Tracking Feature Points
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Problem statement

* [nput: video sequence

* Output: A list of “good” feature points marked
out in frame 1, and their positions in all
subsequent video frames.



Problem statement: demo

http://www.youtube.com/watch?v=pmKtNQphqglE

http://www.youtube.com/watch?v=Jw1CCROtAcY



http://www.youtube.com/watch?v=pmKtNQphq1E
http://www.youtube.com/watch?v=Jw1CCR0tAcY

Problems in feature tracking

What is meant by “good” feature points? Why
isn’t every point a good feature point?

Can the tracker make mistakes somewhere? If
so, can we identify the mistake?

What do you do when a feature point gets
occluded? Or disappears?

What do you do when a new object appears in
the video?



Motion estimation: Model 1

Consider I(x,y,t+1) = I(x+u,y+v,t) where (u,v) =
displacement at pixel (x,y) at time t.

We want to estimate (u,v).

But estimating (u,v) at individual pixels is unreliable
due to image noise and the aperture problem.

So consider a small patch W of pixels around (x,y).
Estimate (and assume) a common (u,v) for the entire
window.
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Motion Estimation: Model 1
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Motion Estimation : Model 1
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Motion estimation : Model 2

 The assumption of a single

displacement/translation (u,v) for the whole
window W can be unreasonable.

e Solution: Use an affine transformation model
— each pixel in the patch now has its own
displacement.



Motion Estimation : Model 2
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Motion Estimation
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This is by the definition of derivative w.r.t. matrix
D or vector d = (u,v). The same definition is
applicable to matrices or vectors of larger size.



Motion Estimation : Model 2
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Motion Estimation: Model 2

Model 2 has more degrees of freedom than Model 1 (6
versus 2).

Model 2 is more general, but less robust to noise.

Model 2 will need larger patches to work well. This
increases the fraction of patches that straddle
boundaries of different objects.

Motion between consecutive frames must be small
(necessary for tracking to work) — hence most of the
entries of D will be small.

Hence model 1 is preferred for motion estimation
between consecutive frames.

Model 2 has another application in tracking!



Motion estimation: model 2 (iterative
computation)

The key equations rest upon the assumption of
small motion.

In some cases (example, if you are comparing
patches from image frames at vastly different
time instants), this assumption is invalid.

In such cases, one has to determine the motion
parameters (D and d) iteratively.

You loop over the following steps until
convergence: (a) estimate D and d to align
window W, with window W,, (b) warp W, as per
D and d and go back to earlier step.



What’s a good feature point?

e One that can be tracked well.

* A point whose surrounding patch has nice
properties!
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e Structure tensor G should be invertible.



What’s a good feature point?

* Let the two eigenvalues of G be A, A, (A, >=A,).

* If the patch W has constant intensity, A,=A,=0. G
is a null matrix.

* If the patch W is noisy but otherwise has constant
intensity, A,=0,A,=0. G is ill-conditioned.

* |If the patch has constant but large gradient, then
A>>0, A,=0. G has rank 1.

* |f the patch has constant but large gradient and
some noise, then A;>> 0, A,=0. G has rank 2 but is
ill-conditioned.

Code at:
http://www.cse.iitb.ac.in/~ajitvr/CS763 Spring2015/eigvals structure tensor.m



http://www.cse.iitb.ac.in/~ajitvr/CS763_Spring2015/eigvals_structure_tensor.m

What’s a good feature point?

* |If the patch contains a strong edge against a
constant intensity background, then A;>> 0, A,=0.
G has rank 2 but is ill-conditioned.

* If the patch is rich in texture with significant
intensity, then A;>> 0, A,>>0. This also occurs at
corner points. G has rank 2 and is well-
conditioned. It allows for reliable motion
estimate.

* The minor eigen-value gives a good idea of the
“goodness” of the feature point for tracking.
Larger is better.

Code at:
http://www.cse.iitb.ac.in/~ajitvr/CS763 Spring2015/eigvals structure tensor.m



http://www.cse.iitb.ac.in/~ajitvr/CS763_Spring2015/eigvals_structure_tensor.m
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Source of images (and in fact, most of this presentation):

0

Ellipse with axes of
width given by the
eigenvalues A1, A2

Shi and Tomasi, “Good features to track”, Cornell University Technical

Report, 1993

https://www.cs.duke.edu/~tomasi/papers/shi/TR 93-1399 Cornell.pdf



https://www.cs.duke.edu/~tomasi/papers/shi/TR_93-1399_Cornell.pdf

What’s a good feature point?

Pick feature points whose minor eigen-value
exceeds some threshold t.

How to pick t?

Take a training set consisting of uniform
intensity patches and another of textured
patches.

The minor eigen-values will have a huge
difference. That gives you a good estimate of
T.









What's a good feature point? Criterion
2

* Feature points satisfying the minor eigen-value
criterion may still be bad.

 Example: the corner point created by intersection
of a moving object with a static one is a bad
feature point! It cannot be tracked as it
disappears in subsequent frames!

 How do you know the point was tracked
correctly?



Problems in feature tracking

@ Ground truth position

@ Predicted position




What's a good feature point? Criterion
2

 Compute a dissimilarity measure between a
patch containing the (tracked) feature point in
the current frame (let’s call it W_) and the
original patch (let’s call it W,) in the first
frame.

e If the measure is small, then we have tracked
the point well.

* |f the measure is large, the tracking has failed,
and this feature point should be abandoned.



What's a good feature point? Criterion
2

* Dissimilarity measure 1:
o Find the best translation between W_and W;.

o Find squared difference between W, and
translated W;.

* Dissimilarity measure 2:

o Find the best affine transformation between W,
and W;.

o Find squared difference between W_ and affine
transformed W.




Synthetic Results: Motion estimation

Figure 6.1: Original image (leftmost column) and image warped, translated and corrupted by noise
(rightmost column) for three different motions. The intermediate columns are the images in the
leftmost column deformed and translated by 4.8.and 19 iterations of the tracking algorithm.



Synthetic Results: Motion estimation
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Figure 6.2: The first three columns show the dissimilarity, displacement error, and deformation error
as a Tunction of the tracking algorithm’s iteration number. The last two columns are displacements
and deformations computed during tracking, starting from zero displacement and delormation.



Figure 5.1: Three frame details from Woody Allen’s Manhattan. The details are from the 1st, 11th,
and 21st frames of a subsequence from the movie.

Figure 5.2: A window that tracks the traffic sign visible in the sequence of figure 5.1. Frames
1,6,11,16,21 are shown here.

Simple translation model will fail here!
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Figure 5.3: Pure translation (dashed) and affine motion (solid) dissimilarity measures for the
window sequence of figure 5.2.

Figure 5.4: The same windows as in figure 5.2, warped by the computed deformation matrices.



Effect of occlusion

Figure 5.5: Three frame details from Woody Allen’s Manhattan. The feature tracked is the bright
window on the background, just behind the fire escape on the right of the traffic sign.

ooEnTe

Figure 5.6: The bright window from figure 5.5, visible as the bright rectangular spot in the first
frame (a), is occluded by the traffic sign (c).
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Figure 5.7: Pure translation (dashed) and affine motion (solid) dissimilarity measures for the
window sequence of figure 5.1 (plusses) and 5.5 (circles).
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Figure 6.3: The pennyv in the leftmost column at the top is warped through the intermediate stages
shown until it matches the transformed and noise-corrupted image in the richtmost column. The

bottom row shows plots analogous to those of figure 6.2



Experiments with a real sequence

Precision
| I’nsni(ming
Components & Systems

Figure 7.1: The first frame of a 26 frame sequence taken with a forward moving camera.

Camera moving forward at the rate of 2 mm per frame. Focal
length of lens is 16 mm.
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Figure 7.2: The features selected according to the texturedness criterion of chapter 4.
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Figure 7.4: Labels of some of the features in figure 7.2.
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Figure 7.5: Six sample features through six sample frames.
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Figure 7.3: Pure translation dissimilarity for the features in figure 7.2. This dissimilarity is nearly
useless for feature discrimination.
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Figure 7.6: Affine motion dissimilarity for the features in figure 7.2. Notice the good discrimination
between good and bad features. Dashed plots indicate aliasing (see text).



Algorithm summary

Use the minor eigen-value method to detect salient
feature points in frame 1.

Determine motion between patches around feature
points in frame t and patches at corresponding
locations in frame t+1. Use the translation-only model
(i.e. Model 1).

Check for validity of tracking using the affine model
(Model 2) based dissimilarity measure. If the measure
falls above a certain threshold, discard the feature
point, i.e. don’t track it any further.

Repeat for t=1to T.



Appearance of new objects

* When a new object appears in the scene, it yields
new feature points which will be ignored by the
present version of the algorithm.

* Can be alleviated by running a feature detector
(our minor eigen-value method) on every k-th
frame of the video and initializing new feature
points (take care to ensure they aren’t too close
to any existing tracked points).



http://www.infotech.oulu.fi/Annual/2005/pics/mvg 01.jpg

Applications — panorama generation
from videos



http://www.infotech.oulu.fi/Annual/2005/pics/mvg_01.jpg

Applications — panoramas from videos

* |[nput: a sequence of ordered images of a large
scene from consecutive viewpoints

e Qutput: a large image mosaic

 Method: obtain salient points in first image
and track them in subsequent images

* This will give us pairs of corresponding points
in consecutive images. Use their coordinates
to determine the homography transformation
in between the images.



http://www.youtube.com/watch?v=) NVykBWrL4

Applications — Video stabilization

* Obtain salient points in first frame. Track them
in the next k frames.

* Obtain affine/homography transformations
between consecutive frames of the video.

* This will produce a sequence of
transformation coefficients.

 Smooth this sequence.

 Warp the images as per new (smoothed)
motion estimates — giving non-shaky video.


http://www.youtube.com/watch?v=J_NVykBWrL4
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http://www.cc.gatech.edu/cpl/projects/videostabilization/

Grundmann, Kwatra, Essa, “Auto-directed video
stabilization using robust L1 optimal paths”, ICCV 2011.


http://www.cc.gatech.edu/cpl/projects/videostabilization/

Applications — Structure from Motion

* |nput: video sequence (T frames) of an object
undergoing rotational motion (assume
orthographic projection)

* Aim: Given a sequence of P corresponding
feature points (i.e. 2D coordinates) in all
images, determine (1) the 3D coordinates of
all the points, and (2) the rotational motion at
each time instant.



