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Problem statement

• Input: video sequence

• Output: A list of “good” feature points marked 
out in frame 1, and their positions in all 
subsequent video frames.



Problem statement: demo

http://www.youtube.com/watch?v=pmKtNQphq1E

http://www.youtube.com/watch?v=Jw1CCR0tAcY

http://www.youtube.com/watch?v=pmKtNQphq1E
http://www.youtube.com/watch?v=Jw1CCR0tAcY


Problems in feature tracking

• What is meant by “good” feature points? Why 
isn’t every point a good feature point?

• Can the tracker make mistakes somewhere? If 
so, can we identify the mistake?

• What do you do when a feature point gets 
occluded? Or disappears?

• What do you do when a new object appears in 
the video?



Motion estimation: Model 1

• Consider I(x,y,t+1) = I(x+u,y+v,t) where (u,v) = 
displacement at pixel (x,y) at time t.

• We want to estimate (u,v). 

• But estimating (u,v) at individual pixels is unreliable 
due to image noise and the aperture problem.

• So consider a small patch W of pixels around (x,y). 
Estimate (and assume) a common (u,v) for the entire 
window.





Motion Estimation: Model 1
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E Taylor series about x and y assuming 
(u,v) to be small. 
This is very similar to the equations for 
the Lucas-Kanade method for optical 
flow



Motion Estimation : Model 1
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Local structure tensor: 
denoted as G
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Motion estimation : Model 2

• The assumption of a single 
displacement/translation (u,v) for the whole 
window W can be unreasonable.

• Solution: Use an affine transformation model 
– each pixel in the patch now has its own 
displacement.



Motion Estimation : Model 2
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We drop the (x,y,t) on Ix, Iy and 
It henceforth only for the sake 
of brevity

Taking Taylor series about (x,y,t)



Motion Estimation
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Note:

This is by the definition of derivative w.r.t. matrix 
D or vector d = (u,v). The same definition is 
applicable to matrices or vectors of larger size.



Motion Estimation : Model 2
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by least squares/inverse
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This matrix is obtained by rearranging the equations 
in the blue box in the form Cz = b where C and b are 
known vectors and z is a vector of unknown values 
(in this case the elements of D and d)



Motion Estimation: Model 2

• Model 2 has more degrees of freedom than Model 1 (6 
versus 2).

• Model 2 is more general, but less robust to noise.
• Model 2 will need larger patches to work well. This 

increases the fraction of patches that straddle 
boundaries of different objects.

• Motion between consecutive frames must be small 
(necessary for tracking to work) – hence most of the 
entries of D will be small.

• Hence model 1 is preferred for motion estimation 
between consecutive frames.

• Model 2 has another application in tracking!



Motion estimation: model 2 (iterative 
computation)

• The key equations rest upon the assumption of 
small motion.

• In some cases (example, if you are comparing 
patches from image frames at vastly different 
time instants), this assumption is invalid.

• In such cases, one has to determine the motion 
parameters (D and d) iteratively.

• You loop over the following steps until 
convergence: (a) estimate D and d to align 
window W1 with window W2, (b) warp W1 as per 
D and d and go back to earlier step.



What’s a good feature point?

• One that can be tracked well.

• A point whose surrounding patch has nice 
properties!

• Structure tensor G should be invertible.
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What’s a good feature point?

• Let the two eigenvalues of G be λ1, λ2 (λ1 >= λ2). 
• If the patch W has constant intensity, λ1=λ2=0. G

is a null matrix.
• If the patch W is noisy but otherwise has constant 

intensity, λ1≈0,λ2≈0. G is ill-conditioned.
• If the patch has constant but large gradient, then 

λ1>> 0, λ2=0. G has rank 1. 
• If the patch has constant but large gradient and 

some noise, then λ1>> 0, λ2≈0. G has rank 2 but is 
ill-conditioned.

Code at: 
http://www.cse.iitb.ac.in/~ajitvr/CS763_Spring2015/eigvals_structure_tensor.m

http://www.cse.iitb.ac.in/~ajitvr/CS763_Spring2015/eigvals_structure_tensor.m


What’s a good feature point?

• If the patch contains a strong edge against a 
constant intensity background, then λ1>> 0, λ2≈0. 
G has rank 2 but is ill-conditioned.

• If the patch is rich in texture with significant 
intensity, then λ1>> 0, λ2>>0. This also occurs at 
corner points. G has rank 2 and is well-
conditioned. It allows for reliable motion 
estimate.

• The minor eigen-value gives a good idea of the 
“goodness” of the feature point for tracking. 
Larger is better.

Code at: 
http://www.cse.iitb.ac.in/~ajitvr/CS763_Spring2015/eigvals_structure_tensor.m

http://www.cse.iitb.ac.in/~ajitvr/CS763_Spring2015/eigvals_structure_tensor.m


Source of images (and in fact, most of this presentation):

Shi and Tomasi, “Good features to track”, Cornell University Technical 
Report, 1993

Ellipse with axes of 
width given by the 
eigenvalues λ1, λ2 

https://www.cs.duke.edu/~tomasi/papers/shi/TR_93-1399_Cornell.pdf

https://www.cs.duke.edu/~tomasi/papers/shi/TR_93-1399_Cornell.pdf


What’s a good feature point?

• Pick feature points whose minor eigen-value 
exceeds some threshold τ. 

• How to pick τ? 

• Take a training set consisting of uniform 
intensity patches and another of textured 
patches.

• The minor eigen-values will have a huge 
difference. That gives you a good estimate of 
τ.







What’s a good feature point? Criterion 
2

• Feature points satisfying the minor eigen-value 
criterion may still be bad.

• Example: the corner point created by intersection 
of a moving object with a static one is a bad 
feature point! It cannot be tracked as it 
disappears in subsequent frames!

• How do you know the point was tracked 
correctly?



Problems in feature tracking

Ground truth position

Predicted position



What’s a good feature point? Criterion 
2

• Compute a dissimilarity measure between a 
patch containing the (tracked) feature point in 
the current frame (let’s call it Wc) and the 
original patch (let’s call it Wf) in the first 
frame. 

• If the measure is small, then we have tracked 
the point well.

• If the measure is large, the tracking has failed, 
and this feature point should be abandoned.



What’s a good feature point? Criterion 
2

• Dissimilarity measure 1:

o Find the best translation between Wc and Wf.

o Find squared difference between Wc and 
translated Wf.

• Dissimilarity measure 2:

o Find the best affine transformation between Wc
and Wf.

o Find squared difference between Wc and affine
transformed Wf.



Synthetic Results: Motion estimation



Synthetic Results: Motion estimation



Simple translation model will fail here!





Effect of occlusion







Experiments with a real sequence

Camera moving forward at the rate of 2 mm per frame. Focal 
length of lens is 16 mm.













Algorithm summary

• Use the minor eigen-value method to detect salient 
feature points in frame 1.

• Determine motion between patches around feature 
points in frame t and patches at corresponding 
locations in frame t+1. Use the translation-only model 
(i.e. Model 1).

• Check for validity of tracking using the affine model 
(Model 2) based dissimilarity measure. If the measure 
falls above a certain threshold, discard the feature 
point, i.e. don’t track it any further.

• Repeat for t=1 to T.



Appearance of new objects

• When a new object appears in the scene, it yields 
new feature points which will be ignored by the 
present version of the algorithm.

• Can be alleviated by running a feature detector 
(our minor eigen-value method) on every k-th
frame of the video and initializing new feature 
points (take care to ensure they aren’t too close 
to any existing tracked points).



Applications – panorama generation 
from videos

http://www.infotech.oulu.fi/Annual/2005/pics/mvg_01.jpg

http://www.infotech.oulu.fi/Annual/2005/pics/mvg_01.jpg


Applications – panoramas from videos

• Input: a sequence of ordered images of a large 
scene from consecutive viewpoints

• Output: a large image mosaic

• Method: obtain salient points in first image 
and track them in subsequent images

• This will give us pairs of corresponding points 
in consecutive images. Use their coordinates 
to determine the homography transformation 
in between the images.



Applications – Video stabilization

• Obtain salient points in first frame. Track them 
in the next k frames.

• Obtain affine/homography transformations 
between consecutive frames of the video.

• This will produce a sequence of 
transformation coefficients.

• Smooth this sequence. 

• Warp the images as per new (smoothed) 
motion estimates – giving non-shaky video.

http://www.youtube.com/watch?v=J_NVykBWrL4

http://www.youtube.com/watch?v=J_NVykBWrL4


http://www.cc.gatech.edu/cpl/projects/videostabilization/

Grundmann, Kwatra, Essa, “Auto-directed video 
stabilization using robust L1 optimal paths”, ICCV 2011.

http://www.cc.gatech.edu/cpl/projects/videostabilization/


Applications – Structure from Motion

• Input: video sequence (T frames) of an object 
undergoing rotational motion (assume 
orthographic projection)

• Aim: Given a sequence of P corresponding 
feature points (i.e. 2D coordinates) in all 
images, determine (1) the 3D coordinates of 
all the points, and (2) the rotational motion at 
each time instant.


