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A global view of timed systems

A timed system has several parts:

© A regular way to generate behaviors: Automata, Expressions

© Timing features: Clock resets and guards, Event-clocks, Clock
updates etc.

© Data structures: stacks, queues, bags, etc.

@ Timed automata, event clock automata apos,arHoo

@ Timed pushdown automata serosansi2

@ Timed message-passing automata acksioAakis

@ Popular approach: region construction. For each timing
feature and each data structure, redo the proof.

@ Do we need to do this? Is there something unifying them?
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A unifying graphical view

@ A run of system S is a sequence of instructions
e e.g., with a queue d; and stack d, consider
7 = nop w(di) nop w(dy) r(di) w(dz) w(dz) r(d1) nop r(dz) r(d2)
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A unifying graphical view

@ A run of system S is a sequence of instructions

@ G, is valid: push matches pop, FIFO on stack, LIFO on queue

dy
& dy )
e
OO OO0 —0—0—C
TS ey M) WD (@) AA) W) w(d) gy o k) )



A unifying graphical view

@ A run of timed system S is a sequence of timed instructions

@ G, is valid: push matches pop, FIFO on stack, LIFO on queue
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A unifying graphical view

@ A run of timed system S is a sequence of timed instructions
@ G, is valid: push matches pop, FIFO on stack, LIFO on queue

@ A run must be realizable, i.e., weighted graph WG, should
not have negative cycle!
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A unifying graphical view

@ A run of timed system S is a sequence of timed instructions
@ G, is valid: push matches pop, FIFO on stack, LIFO on queue

@ A run must be realizable, i.e., weighted graph WG should
not have negative cycle!

dy 2
o OO~ g
ro wp  w(d) mop  wid)  r(dh)  w(d)  w(dy)  r(dh) nop fd) )
x=0

yi=0 y<1 2<di—yx:=0 4<d

So emptiness asks if there exists 7 generated by S such that
(i) G is valid and (ii) WG is realizable?




Related work

Untimed setting- Use Courcelle's theorem

MP11,AKG12,AG14

@ Show that graphs G, obtained have bounded tree-width
e Write validity in MSO over these graphs G-

@ Interpret these graphs over trees, and reduce to emptiness of
tree automata

Main questions:
@ Is realizability MSO definable?
@ Do timed graphs WG, have bounded tree-width?

e Can you avoid the complexity blowup?
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AGK16,AGKS17,AGK18
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@ Directly and carefully build tree automata to check emptiness
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@ how to handle generic data structures, timing features?

@ Is there a higher level treatment, whereby we can avoid
showing bound on tree-width for each timed system?



Related work (contd.)

Timed setting - for TPDA and restricted TMPDA

AGK16,AGKS17,AGK18
@ Show that timed graphs from TPDA have bounded tree-width

@ Directly and carefully build tree automata to check emptiness

Main question:
@ how to handle generic data structures, timing features?

@ Is there a higher level treatment, whereby we can avoid
showing bound on tree-width for each timed system?

Orthogonal technique for TA, TPDA

Encoding as registers and going via atoms cLis.ciimiz,cLis




Our results

Realizability of weighted graphs is MSO (and EQ-ICPDL) definable
iff the set of graphs has width 1.

@ width is the size of the largest antichain

e width=1 implies linear order, i.e., graphs coming from
sequential systems.
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<

A template to analyze timed systems via graphs and logic

©® Timed systems to Graphs
e allows us to decouple data structure G, and timing WG, issues
@ Graphs to Logic

e Using above theorem above get W for realizability over WG
e A challenge: how do we relate the decoupled graphs?
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A template to analyze timed systems via graphs and logic

© Timed systems to Graphs

e allows us to decouple data structure G, and timing WG, issues
© Graphs to Logic

e Using above theorem above get W for realizability over WG

e Lemma: Given valid 7, WG, can be logically interpreted into
G,. Thus convert ¥ over WG, into V' over G,

Theorem

| \

Emptiness of timed system can be reduced to satisfiability of
formula in MSO/EQ-ICPDL
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Our results

Realizability of weighted graphs is MSO (and EQ-ICPDL) definable
iff the set of graphs has width 1.

A template to analyze timed systems via graphs and logic

© Timed systems to Graphs
e allows us to decouple data structure G, and timing WG, issues

© Graphs to Logic
© (if you really want emptiness,) Logic back to Automata
e under-approximate approach to decidability of emptiness.
e e.g., if tree-width is bounded, then interpret these graphs in
trees and obtain tree automata.
e Note tree-width is now in untimed graphs G, !
e Using EQ-ICPDL instead of MSO gives good complexity

Extensions: Capture rich timing interplay & model checking

6



What logic shall we use?

Propositional dynamic logic with Intersection & Converse(ICPDL)

We have the following, with p € ¥ and v € I":
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@ O are sentences, E existential node quantifier.
@ o node or state formulae with one (implicit) free FOvar

e 7 path or program formulae with two (implicit) free FOvar
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What logic shall we use?

Propositional dynamic logic with Intersection & Converse(ICPDL)

We have the following, with p € ¥ and v € I":

¢i=Eoc:d:0VD
ocux=T:p:0oVo:-o: (mo : loop(r)

=2 test{o} i+ w ia-wm i iAol ang

E((test{pV q} - —5)")r

~E()(pAs)

dd -1
E Vig.aem=pp.aza l0op(= - = 7)
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What logic shall we use?

Propositional dynamic logic with Intersection & Converse(ICPDL)
We have the following, with p € ¥ and v € I":

¢i=Eoc:d:0VD
ocux=T:p:0oVo:-o: (mo : loop(r)

=2 test{o} i+ w ia-wm i iAol ang

EQ-ICPDL(X,T) allows 3-quant over new propositional variables

VY =13p;,...,p, P where AP = {p1,...,pn} is disjoint from ¥ and
& € ICPDL(Z W AP,T).
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Why this dynamic logic

Reasons for using EQ-ICPDL

@ The talk got scheduled in session titled “dynamic logics”!
@ Many properties are easier to write!

e EQ-ICPDL is strictly contained in MSO

@ The following theorem by Goller, Lohrey, Lutz

Theorem [GLLO09]

Given k > 1 in unary and a formula W in EQ-ICPDL(X,I") of
intersection width bounded by a constant, checking whether

G = V for some (X, I)-labeled graph G whose tree-width is at
most k can be solved in EXPTIME.




Solving realizability by modulo counting

G is realizable
iff 3ts : V — R s.t

e Vunav, ts(v) —ts(u) < a
e VYu— v,0<ts(v)— ts(u)




Solving realizability by modulo counting

Assume only closed guards: G is realizable

iff 3ts: V — N st
o Vunv,ts(v) —ts(u) < a

e Vu—v,0 < ts(v) — ts(u)

3

3 1
M=5 —(0 (0) O, 4 6 A20) (21) 21
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Solving realizability by modulo counting

Assume only closed guards: G is realizable

iff 3ts: V — N st
o Vunv,ts(v) —ts(u) < a

@ Vu— v,0<ts(v) —ts(u)< M — 1, where M is max const




Solving realizability by modulo counting

Assume only closed guards: G is realizable

iff Its : V = N st Vu 2 v, ts(v) — ts(u) < a.




Solving realizability by modulo counting

Assume only closed guards: G is realizable

iff Its : V = N st Vu 2 v, ts(v) — ts(u) < a.

dtsm:V —{0,... M -1} st Vun?v,
e if u < v, then (tsm(v) — tsm(u))[M] < a
e if v < u, then (tsm(v) — tsm(u))[M] > —a




Solving realizability by modulo counting

Assume only closed guards: G is realizable

iff Its : V = N st Vu 2 v, ts(v) — ts(u) < a.

dtsm:V —{0,... M -1} st Vun?v,
e if u < v, then (tsm(v) — tsm(u))[M] < a

e if v < u, then (tsm(v) — tsm(u))[M] > —a or modulo
counting grew big in between




Solving realizability by modulo counting

Assume only closed guards: G is realizable

iff Its : V = N st Vu 2 v, ts(v) — ts(u) < a.

2

u=s oeo

dtsm:V —{0,... M =1} st Vun?v,
e if u=<v, then (tsm(v) — tsm(u))[M] < a

e if v < u, then (tsm(v) — tsm(u))[M] > —a or modulo
counting grew big in between




Solving realizability by modulo counting

Assume only closed guards: G is realizable

iff Its : V = N st Vu 2 v, ts(v) — ts(u) < a.

2

u=s oeo

dtsm:V —{0,... M =1} st Vun?v,

e if u < v, then (tsm(v) — tsm(u))[M] < a and modulo
counting didn’t grow big in between

e if v < u, then (tsm(v) — tsm(u))[M] > —a or modulo
counting grew big in between




Solving realizability by modulo counting

Assume only closed guards: G is realizable
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Solving realizability by modulo counting

Assume only closed guards: G is realizable

iff Its : V = N st Vu 2 v, ts(v) — ts(u) < a.

2

ys H®

—4 3

iff Itsm:V = {0,... M -1} st Vun?v,
e if u < v, then (tsm(v) — tsm(u))[M] < a and modulo
counting didn't grow big in between

e if v < u, then (tsm(v) — tsm(u))[M] > —a or modulo
counting grew big in between

(u,v)isbigif Ju<w <x <vst

(tsm(w) — tsm(u))[M] + (tsm(x) — tsm(w))[M] > M




Writing it in EQ-ICPDL

Realizable iff 3tsm: V — {0,...M — 1} st Vu ~? v,
@ if u X v, then (tsm(v) — tsm(u))[M] < a and (u, v) is not big
@ if v < u, then (tsm(v) — tsm(u))[M] > —a or (u,v) is big
where (u,v) is big if Ju < w < x < vs.it

(tsm(w) — tsm(u))[M] + (tsm(x) — tsm(w))[M] > M

BigPath = Z test{p;} - = -test{p;} - =T - test{px} - —*

0<i j k<M
(—NIM]+(k—j)[M]>M
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Writing it in EQ-ICPDL

Realizable iff 3tsm: V — {0,...M — 1} st Vu ~? v,
@ if u X v, then (tsm(v) — tsm(u))[M] < a and (u, v) is not big
@ if v < u, then (tsm(v) — tsm(u))[M] > —a or (u,v) is big
where (u,v) is big if Ju < w < x < vs.it

(tsm(w) — tsm(u))[M] + (tsm(x) — tsm(w))[M] > M

BigPath = Z test{p;} - =7 -test{p;} - =T - test{px} - —*
0<ij,k<M
(=NIM+(k=j)IM]>M
(u, v)is not big = —E \/ loop(BigPath - LN
—M<a<M

1

)
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Writing it in EQ-ICPDL

Realizable iff 3tsm: V — {0,...M — 1} st Vu ~? v,
@ if u X v, then (tsm(v) — tsm(u))[M] < a and (u, v) is not big
@ if v < u, then (tsm(v) — tsm(u))[M] > —a or (u,v) is big
where (u,v) is big if Ju < w < x < vs.it

(tsm(w) — tsm(u))[M] + (tsm(x) — tsm(w))[M] > M

Realizable = dpy, ..., pm—1 Partition A Forward A Backward

Partition = A \/ [pi A /\ -pj]
0<i<M J#i

< — < —
Forward = —E \/ loop(BigPath - =% 1) A —E v loop(test{p; } - =9 test{p;} - (— 1)+)
—M<a<M 0<ij<M
(—=NIM>a

Similarly for Backward, but need to define —BigPath (see paper)
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What about strict/open guards

What happens when there are both closed and open guards?
Realizable = 3Jtsm:V — {0,...M — 1} st Vu~? v,
@ if u =X v, then (tsm(v) — tsm(u))[M] < a and (u, v) is not big

@ if v < u, then (tsm(v) — tsm(u))[M] > —a or (u,v) is big
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What about strict/open guards

What happens when there are both closed and open guards?
Realizable = 3Jtsm:V — {0,...M — 1} st Vu~? v,
@ if u =X v, then (tsm(v) — tsm(u))[M] < a and (u, v) is not big

@ if v < u, then (tsm(v) — tsm(u))[M] > —a or (u,v) is big

But the reverse direction is not true, since strictness could
invalidate assigments.

Capturing strict guards

@ Consider the orderings of fractional parts.
@ These should not form a cycle which a strict constraint within!
@ Uses intersection (but with intersection-width 2).

Realizable = dpy, .. ., pm—1 Partition A Forward A Backward A noFracCycle

11



Realizability is not MSO definable without the linear order

@ Width of a partial order = maximal size of anti-chain.

@ Linear order has width 1.
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Realizability is not MSO definable without the linear order

@ Width of a partial order = maximal size of anti-chain.
Linear order has width 1.

Consider the following example with width 2.

The graph is realizable iff #blue edges is > #red edges.

Cannot be expressed in MSO (formal proof by backward
translation).

——————

——————

12



Application and extensions

A two step template to capture rich timing features

e Capture timing as edges on graph

@ Relate the events in logic
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Application and extensions

A two step template to capture rich timing features

e Capture timing as edges on graph

@ Relate the events in logic

Example: event-clock next,

@ edge between current event and next occurrence of a.

> test{(next, 9 )} — -(test{—a}- —)* - test{a}
acAP




Application and extensions

A two step template to capture rich timing features

e Capture timing as edges on graph

@ Relate the events in logic

Clock tracking/renaming

d >

Y Y
O0—C—0—C—0—0
T=x:=0 dy = xp X 1= dy dr == xp X4 1= do xg <4
X :=0 x =0 x1:=0 X =0 x3 <3

x3:=0 X4 = X2 X3 = X4

Figure: Intricate flow of information in complex updates.




Application and extensions
A two step template to capture rich timing features

e Capture timing as edges on graph

@ Relate the events in logic

Clock tracking/renaming

d &
-0—C—0—0—0—0

<4
T=x:=0 dy = xp X 1= dy dy i =X Xg := dy x3 < 4

X2 =0 X2 :=0 x1:=0 x2:=0 x3<3

x3:=0 X4 = X2 X3 = X4 |

Figure: Intricate flow of information in complex updates.
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Application and extensions
A two step template to capture rich timing features

e Capture timing as edges on graph

@ Relate the events in logic

Clock tracking/renaming

d &

~O—0—0—0—0—0

<4
T=x:=0 dy = xp X 1= dy dy i =X Xg := dy x3 < 4

X2 =0 X2 :=0 x1:=0 Xp:=0 x3<3

x3:=0 X4 = X2 X3 = X4 |

Figure: Intricate flow of information in complex updates.

More in the paper: Model checking

Untimed and some limited timed specifications.
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Conclusion

Highlights
@ Realizability is MSO definable over sequential systems
@ Template for analyzing rich time features in systems with data
structures using graphs and logic
@ Use EQ-ICPDL instead of MSO to obtain good complexity
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Conclusion

Highlights

Realizability is MSO definable over sequential systems

@ Template for analyzing rich time features in systems with data
structures using graphs and logic

Use EQ-ICPDL instead of MSO to obtain good complexity

More consequences and applications.

Distributed systems.
A converse characterization?!
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