is usually open 
throughout the exposure duration (denoted by T
in the derivation for motion blur).

• This is equivalent to convolution with a temporal 
box filter (a low-pass filter).

• In a flutter-shutter camera, the shutter is made 
to flutter (open and close) during the exposure 
time - as per a randomly generated binary 
sequence. 



Source of images:
http://web.media.mit.
edu/~raskar/deblur/

Frequency response of motion blur kernel in a flutter-shutter 
camera (blue curve) versus traditional camera (red curve). The 
green curve corresponds to a different camera (we are not 
studying it here).

http://web.media.mit.edu/~raskar/deblur/
http://web.media.mit.edu/~raskar/deblur/
http://web.media.mit.edu/~raskar/deblur/


Source of images: http://web.media.mit.edu/~raskar/deblur/

http://web.media.mit.edu/~raskar/deblur/
http://web.media.mit.edu/~raskar/deblur/


Source of images: http://web.media.mit.edu/~raskar/deblur/

http://web.media.mit.edu/~raskar/deblur/
http://web.media.mit.edu/~raskar/deblur/


A word of caution
• Spread spectrum filters and cameras using them do not “solve” 

the problem of the inverse filter. 

• They merely make use of a spread spectrum filter to work 
around the issues with the inverse filter by stabilizing the 
deblurring process.

• These cameras by design allow less light to enter the camera 
during image acquisition and are not superior to normal cameras 
for all applications. The images acquired by these cameras may 
appear grainier due to lower signal to noise ratio.

• But they address one particular application, i.e. deblurring in a 
very principled way.

• Spread spectrum filters may not be available in many different 
applications – such as motion blur in an image acquired by a 
typical camera.



Wiener Filter

• Spread spectrum filters are not always possible in 
many applications.

• The inverse filter approach on previous slides 
made no explicit use of the knowledge of the 
noise model.

• The Wiener filter is one approach which makes 
use of knowledge of the statistical properties of 
the noise besides the degradation function.

• It attempts to remove both noise as well as the 
blur.



Wiener filter

• Its aim is to produce an estimate of the 
underlying image such that the expected 
mean square error between the true and 
estimated images is minimized:
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Wiener filter

• It asks the questions: which linear space-
invariant filter shall I apply to the degraded 
image (i.e. with which filter shall I convolve
the degraded image) to produce an estimate 
that is as close to the original as possible, in a 
least squares sense, on an average?

• It minimizes the blow-up of noise during 
deconvolution, especially at frequencies 
where the signal to noise ratio is very poor 
(i.e. low).



Wiener filter

• Assumptions made by the Wiener filter: 
Noise is independent of the image, 
Noise statistics do not change spatially
 Either the image or the noise (or both) has 

(have) zero mean
Second order statistics of the image and the noise 

are known
• Wiener filter is also called as a minimum mean 

square error filter due to the criterion it 
optimizes.



Wiener filter
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Wiener filter

Power spectrum of 
original signal = |F(u,v)|2

Power spectrum of 
noise = |N(u,v)|2

Power spectrum means magnitude-
squared of the Fourier transform. 
Frequency spectrum means magnitude 
of the Fourier transform.

Estimate of the Fourier 
transform of f
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Noise to signal ratio (or inverse 
signal to noise ratio – ISNR)

• At frequencies (u,v) where the signal is much stronger than the noise, the ISNR 
is 0, and the Wiener filter reduces to the inverse filter. 

• At frequencies (u,v) where the signal is much weaker, the ISNR will be large and 
the corresponding component G(u,v) will be attenuated (note that the Wiener 
filter cannot reconstruct such components well!)

•When there is no blurring, but only noise, we have: 
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Deblurring filter

Denoising filter



Wiener filter

• The Wiener filter requires us to know the ISNR at 
different frequencies. 

• We usually do not have knowledge of this quantity, but 
we can provide some estimate (or guess-timate).

• For example, in most (photographic) images, the ISNR 
is low at lower frequencies and high at higher 
frequencies. 

• Why? Images typically have high energy at lower 
frequencies, and low energy at higher frequencies. But 
noise is typically spread-spectrum.



Derivation of Wiener filter in deconvolution
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  We want to find a linear filter whose Fourier transform is L(u,v) 
and which minimizes the following expected value.

Both these terms are 0 
because the image and 
the noise are 
uncorrelated and one or 
both have zero mean.
So E(F(u,v)N*(u,v)) = 
E(N(u,v)F*(u,v)) = 0.

E(|F(u,v)|2) = Sf2(u,v)

E(|N(u,v)|2) = Sη2(u,v) 
E(|L(u,v)|2) = |L(u,v)| 2 

as L is not a random 
variable

http://en.wikipedia.org/wiki/Wiener_deconvolution
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Derivation of Wiener filter in deconvolution
http://en.wikipedia.org/wiki/Wiener_deconvolution

http://en.wikipedia.org/wiki/Wiener_deconvolution


Derivation of Wiener filter in deconvolution
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Interactive Wiener filter

• As the ISNR is unknown, we can substitute it 
by a constant K, which we can choose 
interactively based on visual appeal.

• Look at figures 5.28 and 5.29 of the book 
(pages 355, 356) for examples of results using 
this method.
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Image taken from the Book by Gonzalez and Woods



Image taken from the Book by Gonzalez and Woods



Image taken from the Book by Gonzalez and Woods



http://www.mathworks.in/help/images/examples/deblurring-images-using-a-wiener-
filter.html
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Regularized Restoration

• We know that the inverse filter is unstable if 
there is noise in the measured image.

• The inverse filter (given a fixed blur kernel) 
comes from the least squares criterion. 
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Regularized Restoration

• Now we modify our criterion. 

• We say that in addition to a least squares 
solution, we want a solution (i.e. an image) 
whose derivatives are not allowed to be 
arbitrarily large.



Regularized Restoration

• Let’s pick the Laplacian as our derivative 
operator: 

• You know that the Laplacian can be represented 
by a convolution with the mask:
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Regularized Restoration

• The Fourier transform of the Laplacian of the 
image is given by P(u,v)F(u,v).

• Here P(u,v) is the Fourier transform of an 
appropriately zero-padded version of the 
convolution kernel.



Regularized Restoration

• Hence the frequency response (i.e. Fourier 
transform) of the desired filter is obtained as 
follows:
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The second 
step follows 
from 
Parseval’s
theorem



Regularized Restoration

• How to pick the parameter ϒ? 

• Method 1: Pick it interactively till you get a 
visually pleasing result.

• Method 2: Start with some initial value of ϒ. 
Compute a residual vector           . Compute its 
squared norm          .  If it is too far away from 
the noise variance, readjust ϒ. Otherwise 
stop. Note: in many applications, the noise 
variance can be estimated,. 

fHgr ˆ

Mr /
2



Blur is not always bad
Motion blur conveys a sense of speed:
can be used to estimate direction of 
motion of a moving object (or direction of 
camera motion) from a still image

http://www.smashingmagazine.com/2008/08/
24/45-beautiful-motion-blur-photos/

Aesthetic effects!:

http://www.smashingmagazine.com/2008/08/24/45-beautiful-motion-blur-photos/
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Blur is not always bad

Variation in blur conveys depth information

Aesthetic blur: Bokeh
http://en.wikipedia.org/wiki/Bokeh

http://en.wikipedia.org/wiki/Bokeh


PCA-based denoising



Using PCA for image denoising

• You have seen the non-local means (NLMeans) 
algorithm (patch-based filtering).

• It uses the fact that natural images have a 
great deal of redundancy – i.e. several patches 
in distant regions of the image can be very 
similar.

Difference 
between 
patches
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Use of PCA for denoising

• This “non-local” principle can be combined 
with PCA for denoising.

• Consider a clean image I corrupted by additive 
Gaussian noise of mean zero and standard 
deviation σ, to give noisy image J as follows:

J = I + N, N ~ Gaussian distribution of mean 0 
and standard deviation σ.

• Given J, we want to estimate I, i.e. we want to 
denoise J.



Use of PCA for denoising

• Consider a small p x p patch – denoted qref - in J. 

• Step 1: We will collect together some L patches 
{q1,q2,…,qL} from J that are structurally similar to 
qref – pick the L nearest neighbors of qref . 

• Note: even if J is noisy, there is enough 
information in it to judge similarity if we assume 
σ << average intensity of the true image I.

• Step 2: Assemble these L patches into a matrix of 
size p2 x L. Let us denote this matrix as Xref.



Use of PCA for denoising

• Step 3: Find the eigenvectors of Xref Xref
T to 

produce an eigenvector matrix V.

• Step 4: Project each of the (noisy) patches 
{q1,q2,…,qL} onto V and compute their eigen-
coefficient vectors denoted as {α1, α2,…, αL} 
where αi = VTqi. 

• Step 5: Now, we need to manipulate the 
eigencoefficients of qref in order to denoise it.



Use of PCA for denoising

• Step 5 (continued): We will follow a Wiener filter 
type of update:

• Step 6: Reconstruct the reference patch as 
follows:

patch. filtered  theof

icientseigencoeff of vector  theis  ).( iselement  th-  the whichof elements, 

contains and patch (noisy) reference  theof icientseigencoeff ofa vector  is  :
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Use of PCA for denoising

• Repeat steps 1 to 6 for all p x p patches from 
image J (in a sliding window fashion).

• Since we take overlapping patches, any given 
pixel will be covered by multiple patches (as 
many as p2 different patches).

• Reconstruct the final image by averaging the 
output values that appear at any pixel. 



Comments: Use of PCA for denoising

• Note that a separate eigenspace is created for 
each reference patch. The eigenspace is 
always created from patches that are similar 
to the reference patch.

• Such a technique is often called as spatially 
varying PCA or non-local PCA.



Patch similarity: Use of PCA for 
denoising

• To compute L nearest neighbors of qref, restrict 
your search to a window around qref.

• For every patch within the window, compute 
the sum of squared differences with qref, i.e. 
compute:                              .

• Pick L patches with the least distance.

 


p

i

p

j

ref jisjiq
1 1

2)),(),((

qref

Search window for similar patches



Sample result

The results with a global 
eigenspace (consisting of all 
patches from the image) yield 
poorer results – see top row, 
rightmost image.

The results improve with spatially 
varying PCA provided the number 
of patches is large enough. The 
best results with this method 
generally outperform the results 
with a bilateral filter which is a 
purely local technique.  

L
L



Use of PCA in denoising: why Wiener-
like update?
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Eigen-coefficients of the “true patch”. We are 
looking for a linear update which motivates 
this equation.

As the image and the noise 
are independentAs the noise is zero mean
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ni represents a vector of pure noise 
values which degrades the true patch 
to give the noisy patch. Its projection 
onto the eigenspace gives vector ϒi.



Use of PCA in denoising: why Wiener-
like update?
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Since we are dealing with 
L similar patches, we can 
assume (approximately) 
that the l-th eigen-
coefficient of each of 
those L patches are very 
similar.
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