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Problem definition

• Structure from motion refers to the inference 
of the object’s 3D structure or shape (i.e. the 
X,Y,Z coordinates of several points on the 
object’s surface) given a sequence of the 
object’s images when the object is in relative 
motion w.r.t. a camera.



Human perception of motion

• We humans have the ability to do this 
inference – see below:

https://www.youtube.com/watch?v=zdKX7Xo3Cb8&feature=player_detailpage#t=270

https://www.youtube.com/watch?v=zdKX7Xo3Cb8&feature=player_detailpage


Contents of the lecture

• We are going to study an interesting algorithm 
called as factorization.

• It was developed by Tomasi and Kanade and 
was published in the early 90s.

• The algorithm is simple and elegant.

Tomasi and Kanade, “Shape and motion from image streams 
under orthography: a factorization method”, International Journal 
of Computer Vision, 1992.
http://link.springer.com/article/10.1007%2FBF00129684#page-1

http://link.springer.com/article/10.1007/BF00129684
http://link.springer.com/article/10.1007/BF00129684
http://link.springer.com/article/10.1007/BF00129684


Algorithm input and assumptions

• Given: A sequence of some F ≥ 3 images of a 
non-planar object acquired under an 
orthographic camera moving relative to the 
object.

• The camera may be actually moving and the 
object could be still, or vice-versa, or both 
could be in motion.

• For simplicity but without loss of generality, 
we will assume the former. 



Algorithm input and assumptions

• Let the object consist of n ≥ 3 non-coplanar 
points – P1, P2, …, Pn measured in some world 
coordinate system.

• We will assume that (1) these n 3D points are 
visible in each of the F frames, and (2) the 
corresponding n image points are tracked and 
marked out in each of the F frames.



Algorithm: input and assumptions

• We are assuming an orthographic camera.

• We are assuming that the whole video 
sequence is obtained a priori with points 
tracked.



Algorithm: input and assumptions

• Let pij = (xij, yij) = j-th image point (j = 1 to n) in 
the i-th frame (i = 1 to F). 

• Assemble matrix W (size 2F x n) as follows:
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Algorithm: input and assumptions

• Consider the following matrix (size 2F x n) as 
follows:
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For each frame, compute the centroid of the 2D 
points. Deduct the centroid from the points in 
every frame to create the new matrix on the left. 
Why do we do this? We will see soon.

We will prove that this matrix actually has rank at 
the most 3 under ideal conditions (no noise in 
point coordinates). This is called the Rank 
Theorem.



Proof: Rank Theorem

• The 3D object is stationary and the camera is 
moving (performing rotation and translation).

• Each time the camera moves, its extrinsic 
parameters change, i.e. the rotation 
transformation between the camera axes and 
the world coordinate axes changes, and also 
the translation vector between the origin of 
the camera coordinate system and the origin 
of the world coordinate system changes.



Proof: Rank Theorem

• In the i-th frame, let the translation vector be 
given as ti. Let the axes of the camera as 
measured in the world coordinate system be 
given as ii, ji, ki = ii x ji.
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The image coordinates 
are thus given as follows:



Proof: Rank Theorem

• Without loss of generality, we will assume that 
the origin of the world coordinate system is at 
the centroid of the 3D object.

• In other words, we have
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Proof: Rank Theorem

• Now consider the following equations:

• Combining them, we have
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Proof: Rank Theorem
• Reconsider the following equations:
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 R has size 2F x 3 and has 
rank 3 as F ≥ 3.

S has size 3 x n 
and will have rank 3 if the 
points in S are non-
coplanar.

So W̃ has rank 3.



What does the rank theorem tell you?
• Given the matrix W̃, we compute its SVD as 

follows:

• For i = 1 to F, the ith and (F+i)th rows of R give you 
the vectors ii and ji respectively. Since ki = ii x ji, 
we have axes of the camera coordinate system in 
the i-th frame. Comparing the camera coordinate 
systems across consecutive frames tells you how 
much the camera rotated from one frame to 
another.

• The columns of S give the 3D point coordinates.
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Problem!

• But the obtained R and S are not unique 
because for any invertible 3 x 3 matrix Q, we 
have:

• How do we resolve this?
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Problem solution

• But the obtained R and S are not unique 
because for any invertible 3 x 3 matrix Q, we 
have:

• Observe that the rows of a rotation matrix 
(here RQ) must have unit magnitude. Any two 
rows must be perpendicular to each other. So 
we solve for Q by observing that:
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from the R matrix that you get from the SVD of W̃.



Problem solution: not so soon!
• We can solve for Q which will satisfy the following 

equations using Newton’s method (details later):

• The final R and S matrices will be as follows:

• But these solutions are also unique only up to 
some unknown orthonormal transformation R0, 
i.e.
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Problem solution: not bad after all!

• Note that this R0 cannot be uniquely obtained 
by exploiting the metric properties unlike the 
case of Q (why?).

• All this means is that the if you assumed all 
the camera positions were rotated by some 
fixed R0 in every frame, the object coordinates 
would rotate by a fixed (R0)-1 in every frame. 

• This can be resolved by assuming that in the 
first frame, the world coordinate system is 
aligned with the camera coordinate system.



What about camera translation from 
frame to frame?

• This is orthographic projection: so we can 
never determine the Z component of the 
translation vector in any frame.

• The X and Y components of the translation 
vector (in frame t) are obtained by the 
difference between the image centroids in 
frame t and those in frame t-1.
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What about camera rotation from 
frame to frame?

• Compare the i,j,k axes of the camera in frame 
t and frame t-1.



Measurement noise

• The rank theorem says that W̃ has rank 3. 

• But that is true only when there is no noise in 
measuring the coordinates of the tracked 
points in every frame.

• What if there is noise? One can attempt to 
“filter out” the noise in W̃ by considering its 
rank 3 approximation.



Measurement noise

• Consider the SVD:

• Due to noise, the rank exceeds 3, but we can 
create a rank-3 approximation by considering 
only the 3 largest singular values in D (and their 
corresponding columns in U and V).

• This is the best rank-3 approximation to W̃ as per 
the well-known Eckart-Young Theorem on SVD.
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How to estimate Q?

• Look at the following equations (totally 3F in 
number):

• This is a system of non-linear equations, the 
variables being the 9 entries of Q which we 
rearrange to yield vector q. We will label each 
equation as fk(q) = 0 (k = 1 to 3F).

• No closed-form solution unlike linear case 
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How to estimate Q?

1. Start with an initial guess for q, for example 
qt = vectorized form of identity matrix.

2. If qt is the true solution, then fk(qt) = 0 for all 
k from 1 to 3F, and you stop (this won’t 
happen in the first step when t = 0!). 

3. Instead we want to find vector δ such that 
fk(qt + δ) = 0 for all k.

4. We seek to find δ by approximating each fk as 
a linear function in the neighborhood of qt. 



How to estimate Q?

5. The linear approximation is given as:

6. But we want fk(qt+ δ) = 0 for all k. Hence for a 
given k, we have
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This is a 9 x 1 vector of first 
derivatives. Remember 
that δ is a 9 x 1 vector.



How to estimate Q?

7. Collecting together 3F such equations, we 
have:

8. One can solve for δ by pseudo-inverse. 

9. But this solution will not exactly satisfy all the 
equations as we performed a linear 
approximation which was not fully accurate, 
and also because a least squares solution for δ
is not guaranteed to yield fk(qt+ δ) = 0 for all k.
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The yellow box contains a 9 x 3F matrix 
called the Jacobian. Again, δ is a 9 x 1 
vector and f(qt) is also a 9 x 1 vector.



How to estimate Q?

10. Hence we update our solution from qt to qt+1

= qt+ δ.

• We repeat the previous steps with t = 0, 1, 2,…
and so on until we reach a time when fk(qt + δ) 
≈ 0 for all k.

• This overall method is called Newton-Raphson
method of root-finding.








