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• Least squares estimates

• Limitations of least squares and need for 
robustness

• Least median of squares method

• RANSAC method

• Application scenarios



Least squares Estimates

• Consider quantity y related to quantity x in the 
form y = f(x;a). 

• Here a is a vector of parameters for the function 
f. For example, y = mx + c, where a = (m,c).

• Now consider, we have N data points (xi,yi) where 
the yi could be possibly corrupted by noise, and 
want to estimate a. 

• This is done by minimizing the following w. r. t. a:
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Least squares Estimates

• Why did we minimize the squared error loss? 
What would happen if we changed the power 
to 4? Or 1 or 3 (with absolute value)?

• Let us assume that the noise affecting yi is (1) 
additive, and (2) Gaussian with mean zero and 
some known standard deviation σ. Then:
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Least squares Estimates

• Let us also assume that the noise values 
affecting the different samples are 
independent of each other.

• Now given some value of a and some xi, the 
probability density of yi is:
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Least squares Estimates

• The probability density of a random variable Y 
at a value y is defined as follows:
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Least Squares Estimates

• We want to find a value of a which maximizes
this probability density. This is called the 
maximum likelihood estimate of a.

• ..equivalent to maximizing the log of this 
probability density (why?)

• ..equivalent to minimizing the negative log of 
this probability density, i.e.
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Least Squares Estimates

• This shows us that the least squares estimate is 
the same as the maximum likelihood estimate 
under the assumption that the noise affecting 
different samples was independent and Gaussian
distributed with fixed variance and mean 0.

• Why maximum likelihood estimate of a? 
Intuitively, it is the value of a that best agrees 
with or supports the observations {yi}, 1 ≤ i ≤ N.



Least squares fit of a line
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N = 1000;x = 10*randn(N,1);
y = 1.5*x + randn(N,1)*3;
scatter(x,y,'r+')



Result of a least-squares estimate under Gaussian 
noise:

Estimated slope: 1.5015 (versus 1.5)
Estimated intercept: 0.088 (versus 0)



Other Least-squares solutions in 
computer vision

• Camera calibration – SVD 

• Parametric motion estimation – SVD or 
pseudo-inverse (affine, rotation, homography, 
etc)

• Fundamental/essential matrix estimation –
SVD (we will study this later in stereo-vision)

• Optical Flow (Horn-Shunck as well as Lucas-
Kanade) (we will study this later)



Outliers and Least-squares estimates

Observation: Let x be a random variable with a Gaussian distribution. 
Then the probability that x takes on any value in a small range far away 
from the mean (typically at a distance of more than +/- 3σ) is very low. 
See diagram above. 



Outliers and Least-squares

• The upshot of the previous observation is this: the least 
squares estimate assumes that most points will lie close to 
the true (unknown) model – else their probability would be 
very low.

• Now, suppose the given dataset contains wild outliers, i.e. 
stray points that simply do not obey the model.

• These outliers will skew the least squares estimate – as it 
tries to force a solution which maximizes the likelihood of 
the outliers as well.

• Since outliers were extremely unlikely under the Gaussian 
probability density,  the model (during maximum likelihood 
estimation) has to change itself to make the outliers more 
likely.



20% of the points are outliers. They have skewed the 
estimate of the slope from 1.5 to 3.6 and the 
intercept from 2 to 13.5.

Skewed estimate

Actual line



Examples of outliers: (1)

• Salt and pepper noise in images

Salt and pepper noise (a 
special case of impulse 
noise)

Gaussian noise



Examples of outliers: (2)

• Shadows and specularities act as outliers in 
photometric stereo!

Images taken from paper:
perception.csl.illinois.edu/matrix-
rank/Files/robust_v19.pdf‎

Don’t worry about this example right now – we will encounter it when we study 
shape from shading and photometric stereo

perception.csl.illinois.edu\matrix-rank\Files\robust_v19.pdf?
perception.csl.illinois.edu\matrix-rank\Files\robust_v19.pdf?
perception.csl.illinois.edu\matrix-rank\Files\robust_v19.pdf?
perception.csl.illinois.edu\matrix-rank\Files\robust_v19.pdf?
perception.csl.illinois.edu\matrix-rank\Files\robust_v19.pdf?
perception.csl.illinois.edu\matrix-rank\Files\robust_v19.pdf?
perception.csl.illinois.edu\matrix-rank\Files\robust_v19.pdf?


Examples of outliers: (3)

• Estimation of the spatial transformation 
between images (could be translation, 
rotation, affine or homography) requires N+ 
pairs of corresponding points. Some of these 
correspondences can be faulty.



Examples of outliers: (3)
• Some of these correspondences 

can be faulty for various reasons 

 occlusions/ difference in field of 
view / shadows

 algorithm errors

 identical objects in the scene

 change in the position of some 
objects in the scene (even 
though the global motion is 
homography, these objects will 
not conform to that same 
motion model).

http://petapixel.com/2012/10/22/an-eerie-
time-lapse-of-seattle-minus-all-the-humans/
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Examples of outliers: (4)

• The motion between consecutive frames of a 
video in the following link may be modeled as 
affine. But some corresponding pairs of points 
(example: on independently moving objects) 
don’t conform to that model – those are 
outliers.

https://www.youtube.com/watch?v=17VAuBL1Lxc

https://www.youtube.com/watch?v=17VAuBL1Lxc


Dealing with Outliers: (1)

Laplacian probability density function: 
a distribution which has heavier tails 
than the Gaussian. This means that if a 
random variable is Laplacian 
distributed, the probability that it can 
take values far away from the mean, is 
higher than what it would be if the 
variable were Gaussian distributed.
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The Laplacian (or Laplace) pdf is not to be confused with the Laplacian of 
a function f(x,y), given as fxx(x,y) + fyy(x,y) that we had studied in image 
processing.

p(x)



Dealing with Outliers: (1)

The Laplacian probability density 
function is a special case of the family of 
Generalized Gaussian probability 
density functions with shape parameter 
β and scale parameter α. As β reduces 
below 1, the density function becomes 
heavier tailed.
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Question: Why do we care for heavier 
tails?  Because they ensure that the 
wild outliers are more likely to occur 
(than the Gaussian pdf). 
Consequently, a maximum likelihood 
estimation assuming heavy-tailed 
noise models will be less affected by 
outliers.



Dealing with Outliers: (1)
Why do these Generalized Gaussians with shape 
parameter β < 2 have heavier tails than the usual 
Gaussian (i.e. β = 2)?
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Consider a zero-mean Gaussian and a zero-
mean Laplacian (without loss of generality), 
i.e. β = 1.
The term inside the exponential in a Gaussian 
is x2, where it is |x| for a Laplacian.

|x|
x2

Note that x^p grows faster 
than x^q beyond |x| = 1, for 
p > q



Dealing with Outliers: (1)

• Assume the noise has a Laplacian distribution.
• The maximum likelihood estimate of a is then given by 

minimizing the following:

• Unfortunately, there is no closed-form solution (based 
on inverse/pseudo-inverse) in this case – unlike the 
case for squared error!

• One will need iterative methods like adaptive gradient 
descent.
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Dealing with Outliers: (1)
• One will need iterative methods like adaptive 

gradient descent.
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α = step size of gradient descent

Gradient descent converges to a local 
minimum of the energy function (or 
objective function), i.e. J(a) in this slide, if 
the step size α is “small enough” to never.

Unfortunately, too small a step size is too 
expensive. A large step size may lead to 
increase in the energy function across 
iterations. 

So we pick the largest possible step-size 
(within a given range) that reduces the 
energy – this is called gradient descent 
with adaptive step-size or adaptive 
gradient descent.



Robust statistics – simple example

Find “best” representative for the set of numbers
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Slide: Courtesy - Darya Frolova, Recent progress in optical flow



Elections and Robust statistics 

many ordinary people a very rich man

Oligarchy

Votes proportional to the wealth

Democracy

One vote per person

wealth

like in L2 norm minimization like in L1 norm minimization

Slide: Courtesy - Darya Frolova, Recent progress in optical flow



New ways of defining the mean

• We know the mean as the one that minimizes 
the following quantity:

• Changing the error to sum of absolute values, 
we get:
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We will prove this in class!



New ways of defining the mean

• We can also use errors of the following type with  
0 < q ≤ 1:

• Optimizing the above requires iterative methods 
(no closed form solutions).

• The mean computed using 0 < q ≤ 1 is quite 
robust to outliers – with q greater than or equal 
to 2, the mean is susceptible to outliers.
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New ways of defining the mean

• The earlier definitions of the mean were for 
scalars. They can be extended for vectors in 
some d > 1 dimensions as well.

• For other q-norms (0 <= q < 1), we have:
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Dealing with outliers: (2) LMedS

• LMedS = Least Median of Squares

• It works as follows:

• This has no closed form solution either and 
you can’t do gradient descent type of 
techniques as the median is not differentiable.

• But it has an “algorithmic” solution.
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Dealing with outliers: (2) LMedS

• Step 1: Arbitrarily choose k out of N points 
where k is the smallest number of points 
required to determine a. Call this set of k
points as C.

o Eg: If you had to do line fitting, k = ?

o Eg: If you were doing circle fitting, k = ?

o Eg: If you have to find the affine 
transformation between two point sets in 2D, 
you need k = ? correspondences.



Dealing with outliers: (2) LMedS

• Step 2: Determine a using an inverse (say) from C. 

• Step 3: Determine the squared residual errors for all 
the other N-k points, i.e. compute 

• Step 4: Compute medC = median of {ei}.

• Repeat all these four steps for S different subsets of k
points each. 

• Pick the estimate of a corresponding to the C that has 
the least value of medC .

• What’s the time complexity of this algorithm?
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Dealing with outliers: (2) LMedS

• S = number of subsets. What should be the minimum 
value of S?

• Let’s say that some fraction p (0 < p < 1) of the N
points are inliers (“good points”).

• Then the probability that at least one of the S different 
subsets contains all inliers (i.e. yields good estimate of 
a) is: P = 1-(1- pk)S. 

• Fix P to 0.99 (say) and compute S assuming you know 
p.

• Clearly S will increase hugely if either k is large (more 
parameters to determine) and/or if p is small (fewer 
inliers).



Dealing with outliers: (3) RanSaC

• RanSaC = Random Sample Consensus.

• Similar in spirit to LMedS.

• Step 1: Arbitrarily choose k out of N points where 
k is the smallest number of points required to 
determine a. Call this set of k points as C.

• Step 2: Determine a using an inverse (say) from 
C. 

• Step 3: Determine the squared residual errors for 
all the other N-k points, i.e. compute 

Ciiii xfye  }));(({ 2a



Dealing with outliers: (3) RanSaC

• Step 4: Count the number of points for which 
ei < threshold λ. These points form the 
“consensus set” for the chosen model.

• Repeat all 4 steps for multiple subsets and 
pick the subset which has maximum number 
of inliers and its corresponding estimate of a.

• Choice of S – same as LMedS.

Sample result 
with RanSaC for 
line fitting.



Dealing with outliers: (3) RanSaC

• Step 4: Count the number of points for which 
ei < threshold λ. These points form the 
“consensus set” for the chosen model.

• Alternatively:

1. Repeat all 4 steps for multiple subsets and 
pick the subset C which has maximum 
number of inliers.

2. Estimate a using all the points which were 
inliers for C.



Least squares 
estimate

RanSaC estimate



RANSAC versus LMedS

• LMedS needs no threshold to determine what 
is an inlier unlike RanSaC.

• But RanSaC has one advantage. What?

o LMedS will need at least 50% inliers (by 
definition of median).

o RanSaC can tolerate a smaller percentage of 
inliers (i.e. larger percentage of outliers).



Expected number of RanSaC iterations

• The probability that at least one point in a 
chosen set of k points is an outlier = 1-pk.

• The probability that the i-th set is the first set 
that contains no outliers = (1-pk)i-1pk to be 
denoted as Q(i).



Expected number of RanSaC iterations

• The expected number of sets to be drawn 
required to find the first no-outlier set = 
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RanSaC Variant 1

• RanSaC picks the subset C with largest 
number of inliers (i.e. least number of 
outliers), which is equivalent to picking the 
subset that minimizes the following cost 
function:
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RanSaC Variant 1: MSAC

• One could instead minimize a cost function that 
gives weights to inliers to see how well they fit 
the model:

• This variant is called MSaC (M-estimator sample 
consensus).
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 M-estimator: an estimator that weighs inliers 
by their “quality”, and outliers by a fixed 
constant



Reminder: Planar Homography

• Given two images of a coplanar scene taken 
from two different cameras, how will you 
determine the planar homography matrix H?

• How many point correspondences will you 
require?
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Planar Homography

• Rearranging these equations, we get:

There will be N
such pairs of 
equations (i.e. 
totally 2N
equations), given N
pairs of 
corresponding 
points in the two 
images

The equation Ah = 0 will be solved by computing the SVD 
of A, i.e. A = USVT. The vector h will be given by the 
singular vector in corresponding to the null singular value 
(in the ideal case) or the null singular value. 
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Application: RANSAC to determine 
Homography between two Images

• Determine sets Q1 and Q2 of salient feature 
points in both images, using the SIFT 
algorithm.

• Q1 and Q2 may have different sizes! 
Determine the matching points between Q1
and Q2 using methods such as matching of 
SIFT descriptors.

• Many of these matches will be near-accurate, 
but there will be outliers too!





Application: RANSAC to determine 
Homography between two Images

• Pick a set of any k = 4 pairs of points and 
determine homography matrix H using SVD 
based method.

• Determine the number of inliers – i.e. those 
point pairs for which:

• Select the estimate of H corresponding to the 
set that yielded maximum number of inliers!


2

221 ii Hqq



H =
0.57882301155793   0.06780863137907 -28.33314842189324

-0.06084045669542   0.56283594396435  30.61319941910327
0.00002958152711  -0.00003144483692   0.58195535780312

RANSAC result with 41% inliers (threshold on squared distance was 0.1) –
point matching done using minor-Eigenvalue method with SSD based 
matching of 9 x 9 windows in a 50 x 50 neighborhood

1st image 2nd image 1st image: warped using 
estimated H



1st image 2nd image 1st image: warped using 
estimated H and 
overlapped/merged with 
2nd image – to show 
accuracy of alignment



Left: Result of warping 1st image using H estimated with simple least-
squares on the matching points (No RANSAC). 
Right: Result merged with 2nd image.
Notice that the estimation is quite poor.



Some cautions with RANSAC
• Consider a dataset with a cloud of points all 

close to each other (degenerate set). A model 
created from an outlier point and any point 
from a degenerate set will have a large 
consensus set!

Image taken from Ph.D. thesis of Ondrej
Chum, Czech Technical University, 
Prague



Some cautions with RANSAC
• A model created from a set of inliers need not 

always be optimal, i.e. it may have a very 
small consensus set.

Image taken from Ph.D. thesis of Ondrej
Chum, Czech Technical University, 
Prague



References

• Appendix A.7 of Trucco and Verri

• Article on Robust statistics by Chuck Stewart

• Original article on RanSaC by Fischler and 
Bolles

• Article on RanSaC variants by Torr and 
Zisserman

http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/Steward_Robust parameter estimation in computer vision.pdf
http://delivery.acm.org/10.1145/360000/358692/p381-fischler.pdf?ip=103.21.127.76&id=358692&acc=ACTIVE SERVICE&key=045416EF4DDA69D9.255A07E897459CCB.4D4702B0C3E38B35.4D4702B0C3E38B35&CFID=475767586&CFTOKEN=33389231&__acm__=1422949200_21a95497908d957
http://delivery.acm.org/10.1145/360000/358692/p381-fischler.pdf?ip=103.21.127.76&id=358692&acc=ACTIVE SERVICE&key=045416EF4DDA69D9.255A07E897459CCB.4D4702B0C3E38B35.4D4702B0C3E38B35&CFID=475767586&CFTOKEN=33389231&__acm__=1422949200_21a95497908d957
http://delivery.acm.org/10.1145/360000/358692/p381-fischler.pdf?ip=103.21.127.76&id=358692&acc=ACTIVE SERVICE&key=045416EF4DDA69D9.255A07E897459CCB.4D4702B0C3E38B35.4D4702B0C3E38B35&CFID=475767586&CFTOKEN=33389231&__acm__=1422949200_21a95497908d957
http://delivery.acm.org/10.1145/360000/358692/p381-fischler.pdf?ip=103.21.127.76&id=358692&acc=ACTIVE SERVICE&key=045416EF4DDA69D9.255A07E897459CCB.4D4702B0C3E38B35.4D4702B0C3E38B35&CFID=475767586&CFTOKEN=33389231&__acm__=1422949200_21a95497908d957
http://delivery.acm.org/10.1145/360000/358692/p381-fischler.pdf?ip=103.21.127.76&id=358692&acc=ACTIVE SERVICE&key=045416EF4DDA69D9.255A07E897459CCB.4D4702B0C3E38B35.4D4702B0C3E38B35&CFID=475767586&CFTOKEN=33389231&__acm__=1422949200_21a95497908d957
http://delivery.acm.org/10.1145/360000/358692/p381-fischler.pdf?ip=103.21.127.76&id=358692&acc=ACTIVE SERVICE&key=045416EF4DDA69D9.255A07E897459CCB.4D4702B0C3E38B35.4D4702B0C3E38B35&CFID=475767586&CFTOKEN=33389231&__acm__=1422949200_21a95497908d957
http://delivery.acm.org/10.1145/360000/358692/p381-fischler.pdf?ip=103.21.127.76&id=358692&acc=ACTIVE SERVICE&key=045416EF4DDA69D9.255A07E897459CCB.4D4702B0C3E38B35.4D4702B0C3E38B35&CFID=475767586&CFTOKEN=33389231&__acm__=1422949200_21a95497908d957
http://delivery.acm.org/10.1145/360000/358692/p381-fischler.pdf?ip=103.21.127.76&id=358692&acc=ACTIVE SERVICE&key=045416EF4DDA69D9.255A07E897459CCB.4D4702B0C3E38B35.4D4702B0C3E38B35&CFID=475767586&CFTOKEN=33389231&__acm__=1422949200_21a95497908d957
https://www.robots.ox.ac.uk/~vgg/publications/2000/Torr00/torr00.pdf
https://www.robots.ox.ac.uk/~vgg/publications/2000/Torr00/torr00.pdf
https://www.robots.ox.ac.uk/~vgg/publications/2000/Torr00/torr00.pdf
https://www.robots.ox.ac.uk/~vgg/publications/2000/Torr00/torr00.pdf
https://www.robots.ox.ac.uk/~vgg/publications/2000/Torr00/torr00.pdf
https://www.robots.ox.ac.uk/~vgg/publications/2000/Torr00/torr00.pdf
https://www.robots.ox.ac.uk/~vgg/publications/2000/Torr00/torr00.pdf
https://www.robots.ox.ac.uk/~vgg/publications/2000/Torr00/torr00.pdf

