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Transformations of points and 
vectors in 2D



Translation and Rotation

• Let us denote the coordinates of the original 
point as (x1,y1) and those of the transformed 
point as as (x2,y2).

• Translation:

• Rotation about point (0,0) anti-clockwise 
through angle q
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Translation and rotation
• Rotation about point (xc,yc) anti-clockwise 

through angle q
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-Perform translation such that (xc,yc) coincides with the origin.
-Rotate about the new origin.
-Translate back.

Note: we are introducing a third 
(fictitious) coordinate even though the 
points are in 2D. This enables translation 
operations to be expressed in the matrix 
multiplication framework. This new 
coordinate is called as the 
“homogeneous coordinate”. 
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Translation and rotation

• Rotation and translation:

• Translations and rotations are rigid 
transformations – they preserve angles, 
lengths and areas.
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Translations/rotation to Affine 
Transformations

• Affine transformation: rotation, translation, 
scaling and shearing
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Assumption: the 2 x 2 sub-matrix A is NOT rank deficient, 
otherwise it will transform two-dimensional figures into a line or 
a point. The matrix A in general is NOT orthonormal. If it is 
orthonormal, this reduces to either a rotation (determinant 1) 
or reflection (determinant = -1)



Affine Transformations

• Scaling

If cx = -1 and cy = 1, then the scaling operation is 
called reflection across the Y axis. If cx = 1 and cy 
= -1, then it is called reflection across X axis. 
Reflections can occur across an arbitrary axis.



Affine transformations

• Shearing:
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Affine transformation

• The 2D affine transformation model (including 
translation in X and Y direction) includes 6 degrees of 
freedom.

• The affine transformations generally do not preserve 
lengths, angles and areas.

• But they preserve collinearity of points, i.e. points on 
one line remain on a line after affine transformation.

• They preserve ratios of lengths of collinear line 
segments and ratios of areas.

• In fact area of transformed object = |A| x area of 
original object, where A is the transformation matrix.



Composition of affine transformations

• Composition of multiple types of affine 
transformations is given by the multiplication 
of their corresponding matrices.

• Example: reflection across an arbitrary 
direction through (0,0).
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Composition of affine transformations

• Apply a rotation R such that line L coincides 
with either the X axis (or the Y axis).

• Apply a reflection R’ about the X axis (or the Y 
axis).

• Apply a reverse rotation R’’=R-1 such that the 
original orientation of L is restored.
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Composition of affine transformations

• How will you change this if the direction L
didn’t pass through the origin?
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Composition of affine transformations

• In general, affine transformations are not 
commutative, i.e. TATB ≠ TBTA.

• When composing transformations, remember 
that successive translations are additive (and 
commutative).
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Composition of affine transformations

• When composing transformations, remember 
that successive rotations are additive (and 
commutative).

• Successive scalings are multiplicative (and 
commutative).
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Transformations of 
points/vectors in 3D



Translation and Rotation in 3D
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' 3D Rotation matrix, size 3 x 3. R is orthonormal (RT

= R-1)and has a determinant of 1.

Rotation in 3D is associated with an axis. We refer to rotation in 3D as rotation 
about an axis.  The following are the rotation matrices for an angle about the 
X,Y,Z axes respectively.

Note: Rotation about X axis leaves 
X coordinate unchanged, rotation 
about Y axis leaves Y coordinate 
unchanged, rotation about Z axis 
leaves Z coordinate unchanged.

Y

Z

X

Right-handed 
coordinate system (X 
axis to the right, Y axis 
points up)

All these 3 matrices 
represent anti-clockwise
rotation of column vectors, 
assuming the axis of rotation 
points toward the observer
and we have a right-handed
coordinate system.



Rotation about arbitrary axis

• Let the arbitrary axis be given as a unit vector 
r = (r1,r2,r3) passing through the origin. We 
want to rotate about this axis through angle ρ.

http://www.cs.iastate.edu/~cs577/handouts/rotation.pdf
http://paulbourke.net/geometry/rotate/

http://www.cs.iastate.edu/~cs577/handouts/rotation.pdf
http://paulbourke.net/geometry/rotate/


Rotation about arbitrary axis

• To do this, we shall apply some geometric 
transformations to the object to align r = 
(r1,r2,r3) with the Z axis. 

• We will then rotate the object about the Z axis 
through angle ρ.

• We will then apply the reverse transformation 
from the first step to the object.

http://www.cs.iastate.edu/~cs577/handouts/rotation.pdf
http://paulbourke.net/geometry/rotate/

http://www.cs.iastate.edu/~cs577/handouts/rotation.pdf
http://paulbourke.net/geometry/rotate/


Rotation about an arbitrary axis

• Rotate r about the X axis so that it now aligns 
with the XZ plane (i.e. we want to nullify its Y 
coordinate). For this, we rotate about X axis 
through an angle ϴx given by

transforming                     to  
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Note: As the projection of r onto the ZY planes aligns itself with the Z axis 
(that’s how the angle θx is calculated), the vector r gets into the XZ plane. 



Rotation about an arbitrary axis

• Now rotate r’ about Y axis through angle (-ϴy)
(to align it with the Z axis) given by:

transforming                                to   
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Rotation about an arbitrary axis

• Now rotate about the Z axis through angle ρ.
• Now reverse rotate about Y-axis through angle ϴy.

• Now reverse rotate about X-axis through angle ϴx.

• The final rotation matrix is given as: 

• Note: in this derivation, we could have also applied 
transformations to bring r into the YZ plane by rotation about Y 
axis (instead of bringing it into the XZ plane by rotating about X 
axis), and then aligned it with Z axis by rotation about X axis.

• Also there is no specific reason why we chose Z axis to align 
vector r with. We could have chosen the X or Y axes as well.
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Rotation about an arbitrary axis

• The final rotation matrix can be shown to have 
the following form (axis is unit vector L = [l,m,n], 
i.e. l2+m2+n2=1, passing through the origin):



Rotation matrices

• Regardless of axis, any rotation matrix is always 
orthonormal.

• The dot product of any two (different) rows is 0, 
the dot product of any two (different) columns is 
0.

• The magnitude of any row (or column) is 1.

• Thus RRT = RTR = I, RT=R-1

• A rotation matrix is orthonormal, but not every 
orthonormal matrix is a rotation matrix (why?)



Affine transformations in 3D

• 3D affine transformations are represented as 
follows:
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There are 12 degrees of freedom. This subsumes rotations, scalings, shearing, 
reflections and translations.

Rigid transformations (rotations and translations) preserve lengths, areas and 
angles.
Affine transformations preserve collinearity of points, and ratios of distances, 
but not lengths or areas or angles. 



Reflections in 3D

• Across XY plane: Z coordinate changes

• Across YZ plane: X coordinate changes
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Composition of affine transformations

• Composition of multiple types of affine transformations is 
given by the multiplication of their corresponding matrices.

• Example: Reflection across an arbitrary plane P:
1. Translate so that a known point in plane P coincides with 

the origin. 
2. Rotate such that the normal vector of the plane coincides 

with the Z axis.
3. Perform reflection across XY plane (Z axis is normal to the 

XY plane).
4. Apply inverse transform for step 2.
5. Apply inverse transform for step 1.



Composition of affine transformations

• Just as in 2D, affine transformations in 3D do 
not commute in general.

• Successive translations are additive, 
successive scaling about the same axis are 
multiplicative, successive rotations about the 
same axis are additive.



Degrees of freedom (DoF) in 3D 
rotation matrix

• The number of DoF refers to the number of independent 
parameters required to characterize the rotation matrix.

• A 3D rotation matrix has size 3 x 3, but it has only 3 DoF.
• This is because the rotation in 3D is parameterized by an axis (which 

is a unit vector and has 2 DoF) and the angle of rotation (which 
gives the 3rd DoF).

• Another way of seeing this: the first column of the orthonormal
matrix accounts for 2 DoF (as it is a unit vector), the second column 
being perpendicular to the first one accounts for one more DoF
(why just one more? *), and the third column is a cross product of 
the first two columns (taking care to choose the sign such that the 
determinant of the matrix is 1).

• * If you consider a plane perpendicular to the vector given by the 
first column, then the second vector is given by a rotation by angle 
(say) ϒ inside this plane – that’s why just one DoF. 



Image Formation in a Camera



Pinhole Camera

Object

Photo Film

Object

Photo Film

Barrier with 
pinhole: blocks 
most of the light 
rays

No pinhole



Pinhole Camera with Non-Inverted 
Plane



Image Formation in a Pinhole Camera
• O = center of projection of the camera 
(pinhole), also treated as origin of the coordinate 
system for the object (“camera coordinate 
system” or “camera frame”)
• P = (X,Y,Z) = object point (3D vector)
• p = (x,y,z=f) image of P on the image plane π, Z 
axis is normal to π (i.e. π is parallel to XOY plane)
• Note: p is obtained by the intersection of line 
OP with π
• o = image center- given by the point where the 
vector normal to π and passing through O (this 
vector is the Z axis!) intersects π.
• Line Oo = optical axis of the camera lens 
(coincides with the Z axis)
• f = focal length = perpendicular distance from O
onto the image plane π = length of segment Oo



http://en.wikipedia.org/wiki/Pinhole_camera_model
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For non-inverted image plane:

Which triangles are similar? Triangle Oopx and Triangle OO’Px (analogously Triangle Oopy and 
Triangle OO’Py are similar)
px = projection of p onto XZ plane,
O’ = Consider plane passing through P and parallel to image plane. O’ is the intersection of the 
optical axis Oo with this plane. 
Px = projection of P onto XZ plane.

P=(X,Y,Z)

p=(x,y)

http://en.wikipedia.org/wiki/Pinhole_camera_model


http://en.wikipedia.org/wiki/Pinhole_camera_model

Which triangles are similar? Triangle Oopx and Triangle OO’Px (analogously Triangle 
Oopy and Triangle OO’Py are similar)
px = projection of p onto XZ plane,
O’ = Consider plane passing through P and parallel to image plane. O’ is the 
intersection of the optical axis Oo with this plane. 
Px = projection of P onto XZ plane.
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Viewing down the Y axis
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Viewing down the X axis will yield a 
similar figure and lead you to derive:

http://en.wikipedia.org/wiki/Pinhole_camera_model


Image Formation in a Pinhole Camera

• The projection p of point P is called a 
perspective projection.

• The relation between p = (x,y,z=f) and P = 
(X,Y,Z) is non-linear, as the Z coordinate will 
vary from point to point. 

• This type of a transformation does not 
preserve angles, lengths or areas. It is also 
non-linear. 

• In matrix form, we have:
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Note that the entries in this matrix themselves 
depend on the Z coordinate of the object 
point(s). So this is a non-linear relationship!



Image Formation in a Pinhole Camera: 
Homogeneous Coordinates

• The relationship between (x,y) and (X,Y,Z) can 
also be expressed as follows using 
homogeneous coordinates:
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Pixels and Image points
• The object points project onto points in an image. 

• The image represented in a camera is in 
discretized format, in the form of a 2D array.

• Thus the coordinates p = (x,y,z=f) are converted 
into discrete spatial coordinates in terms of 
pixels. The exact relationship depends upon the 
sampling rate of the camera (pixel resolution) 
and the aspect ratio.
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Pixel aspect ratio
Coordinates of optical 
center in terms of pixels



Weak-perspective projection

• If the variation in depth (Z coordinate) of 
different points in the scene is negligible 
compared to the average depth Z’ of the 
scene, then the projection is called weak-
perspective:
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Orthographic or Parallel Projection

• If the directions of projection are parallel to each 
other and orthogonal to the image plane, the 
projection of the 3D points onto 2D preserves 
angles, lengths and areas. Such a projection is 
called as orthographic or parallel projection.

• The weak perspective projection is a scaled form 
of an orthographic projection.

• Directions of projection are parallel implies 
infinite focal length (center of projection is very 
far away from the image plane).

• In such cases, x = X, y = Y.



Orthographic or Parallel Projection

http://www.cs.cmu.edu/afs/cs/academic/class
/15462-s09/www/lec/06/lec06.pdf
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Vanishing Points



Vanishing Points

P=(X,Y,Z)

p=(x,y,z=f)
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O
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Line L = 
(lx,ly,lz)

•Line parallel to L passing through O intersects the image 
plane at point VL – this is called as the vanishing point 
for line L. The vanishing point of line L under perspective 
projection is basically the projection of an infinitely 
distant point on L onto the image plane. 

•Two parallel lines in object space will have the same 
vanishing point. It is for this reason that images of 
parallel lines under perspective projection appear to 
intersect.

VL



Vanishing Points

P=(X,Y,Z)

p=(x,y,z=f)
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http://www.atpm.com/9.09/design.shtml

http://www.picturescape.co.uk/class%20pages/perspective%201.htm
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If lz = 0, it means the set of original parallel lines in 3D 
space lie in a plane parallel to the image plane (which is 
often the XY plane). In such cases, there is no vanishing 
point, or we have a vanishing point at infinity.

http://plus.maths.org/content/getting-picture

http://plus.maths.org/content/getting-picture
http://plus.maths.org/content/getting-picture
http://plus.maths.org/content/getting-picture


Vanishing Lines

• Consider two or more sets of parallel lines in 
3D space lying on the same plane. 

• The vanishing points of all these sets of lines 
are collinear (why?).

• This line containing all these vanishing points 
is called the vanishing line.

• If the plane involved is the ground plane, then 
the vanishing line is called the horizon.



From slides by Frank Dallaert



Camera Calibration



From 2D to 3D?

• Given pixel coordinates of some points in an 
image, we want to infer the 3D coordinates of 
the underlying object points. 

• For this, we need to know (1) the relationship 
between the camera coordinate system and 
the “world coordinate system”, and (2) the 
relationship between pixel coordinates and 
the actual coordinates of the 2D image points 
(in the camera coordinate system).



From 2D to 3D?

• What is the world coordinate system?

• It is a coordinate system chosen by the user 
(say the designer of an environment for a 
robot to travel, the architect of a building, 
etc). 

• It is typically different from the camera 
coordinate system.



From 2D to 3D?

• The orientation and position of the camera 
coordinate system with respect to the world 
coordinate system is given by the extrinsic 
camera parameters.

• The relationship between the image 
coordinates and their representation in terms 
of pixels is given by the intrinsic camera 
parameters.



From 2D to 3D?

• The extrinsic and intrinsic parameters are 
unknown. 

• They can be determined using a process called 
as (geometric) camera calibration.



Camera calibration: why?

• Given pictures from a calibrated camera (or a set 
of calibrated cameras), we can reconstruct parts 
of the underlying 3D scene.

• We can estimate various dimensions in 3D just 
given the 2D image(s). 

• This is all apart from the fact that we get to 
estimate the camera resolution, focal length, etc. 
(in several cases, these parameters may be 
unknown!).



Camera calibration: how?

• To perform calibration, we take photographs 
of an object whose geometry is known and 
which will produce salient feature points in an 
image. 

• Example: checkerboard cube. Such an object is 
called calibration object.



We will measure the 3D coordinates of various 
junction points (marked yellow) of such a 
calibration object. Ideally, we would directly like 
to express these coordinates in terms of the 
origin of the camera coordinate system (i.e. with 
respect to the point O in the previous slides). 
But that is not physically possible, so we express 
the coordinates with respect to an origin O’ that 
we choose. Example: it could be the bottom left 
corner of the checkerboard pattern (marked 
here as a red circle). This is the world coordinate 
system. 

Secondly, we will measure the coordinates of the pixel locations of 
the various junction points from the image that we captured with the 
camera. 

Thus for each of the N junction points, we have the pixel coordinates 
as well as the world coordinates. From this, we have to derive the 
extrinsic and intrinsic parameters of the camera.



Extrinsic parameters
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The extrinsic camera parameters are typically unknown. They 
account for 6 degrees of freedom (i.e. 6 unknowns) – why?

Coordinates of 
physical point P in 
terms of world 
coordinate system 
(this is measured 
physically, e.g. with a 
measuring tape)

Coordinates of 
physical point P in 
terms of camera 
coordinate system



Extrinsic parameters

• Note: the world coordinate system and the 
camera coordinate system are not aligned.

• R and t represent the rotation and translation 
(respectively) that takes you from the world 
coordinate system to the camera coordinate 
system.



Intrinsic parameters

• The relationship between image coordinates and 
pixel coordinates is given as:

• The other intrinsic camera parameter is the focal 
length f. 

• Intrinsic parameters are also unknown! They 
account for 5 degrees of freedom.
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Pixel aspect ratio
Coordinates of optical 
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Three main equations and a new one
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Projection equation in matrix form

z

y
y

z

x
x

Z

Y

X

rrr

rrr

rrr

o
s

f

o
s

f

z

y

x

imim

w

w

w

y

y

x

x

ˆ

ˆ
,

ˆ

ˆ

,

1100

0

0

ˆ

ˆ

ˆ

3333231

2232221

1131211






















































































tR

tR

tR

intM extM

)(

)(
)(

)(

)(
)(

3

2

3

1

tPR

tPR

tPR

tPR

w

w

w

w











fsoy

fsox

yyim

xxim

Intrinsic camera 
matrix (3 x 3)

Extrinsic 
camera matrix 
(3 x 4)

M = 3 x4 
camera 
matrix



Camera Calibration
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Camera Calibration

• Consider the equations, two for each of the N
points:

• Refer to lecture scans and textbook by Trucco and 
Verri (section 6.1 and 6.2.1) for the two different 
calibration procedures.
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Camera calibration: Image center 
• The first calibration procedure mentioned in the 

lectures yields all parameters except for the 
coordinates of the image center, given by (ox,oy).

• To find the image center, we compute the 
vanishing points of three mutually perpendicular 
sets of lines. The three vanishing points form a 
triangle, and the image center turns out to be the 
orthocenter of that triangle (i.e. point where the 
three altitudes of the triangle meet)!

• The second calibration procedure determines the 
image center as well. 



First procedure (by Tsai, sections 6.2.1 
to 6.2.3 of Trucco and Verri)

• It explicitly finds the camera parameters during calibration.
• Given N ≥ 8 pairs of points, it sets up an equation of the 

form Av = 0 where A has size N x 8 and contains functions 
of known coordinates, and v is an 8 x 1 vector of unknown 
values.

• The solution v is obtained (up to an unknown scalar and 
sign) as the eigenvector of ATA with the least (or zero) 
eigenvalue. (In the noise-free case, A has rank 7.)

• The camera parameters are derived from v as mentioned in 
the book.

• The optical center (ox,oy) is separately estimated using the 
orthocenter property of vanishing points, and this estimate 
must be given as input to this method.



Second procedure (by Faugeras and 
Toscani, section 6.3 of Trucco and 

Verri)
• It seeks to directly find the camera matrix M

(which is a 3 x 4 matrix).
• The camera matrix M has only 11 degrees of 

freedom (why?).
• The camera matrix is found by setting up an 

equation of the form Am = 0 where m is a 12 x 1 
vector containing the entries of M, and A is a 2N x 
12 matrix.

• Vector m is computed (up to an unknwon scale 
and sign) as the eigenvector of ATA with the least 
(ideally zero) eigenvalue. 



Second procedure (by Faugeras and 
Toscani, section 6.3 of Trucco and 

Verri)
• Vector m is reshaped to get a 3 x 4 matrix M. 

• The unknown scale and sign need not bother 
us (why?)

• What if we wanted to find the intrinsic and 
extrinsic parameters? 

• The book by Trucco and Verri gives one 
method for this. 

• In the next slide, we will see another method!



Second procedure (by Faugeras and 
Toscani) – using RQ factorization

• Recall that the camera matrix is given as:

• Consider the RQ decomposition of the 3 x 3 
submatrix G, G = GuGo where Gu is upper
triangular and Go is orthonormal.
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Second procedure (by Faugeras and 
Toscani)

• This RQ decomposition always exists and is 
unique for a full-rank matrix (which G is). 

• The RQ decomposition is derived from the 
more popular QR decomposition – which also 
always exists for any matrix, and is unique for 
a full-rank matrix.
Code (Text): 
ReverseRows = [0 0 1; 0 1 0 ; 1 0 0]; [Q R] = qr((ReverseRows * A)'); R = 
ReverseRows * R' * ReverseRows; Q = ReverseRows * Q';

https://www.physicsforums.com/threads/rq-decomposition-from-qr-
decomposition.261739/

https://www.physicsforums.com/threads/rq-decomposition-from-qr-decomposition.261739/
https://www.physicsforums.com/threads/rq-decomposition-from-qr-decomposition.261739/
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https://www.physicsforums.com/threads/rq-decomposition-from-qr-decomposition.261739/
https://www.physicsforums.com/threads/rq-decomposition-from-qr-decomposition.261739/


Second procedure (by Faugeras and 
Toscani)

• The aforementioned RQ decomposition can be 
used to determine Mint and R.

• The translation vector t = RT(Mint)
-1g (see 

previous slides).

• This method gives us fx, fy, ox and oy as well as 
R and t. Notice that (ox, oy) need not be 
separately estimated unlike method 1.



Using Calibrated Cameras



Determining depth
• Let p1 be the image of point P captured using a 

calibrated camera C1 with 3 x 4 known projection 
matrix M1. Hence we have:

• Given just the image point coordinates, we can only 
determine the 3D direction on which the object point 
lies. This direction is given as (u1,v1,f), where: 
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Determining depth
• To determine the exact location, we will need another calibrated 

camera. Let p2 be the image of the same point P captured using 
calibrated camera C2 with 3 x 4 known projection matrix M2. Hence we 
have:

• We again determine the 3D direction on which the object point lies. 
This direction is given as (u2,v2,f), where: 

• The intersection of the two directions yields the 3D coordinate of the point.
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Cross-Ratios: Projective 
Invariants



Measuring Height using Cross-Ratios

• Consider four collinear points A, B, C, D (in 
that order). The following quantity is called 
the cross-ratio of A, B, C, D:
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Cross-Ratio: Projective invariant

• Cross-ratios are invariant under perspective 
projection, i.e. the cross ratio of four collinear in 
3D = cross ratio of their projections (i.e., images) 
onto a 2D image plane!

• We will prove this algebraically in class! A 
geometric proof is on the next slide.

• Recall – lengths, areas, ratios of lengths, ratios of 
areas are not preserved under perspective 
projection (ratios of lengths and areas are 
preserved under affine transformation).



Cross ratio: projective invariant

• There exists a beautiful theorem in geometry 
which says that the cross ratio of the points 
(A,B,C,D) and that of the points (A’,B’,C’,D’) in 
the figure below are equal.

http://www.cut-the-knot.org/pythagoras/Cross-
Ratio.shtml
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http://www.cut-the-knot.org/pythagoras/Cross-Ratio.shtml
http://www.cut-the-knot.org/pythagoras/Cross-Ratio.shtml
http://www.cut-the-knot.org/pythagoras/Cross-Ratio.shtml
http://www.cut-the-knot.org/pythagoras/Cross-Ratio.shtml
http://www.cut-the-knot.org/pythagoras/Cross-Ratio.shtml
http://www.cut-the-knot.org/pythagoras/Cross-Ratio.shtml


Cross ratio: projective invariant

• Now consider 4 collinear points A’,B’,C’,D’ in 
3D space whose images on the image plane as 
A,B,C,D. Then clearly lines AA’, BB’, CC’, DD’ 
intersect at point M which is the center of 
projection.

• Invoking the theorem proves our result!
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Slide taken from Derek Hoiem (UIUC)
Inspired by the PhD thesis of Antonio Criminisi – “Accurate Visual 
Metrology frgom Single and Multiple Uncalibrated Images”, 
University of Oxford, 1999
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Note: Refer to next slide for 
explanation. Line bb0 is NOT 
necessarily parallel to lines in 
G1.
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• Input: an image of a person standing next to a building 
or a structure whose height R is known.

• To determine: height of the person (H) from the image.
• Assumption 1: the building is in the so called reference 

direction with vanishing point (called vz - which will lie 
at ∞ if this direction is parallel to camera plane). 

• Assumption 2: We are able to find two sets of parallel 
lines (called G1 and G2) on the ground plane. 

• Their corresponding vanishing points form the horizon.
• Points b and b0 are both on the ground plane. Consider 

a line (say L) passing through t0 and parallel to line bb0. 
• The images of L and bb0 will intersect at a point on the 

horizon (why? Because bb0 is coplanar with G1 and G2, 
and vanishing points of coplanar lines are collinear). 
Let’s call this point v.



• Now line vt0 (i.e. L) is parallel to bb0 in 3D 
space. Also line vt0 intersects the reference 
direction at point t.

• Hence in 3D space, tb = t0b0 = unknown height 
H (on the image plane, of course their lengths 
are different).

• Now use the cross-ratio invariance property to 
find H:
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Algorithm

• Find the vanishing point in the reference direction vz.

• Find the horizon line by joining the vanishing points of 
two pairs of parallel lines on the ground plane.

• Find the point of intersection (v) of the horizon with 
the line joining the base of the building (b) and the 
point where the person is standing (b0).

• Find the point of intersection (t) of the line vt0 (t0 = 
person’s head) with reference direction.

• Use the cross-ratio formula to determine the height of 
the person.



Planar Homography



Planar Homography

• Consider a planar object in 3D space, imaged 
by two cameras.

• The coordinates of corresponding points in 
the two images are said to be related by a 
planar homography. This relationship can be 
determined without calibrating either camera.
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Planar Homography (with homogeneous 
coordinates)

• Let equation of plane π be aX + bY +cZ + 1 = 0, 
i.e. [N 1]P = 0 where N = (a,b,c) is the vector 
(in 3D) normal to the plane and P = (X,Y,Z,1)t in 
the coordinate system of the first camera.

• The coordinates of its image in the first 
camera (in coordinate system of first camera) 
are given by:
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sense is equivalent to (u1/(fw1), v1/(fw1),1).



Planar Homography (with homogeneous 
coordinates)

• Clearly P lies on a ray from the pinhole (origin) 
to the point p1 in 3D space. Hence we can say 
that 
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I has size 3 x 3, N
has size 1 x 3, so it 
is a 4 x 3 matrix

The (X,Y,Z) coordinates of P can be expressed as (u1/k,v1/k,fw1/k). The 
homogeneous coordinate ‘k’ can be interpreted as a parameter which tells 
you exactly where on the line from the pinhole to p1, our point P lies. In 
general, this k would be unknown, but here we have more information –
that P lies on a plane whose equation is known. This would yield 
au1/k + bv1/k + cfw1/k + 1 = 0, i.e. au1 + bv1 + cfw1 + k = 0.



Planar Homography (with 
homogeneous coordinates)

• For the second camera, we have:
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H is a 3 x 3 matrix, as M~2

is a 3 x 4 matrix, and (I;-N) 
is a 4 x 3 matrix. 

Note: Let (X’,Y’,Z’,1) be the coordinates of 
point P in the coordinate frame of the 
second camera. p2 is the coordinate of its 
image again in the system of the second 
camera. Matrix M2 is the extrinsic (3x4) 
matrix for the second camera and 4 x4 
matrix M1,2 contains suitable extrinsic 
parameters to align the coordinate 
systems of the first  camera to that of the 
second camera.



Planar Homography (with homogeneous 
coordinates)

• The previous relationship was between the 
coordinates of the images of P: p1 in the first 
camera’s coordinate system, and p2 in the 
second camera’s coordinate system.

• What about a similar relationship in the 
respective image coordinate systems?

i m1 ,i m1 ,i m2 ,

i m1 ,i m2 ,
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This is also a 3 x 3 matrix which relates the image 
coordinates in the two images (in their respective 
image coordinate systems but with homogeneous 
coordinates)

M1,int and M2,int are intrinsic (3x3) camera matrices giving 
the relation between the coordinates of a point in 
camera coordinate system and image coordinate system.



Planar Homography

• Given two images of a coplanar scene taken from two 
different (uncalibrated) cameras, how will you determine 
the planar homography matrix H (rather H^)?

• How many point correspondences will you require? The 
answer is 4  so that we have at least 8 equations for the 8 
degrees of freedom.
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http://www.cmap.polytechnique.fr/~yu/research/ASIFT/
demo.html

http://www.cmap.polytechnique.fr/~yu/research/ASIFT/demo.html
http://www.cmap.polytechnique.fr/~yu/research/ASIFT/demo.html


Planar Homography

• Rearranging these equations, we get:
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The equation Ah = 0 will be solved by computing the SVD of A, i.e. A = USVT. The vector h
will be given by the singular vector in V, corresponding to the null singular value (in the 
ideal case) or the least singular value. This is equivalent to the eigenvector of ATA with the 
least eigenvalue. In the ideal case, A has rank 8 and hence the exact solution exists. In the 
non-ideal case, there is no h such that Ah = 0, so we find an approximate solution, i.e. a 
solution for which Ah is small in magnitude. 



Planar Homography

• Although there are 9 entries in the matrix, there 
are only 8 degrees of freedom. You can see this if 
you divide the numerator and denominator of 
the following equations by H^33.

• The number of point correspondences required is 
at least 4.
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Planar homography
• It is a motion model that is more general than 2D affine 

transformations!

• Note: in the derivation, make sure you understand that the 
planarity of the object being imaged, is critical. Otherwise you 
need a motion model more complicated than a homography!

• Again note: you do not need calibrated cameras (i.e. the 
corresponding points are in terms of image coordinates, i.e. in 
pixels), and you do not need to know the intrinsic or extrinsic 
camera parameters in order to determine the homography.

• The homography transformation has 8 degrees of freedom and 
is more general than the affine transformation which has only 6 
degrees of freedom. Observe the homography matrix on the 
previous slides – in an affine transformation, H31 and H32 would 
be 0.



Adding a Lens



Pinhole Camera to Camera with Lens

With a large pinhole, the image spot is large, 
resulting in a blurry image.

With a small pinhole, light is reduced resulting 
in a sharp but noisy image

With a simple lens, much more light can be 
brought into sharp focus.

http://en.wikipedia.org/wiki/Camera_lens

http://en.wikipedia.org/wiki/Camera_lens
http://en.wikipedia.org/wiki/Camera_lens


Thin convergent lens:

Optical axis Sos passing through the 
optical center O of the lens and normal 
to the plane of the lens

All rays of light from object point (say) P 
parallel to the optical axis pass through 
the principal focus Fr after refraction. 
The ray of light from P through O passes 
without refraction. But all rays of light 
emanating from P passing through the 
lens are focused onto a single point p –
the image of P (if point P was in focus).



Camera Lens: Focal Length, Aperture

A lens focusses light onto a sensor (or photo-film). The distance between the 
center of the lens and the principal focus is called focal length. This distance is 
changed as the shape of the lens changes. Defocussed points map onto a circle 
of confusion on the sensor. 

Focal length affects magnification. Large focal lengths yield smaller fields of 
view but more magnification. Small focal lengths yield large fields of view but 
less magnification.

http://en.wikipedia.org/wiki/Circle_of_confusion

http://en.wikipedia.org/wiki/Circle_of_confusion


Camera: Aperture

A wider aperture (above) allows for a larger 
shutter speed than a smaller aperture (below) 
for the same amount of exposure (or the same 
amount of light entering the camera).

Lower shutter speed = susceptibility to motion 
blur



Depth of field

• The images of some object points can appear 
blurry. The amount of blur depends on the 
distance between the object point and the 
camera plane (i.e. depth of the point).

• The range of depths for which the level of blur 
is acceptable to the human eye (or which 
appear acceptably sharp) is called as depth of 
field.





Aperture and depth of field

http://www.cambridgeincolour.com/tutorials/depth-of-field.htm

Larger aperture = shallower DOF, 
as radii of circle of confusion 
increase rapidly

Smaller aperture = more 
extensive DOF, as radii of circle 
of confusion increase more 
slowly

http://www.cambridgeincolour.com/tutorials/depth-of-field.htm
http://www.cambridgeincolour.com/tutorials/depth-of-field.htm
http://www.cambridgeincolour.com/tutorials/depth-of-field.htm
http://www.cambridgeincolour.com/tutorials/depth-of-field.htm
http://www.cambridgeincolour.com/tutorials/depth-of-field.htm


Downside of using a lens 

• It causes radial distortion – straight lines in 3D 
can get mapped onto curved lines in 2D, and 
this effect is much more jarring near the 
image borders.



Downside of using a lens 

• The relationship between the distorted and 
undistorted coordinates is approximated by:

• k1 and k2 are (extra!) intrinsic parameters of 
the camera. The associated calibration 
procedure is now more complicated.
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http://en.wikipedia.org/wiki/File:Blausen_0388_EyeAnatomy_01.png

Photo-film

Camera aperture

Lens

Apparatus to adjust width of 
camera aperture

The Human Eye as a Camera

http://en.wikipedia.org/wiki/File:Blausen_0388_EyeAnatomy_01.png


Summary

• Affine Transformations in 2D and 3D

• Pinhole camera, perspective projections

• Vanishing points

• Camera Calibration

• Cross-ratios

• Planar homography

• Adding in a lens


