
Symbolically Bounding the Drift in
Time-Constrained MSC Graphs.
S. Akshay1, Blaise Genest2, Loïc Hélouët3, and Shaofa Yang4

1 National University of Singapore.
2 CNRS, UMI IPAL joint with NUS and A*STAR/I2R, Singapore.
3 INRIA Rennes, France.
4 SIAT, Chinese Academy of Sciences, China.

Abstract
Systems involving both time and concurrency are notoriously difficult to analyze. Existing decid-
ability results apply in settings where clocks on different processes cannot be compared or where
the set of timed executions is regular. We prove new decidability results for timed concurrent sys-
tems, requiring neither restriction. We consider the formalism of time-constrained MSC graphs
(TC-MSC graphs for short), introduced in [2]. We study the problem of checking whether the set
of timed executions generated by a TC-MSC graph is empty, which is undecidable in general [9].

In this paper, we show the decidability of this problem under the restriction that every path
of the TC-MSC graph is prohibited from forcing any basic scenario labeling a node to take more
than K units of time to complete, for a given K. Further, we prove that this condition can be
effectively checked. Our approach consists in encoding the time constraints seen along a path
into a bounded system of inequalities. Instead of constructing an interleaved model and using
zones of timed automata as in existing approaches, we symbolically manipulate the system of
inequalities using the Fourier-Motzkin elimination method. This allows for decision procedures
which are both efficient and handle non regular specifications.

1 Introduction

In a distributed system, several processes interact to implement a collection of global behaviors.
Protocol specifications include timing requirements for messages as well as descriptions of
how to recover from timeouts. Thus, a protocol designer has to deal with situations where
time and concurrency influence each other. One way to describe these interactions is through
scenarios, formalized using Message Sequence Charts (MSCs) [11]. The timing information
is captured by adding timing constraints between pairs of events, yielding time-constrained
MSCs (denoted TC-MSCs). A protocol is then described by allowing choices and repetition
of scenarios. To specify these main characteristics of protocols while abstracting away details
of implementation, the formal methods community often considers MSC graphs, which are
directed graphs whose nodes are labeled by MSCs. MSC graphs have been generalized to
time-constrained MSC graphs (TC-MSC graphs) [2], whose nodes are labeled by TC-MSCs
and edges have additional timing constraints. In general, such models do not have regular
sets of executions. In this paper, we consider decidability issues for TC-MSC graphs.

Obtaining decidability in the presence of both time and concurrency is a challenging issue.
For instance, even checking whether there exists a timed execution that is consistent with
all the constraints of a model is non trivial. This question, called the emptiness problem,
is undecidable for TC-MSC graphs in general [9]. However, it is decidable for (sequential)
timed automata [3]. Extending decidability results to distributed systems has been done only
in two particular and limited settings. In the first setting, [13, 8] consider clocks that are
local to a process. But then, one cannot specify time taken by a communication (message or
synchronization). This limitation makes the specification formalism very weak. The second

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


2 Symbolically Bounding the Drift in Time-Constrained MSC Graphs.

setting can relate clocks from different processes and specify how long a communication can
or must take [2, 1, 5, 6]. However, these papers restrict the concurrency in a structural way,
for instance considering only locally synchronized (see [14, 4, 10]) MSC graphs (in [2, 1]) or
only safe Petri Nets (in [5, 6]). The language of the specification is then forced to be regular,
which is a significant restriction in a concurrent setting where even simple behaviors may
not be regular (e.g., the producer-consumer protocol). Also, the procedures for TC-MSC
graphs in [2, 1, 9] rely on the construction of an interleaved model, leading to a combinatorial
explosion. This could be seen as a contradiction to the spirit of MSCs, which tries to avoid
interleavings. Further, the approaches in [2, 1, 9] ultimately use zone construction techniques
for timed automata, which implies another blow up in complexity.

In this paper, we propose the first decidability result for timed concurrent systems with
global clocks having a possibly non regular set of behaviors. We investigate the emptiness
problem for TC-MSC graphs, and prove it to be decidable in the setting where a TC-MSC
graph is prohibited from forcing any basic scenario to take an arbitrarily long amount of time
to complete. More precisely, for some given integer K, for any path ρ of a TC-MSC graph, if
there exists at least one execution of ρ, then we require that there exists at least one in which
the occurrence times of any two events from the same basic scenario differ by at most K.
Such a TC-MSC graph is said to be K-drift-bounded. We further show that given K, one can
effectively test whether a TC-MSC graph G is K-drift-bounded. Both results are established
without constructing an interleaved model nor zones obtained from a timed automaton and
thus avoids both state space explosions. Instead, we translate time constraints of any path
of a TC-MSC graph into a symbolic profile, in the form of a system of inequalities. We show
how to manipulate this system symbolically using Fourier-Motzkin elimination and Shostak
lemma [15]. We then show that symbolic profiles can be approximated by a bounded system
of inequalities whose coefficients are integers in [−K,K], which is safe for K-drift-bounded
paths. This forms the cornerstone of our decidability results, as these systems of inequalities
can be recognized by a finite state automaton.

The paper is organized as follows: Section 2 recalls basic definitions of TC-MSC graphs.
Section 3 defines drift-boundedness and discuss its relevance. Section 4 shows how to check
emptiness forK-drift-bounded TC-MSC graphsand Section 5 shows thatK-drift-boundedness
is decidable, for a given K.

2 Preliminaries

Through the rest of the paper, we fix a finite set P of processes and let p, q range over P.
Let Σ = {p!q, p?q | p, q ∈ P, p 6= q} be the communication alphabet. The letter p!q represents
p sending a message to q, while p?q signifies p receiving a message sent by q. We define the
map loc : Σ→ P via loc(p!q) = p = loc(p?q), and call loc(a) the location of a.

We now give the definition of Message Sequence Charts (MSCs) and time-constrained
MSCs (TC-MSCs). In this paper we do not need the FIFO assumption on the messages.

I Definition 1. An MSC is a tuple (E, (<p)p∈P , µ, λ) where E is a finite set of events and
λ : E→Σ is a labeling function. For each p, <p is a total order over events of Ep = {e ∈ E |
loc(λ(e)) = p}. The message function µ ⊆ ES ×ER is a bijection, such that f = µ(e) implies
λ(e) = p!q, λ(f) = q?p for some p, q ∈ P , with ES = {e ∈ E | λ(e) = p!q, for some p, q ∈ P}
and ER = {f ∈ E | λ(f) = q?p, for some p, q ∈ P}. We require that l =

⋃
p∈P <p ∪µ is

such that its transitive closure ≤ is a partial order.

The relation ≤ reflects causal ordering of events. We will write e < f when e ≤ f and



S. Akshay, Blaise Genest, Loïc Hélouët, and Shaofa Yang 3

n1

p q r s

[0, 3]

n2

q r
[3, 4)

((2,∞)q, [0,∞)r)

([2, 3]p, [0, 1]q, [0, 1]r, [0, 1]s)

p q r s

[0, 3]

[0, 3]

[3, 4)

[2, 3] [0, 1]

(2,∞)

[0, 1] [0, 1]

T1

p q r s

0

2

3

4

7

1

2

4

2

3 M1

Figure 1 A TC-MSC graph G1, a TC-MSC T1 induced by the path n1 ·n1 ·n2 of G1 and a dated
MSC M1 ∈ L(G1) generated by T1

e 6= f . Notice that Ep has a unique <p-maximal event (respectively, minimal event), which
we refer to as the last (respectively, first) event of E on p.

Let N be the set of natural numbers. Let I denote the collection of intervals of open and
closed intervals with end points in N as well as intervals of the form [c,∞) where c ∈ N.

I Definition 2. A TC-MSC is a structure (E, (<p)p∈P , µ, λ, δ) where (E, (<p)p∈P , µ, λ) is
an MSC and δ is a function which associates an interval δ(e, e′) ∈ I to each el e′.

For each pair of events e l e′, the interval δ(e, e′) constrains the range in which the
difference between the occurence time of e′ and the occurrence time of e can lie. For clarity,
we shall refer to occurrence times as dates. Though we have considered only constraints
as intervals with natural end-points, our results extend easily to constraints expressed as
intervals involving rational end-points. A TCMSC T defines a collection of scenarios with
dates such that relative difference of dates fulfill the constraints asserted in T .

I Definition 3. Let (E, (<p)p∈P , µ, λ, δ) be a TC-MSC. A dated MSC generated by T is a
structure (E, (<p)p∈P , µ, λ, d) where d is a function which associates a non-negative real to
each event in E and such that for each el e′, d(e′)− d(e) is in the interval δ(e, e′).

We denote by L(T ) the set of dated MSCs generated by T . To capture possibly infinite
collections of TC-MSCs, we define TC-MSC graphs, which are finite graphs whose nodes
are labeled by TC-MSCs. Each path ρ of a TC-MSC graph G induces a TC-MSC by
concatenating TC-MSCs labeling nodes of ρ. Transitions of G are labeled with interval
constraints, one for each process, that act as constraints on the timing between the last and
the first event of consecutive nodes in ρ.

I Definition 4. A TC-MSC graph is a structure G = (N, T ,Λ, nin, Nfi,−→,∆) where N is
a finite nonempty set of nodes, T a finite set of TC-MSCs, Λ : N → T labels each node with
a TC-MSC, nin is the initial nodes, Nfi the set of final nodes, −→⊆ N ×N is the transition
relation, and ∆ is a labelling function which associates an interval ∆p(n→n′) ∈ I to each
transition n→n′ and each process p. We call a TC-MSC graph full if each node has events
on every process in P.

A path ρ of the TC-MSC graph G is a sequence n0n1 . . . n` such that n0 = nin and
ni→ni+1 for i = 0, . . . , `− 1. The path ρ is said to be final if n` ∈ Nfi.

Let us now define the concatenation of TC-MSCs labeling adjacent nodes in G. For
each n→n′, the concatenation of TC-MSCs Λ(n), Λ(n′) is defined with respect to ∆(n→n′),



4 Symbolically Bounding the Drift in Time-Constrained MSC Graphs.

and is denoted Λ(n) ◦ Λ(n′). Roughly speaking, concatenation of Λ(n) and Λ(n′) consists
in putting Λ(n′) after Λ(n) and for every process p ∈ P, attaching to the pair (ep, fp) the
constraints ∆p(n→n′), for ep the last event of Λ(n) on process p and fp the first event of
Λ(n′) on process p.

Formally, let Λ(n) = (E, (<p)p∈P , µ, λ, δ), Λ(n′) = (E′, (<′p)p∈P , µ′, λ′, δ′). Then T =
(E′′, (<′′p)p∈P , µ′′, λ′′, δ′′) where E′′ is the disjoint union of E and E′, <′′p is the transitive
closure of the union of <p, <′p and Ep × E′p, and λ′′ is given by: λ′′(e) = λ(e) for e ∈ E,
λ′′(e) = λ′(e) for e ∈ E′. We also set µ′′(e) = µ(e) when µ(e) is defined, and µ′′(e) = µ′(e)
when µ′(e) is defined. At last, δ′′ is given by: δ′′(e, f) = δ(e, f) for el f , δ′′(e, f) = δ′(e, f)
for el′ f . For each p, if both Ep and E′p are nonempty, setting ep the last event of Ep and
fp the first event of E′p, δ′′(ep, fp) = ∆p(n→n′).

We emphasize that if Ep or E′p is empty, then ∆p does not play a role in Λ(n)◦Λ(n′), and
we assume that ∆p(n→n′) = [0,∞) in such a case, as in [2, 1, 9]. It follows that for n→n′→n′′,
(Λ(n) ◦ Λ(n′)) ◦ Λ(n′′) is the same as Λ(n) ◦ (Λ(n′) ◦ Λ(n′′)). Thus, we can unambiguously
define the TC-MSC T ρ induced by a path ρ = n0 . . . n` of G to be Λ(n0) ◦ . . . ◦ Λ(n`).

From now on, whenever there is no confusion, we shall speak interchangeably of a node n
and its associated TC-MSC Λ(n). We write L(G) for the union of L(T ρ), where ρ ranges
over final paths of G. We call a dated MSC in L(G) a timed execution of G.

Figure 1 provides an example of a TC-MSC graph G1 and an TC-MSC T1 induced by
the path n1 · n1 · n2 of G1, i.e., T1 = Tn1·n1·n2 . Further M1 is a dated MSC generated by T1
(i.e., it is a timed execution of G1). As n2 is final, M1 ∈ L(G).

The emptiness problem for TC-MSC graphs is: given a TC-MSC graph G, determine
whether L(G) = ∅. We say that a path ρ is consistent whenever L(T ρ) 6= ∅. Hence L(G) 6= ∅
is equivalent with G having at least one consistent path. This is one of the fundamental
verification problems that must be addressed on scenario based descriptions. Indeed, a
TC-MSC graph with an empty language should be considered as ill-specified and it is helpful
to catch this exception at an early stage of design. Unfortunately, in [9] it is shown that this
problem (as well as checking reachability, boundedness) is undecidable in general.

In the rest of the paper, we show that checking emptiness for TC-MSC graphs is
decidable under a restriction on time constraints, namely drift-boundedness, as defined
below. Furthermore, we show that one can test whether a given TC-MSC graph satisfies this
condition, thus providing an effective decidability procedure.

3 Drift-Boundedness

In this section we define the crucial notion of drift-boundedness. A TC-MSC graph G is said
to be K-drift-bounded for some integer K > 0 if for all paths ρ of G, there exists some timed
execution of T ρ such that every TC-MSC labeling a node of ρ takes at most K units of time
to complete. In other words, the dated MSC associated to the execution assigns dates such
that for each instance of a node, the duration between the first and last date of (events in)
this instance is at most K.

To define this more formally, let us start by fixing a TC-MSC graph G. Let ρ = n0 . . . n`
be a consistent path of G and (E, (<p)p∈P , µ, λ, d) be a dated MSC generated by T ρ. For
an integer K, we say that (E, (<p)p∈P , µ, λ, d) is a K-drift-bounded dated MSC of ρ iff for
each i = 0, . . . , `, for any two events e, e′ in Λ(ni), it is the case that |d(e)− d(e′)| ≤ K. We
say that ρ is K-drift-bounded iff there exists a K-drift-bounded dated MSC in L(T ρ). We
emphasize that L(T ρ) may also contain dated MSCs which are not K-drift-bounded. We
say that G is K-drift-bounded iff every consistent (but not necessarily final) path of G is



S. Akshay, Blaise Genest, Loïc Hélouët, and Shaofa Yang 5

K-drift-bounded. At last, G is drift-bounded iff it is K-drift-bounded for some K.
As an example, consider the TC-MSC graph G1 from the figure above. G1 is 2-drift-

bounded since in every timed execution, we can be sure that all events in node n1 or n2
will be completed with a delay of at most 2 time units. But if we change the constraints
on the loop on n1 from ([0, 1]r, [0, 1]s) to, for instance, ([4, 5]r, [1, 2]s) then it is no longer
k-drift-bounded for any integer k. Note that G1 is not locally synchronized (as defined in [1]
by lifting the same definition from the untimed setting [14, 4]). In fact, we can simulate
the producer-consumer protocol on node n1 and obtain non-regular behaviours. Thus, this
example cannot be handled by [1] or other existing results in the timed setting.

We believe that drift-boundedness is a practical notion. Interpreting a node of a TC-MSC
graph as a phase or a transaction of a distributed protocol, we expect any scenario labeling
the node to be performed in a bounded time, say K. A protocol specified as a TC-MSC graph
that is not K-drift-bounded should thus be considered as ill-formed. Indeed, while a TC-MSC
graph specification is usually incomplete (as it abstracts away some events and constraints
used in the actual implementation), if it forces time to drift, then every implementation of
this specification will have non K-drift-bounded executions.

3.1 The main results
We can now state our main results. The first result establishes the decidability of the
emptiness problem for K-drift-bounded TC-MSC graphs.

I Theorem 5. Let G be a K-drift-bounded TC-MSC graph. Then checking whether L(G) is
empty is decidable.

An immediate question which arises is whether the drift-boundedness hypothesis of
Theorem 5 can be effectively checked. Our second result shows that this is indeed decidable:

I Theorem 6. Given a TC-MSC graph G and an integer K, one can effectively decide
whether G is K-drift-bounded.

Note that the decidability result in Theorem 6 is in fact at the boundary of undecidability.
The definition of K-drift-bounded considers every path of a TC-MSC graph, including paths
that cannot be extended to consistent final paths. Instead, if we consider the problem
of checking whether every consistent final path of a TC-MSC graph is K-drift-bounded,
this turns out to be undecidable. This fact can be shown by a simple reduction from the
reachability problem shown to be undecidable in [9]. That is,
I Proposition 7. It is undecidable, given a TC-MSC graph G and an integer K, to
determine whether every consistent final path of G is K-drift-bounded.

Proof. Given a TC-MSC graph G and an integer K, we reduce the reachability problem
on G to the emptiness problem on another TC-MSC graph G′ computed from G as follows.
Recall that that in general one can not decide whether there exists some consistent path
ρ that ends in node n, as shown in [9]. Consider a TC-MSC graph G with a single final
node nf . The undecidability result of [9] still holds in general for this kind of TC-MSC
graph. Now, consider a TC-MSC T that has a constraint of the form (K + 1,∞), that is,
this TC-MSC is not K-drift-bounded. Now let us build a TC-MSC graph G′ by adding a
new node nnew to G, labeled by T , a transition without timing constraints from nf to nnew,
and setting nnew as only final node of G′. This way, every final path of G′ ends at node
nnew, and a consistent final path of G′ (if one exists) can not be K-drift-bounded. Then,
every consistent final path of G′ is K-drift-bounded if and only if nf is not reachable in G.

J



6 Symbolically Bounding the Drift in Time-Constrained MSC Graphs.

We show first that one can assume the TC-MSC graph to be full as defined below, while
preserving the two crucial properties that we consider in this paper, namely non-emptiness
and drift-boundedness. This will greatly simplify our main proofs.

3.2 Full TC-MSC Graphs
Recall that a TC-MSC graph G is full iff for each process p ∈ P , each node of G has at least
one event on p. We prove now that given a TC-MSC graph G, we can "augment" G to obtain
a full TC-MSC graph G′. We have L(G′) 6= ∅ iff L(G) 6= ∅, and G′ is drift-bounded iff G is.

To avoid clutter, we assume here that a (TC) MSC may contain events representing
internal actions. For our purpose, it suffices to introduce an action symbol a and allow
events to be labelled with p(a) representing p’s performing the action a. We set the location
of p(a) to be p. In the absence of internal actions, each p(a) event can be simulated by
introducing an auxiliary process p̂, by creating a p-event ep labelled p!p̂ and a matching
p̂-event ep̂ labelled p̂?p, and asserting that relative difference of dates of ep, ep̂ should be in
the singleton interval [0, 0].

We obtain G′ by applying the following modifications to G = (N, T ,Λ, nin, Nfi,−→,∆).
For each TC-MSC T = (E, (<p)p∈P , µ, λ, δ) in T , we modify E by adding a new event ep
with λ(ep) = p(a) for each process p such that Ep = ∅. We thus obtain a new TC-MSC
T ′ = (E′, (<p)p∈P , µ, λ′, δ). We leave every <p and δ unchanged, and thus ep is an isolated
point in the partial order ≤. Such an event ep is said to be dummy, and the other events that
already appeared in T are called ordinary. We keep ∆(n→m) unchanged for each transition
n→m. Recall that for each transition (n,m) in G, if prior to adding the dummy events,
either n or m has no p-event, then ∆p(n,m) = [0,∞). We call G′ the augmented TC-MSC
graph of G. Clearly, G′ is full.

For a node n in G, refer to its corresponding node in G′ as n′. For a path ρ = n0 . . . n`
in G, refer to its corresponding path in G′ as ρ′ = n′0 . . . n

′
`. With these notations , we have

the following proposition:

I Proposition 8. L(G) = ∅ iff L(G′) = ∅. Futhermore, if G is K-drift-bounded, then G′ is
K̂-drift-bounded, where K̂ = (|P| − 1) ·K.

Clearly, if L(G′) 6= ∅, then L(G) 6= ∅ as any consistent path ρ′ = n′0 . . . n
′
` of G′

corresponds to a path ρ in G that is also consistent, since one can obtain a dated MSC for ρ
by deleting dummy events from a dated MSC by ρ′. If L(G) 6= ∅, then taking a consistent
path ρ of G and a dated MSC M , and the associated path ρ′ of G′, one can create a dated
MSC M ′ ∈ L(G′) labeling ρ′ from M by adding the dummy events and setting the date of a
dummy event e on p to be the same as the date of the event on p immediately before e (or
date 0 if there is no such event).

The second part of proposition 8 follows from the following technical lemmas. A transition
n→m of G is said to be scenario-connected iff for some process p, both n,m have events on
process p.

I Lemma 9. Suppose ρ = n0 . . . n` is a path of G such that nh→nh+1 is scenario-connected
for every h = 0, . . . , `−1. Let (E, (<p), µ, λ, d) be a dated MSC generated by ρ. Then for any
indices i, j with 0 ≤ i < j ≤ `, if e is an event in ni, f an event in nj , then d(e)− d(f) ≤ K̂.

Proof. It follows that one can choose a sequence of processes pi . . . pj−1, such that for each
h = i, . . . , j − 1, nh, nh+1 both have events on process ph. From the sequence pi . . . pj−1,
we pick a subsequence pα1 . . . pαz , where z ≤ |P|, as follows. Firstly, let α1 be the largest
index in {i, . . . , j − 1}, such that pα1 = pi. That is, ph 6= pi whenever α1 < h ≤ j − 1.



S. Akshay, Blaise Genest, Loïc Hélouët, and Shaofa Yang 7

Secondly, inductively, for u = 1, . . ., suppose α1, . . ., αu have been set. Pick αu+1 to be the
largest index in {αu + 1, . . . , j − 1} such that pαu+1 = pαu+1. That is, ph 6= pαu+1 whenever
αu+1 < h ≤ j − 1. It follows that pα1 , pα2 , . . ., are pairwise distinct, and thus this procedure
of picking indices α1, α2, . . . will terminate after picking αz = j − 1 for some z ≤ |P|. We
emphasize that pαu+1 = pαu+1 for u = 1, . . . , z − 1.

Now for h = 1, . . . , z − 1, pi, . . . , pj−1 pick events xh, yh from node nαh+1 such that xh
is on process pαh

and yh is on process pαh+1. Further, pick event y0 on process pi from
ni and event xz on process pj−1 from nj . Existence of xh, yh, h = 1, . . . , z − 1, and y0,
xz is guaranteed by construction of the sequence pi, . . . , pj . Set x0 = e and yz = f . For
h = 0, . . . , z − 1, since yh, xh+1 are of the same process, we have d(yh) ≤ d(xh+1). Since
(E, (<p), µ, λ, d) is K-drift-bounded, we have d(xh)− d(yh) ≤ K for h = 0, . . . , z. Suppose
e is on process pe and f on process pf . Recall that pα1 , . . ., pαz

are pairwise distinct. We
show d(e)− d(f) ≤ K̂ by considering four cases.

—Case (1). If pe, pα1 , . . . , pαz
, pf are pairwise distinct, then z ≤ |P| − 2, and thus

d(e)− d(f) ≤
∑z
h=0(d(xh)− d(yh) +

∑z−1
h=0(d(yh)− d(xh+1)) ≤ (z + 1) ·K ≤ K̂.

—Case (2). If pe = pαt
for some t in {1, . . . , z} and pα1 , . . ., pαz

, pf are pairwise distinct,
then z ≤ |P|−1 and thus d(e)−d(f) ≤ d(e)−d(xt)+

∑z
h=t d(xh)−d(yh) ≤ (z−t+1)·K ≤ K̂.

—There remains two cases: (i) pe, pα1 , . . ., pαz
are distinct, pf = pαt

for some t in
{1, . . . , z}. (ii) pe = pαt

, pf = pαu
for some t, u ∈ {1, . . . , z}. Both cases can be handled

similarly to cases (1) and (2). J

Suppose ρ = n0 . . . n` is a path of G, and (E, (<p), µ, λ, d) a dated MSC generated by
ρ. For an integer C, we say (E, (<p), µ, λ, d) is C-distant iff for any i, j in {0, . . . , `} with
i < j, for any event e in ni, f in nj , it is the case that d(e)− d(f) ≤ C. Note that unlike
K-drift-boundedness, the notion of being C-distant places restriction on dates of events in
two different nodes. Intuitively, being C-distant means if event e is at node which occurs
earlier than the node in which event f is in, then e can be executed at most C time units
later than f .

I Lemma 10. Suppose that ρ is a K-drift-bounded consistent path of G. Then there exists a
K̂-distant K-drift-bounded dated MSC generated by ρ.

Proof. Let (E, (<p), µ, λ, d) be a K-drift-bounded dated MSC generated by ρ. Let ρ =
n0 . . . n`. If nh→nh+1 is scenario-connected for every h = 0, . . . , `− 1, then (E, (<p), µ, λ, d)
is K̂-distant. Now suppose such is not the case. Let t1,. . .,tz be all the indices in {0, . . . , `−1}
such that nti→nti+1 is not scenario-connected, where t1 < . . . < tz. It follows from the proof
of lemma 9 that if e is an event in ni, f an event in nj , and none of t1, . . . , tz falls within
{i, . . . , j − 1}, then d(e)− d(f) ≤ K̂.

Observe that for each i = 1, . . . , z, there is no time constraint dictated between an
event in n0, . . . , nti and an event in nti+1, . . . , n`. Fix an integer c whose choice is to be
determined later. From (E, (<p), µ, λ, d), we construct a new dated MSC (E, (<p), µ, λ, d′)
by inductively applying the modifications associated with t1, . . . , tz as follows. Firstly, we
apply the modification associated with t1, which is to add c to the date of each event in
nt1+1, . . . , n` (while the date of any event in n0, . . . , nt1 remains unchanged). Inductively,
suppose modifications associated with t1, . . . , ti−1 have been done, for some i ≤ z. We further
apply the modification associated with ti, which is to add c to the date of each event in
nti+1, . . . , n` (while the date of any event in n0, . . . , nti remains unchanged).

Note that the date of an event is non-negative, by choosing c such that d(g) − K̂ ≤ c

for every event g in n0 . . . , n`, one conclude that in (E, (<p), µ, λ, d′), for any event e in ni,
f in nj , with i < j, and some of the indices t1, . . . , tz fall within {i, . . . , j − 1}, we have



8 Symbolically Bounding the Drift in Time-Constrained MSC Graphs.

d′(e) − d′(f) ≤ d(e) − c ≤ K̂. If none of the indices t1, . . . , tz falls within {i, . . . , j − 1},
then d′(e) − d′(f) = d(e) − d(f) ≤ K̂ as observed earlier, following the proof of lemma 9.
Clearly, (E, (<p), µ, λ, d′) is K-drift-bounded and fulfills the time constraints in ρ, since
(E, (<p), µ, λ, d) is a K-drift-bounded dated MSC generated by ρ. This completes the
proof. J

The above lemma shows that K-drift-bounded and K̂-distant dated MSCs can be trans-
formed into K̂-drift-bounded dated MSCs obtained by composition of full TC MSCs. Together
with lemma 10, one establishes that, if G is K-drift-bounded, then G′ is K̂-drift-bounded.

I Lemma 11. Assume that there exists a dated MSC generated by a consistent path ρ of G,
which is K̂-distant and K-drift-bounded. Then one can construct a K̂-drift-bounded dated
MSC generated by ρ′, the path in G′ which corresponds to ρ.

Proof. Let ρ = n0 . . . n`, and let M = (E, (<p), µ, λ, d) be a K̂-distant K-drift-bounded
dated MSC generated by ρ. Recall the construction of G′ from the beginning of section 3.2.
We shall extend M to be to a dated MSC M ′ = (E′, (<p), µ, λ, d′) generated by ρ′ = n′0 . . . n

′
`

as follows. Firstly, E′ consists of events in ρ′. Secondly, we keep dates of events in E

unchanged (that is, d′(e) = d(e) for every e ∈ E), and assign suitable dates to dummy events.
The assignment of dates to dummy events are done inductively, node by node, for nodes n0,
. . ., n`. Through the rest of this proof, for each i = 0, . . . , `, pick an event fmax

i in ni which
has maximum date among events in ni.

For node n0, for any dummy e in n′0, we set d′(e) = max{d(fmax
0 )− K̂, 0}. Inductively,

assume that dummy events in n′0, . . . , n′i−1 have been assigned dates, then for any dummy
event e in n′0, we set d′(e) to be the larger of d′(ei−1) and d(fmax

i )− K̂, where ei−1 is the
maximal event in n′i−1 which is on the same process as e. Note that ei−1 exists as n′i−1 is
full.

Since ordinary events in M ′ has the same dates as in M , to see that M ′ satisfies the time
constraints in ρ′, it suffices to show:
Claim (1): For any i = 0, . . . , `− 1, for any process p, if at least one of n′i, n′i+1 contains a
dummy event on p, then d′(ei) ≤ d′(ei+1) where ei is the maximal event on p in n′i, and ei+1
the minimal event on p in n′h+1.

We now prove Claim (1). Fix i,p. If ei+1 is a dummy event, then by definition of d′(ei+1),
we have d′(ei) ≤ d′(ei+1). It remains to consider the case that ei is a dummy event but
ei+1 is not a dummy event. Let j be the largest index such that 0 ≤ j < i and n′j contains
ordinary events on p. If such a j exists, set D = d(ej) where ej is the maximal event on p in
n′j (which is an ordinary event); if no such j exists, set j = −1 and D = 0. By “unrolling”
the definition of d′(ei), one sees that d′(ei) is the maximum in the set consisting of D and
d(fmax

h ) − K̂ for all indices h with j < h ≤ i. Since ei+1 is on p, the choice of D ensures
that D ≤ d(ei+1). Owing to that ρ is K̂-distant, we have d(fmax

h )− K̂ ≤ d(ei+1) whenever
j < h ≤ i. These yield that d′(ei) ≤ d(ei+1) = d′(ei+1). —End of proof of Claim (1)

Having shown that M ′ is a dated MSC generated by ρ′, we next prove that M ′ is
K̂-drift-bounded. Since M is K-drift-bounded and K ≤ K̂, it suffices to show:
Claim (2): For nodes n′0, . . ., n′` in ρ′, if e, g are events in n′i such that at least one of e, g
is a dummy event, then |d′(e)− d′(g)| ≤ K̂.

We prove Claim (2) by induction on i. For i = 0, let e, g be events in n′0 such that at
least one of them is a dummy event. Say e is dummy. If g is also dummy, then d′(g) = d′(e),
else d′(e) = max{d(fmax

0 )− K̂, 0}, d′(g) = d(g) and d(fmax
0 )−K ≤ d(g) ≤ d(fmax

0 ) would
imply that |d′(e)− d′(g)| ≤ K̂.



S. Akshay, Blaise Genest, Loïc Hélouët, and Shaofa Yang 9

Assume now that Claim (2) holds for node n′0, . . . , n′i−1. Let e, g be events in n′i such
that at least one of them is dummy. Say e is dummy. Let ei−1 (resp. gi−1) be the maximal
event in n′i−1 on the same process as e (resp. g).

—Case (1): g is not a dummy event.
If d′(e) = d(fmax

i )− K̂, then the same argument as in the base case of node n′0 yields that
|d′(e)− d′(g)| ≤ K̂. Otherwise, we have d′(e) = d′(ei−1). We have d′(e)− d′(g) ≤ d′(ei−1)−
d′(gi−1) ≤ K̂ by induction hypothesis. And d′(e)− d′(g) ≥ (d(fmax

i )− K̂)− d(fmax
i ) = −K̂.

These yield that |d′(e)− d′(g)| ≤ K̂.
—Case (2): g is a dummy event.
If d′(e) = d′(ei−1) and d′(g) = d′(gi−1), then by induction hypothesis, we have |d′(e)−

d′(g)| ≤ K̂. The case of d′(e) = d(fmax
i ) − K̂ and d′(g) = d(fmax

i ) − K̂ is trivial. So it
remains to consider the case that exactly one of d′(e) = d′(ei−1), d′(g) = d′(gi−1) holds. Since
both e, g are dummy events, w.l.o.g. assume d′(e) = d′(ei−1) but d′(g) 6= d′(gi−1). That is,
d′(g) = d(fmax

i )− K̂ > d′(gi−1). Thus, d′(e)− d′(g) < d′(ei−1)− d′(gi−1) ≤ K̂ by induction
hypothesis, and d′(e)− d′(g) ≥ 0 by definition of d′(e). These yield that |d′(e)− d′(g)| < K̂.

—End of proof of Claim (2)
From Claim (1)(2), one concludes that M ′ is a K̂-drift-bounded dated MSC generated

by ρ′. J

Finally, we show that the second part of Proposition 8 follows from Lemma 10 and
Lemma 11. Suppose G is K-drift-bounded, and let ρ′ = n′0 . . . n

′
` be a consistent path of

G′. By the arguments in the proof of the first part of Proposition 8, the corresponding
path ρ = n0 . . . n` in G is consistent and thus K-drift-bounded. By Lemma 10, there exists
a K̂-distant K-drift-bounded dated MSC generated by ρ. Hence by Lemma 11, one can
construct a K̂-drift-bounded dated MSC generated by ρ′. That is, ρ′ is K̂-drift-bounded.
We have thus established that G is K-drift-bounded implies G′ is K̂-drift-bounded.

4 Checking Emptiness of a K-Drift-Bounded TC-MSC Graph

Throughout the rest of the paper, we fix a TC-MSC graph G. To avoid clutter, we prove
Theorems 5 and 6 in the special case where G is full, and constraints in G are only of the
form [a, b] and [a,∞). Extending proofs to handle constraints of the forms (a, b), (a, b], [a, b),
(a,∞) is straightforward and all statements hold in general, but additional notations are
needed to remember whether each inequality is strict or not. Extending the proofs to handle
a TC-MSC graph which is not full is done by augmenting it to a full TC-MSC graph and
enlarging the bounds from K to K̂ (cf previous section).

We first describe intuitively the key ingredients of the proof of Theorem 5.

The first observation is that checking consistency of a path ρ is equivalent to checking
existence of a solution of a system of inequalities Φ(ρ), where each inequality is of the
form a ≤ xe − xf , where xe, xf are variables (ranging over R) depicting the dates of
events e, f of T ρ and a is a (possibly negative) integer. Notice that constraints of the
form xe − xf ≤ b can be written as −b ≤ xf − xe.
Next, observe that for M a dated MSC generated by a path ρ and n a node, checking
whether M can be extended with n by assigning appropriate dates to events in n can be
done with only information on the relative difference of dates of the last event of M on
each process. This motivates us to associate to each path ρ a system PF(ρ) of inequalities,
called the symbolic profile of ρ, where each inequality is of the form apq ≤ xp − xq, with
each xr being the date of the last event on r ∈ P . Hence, each solution (dp)p∈P of PF(ρ)



10 Symbolically Bounding the Drift in Time-Constrained MSC Graphs.

corresponds to the dates of final events of some dated MSC generated by T ρ, and vice
versa. In particular, PF(ρ) has a solution iff ρ is consistent.
We call apq coefficients. We remark that coefficients can be chosen as integers. We finally
restrict coefficients to be within [−K,K]. This does not hinder checking for emptiness
when G is both full and K-drift-bounded. We can then represent PF(ρ) in a finite way
and build the set {PF(ρ) | ρ path of G} with a finite automaton.

4.1 Systems of Inequalities and Fourier-Motzkin elimination.
We first fix basic terminologies of systems of difference inequalities. Let X be a finite
nonempty set of real-valued variables. A (difference) inequality is an inequality of the form
a ≤ x− y, where x, y are two different variables in X.

I Definition 12. A system of (difference) inequalities φ over X is ∧(x,y)∈R axy ≤ x−y where
R ⊆ X ×X is an irreflexive relation. We say that φ has integral coefficients whenever axy is
a (possibly negative) integer for all (x, y) ∈ R.

Note that in this definition and later, we assume that the system is simplified, that is, for
each x, y ∈ X, there is at most one inequality of the form a ≤ x− y. This involves no loss of
generality as a ≤ x− y ∧ a′ ≤ x− y is equivalent with max(a, a′) ≤ x− y.

If a ≤ x− y appears in φ, we say that φ contains an edge (x, y), and the weight of this
edge is a. We say that two systems φ, ψ of inequalities are equivalent when φ has a solution
in the real domain iff ψ has a solution in the real domain.

A key ingredient of our proofs is to propagate constraints concerning variables in a subset
Y on variables in X \ Y (depicting the dates of the last event of ρ on their process). Then
the constraints on Y can be safely removed while keeping an equivalent system. This is
done using the Fourrier-Motzkin elimination technique (see [7, 12]) described hereafter. Let
φ = {aij ≤ xi − xj} be a system of inequalities over a set of variabes X, and let x ∈ X
be a variable to eliminate from φ. We want to obtain a new system of inequalities φ′ over
variables X \ {x} that is equivalent with φ.

Fourrier-Motzkin elimination technique: First, partition φ into three distinct systems of
inequalities φ = φ1∧φ2∧φ3, where φ1 is the system of inequalities that do not involve x, φ2 is
the system of inequalities ∧i∈I ai ≤ x−xi that involve x as first operand, and φ3 is the system
of inequalities ∧j∈J aj ≤ xj −x that involve x as second operand. We have ∃x ∈ R, φ2∧φ3 is
equivalent with ∃x ∈ R,maxi∈I((ai + xi)) ≤ x ≤ minj∈J ((xj − aj)). We can thus eliminate
variable x to obtain an equivalent formula maxi∈I((ai + xi)) ≤ minj∈J((xj − aj)). The
inequality maxi∈I((ai + xi)) ≤ minj∈J((xj − aj)) is equivalent with the system of |I| × |J |
inequalities ψ = ∧i∈I,j∈J(aj + ai) ≤ xj − xi. Notice that if both ai, aj are integers, then so
is aj + ai. That is, ∃x ∈ R, φ is equivalent with the formula φ1 ∧ ψ which does not contain
variable x. Thus, φ and φ′ = φ1∧ψ are equivalent. Furthermore, if φ has integral coefficients,
then φ′ has integral coefficients too.

Note that this elimination is not just a simple projection on X \ {x}. It propagates
constraints attached to x on remaining variables. Notice also that the number of inequalities
of φ′ is at most (|X| − 1)2, after simplification of φ′.

We now extend elimination to sets of variables. Let φ be a system of difference inequalities
overX∪Y . Let ψ1 and ψ2 be two systems of inequalities over Y obtained from φ by repeatedly
applying Fourier-Motzkin elimination of each variable in X, but where the order in which
variables of X are eliminated is different. Then it is possible that ψ1 6= ψ2. However, we
have Sol(ψ1) = Sol(ψ2), denoting by Sol(ψ) the set of solutions of a system of inequalities
ψ. We thus fix an order in which we eliminate variables till the end of the paper. For



S. Akshay, Blaise Genest, Loïc Hélouët, and Shaofa Yang 11

F ⊆ X, let φ|F denote the (unique) system of inequalities over variables F obtained by
performing Fourier-Motzkin elimination of variables in X \ F following the order previously
fixed. Regardless of the order, φ and φ|F are equivalent. Furthermore, if φ has integral
coefficients, then so does φ|F .

4.2 Symbolic Profiles
In the rest of the paper, we will study systems of inequalities over variables that represent
occurrence dates of events. Let E be a nonempty set of events. We denote by xE the
real-valued variable standing for the date of event e ∈ E, and let Xe = {xe | e ∈ E}. Let
ρ = n0 . . . n` be a path of a TC-MSC graph G inducing TC-MSC T ρ = (E,≤, λ, δ). We
associate path ρ with a system of linear inequalities Φ(ρ) with integral coefficients as follows:

I Definition 13. The system Φ(ρ) of inequalities associated with ρ is a the system of
inequalities over the set of variables XE such that, for any e, f ∈ E with el f ,

if δ(e, f) = [L,U ], then Φ(ρ) contains both L ≤ xf − xe and −U ≤ xe − xf ;
if δ(e, f) = [L,∞), then Φ(ρ) contains L ≤ xf − xe.

Further, Φ(ρ) contains no other inequalities.

As dates of events of a dated MSC generated by T ρ correspond to a solution of Φ(ρ), ρ is
consistent iff Φ(ρ) has a solution.

Let E be the set of events of T ρ, and ep be the last event of T ρ on p, for all process
p. Let Elast be the set {ep | p ∈ P}. Using Fourier-Motzkin elimination of variables
X ′ = {xe | e /∈ Elast}, we obtain a system Φ|Xlast

(ρ) over variables Xlast = {xe | e ∈ Elast},
with integral coefficients, equivalent with Φ(ρ). Once simplified, this system has at most |P|2
inequalities with integral coefficients. We encode this system as a symbolic profile.

I Definition 14. A symbolic profile σ is a function from P ×P to Z∪ {−∞}. We denote by
PF the (infinite) set of all profiles.

The symbolic profile PF (φ) induced by a system φ of inequalities over Xlast = {xp | p ∈
P} with integral coefficients, is defined by PF (φ)[p, q] = apq if apq ≤ xp − xq belongs to φ,
and PF (φ)[p, q] = −∞ otherwise. We abusively use PF (φ) as a system of inequalities in
the following, and denote xp for xep

. Intuitively, PF (φ)ρ[p, q] = −∞ means that there is
no equation of the form apq ≤ xp − xq in φ. Recall that a system of inequalities is always
simplified, that is it contains at most one inequality axy ≤ x− y for each pair of variables
(x, y). For a path ρ, we denote PF (ρ) = PF ((Φ(ρ))|Xlast

). We say that a symbolic profile
σ ∈ PF is satisfiable if it has a solution, that is if Sol(σ) 6= ∅. It is easy to check if PF (ρ)
is satisfiable, for instance by using once again quantification elimination. As elimination
preserves satisfiability, we have:
I Proposition 15. PF (ρ) is satisfiable iff ρ is consistent.

Let us illustrate these notions through an example. Consider the TC-MSC graph G1
from Figure 1 and consider the path n1 ·n1 which generates the TC-MSC Tn1·n1 as shown in
Figure 2. Let eij denote the ith event on process j and E be the set of events of Tn1·n1 . We
obtain Φ(n1 · n2) to be the set of inequalities over X = {xe | e ∈ E}, where for instance the
inequations 2 ≤ xe2

p
− xe1

p
and −3 ≤ xe1

p
− xe2

p
capture the timing constraint [2, 3] between

e1
p and e2

p. Now we eliminate the variables xe1
p
, xe1

q
, xe1

r
, xe1

s
to obtain a set of equations

on Xlast = {xe2
p
, xe2

q
, xe2

r
, xe2

s
} = {xp, xq, xr, xs}. Figure 2 depicts the resulting system of

equations. For instance, PF (n1 · n1))[p, q] = max(−3,−1 + 2 − 3) = −2. The system of
equations has many solutions.



12 Symbolically Bounding the Drift in Time-Constrained MSC Graphs.

= Tn1·n1 ,

p q r s

[0, 3]

[0, 3]

[2, 3] [0, 1] [0, 1] [0, 1] φ(n1 · n1)|Xlast
=







0 ≤ xq − xp

−2 ≤ xp − xq

0 ≤ xs − xr







Figure 2 The TC-MSC induced by path n1 · n1 of G1 and its profile

We now explain how to compute PF (ρ) in an inductive way, by defining an extension
function θn−→n : PF→PF for all transitions n−→n. For a symbolic profile σ and a transition
n− → n, we define the profile θn−→n(σ) as follows:

Firstly, form the system Ψ = ψσ ∧ ψn−→n ∧ ψn of inequalities over X = {xp | p ∈
P} ∪ {xe | e ∈ En} (xp represents the date of process p in σ, En events of Tn), where:
ψσ consists of σ(p, q) ≤ xp − xq for every p, q ∈ P, such that σ(p, q) 6= −∞.
ψn−→n contains, for each p with ∆p(n−→n) = [L,U ], two inequalities −U ≤ xp − xfp

and L ≤ xfp − xp, where fp is the first event of n on p. For each p with ∆p(n−→n) =
[L,∞), ψn−→n contains the inequality L ≤ xfp

− xp.
ψn is Φ(n), the system of inequalities associated with the singleton path n.

Secondly, perform Fourier-Motzkin elimination on Ψ to remove all variables but {xêp
}p∈P

where êp is the last event in n on p. Denote by Π the resulting system (after simplication)
of inequalities over {xêp

| p ∈ P}. Set θn−→n(σ) = PF(Π).

I Lemma 16. For a path ρ and a transition n−→n where n− is the last node of ρ, we have
Sol(PF(ρ · n)) = Sol(θn−→n(PF(ρ))).

Proof. First, consider the system of inequalities φ(ρ · n) on variables XE associated with
path ρ · n. Let En be the set of events of Tn, Elast = {ep | p ∈ P} with ep the last
event of ρ on p, and Eρ be the set of events of T ρ. Let Xρ, Xn, Xlast be the variables
associated respectively with sets of events Eρ, En, Elast. We partition φ(ρ ·n) = φ1 ∧φ2 with
φ1 = ∧xe,xf∈R1ae,f ≤ xe − xf , for R1 = Xρ ×Xρ and φ2 = ∧xe,xf∈R2ae,f ≤ xe − xf , where
R2 =

(
Xn × (Xn ∪Xlast)

)
∪
(
(Xn ∪Xlast)×Xn

)
. Notice that φ2 = ψn ∧ ψn−→n.

Now, consider φ(ρ · n)|Xn∪Xlast
where variables from Xρ \Xlast have been eliminated.

This elimination keeps inequalities in φ2 intact. That is, φ(ρ · n)|Xn∪Xlast
= φ1|Xlast

∧ φ2.
Now, note that φ1|Xlast

precisely corresponds to PF(ρ). That is, φ1|Xlast
= ψPF(ρ). Let

us denote by X ′last the set of variables attached to the last events in Eρ ∪ En Eliminating
the variables from Xn ∪Xlast \X ′last, we get exactly Sol(PF(ρ · n)) = Sol(θn−→n(PF(ρ)))
(syntactically, the profiles may be different as the elimination orders may be different). J

Notice now that the set of profiles associated to paths of G is not finite in general. Else,
by contradiction, a finite automaton could keep track of profiles of paths of G, and the
emptiness problem would be decidable for any TC-MSC graph, a contradiction.

4.3 K-drift-bounded symbolic profiles
To obtain a finite set of symbolic profiles, we will use K-bounded symbolic profiles.

I Definition 17. AK-drift-bounded symbolic profile σ is a function from P×P to Z∩[−K,K].
We denote by PFK the set of K-drift-bounded symbolic profiles.

The set PFK is finite. To associate a K-drift-bounded symbolic profile to a path, we
proceed as follows. First, we denote by ΦK(ρ) the system of inequalities obtained from Φ(ρ) by
the following modification: for each i = 0, . . . , `, for any two different events e, f in the same



S. Akshay, Blaise Genest, Loïc Hélouët, and Shaofa Yang 13

node n of ρ, if Φ(ρ) contains ae,f ≤ xe − xf , then replace it by max(ae,f ,−K) ≤ xe − xf ; if
Φ(ρ) does not have an edge (e, f), then add the inequality −K ≤ xe−xf (which is equivalent
with xf − xe ≤ K). Clearly, ρ is K-drift-bounded iff ΦK(ρ) has a solution.

Now, similarly as the previous subsection, we can set PFK(ρ) = PF(ΦK(ρ)|Xlast
), for

Xlast the variable associated with the dates of last events of ρ on their process. By definition
of ΦK(ρ) and because G is full (this is crucial), we have PFK(ρ) ∈ PFK .
I Proposition 18. ρ is K-drift-bounded and consistent iff PFK(ρ) is satisfiable.

The function θn−→n can be easily turned into an extension function θn−→nK by adding
the fact that the time difference between any pair of events in the node n is at most K.

I Lemma 19. For a path ρ and a transition n−→n where n− is the last node of ρ, we have
Sol(PFK(ρ · n)) = Sol(θn−→nK (PFK(ρ))).

Notice that it is not the case that PFK(ρ) can be obtained from PF(ρ) by setting
PFK [p, q](ρ) = −K for all PF [p, q](ρ) = a < −K and else PFK(ρ) = PF(ρ). This is because
the K bound in φK(ρ) must be imposed on every node, not just the last one. Such constraints
on past nodes can have implications for the profile of ρ.

4.4 Construction of a Symbolic Automaton
Let G be a K-drift-bounded full TC-MSC graph. We are now ready to construct a symbolic
automaton A(G) such that L(G) 6= ∅ iff L(A(G)) 6= ∅, thus completing the proof of
Theorem 5.

The states of A(G) are pairs (n, σ), with n a state of G and σ ∈ PFK .
The initial state is (ninit,PFK(ninit)),
a state (n, σ) is final if n is final and σ is satisfiable.
There is a transition from (n, σ) to (n′, σ′) iff there is a transition from n to n′ and
σ′ = θn→n

′

K (σ).

We have easily that each path n1 · · ·nz of G is associated with the path (n1,PFK(n1)) · · ·
(nz,PFK(n1 · · ·nz)) of A(G). We thus obtain easily:
I Proposition 20. Let G be aK-drift-bounded and full TC-MSC graph. Then L(A(G)) = ∅
iff L(G) = ∅. Furthermore, A(G) has at most |G| × (2 ·K + 1)|P|2 states.

Compared with the related bibliography, we end up with an automaton much smaller in
the worse case (exponential in |P|2 only, vs exponential in |G| for [1]). Furthermore, being
symbolic, the worse case is seldom reached, contrary to constructions of zones of timed
automata accepting interleavings. Indeed, consider a path ρ made of one node, labeled by a
TC-MSC with one event ep for every p ∈ P, and without constraints, hence allowing events
to occur at any date. Without symbolic encoding, this path would give rise to |2K||P| states
(xp)p∈P , with xp ∈ {0, (0, 1), 1, · · · ,K} being the clock associated with ep, for all p ∈ P.
On the other hand, we only keep the unique symbolic profile PF (ρ) such that ∀p, q ∈ P,
PF (ρ)[p, q] = −K, meaning that −K ≤ xp − xq ≤ K, for all p, q ∈ P.

5 Checking K-Drift-Boundedness of TC-MSC Graphs

The construction of automaton A(G) in Section 4 allows to decide for emptiness of L(G)
under the hypothesis that G is K-drift-bounded. We show here that deciding whether G is
K-drift-bounded is decidable, given K. The main idea is to look for a minimal witness: a



14 Symbolically Bounding the Drift in Time-Constrained MSC Graphs.

path n0 . . . nznz+1 of G is a minimal witness whenever n0 . . . nz+1 is consistent, n0 . . . nz is
K-drift-bounded but n0 . . . nz+1 is not.

I Remark. G is not K-drift-bounded iff there exists a minimal witness path in G.

We will search for a minimal witness using an automaton B(G) whose states have two
components. The first component will test for K-drift-boundedness (which needs to hold for
n0 . . . nz but not for n0 . . . nz+1), and the second component will test for consistency (which
should hold for n0 . . . nz+1). The first component keeps track of PFK(ρ), as in automaton
A(G). It is sufficient as ρ is K-drift-bounded iff PFK(ρ) is satisfiable. Recall that without
loss of generality, we assume G to be full. If it is not, the first component of B(G) should be
adapted in a straightforward way. The second component keeps track of some PFK2(ρ).

We first introduce a well known lemma to simplify the check for consistency, recalling
that ρ is consistent iff the system of inequality associated with PF(ρ) has a solution.

5.1 Shostak Lemma
Let ϕ be a (simplified) system of inequalities. A cycle in ϕ is a sequence x1 . . . xm such that
for all i ∈ {1, . . . ,m− 1}, ai ≤ xi+1 − xi appears in φ for some ai, and xm = x1. The weight
of this cycle is

∑
i∈{1,...,m−1} ai. A cycle is simple when all variables are pairwise distinct,

but the first and last one.

I Proposition 21 (Shostak lemma [15]). ϕ has a solution iff every cycle in ϕ has weight
at most zero iff every simple cycle in ϕ has weight at most zero.

We give here a proof in the special case where only ≤ is used in the system of inequalities
φ. A complete proof for both ≤ and < can be found in [15]

Proof to be adapted. First, assume that there exists (Xi)i∈I with bi,j ≤ Xi − Xj for all
i, j ∈ P. By contradiction, assume that there exists a sequence p1 · · · pn of I∗ with pn = p1
and

∑
1≤k<n bpk,pk+1 > 0. We have 0 = Xp1 − Xpn = Xp1 − Xp2 + Xp2 · · · − Xpn ≥∑

1≤k<n bpk,pk+1 > 0, a contradiction.
We now prove by induction on the size of I that that if

∑
1≤k<n bpk,pk+1 ≤ 0 for all

sequence p1 · · · pn with pn = p1, then there exists (Xi)i∈I with bi,j ≤ Xi −Xj for all i, j ∈ I.
For |I| = 1, it is trivial. Let I = {1, · · · , n} be a set and (bi,j)i,j∈I be a set of constraints. If
all constraints bi,j are negative, then it suffices to take Xi = 0 for all i. Else, we reschedule
I such that b1,2 > 0. We let c be the max of

∑
1≤i<n bpi,pi+1 over all sequences p1 · · · pn of

I∗ with p1 = 1 and pn = 2. In particular, c ≥ b1,2 ≥ 0 We fix X1 = X2 + c. We will then
remove X1 and all associated constraints b1,i, bi,1, and replace them by equivalent formula.

For that, we replace b2,i by b′2,i = max(b2,i, b1,i − c). Similarly, we replace bi,2 by
b′i,2 = max(b2,i, b1,i + c), for all i ≥ 3. We let b′i,j = bi,j for all i, j ≥ 3. We now prove that
we still have

∑
1≤k<n b

′
pk,pk+1

≤ 0 for all sequence p1 · · · pn in I \ {1} with pn = p1, in order
to apply the induction hypothesis. Let p1 · · · pn be a sequence of I \ {1} with pn = p1. There
are two cases. First, if pi 6= 2 for all i, then

∑
1≤k<n b

′
pk,pk+1

=
∑

1≤k<n bpk,pk+1 ≤ 0, and we
are done. Else, assume that pi = 2 for a unique i (the case of several i is similar). We have∑

1≤k<n b
′
pk,pk+1

=
∑

1≤k<i bpk,pk+1 +
∑
i+1≤k<n bpk,pk+1 + b′pi−1,2 + b′2,pi+1

. Now, there are
4 cases for the value of b′pi−1,2 + b′2,pi+1

.
1. b′pi−1,2 = bpi−1,2 and b′2,pi+1

= b2,pi+1 : the sum is lower than 0 by hypothesis using the
sequence p1 · · · pn.

2. b′pi−1,2 = bpi−1,1 − c and b′2,pi+1
= b1,pi+1 + c: the sum is lower than 0 as c− c = 0 and by

hypothesis, using the sequence p1 · · · p̂i · · · pn where p̂i = 1 instead of 2.



S. Akshay, Blaise Genest, Loïc Hélouët, and Shaofa Yang 15

3. b′pi−1,2 = bpi−1,1−c and b′2,pi+1
= b2,pi+1 . Consider the sequence 2, pi+1, · · · pnp1 · · · pi−1, 1.

By adding and soustracting b1,2 we get
∑

1≤k<n b
′
pk,pk+1

≤ −b1,2 − c ≤ 0 as both c and
b1,2 are positive.

4. b′pi−1,2 = bpi−1,2 and b′2,pi+1
= b1,pi+1 + c: remember that c =

∑
1≤i<n bqi,qi+1 for

some sequences q1 · · · qn of I∗ with q1 = 1 and qn = 2. Consider the sequence
1, pi+1, · · · pnp1 · · · pi−12q2 · · · qn. This is a sequence from 1 to qn = 1, hence the sum of
the associated b is lower or equal to 0 by hypothesis. Hence

∑
1≤k<n b

′
pk,pk+1

≤ 0.

Now, by induction hypothesis, we can find X2, · · · , Xn satisfying (b′i,j). It is easy to see
that fixing X1 = X2 + c ensures (bi,j). The only cases to look at is X1−Xi = X2 + c−Xi ≥
b′2,i + c ≥ b1,i − c+ c = b1,i and Xi −X1 = Xi −X2 − c ≥ b′i,2 − c ≥ bi,1 + c− c = bi,1.

Notice that every cycle has weight at most zero iff every simple cycle has weight at most
zero. Indeed, if we have a cycle with xi = xj , then one of the sum over xi · · ·xj or of xj to
xi going through xn = x1 would have a positive sum. Inductively using the argument to
prune similar nodes, one ends up with a ’simple loop’ with positive sum.

J

5.2 Consistency Checking
Let ρ = n0 . . . nz−1 be a K-drift-bounded path of G and nz a node in G such that nz−1→nz.
To check if ρ · nz is consistent, we cannot just use PFK(ρ). This is because it is possible that
T ρ·nz is consistent, but for every dated MSC M it generates, the part of M corresponding
to T ρ is not K-drift-bounded. Such possibilities must be accounted for. Instead, we use the
fact that ρ · nz is consistent is equivalent with φ(ρ · nz) has a solution, which is equivalent
with every simple cycle in φ(ρ · nz) has weight at most zero, by Shostak Lemma.

We first define D to be the max over all transition n→n′ of the sum of explicit (positive)
lower bounds of time constraints appearing on this transition plus (positive) lower bounds of
time constraints appearing in n′. Formally, we first fix a transition n→n′. For all process
p ∈ P, let ap be the lower bound of the interval ∆p(n→n′). Also, for all events el f of n′,
we denote by ae,f the lower bound of the interval δ(e, f). Notice that ae,f ≥ 0 and ap ≥ 0
for all p ∈ P and e l f . We can now define Dn→n′ = Σelfae,f + Σp∈Pap. Then we let
D = maxn→n′ Dn→n′ . At last, K2 = (|P|+ 1) ·K +D. We now prove that:

I Proposition 22. Let ρ · nz be a path of G such that ρ = n1 · · ·nz−1 is consistent and
K-drift-bounded. Then Φ(ρ · nz) has a solution iff θnz−1→nz (PFK2(ρ)) is satisfiable.

As an automaton can maintain the information PFK2(ρ) with a finite number of states,
it can also test on the fly whether θnz−1→nz (PFK2(ρ)) 6= ∅, that is test whether n1 · · ·nz is
consistent, granted that n1 · · ·nz−1 is K-drift-bounded, which we can test.

Proof. We will consider three systems of inequalities.
The first one is φ1 = φ(ρ · nz). The second one, φ2, is obtained from φ1 by adding

inequalities −K2 ≤ xe − xf for all e, f from the same node of ρ.
We already know that φ1 has a solution iff PF (ρ · nz) is satisfiable iff θnz−1→nz (PF(ρ))

is satisfiable. It is easy to see that φ2 has a solution iff θnz−1→nz (PFK2(ρ)) is satisfiable.
Hence, we just need to prove that φ2 has a solution iff φ1 has a solution to yield the

statement of the proposition. Clearly, if φ2 has a solution, then this solution is also a solution
for φ1. Conversely, assume that φ1 has a solution. By Shostak lemma, it implies that every
cycle in φ1 has weight at most 0.

We want to prove that φ2 has a solution. Again by Shostak lemma, it is sufficient to
prove that every simple cycle of φ2 has weight at most 0.



16 Symbolically Bounding the Drift in Time-Constrained MSC Graphs.

Let x1 . . . xm be a simple cycle in φ2. That is, for all i ∈ {1, . . . ,m− 1}, bi ≤ xi+1 − xi
appears in φ2 for some bi, and xm = x1. We want to prove that

∑
i bi ≤ 0.

We now define the third system of inequalities: φ3 = φK(ρ). Notice that φ3 can be
obtained from φ2 by deleting the events from nz, and adding inequalities −K ≤ xe − xf
for all e, f from the same node of ρ, as K ≤ K2. As ρ is K-drift-bounded and consistent,
we know that φ3 has a solution, that is every cycle in φ3 has weight at most 0 by Shostak
lemma.

Let ai be the associated coefficients in φ1 with ai ≤ xi+1 − xi (if ai does not exists, fix
ai = −∞) and ci the associated coefficients in φ3.

We have ai ≤ bi ≤ ci by definition of φ1, φ2, φ3. First, if ai = bi for all i, then the cycle
x1 . . . xm in φ2 is also a cycle in φ1 and

∑
i bi =

∑
i ai. As every cycle in φ1 has weight at

most 0, we are done.
Else, we have ak 6= bk for some k. It means that ak < bk and bk = −K2. Furthermore,

ek, ek+1 are in the same node n because φ2 only adds constraints on pairs of events of the
same node of ρ. Furhtermore n 6= nz, which means that ck = −K > bk.

Now, consider I the set of indices i such that xi or xi+1 belongs to nz. Also, denote J
the complementary set of indices j, that is such that xj and xj+1 belongs to ρ. We have∑
i bi =

∑
i∈I bi +

∑
i∈J bi. Note that k ∈ J . We have

∑
i∈I bi ≤ D by definition of D and

because the cycle is simple. The set J is partitionned into pieces. Each piece J ′ ⊆ J is
made of "consecutive" indices, that is either J ′ = {i, i+ 1 . . . , j} or J ′ = {i, . . . ,m, 1, . . . , j},
such that ei−1 ∈ nz and ej+1 ∈ nz. There are at most |P| pieces (because the cycle
is simple). In the picture, there are 2 pieces. Furthermore, each piece begins and ends
with an event of nz−1. For all j ∈ J , we have bj ≤ cj . We thus have

∑
j∈J bj = bk +∑

j∈J\{k} bj ≤ bk +
∑
j∈J\{k} cj ≤ bk− ck +

(∑
j∈J cj

)
. Recalling that

∑
i∈I bi ≤ D, we have∑

i bi ≤ D + bk − ck +
(∑

j∈J cj
)
≤
(∑

j∈J cj
)
− |P| ·K as bk − ck = −(|P| ·K +D).

\rho n

It now suffices to bound
(∑

j∈J cj
)
. Recall that every cycle in φ3 has weight at most 0.

Let J1, · · · , Jr be the pieces of J . recall that r ≤ |P|. For all i ≤ r, denoting Ji = {s, . . . , t},
we rename xs · · ·xt into yi1 · · · yini . We create the cycle ξ = y1

1 · · · y1
n1 · · · yr1 · · · yrnry1

1 by gluing
all the variables together. Compared with

∑
j∈J cj , for every s ≤ r, we added an edge

between ysns and ys+1
1 . We have that both esns and es+1

1 are in nz−1. In φ3, there is an edge
between any two events of the same node (and in particular in nz−1), hence this connecting
edge cs ≤ ys+1

1 − ysns exists, and cs ≥ −K, by definition of φ3. Now, the sum over the cycle
ξ in φ3 is at most 0, that is

(∑
j∈J cj

)
≤ 0− |P|(−K) = |P| ·K. Hence

∑
i bi ≤ 0. J

5.3 The automaton construction
Now, writing the automaton B(G) to check whether G is K-drift-bounded is straightforward.

The states of B(G) are triples (n, σ, τ), with n a state of G and σ ∈ PK and τ ∈ PK2 .
The initial state is (ninit,PFK(ninit),PFK2(ninit)),



S. Akshay, Blaise Genest, Loïc Hélouët, and Shaofa Yang 17

a state (n, σ, τ) is final if there exists a transition n→n′ with:
1. σ is satisfiable (ρ is K-drift-bounded)
2. θn→n′K (σ) is not satisfiable (ρn′ is not K-drift-bounded).
3. θn→n′(τ) is satisfiable (ρn′ is consistent).
There is a transition from (n, σ, τ) to (n′, σ′, τ ′) iff σ′ has a solution and there is a
transition from n to n′ and σ′ = θn→n

′

K (σ) and τ ′ = θn→n
′

K2
(τ).

We thus obtain from Proposition 22, recalling K2 = (|P|+ 1) ·K +D:

I Proposition 23. Let G be a full TC MSC graph. Then L(B(G)) = ∅ iff G is K-drift-
bounded. Furthermore, B(G) has at most |G| × (2K + 1)|P|2 × (2K2 + 1)|P|2 states.

Lifting the assumption that G is full is easy by working on the equivalent full TC-MSC
graph with bound K̂ instead of K, and slightly changing the first component to check also
that both the path in the full TCMSC graph is K̂-drift-bounded, and that the path in the
original graph is K-drift-bounded.

6 Conclusion

This paper has addressed the emptiness problem for TC-MSC graphs. This problem was
known to be decidable for locally synchronized TC-MSC graphs. This decision procedure
relied on an expensive construction of a timed automaton recognizing timed linearizations
followed by the construction of a standard zone automaton. We have shown that emptiness
can be checked under the restriction that a TC-MSC graph is K-drift-bounded, for some K,
together with the decidability of this restriction. The decision procedure does not consider
linearizations of TC-MSC graphs. Instead, a finite automaton keeps track of a system of
equations describing symbolically constraints over dates of last events on each process.

We will consider in the future how to use this symbolic representation when perfoming
more involved verification on the TC-MSC graph (conformance of an implementation, logics).

References
1 S. Akshay, P. Gastin, M. Mukund, and K. Narayan Kumar. Model checking time-

constrained scenario-based specifications. In FSTTCS, pages 204–215, 2010.
2 S. Akshay, M. Mukund, and K. Narayan Kumar. Checking coverage for infinite collections

of timed scenarios. In CONCUR’07, pages 181–196, 2007.
3 R. Alur and D. L. Dill. A theory of timed automata. TCS, 126(2):183–235, 1994.
4 R. Alur and M. Yannakakis. Model checking of message sequence charts. In CONCUR’99,

volume 1664 of LNCS, pages 114–129, 1999.
5 P. Bouyer, S. Haddad, and P.-A. Reynier. Timed unfoldings for networks of timed automata.

In ATVA’06, volume 4218 of LNCS, 2006.
6 F. Cassez, Th. Chatain, and C. Jard. Symbolic unfoldings for networks of timed automata.

In ATVA’06, volume 4218 of LNCS, pages 307–321, 2006.
7 G. Dantzig and B. Curtis Eaves. Fourier-motzkin elimination and its dual. J. Comb. Theory,

Ser. A, 14(3):288–297, 1973.
8 C. Dima and R. Lanotte. Distributed time-asynchronous automata. In ICTAC’07, pages

185–200, 2007.
9 P. Gastin, M. Mukund, and K. Narayan Kumar. Reachability and boundedness in time-

constrained MSC graphs. In Perspectives in Concurrency Theory, IARCS-Universities,
pages 157–183. 2009.



18 Symbolically Bounding the Drift in Time-Constrained MSC Graphs.

10 J. G. Henriksen, M. Mukund, K. Narayan Kumar, M. Sohoni, and P. S. Thiagarajan. A
theory of regular MSC languages. Inf. and Comp., 202(1):1–38, 2005.

11 ITU-TS Recommendation Z.120: Message Sequence Chart 1999 (MSC99), 1999.
12 B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms. Springer,

Germany, 3rd edition, 2006.
13 D. Lugiez, P. Niebert, and S. Zennou. A partial order semantics approach to the clock

explosion problem of timed automata. TCS, 345(1):27–59, 2005.
14 A. Muscholl and D. Peled. Message sequence graphs and decision problems on mazurkiewicz

traces. In MFCS’99, volume 1672 of LNCS, pages 81–91, 1999.
15 R. Shostak. Deciding linear inequalities by computing loop residues. JACM, 28(4):769–779,

1981.


	Introduction
	Preliminaries
	Drift-Boundedness
	The main results
	Full TC-MSC Graphs

	Checking Emptiness of a K-Drift-Bounded TC-MSC Graph
	Systems of Inequalities and Fourier-Motzkin elimination.
	Symbolic Profiles
	K-drift-bounded symbolic profiles
	Construction of a Symbolic Automaton

	Checking K-Drift-Boundedness of TC-MSC Graphs
	Shostak Lemma
	Consistency Checking
	The automaton construction

	Conclusion

