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Outline of the lecture

In this lecture we will cover:

– Formal definition of Turing machines
– Examples of Turing machines
– Variants of a Turing machine

– Multi-tape Turing machines
– Non-deterministic Turing machines

– Running time of a Turing machine
– The Church-Turing thesis and its importance to computer science
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From finite to infinite memory
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From finite automata to Turing Machines

1. A Turing machine can both write on the tape and read from it.
2. The read-write head can move both to left and right.
3. The tape is infinite.
4. Once accept/reject states are reached, the computation terminates at

once.
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Example

Consider the example language B = {w#w | w ∈ {0, 1}∗

– Is it regular?
– How does one check if a given (really long) string is of this form?

1. Scan the input once to make sure it does contain a single #. Else
reject.

2. Repeatedly do: Mark the first “unmarked” symbol from beginning
and zig-zag across the tape to its corresponding position on the other
side of # symbol to check if it is the same. If not, reject.

3. Stop when there are no unmarked symbols remaining to the left of #.
If there are still symbols left on right, then reject. Else accept.

In general, we use the finite control to process the symbols that are being
read on tape. How does one formalize this?
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Formal definition of a Turing Machine

Definition
A Turing Machine is a 7-tuple (Q,Σ,Γ, δ, q0, qacc, qrej) where Q,Σ,Γ are all
finite sets and

1. Q is the set of states,
2. Σ is the input alphabet,
3. Γ is the tape alphabet where t ∈ Γ and Σ ⊆ Γ

4. q0 is the start state
5. qacc is the accept state
6. qrej is the reject state
7. δ : Q× Γ→ Q× Γ× {L,R} is the transition function.

A configuration is a snapshot of the system during computation. Thus, it
can be described by the current state, the tape contents and the current
head location.
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Computation of a Turing Machine

Notation for configurations

Succinctly, we write C = uqv, if uv is the tape content, current state is q and
head is at start of v.

We define C1 yields C2 if the TM can move from C1 to C2 in one step:
– left move: u a qi b v yields u qj a c v if δ(qi, b) = (qj, c,L)

– right move: u a qi b v yields u a c qj v if δ(qi, b) = (qj, c,R)

– left-end: qi b v yields (1) qj c v if transition is left moving or (2) c qj v if
it is right moving

– right-end: assume that u a qi is the same as u a qi t as tape has blanks
to the right.
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Computation of a Turing Machine

– We define start (q0,w), accepting (∗qacc∗), rejecting (∗qrej∗) and halting
configurations.

– A TM M accepts input word w if there exists a sequence of
configurations C1,C2, . . . ,Ck such that

– C1 is the start configuration
– each Ci yields Ci+1

– Ck is an accepting configuration

– Language of TM M, denoted L(M) is the set of strings accepted by it.
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Turing recognizable and decidable languages

Turing recognizable or Recursively enumerable

A language is Turing recognizable or r.e if there is a Turing machine
accepting it.

Turing decidable or recursive

A language is decidable (or recursive) if there is a Turing machine
accepting it, which has the additional property that it halts on all possible
inputs.

Every decidable language is Turing recognizable, but is the converse true?
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Examples of Turing Machines

Construct a TM for the language considered earlier
B = {w#w | w ∈ {0, 1}∗}

– Q = {q1, qacc, qrej, . . . , }
– Σ = {0, 1,#}, Γ = {0, 1,#,t, . . . , }
– start, accept, reject are q1, qacc, qrej

– δ =?

see board.

1. Scan input to make sure it does contain a single #. Else reject.
2. Repeatedly do: Mark first “unmarked” symbol from left and zig-zag

across tape to its corresponding position on the other side of #
symbol to check if it is the same. If not, reject.

3. Stop when there are no unmarked symbols remaining to the left of #.
If there are still symbols left on right, then reject. Else accept.
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Another example of a Turing Machine

A TM as a computer of integer functions

– Compute max{m− n, 0}: construct TM M that starts with 0m10n and
halts with 0max{m−n,0} on tape

Same as writing B = {ambncmax{m−n,0} | m,n ≥ 0} and asked for a TM
which accepts language B.
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Another example of a Turing Machine

A TM as a computer of integer functions

– Compute max{m− n, 0}: construct TM M that starts with 0m10n and
halts with 0max{m−n,0} on tape

– M repeatedly replaces leading 0 by blank, then searches right for a 1
followed by 0 and changes 0 to 1.

– Then, M moves left until it encounters a blank and repeats this cycle.
– The repetition ends if

1. searching right for 0, M encounters a blank.
– Then all n 0’s in 0m10n have been changed to 1 and n + 1 of m 0’s changed to

blank. M replaces n + 1 1’s by a 0 and n blanks leaving m− n 0’s on the tape.
2. beginning the cycle, M cannot find a 0 to change to a blank, because first

m 0’s have already been changed.
– Then n ≥ m, so max{m− n, 0} = 0. M replaces remaining 1’s, 0’s by blanks.
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Variants of a TM

– Multi-tape TMs.
– Non-deterministic TMs
– Multi-head TMs
– Double side infinite tape TMs
– ...

What are the relative expressive powers? Do we get something strictly
more powerful than standard TMs?
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Multi-tape to single-tape TM

Definition
A multitape TM is a TM with several tapes, each having its own head for
reading and writing. Input is on first tape and others are blank.
Formally δ : Q× Γk → Q× Γk × {L,R}k, where k is the number of tapes.

Theorem
Every multi-tape TM has an equivalent single-tape TM.

(why not use the finite control to keep track of the k-many heads?)
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Running time of a Turing Machine

Running time of a TM

– The running time of a TM is the number of steps it makes before
halting.

– So, if the TM doesnt halt, the running time is infinite.

– The time complexity of M is the function T(n) that is the maximum,
over all inputs w of length n, of the running time of M on w.

– We will be eventually more interested in TMs that halt on all inputs,
and in particular have a polynomial time complexity T(n).

– What is the relation between running times of a 1 and multi-tape TM?

The difference between polynomial time and higher growth rates in
running time is really the divide between what we can “solve” by
computer and what in practice is not solvable.
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Non-deterministic TMs

Non-deterministic TMs
At any point in the computation, the TM may proceed according to
several possibilities. Thus the transition function has the form:

δ : Q× Γ→ 2Q×Γ×{L,R}

Theorem
Every non-det TM is equivalent to a det TM

Proof idea:
1. View NTM N’s computation as a tree.
2. explore tree using bfs and for each node (i.e., config) encountered,

check if it is accepting.
What is the time-complexity blow-up?
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Why Turing Machines?

– Robust model of computation
– Equivalence with other such models of computation, with reasonable

assumptions (e.g., only finite amount of work is possible in 1 step).

– Thus, though there are several computational models, the class of
algorithms (or procedures) they describe is the same.

– Can do everything a computer can do and vice versa. But takes a lot
more time. Is not practical and indeed its not what is implemented in
today’s computer. After all who wants to write 100 lines to do
subtraction or check something that a 4-year old can do?

– So then again, why Turing? Why is the top-most nobel-equivalent
award in computer science called Turing award and not Bill Gates
award?
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Turing Machines: a lesson from history

Hilbert’s problems

– In 1900, David Hilbert listed out 23 problems as challenges for 20th
century at the Int. Cong. of Mathematicians in Paris.

– 10th problem: Devise an algorithm (a process doable using a finite no.
of operations) to test if a given polynomial has integral roots.

– Now we know that no such algorithm exists. But how to prove this
without a mathematical definition of an algorithm?
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The Church-Turing Thesis

Alonso Church
(1903–1995)

Alan Turing
(1912–1954)
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The Church-Turing Thesis

– The Church-Turing Thesis provides the definition of algorithm
necessary to resolve Hilbert’s tenth problem.

The Church-Turing Thesis

Our intuitive understanding of algorithms coincides with Turing machine
algorithms.

– Thus, Turing machines capture our intuitive idea of computation.
– Indeed, we are more interested in algorithms themselves. Once we

believe that TMs precisely capture algorithms, we will shift our focus
to algorithms rather than low-level descriptions of TMs.
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More on the Church-Turing Thesis

Lambda Calculus

– In 1936, Church introduced Lambda Calculus as a formal description
of all computable functions.

– Independently, Turing had introduced his A-machines in 1936 too.
– Turing also showed that his A-machines were equivalent to Lambda

Calculus of Church.

– So, can a Turing machine do everything? In other words are there
algorithms to solve every question. Godel’s incompleteness result
asserts otherwise.

– If there is TM solving a problem, does there exist an equivalent TM
that halts?
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What else did Turing do?

– Alan Turing characterized computable functions by building a
machine. Though theoretical this gave rise to the idea of computers.

– But Turing also worked on ideas and concepts that later made
profound impact in AI.
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