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Basics

• A digital image – a discrete/sampled version of 
a visual stimulus

• Can be regarded as a function I = f(x,y) where 
(x,y) are spatial (integer) coordinates in a 
domain W = [0,H-1] x [0,W-1].

• Each ordered pair (x,y) is called a pixel.

• The pixel is generally square (sometimes 
rectangular) in shape.



Basics

• Pixel dimensions (height/width) relate to the 
spatial resolution of the sensor in the camera 
that collects light reflected from a scene.



Basics

• In a typical grayscale image, the intensity 
values f(x,y) lie in the range from 0 to 255 (8 
bit integers).

• They are quantized versions continuous values 
corresponding to the actual light intensity that 
strikes a light sensor in the camera.



Image Alignment

• Consider images I1 and I2 of a scene acquired 
through different viewpoints.

Pixels in digital correspondence (same 
coordinate values in the image domain W, 
not necessarily containing measurements 
of the same physical point) 

Pixels in physical correspondence 
(containing measurements of the same 
physical point, but not necessarily the 
same coordinate values in the image 
domain W) 



Image Alignment

• I1 and I2 are said to be aligned if for every (x,y) 
in the domain W, the pixels in I1 and I2 are in 
physical correspondence.

• Image alignment (also called registration) is 
the process of correcting for the relative 
motion between I1 and I2.



Image alignment: steps

• First step: motion estimation

• Second step: image warping



Motion estimation



Motion Models

• Let us denote the coordinates in I1 as (x1,y1) 
and those in I2 as (x2,y2).

• Translation:

• Rotation about point (0,0) anti-clockwise 
through angle q
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Motion Models

• Rotation about point (xc,yc) anti-clockwise 
through angle q



































 























1100

cossin

sincos

1

cossin

sincos

1

1

2

2

112

112

c

c

c

c

ccc

ccc

yy

xx

yθθ

xθθ

y

x

yθ)y(yθ)x(xy

xθ)y(yθ)x(xx

-Perform translation such that (xc,yc) coincides with the origin.
-Rotate about the new origin.
-Translate back.



Motion Models

• Rotation and translation:

• Affine transformation: rotation, translation, 
scaling and shearing
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Motion Models

• The 2D affine motion model (including 
translation in X and Y direction) includes 6 
degrees of freedom.

• Note: this motion model accounts for in-plane 
motion only (example: not an appropriate 
model for “head profile view versus head 
frontal view”) 



Motion Models

• Consider two images (perspective projection) 
of a plane in 3D space.

• These images are said to be related by a 
motion model called as a planar homography
– which we studied last class.
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Motion Models summary
Motion Model DOF

2D rigid 2+1=3

2D similarity (rigid+ uniform
scaling)

3+1=4

2D affine 6

Homography 8

3D rigid 6

3D similarity 6+1=7

3D affine 12

2D (or 3D) non-parametric 
(also called “non-rigid” or 
“deformable”)

2 x number of pixels (or 3 x 
number of voxels)

Parametric 
models



Alignment with control points

Control points: pairs of physically 
corresponding points – maybe marked out 
manually, or automatically using geometric 
properties of the image.

Number of control points N MUST be 
>= u/2, where u = number of unknown 
parameters in the motion model (each 
point has two coordinates – x and y)
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Apply the motion based 
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the first image



Least squares motion estimation: 
affine

• For the affine model, we can write the earlier 
equation as follows:
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Least squares motion estimation: 
homography

• For the homography motion model, we have 
previously seen that the solution is given as 
follows: 
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Least squares motion estimation: rigid 
motion

• For the rigid motion model, we can write the 
earlier equation as follows:

noise tRPP 12

This problem cannot be solved correctly by a simple pseudo-
inverse because a pseudo-inverse does not impose the fact 
that R is an orthogonal matrix. The correct solution uses the 
singular value decomposition. It is detailed here below 
assuming that t = 0 (the solution can be extended to the case 
where t is not 0)

http://www.cse.iitb.ac.in/~ajitvr/CS763_Spring2017/procrustes.pdf
Also see:
http://en.wikipedia.org/wiki/Orthogonal_Procrustes_problem
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http://www.cse.iitb.ac.in/~ajitvr/CS763_Spring2017/procrustes.pdf
http://en.wikipedia.org/wiki/Orthogonal_Procrustes_problem
http://en.wikipedia.org/wiki/Orthogonal_Procrustes_problem


Segway: Singular value Decomposition

• For any m x n matrix A, the following 
decomposition always exists:
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Marking control points

• Control points (also called feature points, 
salient points, fiducials or salient feature 
points) can be manually marked – which is 
error-prone and tedious.

• However this process can also be automated 
by using salient feature point detectors which 
are invariant to geometric transformations.

• An excellent example of this is SIFT (scale 
invariant feature transform).

http://www.cs.ubc.ca/~lowe/keypoints/

http://www.cs.ubc.ca/~lowe/keypoints/
http://www.cs.ubc.ca/~lowe/keypoints/


Marking control points: SIFT
• SIFT does two things: it detect salient points in each image and 

associates each salient point with a feature vector.

• The feature vector is a characteristic of a small region of the image 
around the salient point.

• The feature vector for each salient point is provably invariant to 
translation, rotation and reflection – and approximately (or as 
observed empirically) invariant to affine transformations and even 
some perspective changes.

• The feature vector is also provably invariant to several illumination 
changes of the form I’ = aI + b. where I’ and I are observed intensities, 
and a,b are coefficients (constant for the whole image).

• It is empirically seen to be invariant to many other types of 
illumination changes. 





Marking control points: SIFT

• Due to this invariance, the SIFT technique is 
able to do a good job at matching salient 
points from one image to another.

• The motion model can then be estimated 
from the matched points.



Image warping



Image warping

• After motion estimation, the next step is to 
warp one of the images (say) I1 using the 
estimated motion represented by a matrix 
(say T).



Image Warping
• Forward warping:

-Apply the motion Tv to every coordinate 
vector v = [x1 y1 1] in the original image (i.e. I1). 

-Copy the intensity value from v in I1 to the new 
location (Tv) in the warped image. If the new 
location is not an integer (most likely), then 
round off to nearest integer.

I1 (x1,y1) I1 warped(round(Tv))



Image Warping
• Forward warping:

-Can leave the destination image with some 
holes if you scale up.

-Can lead to multiple answers in one pixel if you 
scale down.



Image Warping

• Reverse warping:

-For every coordinate v = [x2 y2 1] in the 
destination image, copy the intensity value 
from coordinate T-1v in the original image. 
In case of non-integer value, perform 
interpolation (nearest neighbor or bilinear)

I1warped (x2,y2)I1 (T
-1(x2,y2))

Note: this assumes that T is an
invertible transformation, which is
guaranteed in the applications we are
dealing with. It is not guaranteed in
case of non-rigid deformations, given
the pixelized (i.e. discrete) image
coordinate systems.



Interpolation
a1 a2

a3a4

A B

CD

Nearest neighbor method: 
• Use value a4 (as the pixel that is nearest to the red point 

contains value a4)

Bilinear method: 
• Use the following value, a weighted combination of the four 

neighboring pixel values, with more weight to nearer values:
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



I1warped (x2,y2)I1 (T
-1(x2,y2))

A,B,C,D denotes
Areas of these four 
rectangles



Warping with homographies

• Consider the equation:

• While warping, note the division by w2 to yield x2,im
and y2,im. This is different from the affine case!
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Image alignment using image 
similarity measures (without using 

control points)



Control points are not always available

• In some scenes, good control points may not 
be available

• Or they cannot sometimes be reliably 
matched from one image to another.

• Example: some modalities such as ultrasound, 
or images that are heavily blurred or noisy.



Alignment with mean squared error

• Mean squared error is given by:

• Find motion parameters as follows:
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I1 = called the moving image



Alignment with mean squared error

• For simplicity, assume there was only rotation 
and translation.

• Then we have
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Alignment with mean-squared error

• There are many ways to do this minimization. The 
simplest but inefficient way is to do a brute-force 
search.

• Sample q, tx and ty uniformly from a certain range 
(example: q from -45 to +45, tx or ty from -30 to 
+30). 

• Apply this motion to I1 keeping I2 fixed, and 
compute the MSSD.

• Each time, compute the MSSD. Pick the 
parameter values (i.e. q, tx and ty) corresponding 
to minimum MSSD.



Alignment with mean squared error

• In the ideal case, the MSSD between two 
perfectly aligned images is 0. In practice, it will 
have some small non-zero value even under 
more or less perfect alignment due to sensor 
noise or slight mismatch in pixel grids.



Careful: field of view issues!

Region of overlap when 
the moving image is 
warped

Fixed image

Note: compute MSSD only over 
region of overlap.



-60 -45 -30

-15 0 +15

+30 +45 +60

Change in 
region of 
overlap, as 
the moving 
image is 
warped



Alignment with mean squared error

• MSSD is one example of an “image similarity 
measure”.

• MAJOR ASSUMPTION: Physically 
corresponding pixels have the same intensity, 
i.e. they are acquired by similar cameras and 
under the same lighting condition (this is 
often called as mono-modal image 
registration).



Image alignment: Intensity changes in 
images

• Images acquired by different sensors (MR and CT, different 
types of MR, camera with and without flash, etc.) 

• Changes in lighting condition

• This is called as multimodal image registration.

MR-T1MR-PD



http://en.wikipedia.org/wiki
/Flash_%28photography%29
#mediaviewer/File:Fill_flash.
jpg

http://www.cbica.
upenn.edu/sbia/s
oftware/dramms/
tutorials/Prostate
Hist2MRI.html

http://en.wikipedia.org/wiki/Flash_(photography)
http://en.wikipedia.org/wiki/Flash_(photography)
http://en.wikipedia.org/wiki/Flash_(photography)
http://en.wikipedia.org/wiki/Flash_(photography)
http://en.wikipedia.org/wiki/Flash_(photography)
http://www.cbica.upenn.edu/sbia/software/dramms/tutorials/ProstateHist2MRI.html
http://www.cbica.upenn.edu/sbia/software/dramms/tutorials/ProstateHist2MRI.html
http://www.cbica.upenn.edu/sbia/software/dramms/tutorials/ProstateHist2MRI.html
http://www.cbica.upenn.edu/sbia/software/dramms/tutorials/ProstateHist2MRI.html
http://www.cbica.upenn.edu/sbia/software/dramms/tutorials/ProstateHist2MRI.html


Image alignment: Intensity changes in 
images

• If following relationship exists and we knew
the exact functional form (say g), the solution 
is easy:
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Image alignment: Intensity changes in 
images

• What if the relationship exists in the following 
linear form, but we knew it only partially?

Physically corresponding points; a
and b are unknown, but we know 
the relationship is linear
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Normalized cross-correlation, also 
called correlation-coefficient –
observe its relation to a noramlized
vector dot product.

We are taking the absolute value here, to take care of cases where one image has 
positive values and the other has negative values



Image alignment: Intensity changes in 
images

Normalized cross-
correlation, also called 
correlation-coefficient
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Image alignment: intensity changes in 
images?

• Assume there exists a functional relationship 
between intensities at physically 
corresponding locations in the two images.

• But suppose we didn’t know it (most practical 
scenario) and couldn’t find it out. 

• We will use image histograms!



Image Histogram

• In a typical digital image, the intensity levels lie in the 
range [0,L-1]. 

• The histogram of the image is a discrete function of the 
form P(rk) = nk/HW, where rk is the k-th intensity value, 
and nk is the number of pixels with that intensity. 

• Sometimes, we may consider a range of intensity 
values for one entry in the histogram, in which case rk = 
[rmin

k, r
max

k] represents an intensity bin, and nk is the 
number of pixels whose intensity falls within this bin.

• Note P(rk) >= 0 always, and all the P(rk) values sum up 
to 1.



Joint Image Histogram

• Function of the form P(rk1,rk2) where rk1 and rk2

represent intensity bins from the two images 
I1 and I2 respectively.

• P(rk1,rk2) = number of pixels (x,y) such that 
I1(x,y) and I2(x,y) lie in bins rk1 and rk2

respectively, divided by HW.



4 4 1

3 3 3

6 1 4

1 1 1

6 6 6

3 4 2

Consider two 3 x 3 images above for example sake.
Their joint histogram is as follows:
P(4,1) = 2/9
P(1,1) = 1/9
P(3,6) = 3/9
P(6,3) = 1/9
P(1,4) = 1/9
P(4,2) = 1/9



Registered images: joint histogram plot 
looks “streamlined”

Values in I1 (from 0 to 60)

Values 
in I2

from 0 
to 60

I1

I2

0 60

0

60

How was this plot generated? The joint histogram 
is plotted as a grayscale image. Brighter points in 
this image indicate larger probabilities and darker 
points indicate lower probabilities.



Misaligned images: joint histogram plot 
looks “dispersed”

We need a method to quantify how dispersed a 
joint histogram actually is.

Values in I1 (from 0 to 60)

Values 
in I2

from 0 
to 60

0 60

0

60



We need a method to quantify how dispersed a 
joint histogram actually is.

Values in I1 (0 to 60)

Values 
in I2 (0 
to 60, 
top to 
bottom)

Misaligned images: the joint histogram plot 
appears dispersed.



Measure of dispersion

• Consider a discrete random variable X with normalized 
histogram P(X=x) [also called the probability mass 
function].

• The entropy of X is a measure of the uncertainty in X, given 
by the following formula:

• Entropy is a function of the histogram of X, i.e. of P(X). 
• It is not a function of the actual values of X.
• The entropy is always non-negative.
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))(log(()(log)()( 2

XDX

xXPExXPxXPXH
DXx



 




Entropy

• The entropy is maximum if X has a discrete 
uniform distribution, i.e. P(X=x1) = P(X=x2) for 
all values x1 and x2 in DX. The maximum 
entropy value is log(|DX|).

• The entropy is minimum (zero) if the 
normalized histogram of X is a Kronecker delta 
function, i.e. P(X=x1) = 1 for some x1, and   
P(X=x2) = 0 for all x2 ≠ x1.



Joint entropy

• The joint entropy of two random variables X and 
Y is given as follows:

• Maximum entropy:
-Uniform distribution on X and Y: entropy value 
log(|DX||DY|)
• Minimum entropy: 
-Kronecker delta, i.e. P(X=x1,Y=y1) = 1 for some x1,y1
and P(X=x2,Y=y2) = 0 for all x2 ≠ x1 or y2 ≠ y1.
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Joint entropy

• Minimizing joint entropy is one method of 
aligning two images with different intensity 
profiles.
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I2

I1: obtained by squaring the 
intensities of I2, and rotating I2

anticlockwise by 30 degrees.

I1 treated as moving image, I2 treated as 
fixed image. Joint entropy minimum occurs 
at -30 degrees.



Image Alignment: Application 
Scenarios



Image Alignment: applications, related 
problems

• Template matching

• Image Panoramas

• Denoising image-bursts

• Collecting photos of paintings

• Face recognition

• 3D-2D image registration



(1) Template Matching

• Look for the occurrence of a template (a 
smaller image) inside a larger image.

• Example: eyes within face image

Templates



(2) Image Panoramas

http://cs.bath.ac.uk/brown/autostitch/autostit
ch.html

http://cs.bath.ac.uk/brown/autostitch/autostitch.html
http://cs.bath.ac.uk/brown/autostitch/autostitch.html
http://cs.bath.ac.uk/brown/autostitch/autostitch.html


(3) Denoising image bursts

• An image burst is a collection of photos (of the 
same scene) taken in quick succession, each with 
very short exposure time.

• Each image is sharp but usually quite noisy (even 
more so if the lighting was poor).

• Due to camera motion during burst acquisition, 
the images can be slightly misaligned.

• You can align the images (say using SIFT for the 
control points and assuming a homography
motion model) and then simply average the 
images after alignment to remove the noise.

ftp://ftp.math.ucla.edu/pub/camreport/cam09-62.pdf ,Buades et al, “A note on multi-image denoising”
http://research.microsoft.com/en-us/um/people/luyuan/paper/FastBurstDenoising_SIGGRAPHASIA14.pdf

ftp://ftp.math.ucla.edu/pub/camreport/cam09-62.pdf
ftp://ftp.math.ucla.edu/pub/camreport/cam09-62.pdf
ftp://ftp.math.ucla.edu/pub/camreport/cam09-62.pdf
ftp://ftp.math.ucla.edu/pub/camreport/cam09-62.pdf
http://research.microsoft.com/en-us/um/people/luyuan/paper/FastBurstDenoising_SIGGRAPHASIA14.pdf
http://research.microsoft.com/en-us/um/people/luyuan/paper/FastBurstDenoising_SIGGRAPHASIA14.pdf
http://research.microsoft.com/en-us/um/people/luyuan/paper/FastBurstDenoising_SIGGRAPHASIA14.pdf
http://research.microsoft.com/en-us/um/people/luyuan/paper/FastBurstDenoising_SIGGRAPHASIA14.pdf


Image bursts are typically used for photographing fast moving objects 
(water fountains, sports, children). Here, however, we use it for 
photography under poor lighting conditions.

http://en.wikipedia.org/wiki/Burst_mode_%28
photography%29

http://en.wikipedia.org/wiki/Burst_mode_(photography)
http://en.wikipedia.org/wiki/Burst_mode_(photography)
http://en.wikipedia.org/wiki/Burst_mode_(photography)




(4) Photographing paintings

• The Google Art Project (https://www.google.com/culturalinstitute/user-

galleries?projectId=art-project) sought to acquire high-resolution 
photographs of paintings from famous museums.

• Acquiring such photographs requires very specialized 
equipment, controlled illumination and intensive post-
processing.

• The major problem in photographing a painting is that 
different portions of the painting exhibit a glare, depending 
on the viewpoint in which the picture was taken.

• If the painting is behind a glass/plastic frame, one 
sometimes sees the reflection of the observer in it.

• These glares and reflections change their location, if you 
change the viewpoint in which the picture was taken.

https://www.google.com/culturalinstitute/user-galleries?projectId=art-project
https://www.google.com/culturalinstitute/user-galleries?projectId=art-project
https://www.google.com/culturalinstitute/user-galleries?projectId=art-project
https://www.google.com/culturalinstitute/user-galleries?projectId=art-project
https://www.google.com/culturalinstitute/user-galleries?projectId=art-project
https://www.google.com/culturalinstitute/user-galleries?projectId=art-project


See:
http://www.siam.org/publicawareness/art.php
http://epubs.siam.org/doi/abs/10.1137/120873923

http://www.siam.org/publicawareness/art.php
http://www.siam.org/publicawareness/art.php
http://epubs.siam.org/doi/abs/10.1137/120873923
http://epubs.siam.org/doi/abs/10.1137/120873923


See:
http://www.siam.org/publicawareness/art.php
http://epubs.siam.org/doi/abs/10.1137/120873923

http://www.siam.org/publicawareness/art.php
http://www.siam.org/publicawareness/art.php
http://epubs.siam.org/doi/abs/10.1137/120873923
http://epubs.siam.org/doi/abs/10.1137/120873923


(4) Photographing paintings

• In an approach proposed by Haro, Buades and Morel 
(http://epubs.siam.org/doi/abs/10.1137/120873923 ), 
one takes several bursts of pictures of the painting 
from different viewpoints.

• All these images are aligned together using 
SIFT+homography.

• This is followed by image fusion, i.e. computing an 
average or median of all aligned images (the paper 
actually does this differently, but that is not so 
important in the present context of image alignment).

http://epubs.siam.org/doi/abs/10.1137/120873923




(5) Face recognition

• In a face recognition application, you first store 
one or more images of each person (say 
students/staff at IITB) in a database. These are 
called gallery images.

• Given an image of a person at some later point of 
time, the task is to match the image to the set of 
gallery images – in order to determine identity.

• This is called the probe image.

• The probe image can be in a different pose than 
the gallery image of the same person.



(5) Face recognition

• If the gallery and pose image had only in-
plane motion relative to each other, we could 
use one of the earlier discussed methods to 
find the unknown motion. Example below:



(5) Face recognition

• But this does not handle the much more 
realistic issue of out-of-plane motion. What 
does one do then?

http://www.cs.columbia.
edu/~jebara/htmlpapers
/UTHESIS/node30.html

http://www.cs.columbia.edu/~jebara/htmlpapers/UTHESIS/node30.html
http://www.cs.columbia.edu/~jebara/htmlpapers/UTHESIS/node30.html
http://www.cs.columbia.edu/~jebara/htmlpapers/UTHESIS/node30.html


(6) 3D-2D registration

• This motivates the use of 3D face scans or 3D 
models – which can be acquired by 3D 
cameras such as stereo-cameras or structured 
light sensors.

• A 3D face scan consists of a set of vertices in 
3D and a set of polygons (in 3D) linking those 
vertices.

http://www.jonasavrin.com/2011/01/15/free-3d-ir-head-scan-release-smart-hdr-ibl-vray-2-0/

http://www.jonasavrin.com/2011/01/15/free-3d-ir-head-scan-release-smart-hdr-ibl-vray-2-0/
http://www.jonasavrin.com/2011/01/15/free-3d-ir-head-scan-release-smart-hdr-ibl-vray-2-0/
http://www.jonasavrin.com/2011/01/15/free-3d-ir-head-scan-release-smart-hdr-ibl-vray-2-0/
http://www.jonasavrin.com/2011/01/15/free-3d-ir-head-scan-release-smart-hdr-ibl-vray-2-0/
http://www.jonasavrin.com/2011/01/15/free-3d-ir-head-scan-release-smart-hdr-ibl-vray-2-0/
http://www.jonasavrin.com/2011/01/15/free-3d-ir-head-scan-release-smart-hdr-ibl-vray-2-0/
http://www.jonasavrin.com/2011/01/15/free-3d-ir-head-scan-release-smart-hdr-ibl-vray-2-0/
http://www.jonasavrin.com/2011/01/15/free-3d-ir-head-scan-release-smart-hdr-ibl-vray-2-0/
http://www.jonasavrin.com/2011/01/15/free-3d-ir-head-scan-release-smart-hdr-ibl-vray-2-0/
http://www.jonasavrin.com/2011/01/15/free-3d-ir-head-scan-release-smart-hdr-ibl-vray-2-0/
http://www.jonasavrin.com/2011/01/15/free-3d-ir-head-scan-release-smart-hdr-ibl-vray-2-0/
http://www.jonasavrin.com/2011/01/15/free-3d-ir-head-scan-release-smart-hdr-ibl-vray-2-0/
http://www.jonasavrin.com/2011/01/15/free-3d-ir-head-scan-release-smart-hdr-ibl-vray-2-0/
http://www.jonasavrin.com/2011/01/15/free-3d-ir-head-scan-release-smart-hdr-ibl-vray-2-0/
http://www.jonasavrin.com/2011/01/15/free-3d-ir-head-scan-release-smart-hdr-ibl-vray-2-0/
http://www.jonasavrin.com/2011/01/15/free-3d-ir-head-scan-release-smart-hdr-ibl-vray-2-0/
http://www.jonasavrin.com/2011/01/15/free-3d-ir-head-scan-release-smart-hdr-ibl-vray-2-0/
http://www.jonasavrin.com/2011/01/15/free-3d-ir-head-scan-release-smart-hdr-ibl-vray-2-0/
http://www.jonasavrin.com/2011/01/15/free-3d-ir-head-scan-release-smart-hdr-ibl-vray-2-0/
http://www.jonasavrin.com/2011/01/15/free-3d-ir-head-scan-release-smart-hdr-ibl-vray-2-0/
http://www.jonasavrin.com/2011/01/15/free-3d-ir-head-scan-release-smart-hdr-ibl-vray-2-0/
http://www.jonasavrin.com/2011/01/15/free-3d-ir-head-scan-release-smart-hdr-ibl-vray-2-0/
http://www.jonasavrin.com/2011/01/15/free-3d-ir-head-scan-release-smart-hdr-ibl-vray-2-0/


(6) 3D-2D registration
• Given the 3D model of a person, you need to match the probe 

image to the model.

• How? You create images by projecting the 3D model in 
different viewing directions, and then match each image with 
the probe image.

• How many DoF involved? 

• Six: direction of viewing (2), distance of viewpoint along the 
viewing direction (1), direction measured to which offset 
point in 3D (another 3).

http://www.alpcentauri.info/
glulookat1.html

http://www.alpcentauri.info/glulookat1.html
http://www.alpcentauri.info/glulookat1.html


Source: PhD thesis of Paul Viola at MIT (1995)
http://research.microsoft.com/pubs/66721/phd-thesis.pdf
The method employed was optimization of “mutual information” (closely 
related to the joint entropy technique) we studied in class.

http://research.microsoft.com/pubs/66721/phd-thesis.pdf
http://research.microsoft.com/pubs/66721/phd-thesis.pdf
http://research.microsoft.com/pubs/66721/phd-thesis.pdf


What we learnt..

• Affine motion model

• Forward and reverse image warping

• Field of view during image alignment

• Measures for Image alignment: sum of 
squared differences, normalized cross-
correlation, joint entropy

• Registration using control points



What we didn’t learn

• Complicated motion models: higher degree 
polynomials, non-rigid models (example: 
motion of an amoeba, motion of the heart 
during the cardiac cycle, facial expressions, 
etc.)

• Efficient techniques for optimizing the 
measure for image alignment



Aspects of image registration

• Are the images in 2D or in 3D? (2D-2D, 3D-3D, 
3D-2D)

• Is the motion model parametric or non-
parametric (non-rigid)?

• Do the images have equal intensity values at 
physically corresponding points? (Unimodal or 
multimodal). This decides the objective 
function to be optimized.


