
On Synthesizing Computable Skolem functions for FO logic

Supratik Chakraborty and S. Akshay

Indian Institute of Technology Bombay

MFCS 2022, Vienna

1



Introduction

Skolem functions

Given a FOL formula ϕ(X ,Y ) over (inputs) X and (outputs) Y , F(·) is a Skolem function iff

∀X
(
∃Y ϕ(X ,Y )⇔ ϕ(X ,F(X))

)

• Classical concept arising from quantifier elimination in FOL.
• Known to always exist! But,

1 Is the function computable?
2 Can we effectively compute/synthesize such a function?

2



Introduction

Skolem functions

Given a FOL formula ϕ(X ,Y ) over (inputs) X and (outputs) Y , F(·) is a Skolem function iff

∀X
(
∃Y ϕ(X ,Y )⇔ ϕ(X ,F(X))

)
• Classical concept arising from quantifier elimination in FOL.
• Known to always exist! But,

1 Is the function computable?
2 Can we effectively compute/synthesize such a function?

2



A storied history

Skolem functions play an important role in first order logic
• Getting rid of existential quantifiers

• Seminal work by Thoralf Skolem 1920s and Jacques
Herbrand 1930s.

• Skolemization and “Skolem-Normal form”

• Focus on existence of form, NOT computability.

We can trace this history even further back
• Existence and construction of Boolean unifiers

• Boole’1847, Lowenheim’1908.

3



A storied history

Skolem functions play an important role in first order logic
• Getting rid of existential quantifiers

• Seminal work by Thoralf Skolem 1920s and Jacques
Herbrand 1930s.

• Skolemization and “Skolem-Normal form”

• Focus on existence of form, NOT computability.

We can trace this history even further back

• Existence and construction of Boolean unifiers

• Boole’1847, Lowenheim’1908.

3



A storied history

Skolem functions play an important role in first order logic
• Getting rid of existential quantifiers

• Seminal work by Thoralf Skolem 1920s and Jacques
Herbrand 1930s.

• Skolemization and “Skolem-Normal form”

• Focus on existence of form, NOT computability.

We can trace this history even further back
• Existence and construction of Boolean unifiers

• Boole’1847, Lowenheim’1908.

3



Applications

Why should we be interested in synthesizability of Skolem functions?
• Heart of Automated Program Synthesis and repair.

g(x1,x2)≥ x1 and
g(x1,x2)≥ x2 and
(g(x1,x2) == x1 or
g(x1,x2) == x2)
————–
Synthesize program for g

y1 ≥ x1 and
y1 ≥ x2 and
(y1 == x1 or
y1 == x1)
———
∀x1x2∃y1ϕ

Prior work
• Propositional setting: Akshay et al.’17,’18,’19,’20,’21, Rabe et al. ’17,’18, Golia et al.’20,’21,etc., Fried et al’16, John et al.’15, Heule et al.’14, etc.

• Beyond Propositional setting:
– Results on specific theories: Linear rational arithmetic Kuncak et al.’10, Bit vectors Spielman et al.,Priener et al.

– Partial approach for Quantifier Elimination Jiang’09.

4



Applications

Why should we be interested in synthesizability of Skolem functions?
• Heart of Automated Program Synthesis and repair.

g(x1,x2)≥ x1 and
g(x1,x2)≥ x2 and
(g(x1,x2) == x1 or
g(x1,x2) == x2)
————–
Synthesize program for g

y1 ≥ x1 and
y1 ≥ x2 and
(y1 == x1 or
y1 == x1)
———
∀x1x2∃y1ϕ

Golia et al, IJCAI’21

Prior work
• Propositional setting: Akshay et al.’17,’18,’19,’20,’21, Rabe et al. ’17,’18, Golia et al.’20,’21,etc., Fried et al’16, John et al.’15, Heule et al.’14, etc.

• Beyond Propositional setting:
– Results on specific theories: Linear rational arithmetic Kuncak et al.’10, Bit vectors Spielman et al.,Priener et al.

– Partial approach for Quantifier Elimination Jiang’09.

4



Applications

Why should we be interested in synthesizability of Skolem functions?
• Heart of Automated Program Synthesis and repair.

g(x1,x2)≥ x1 and
g(x1,x2)≥ x2 and
(g(x1,x2) == x1 or
g(x1,x2) == x2)
————–
Synthesize program for g

y1 ≥ x1 and
y1 ≥ x2 and
(y1 == x1 or
y1 == x1)
———
∀x1x2∃y1ϕ

Golia et al, IJCAI’21

Prior work
• Propositional setting: Akshay et al.’17,’18,’19,’20,’21, Rabe et al. ’17,’18, Golia et al.’20,’21,etc., Fried et al’16, John et al.’15, Heule et al.’14, etc.

• Beyond Propositional setting:
– Results on specific theories: Linear rational arithmetic Kuncak et al.’10, Bit vectors Spielman et al.,Priener et al.

– Partial approach for Quantifier Elimination Jiang’09.

4



Skolem functions beyond terms

• Skolem functions are often conflated with terms in the logic.

Consider Presburger arithmetic, integers over vocabulary V = {<,+,=,0,1}

Idea of going beyond terms not new: Skolem functions as set of conditional statements [Jiang’09]

5



Skolem functions beyond terms

• Skolem functions are often conflated with terms in the logic.

Consider Presburger arithmetic, integers over vocabulary V = {<,+,=,0,1}

Idea of going beyond terms not new: Skolem functions as set of conditional statements [Jiang’09]

5



Skolem functions beyond terms

• Skolem functions are often conflated with terms in the logic.

Consider Presburger arithmetic, integers over vocabulary V = {<,+,=,0,1}
• Consider the formula

∀y∀z∃x((y > 0)→ (x > z))

Idea of going beyond terms not new: Skolem functions as set of conditional statements [Jiang’09]

5



Skolem functions beyond terms

• Skolem functions are often conflated with terms in the logic.

Consider Presburger arithmetic, integers over vocabulary V = {<,+,=,0,1}
• Consider the formula

∀y∀z∃x((y > 0)→ (x > z))
• What is a Skolem function for x?

F(x) = y + z

Idea of going beyond terms not new: Skolem functions as set of conditional statements [Jiang’09]

5



Skolem functions beyond terms

• Skolem functions are often conflated with terms in the logic.

Consider Presburger arithmetic, integers over vocabulary V = {<,+,=,0,1}
• Consider the formula

∀y∀z∃x((y > 0)→ (x > z))
• What is a Skolem function for x? F(x) = y + z

Idea of going beyond terms not new: Skolem functions as set of conditional statements [Jiang’09]

5



Skolem functions beyond terms

• Skolem functions are often conflated with terms in the logic.

Consider Presburger arithmetic, integers over vocabulary V = {<,+,=,0,1}
• Consider the formula

∀y∀z∃x((y > 0)→ (x > z))
• What is a Skolem function for x? F(x) = y + z , which is a term in the logic.

Idea of going beyond terms not new: Skolem functions as set of conditional statements [Jiang’09]

5



Skolem functions beyond terms

• Skolem functions are often conflated with terms in the logic.

Consider Presburger arithmetic, integers over vocabulary V = {<,+,=,0,1}
• However, suppose we have

∀y∀z∃x(((x = y)∨ (x = z))∧ ((x ≥ y)∧ (x ≥ z)))

• No term can serve as a Skolem function for x (all terms are linear functions).

• But F(x) = max(y ,z) is clearly a Skolem function

, which can be written as a program:
“input(y,z); if y≥ z then return y else return z”

• In fact, for ANY formula in this theory, Skolem functions can be written this way!

Idea of going beyond terms not new: Skolem functions as set of conditional statements [Jiang’09]

5



Skolem functions beyond terms

• Skolem functions are often conflated with terms in the logic.

Consider Presburger arithmetic, integers over vocabulary V = {<,+,=,0,1}
• However, suppose we have

∀y∀z∃x(((x = y)∨ (x = z))∧ ((x ≥ y)∧ (x ≥ z)))

• No term can serve as a Skolem function for x (all terms are linear functions).

• But F(x) = max(y ,z) is clearly a Skolem function

, which can be written as a program:
“input(y,z); if y≥ z then return y else return z”

• In fact, for ANY formula in this theory, Skolem functions can be written this way!

Idea of going beyond terms not new: Skolem functions as set of conditional statements [Jiang’09]

5



Skolem functions beyond terms

• Skolem functions are often conflated with terms in the logic.

Consider Presburger arithmetic, integers over vocabulary V = {<,+,=,0,1}
• However, suppose we have

∀y∀z∃x(((x = y)∨ (x = z))∧ ((x ≥ y)∧ (x ≥ z)))

• No term can serve as a Skolem function for x (all terms are linear functions).

• But F(x) = max(y ,z) is clearly a Skolem function

, which can be written as a program:
“input(y,z); if y≥ z then return y else return z”

• In fact, for ANY formula in this theory, Skolem functions can be written this way!

Idea of going beyond terms not new: Skolem functions as set of conditional statements [Jiang’09]

5



Skolem functions beyond terms

• Skolem functions are often conflated with terms in the logic.

Consider Presburger arithmetic, integers over vocabulary V = {<,+,=,0,1}
• However, suppose we have

∀y∀z∃x(((x = y)∨ (x = z))∧ ((x ≥ y)∧ (x ≥ z)))

• No term can serve as a Skolem function for x (all terms are linear functions).

• But F(x) = max(y ,z) is clearly a Skolem function , which can be written as a program:
“input(y,z); if y≥ z then return y else return z”

• In fact, for ANY formula in this theory, Skolem functions can be written this way!

Idea of going beyond terms not new: Skolem functions as set of conditional statements [Jiang’09]

5



Skolem functions beyond terms

• Skolem functions are often conflated with terms in the logic.

Consider Presburger arithmetic, integers over vocabulary V = {<,+,=,0,1}
• However, suppose we have

∀y∀z∃x(((x = y)∨ (x = z))∧ ((x ≥ y)∧ (x ≥ z)))

• No term can serve as a Skolem function for x (all terms are linear functions).

• But F(x) = max(y ,z) is clearly a Skolem function , which can be written as a program:
“input(y,z); if y≥ z then return y else return z”

• In fact, for ANY formula in this theory, Skolem functions can be written this way!

Idea of going beyond terms not new: Skolem functions as set of conditional statements [Jiang’09]

5



Skolem functions beyond terms

• Skolem functions are often conflated with terms in the logic.

Consider Presburger arithmetic, integers over vocabulary V = {<,+,=,0,1}
• However, suppose we have

∀y∀z∃x(((x = y)∨ (x = z))∧ ((x ≥ y)∧ (x ≥ z)))

• No term can serve as a Skolem function for x (all terms are linear functions).

• But F(x) = max(y ,z) is clearly a Skolem function , which can be written as a program:
“input(y,z); if y≥ z then return y else return z”

• In fact, for ANY formula in this theory, Skolem functions can be written this way!

The thesis of this paper

For computability/synthesis, Skolem functions should be seen as programs aka Turing machines!

Idea of going beyond terms not new: Skolem functions as set of conditional statements [Jiang’09]

5



Skolem functions beyond terms

• Skolem functions are often conflated with terms in the logic.

Consider Presburger arithmetic, integers over vocabulary V = {<,+,=,0,1}
• However, suppose we have

∀y∀z∃x(((x = y)∨ (x = z))∧ ((x ≥ y)∧ (x ≥ z)))

• No term can serve as a Skolem function for x (all terms are linear functions).

• But F(x) = max(y ,z) is clearly a Skolem function , which can be written as a program:
“input(y,z); if y≥ z then return y else return z”

• In fact, for ANY formula in this theory, Skolem functions can be written this way!

The thesis of this paper

For computability/synthesis, Skolem functions should be seen as programs aka Turing machines!

Idea of going beyond terms not new: Skolem functions as set of conditional statements [Jiang’09]

5



Testing the limits

Can we always synthesize Skolem functions as Turing machines?

• Is there a theory where even programs fail? A theory where there is a formula for which
there is no Skolem function as a program?

• Unfortunately yes. Natural numbers over V = {=,+,∗,0,1}
• Follows from the classical Matiyasevich-Robinson-Davis-Putnam (MRDP) theorem!

6



Testing the limits

Can we always synthesize Skolem functions as Turing machines?

• Is there a theory where even programs fail? A theory where there is a formula for which
there is no Skolem function as a program?

• Unfortunately yes. Natural numbers over V = {=,+,∗,0,1}
• Follows from the classical Matiyasevich-Robinson-Davis-Putnam (MRDP) theorem!

6



Testing the limits

Can we always synthesize Skolem functions as Turing machines?

• Is there a theory where even programs fail? A theory where there is a formula for which
there is no Skolem function as a program?

• Unfortunately yes.

Natural numbers over V = {=,+,∗,0,1}
• Follows from the classical Matiyasevich-Robinson-Davis-Putnam (MRDP) theorem!

6



Testing the limits

Can we always synthesize Skolem functions as Turing machines?

• Is there a theory where even programs fail? A theory where there is a formula for which
there is no Skolem function as a program?

• Unfortunately yes. Natural numbers over V = {=,+,∗,0,1}

• Follows from the classical Matiyasevich-Robinson-Davis-Putnam (MRDP) theorem!

6



Testing the limits

Can we always synthesize Skolem functions as Turing machines?

• Is there a theory where even programs fail? A theory where there is a formula for which
there is no Skolem function as a program?

• Unfortunately yes. Natural numbers over V = {=,+,∗,0,1}
• Follows from the classical Matiyasevich-Robinson-Davis-Putnam (MRDP) theorem!

6



The problem statements

Given a vocabulary V and a V -structure M.

Questions of concern
1 For every V -formula ξ = ∀X∃Y ϕ(X ,Y ) , does there exist a Turing Machine TMξ,M that

serves as a Skolem function for Y in ξ, when evaluated over M? (SkExist)

2 Is there an algorithm AM that takes ξ as input and returns TMξ,M? (SkSyn)

Question 1
• Can SkExist ever return No?

• Is SkExist decidable?

Note: We assume structures to be
“computable”: predicates/functions
are effectively computable.

Question 2

When SkExist returns Yes, then

• can SkSyn return No?

• can we characterize precisely when SkSyn
returns Yes ?

• Moreover, can we explicitly construct AM?

7



The problem statements

Given a vocabulary V and a V -structure M.

Questions of concern
1 For every V -formula ξ = ∀X∃Y ϕ(X ,Y ) , does there exist a Turing Machine TMξ,M that

serves as a Skolem function for Y in ξ, when evaluated over M? (SkExist)

2 Is there an algorithm AM that takes ξ as input and returns TMξ,M? (SkSyn)

Question 1
• Can SkExist ever return No?

• Is SkExist decidable?

Note: We assume structures to be
“computable”: predicates/functions
are effectively computable.

Question 2

When SkExist returns Yes, then

• can SkSyn return No?

• can we characterize precisely when SkSyn
returns Yes ?

• Moreover, can we explicitly construct AM?

7



The problem statements

Given a vocabulary V and a V -structure M.

Questions of concern
1 For every V -formula ξ = ∀X∃Y ϕ(X ,Y ) , does there exist a Turing Machine TMξ,M that

serves as a Skolem function for Y in ξ, when evaluated over M? (SkExist)
2 Is there an algorithm AM that takes ξ as input and returns TMξ,M? (SkSyn)

Question 1
• Can SkExist ever return No?

• Is SkExist decidable?

Note: We assume structures to be
“computable”: predicates/functions
are effectively computable.

Question 2

When SkExist returns Yes, then

• can SkSyn return No?

• can we characterize precisely when SkSyn
returns Yes ?

• Moreover, can we explicitly construct AM?

7



The problem statements

Given a vocabulary V and a V -structure M.

Questions of concern
1 For every V -formula ξ = ∀X∃Y ϕ(X ,Y ) , does there exist a Turing Machine TMξ,M that

serves as a Skolem function for Y in ξ, when evaluated over M? (SkExist)
2 Is there an algorithm AM that takes ξ as input and returns TMξ,M? (SkSyn)

Question 1
• Can SkExist ever return No?

• Is SkExist decidable?

Note: We assume structures to be
“computable”: predicates/functions
are effectively computable.

Question 2

When SkExist returns Yes, then

• can SkSyn return No?

• can we characterize precisely when SkSyn
returns Yes ?

• Moreover, can we explicitly construct AM?

7



The problem statements

Given a vocabulary V and a V -structure M.

Questions of concern
1 For every V -formula ξ = ∀X∃Y ϕ(X ,Y ) , does there exist a Turing Machine TMξ,M that

serves as a Skolem function for Y in ξ, when evaluated over M? (SkExist)
2 Is there an algorithm AM that takes ξ as input and returns TMξ,M? (SkSyn)

Question 1
• Can SkExist ever return No?

• Is SkExist decidable?

Note: We assume structures to be
“computable”: predicates/functions
are effectively computable.

Question 2

When SkExist returns Yes, then

• can SkSyn return No?

• can we characterize precisely when SkSyn
returns Yes ?

• Moreover, can we explicitly construct AM?

7



The problem statements

Given a vocabulary V and a V -structure M.

Questions of concern
1 For every V -formula ξ = ∀X∃Y ϕ(X ,Y ) , does there exist a Turing Machine TMξ,M that

serves as a Skolem function for Y in ξ, when evaluated over M? (SkExist)
2 Is there an algorithm AM that takes ξ as input and returns TMξ,M? (SkSyn)

Question 1
• Can SkExist ever return No?

• Is SkExist decidable?

Note: We assume structures to be
“computable”: predicates/functions
are effectively computable.

Question 2

When SkExist returns Yes, then

• can SkSyn return No?

• can we characterize precisely when SkSyn
returns Yes ?

• Moreover, can we explicitly construct AM?

7



The problem statements

Given a vocabulary V and a V -structure M.

Questions of concern
1 For every V -formula ξ = ∀X∃Y ϕ(X ,Y ) , does there exist a Turing Machine TMξ,M that

serves as a Skolem function for Y in ξ, when evaluated over M? (SkExist)
2 Is there an algorithm AM that takes ξ as input and returns TMξ,M? (SkSyn)

Question 1
• Can SkExist ever return No?

• Is SkExist decidable?

Note: We assume structures to be
“computable”: predicates/functions
are effectively computable.

Question 2

When SkExist returns Yes, then

• can SkSyn return No?

• can we characterize precisely when SkSyn
returns Yes ?

• Moreover, can we explicitly construct AM?

7



The problem statements

Given a vocabulary V and a V -structure M.

Questions of concern
1 For every V -formula ξ = ∀X∃Y ϕ(X ,Y ) , does there exist a Turing Machine TMξ,M that

serves as a Skolem function for Y in ξ, when evaluated over M? (SkExist)
2 Is there an algorithm AM that takes ξ as input and returns TMξ,M? (SkSyn)

Question 1
• Can SkExist ever return No?

• Is SkExist decidable?

Note: We assume structures to be
“computable”: predicates/functions
are effectively computable.

Question 2

When SkExist returns Yes, then

• can SkSyn return No?

• can we characterize precisely when SkSyn
returns Yes ?

• Moreover, can we explicitly construct AM?

7



Main results

Negative results
1 Depending on M, SkExist can return Yes as well as No.

2 SkExist is undecidable,
1 even when V has a single binary predicate and a single constant.
2 even for ξ in quantifier prefix classes ∃∀∃ and ∀∃∃ (but not ∃+∀∗).

3 There are instances where SkExist has Yes answer but not SkSyn.

But we know many theories where Skolem functions can be synthesized for all formulas. So
what makes them decidable?

A characterization for Synthesis

Let M be a computable V -structure for vocabulary V .

• SkSyn has a positive answer for M iff the “elementary diagram” of M is decidable.

8



Main results

Negative results
1 Depending on M, SkExist can return Yes as well as No.
2 SkExist is undecidable,

1 even when V has a single binary predicate and a single constant.
2 even for ξ in quantifier prefix classes ∃∀∃ and ∀∃∃ (but not ∃+∀∗).

3 There are instances where SkExist has Yes answer but not SkSyn.

But we know many theories where Skolem functions can be synthesized for all formulas. So
what makes them decidable?

A characterization for Synthesis

Let M be a computable V -structure for vocabulary V .

• SkSyn has a positive answer for M iff the “elementary diagram” of M is decidable.

8



Main results

Negative results
1 Depending on M, SkExist can return Yes as well as No.
2 SkExist is undecidable,

1 even when V has a single binary predicate and a single constant.

2 even for ξ in quantifier prefix classes ∃∀∃ and ∀∃∃ (but not ∃+∀∗).
3 There are instances where SkExist has Yes answer but not SkSyn.

But we know many theories where Skolem functions can be synthesized for all formulas. So
what makes them decidable?

A characterization for Synthesis

Let M be a computable V -structure for vocabulary V .

• SkSyn has a positive answer for M iff the “elementary diagram” of M is decidable.

8



Main results

Negative results
1 Depending on M, SkExist can return Yes as well as No.
2 SkExist is undecidable,

1 even when V has a single binary predicate and a single constant.
2 even for ξ in quantifier prefix classes ∃∀∃ and ∀∃∃ (but not ∃+∀∗).

3 There are instances where SkExist has Yes answer but not SkSyn.

But we know many theories where Skolem functions can be synthesized for all formulas. So
what makes them decidable?

A characterization for Synthesis

Let M be a computable V -structure for vocabulary V .

• SkSyn has a positive answer for M iff the “elementary diagram” of M is decidable.

8



Main results

Negative results
1 Depending on M, SkExist can return Yes as well as No.
2 SkExist is undecidable,

1 even when V has a single binary predicate and a single constant.
2 even for ξ in quantifier prefix classes ∃∀∃ and ∀∃∃ (but not ∃+∀∗).

3 There are instances where SkExist has Yes answer but not SkSyn.

But we know many theories where Skolem functions can be synthesized for all formulas. So
what makes them decidable?

A characterization for Synthesis

Let M be a computable V -structure for vocabulary V .

• SkSyn has a positive answer for M iff the “elementary diagram” of M is decidable.

8



Main results

Negative results
1 Depending on M, SkExist can return Yes as well as No.
2 SkExist is undecidable,

1 even when V has a single binary predicate and a single constant.
2 even for ξ in quantifier prefix classes ∃∀∃ and ∀∃∃ (but not ∃+∀∗).

3 There are instances where SkExist has Yes answer but not SkSyn.

But we know many theories where Skolem functions can be synthesized for all formulas. So
what makes them decidable?

A characterization for Synthesis

Let M be a computable V -structure for vocabulary V .

• SkSyn has a positive answer for M iff the “elementary diagram” of M is decidable.

8



Main results

Negative results
1 Depending on M, SkExist can return Yes as well as No.
2 SkExist is undecidable,

1 even when V has a single binary predicate and a single constant.
2 even for ξ in quantifier prefix classes ∃∀∃ and ∀∃∃ (but not ∃+∀∗).

3 There are instances where SkExist has Yes answer but not SkSyn.

But we know many theories where Skolem functions can be synthesized for all formulas. So
what makes them decidable?

A characterization for Synthesis

Let M be a computable V -structure for vocabulary V .

• SkSyn has a positive answer for M iff

the “elementary diagram” of M is decidable.

8



Main results

Negative results
1 Depending on M, SkExist can return Yes as well as No.
2 SkExist is undecidable,

1 even when V has a single binary predicate and a single constant.
2 even for ξ in quantifier prefix classes ∃∀∃ and ∀∃∃ (but not ∃+∀∗).

3 There are instances where SkExist has Yes answer but not SkSyn.

But we know many theories where Skolem functions can be synthesized for all formulas. So
what makes them decidable?

A characterization for Synthesis

Let M be a computable V -structure for vocabulary V .

• SkSyn has a positive answer for M iff the “elementary diagram” of M is decidable.

8



A brief detour into Model theory

So what is the elementary diagram of M?

• Expansion of Vocabulary V (M)
{<,=,+,0,1,c0,c1,c−1, . . .}

• Expansion of Structure Mexp

Universe Z
<: (0,1),(−1,0),(5,7), . . . ,
=: (0,0), . . .
+ : (0,1)→ 1,(−3,2)→−1, . . .
0 : 0, 1 : 1
c0 : 0, c1 : 1, . . . ,c−1 :−1, . . .

• Th(Mexp) is the set of all true sentences in Mexp.

Also called elementary diagram of M, ED(M).

9



A brief detour into Model theory

• Vocabulary V
e.g., {<,=,+,0,1}

• Expansion of Vocabulary V (M)
{<,=,+,0,1,c0,c1,c−1, . . .}

• Expansion of Structure Mexp

Universe Z
<: (0,1),(−1,0),(5,7), . . . ,
=: (0,0), . . .
+ : (0,1)→ 1,(−3,2)→−1, . . .
0 : 0, 1 : 1
c0 : 0, c1 : 1, . . . ,c−1 :−1, . . .

• Th(Mexp) is the set of all true sentences in Mexp.

Also called elementary diagram of M, ED(M).

9



A brief detour into Model theory

• Vocabulary V
e.g., {<,=,+,0,1}
• Structure M

Universe Z
<: (0,1),(−1,0),(5,7), . . . ,
=: (0,0), . . .
+ : (0,1)→ 1,(−3,2)→−1, . . .
0 : 0, 1 : 1

• Expansion of Vocabulary V (M)
{<,=,+,0,1,c0,c1,c−1, . . .}

• Expansion of Structure Mexp

Universe Z
<: (0,1),(−1,0),(5,7), . . . ,
=: (0,0), . . .
+ : (0,1)→ 1,(−3,2)→−1, . . .
0 : 0, 1 : 1
c0 : 0, c1 : 1, . . . ,c−1 :−1, . . .

• Th(Mexp) is the set of all true sentences in Mexp.

Also called elementary diagram of M, ED(M).

9



A brief detour into Model theory

• Vocabulary V
e.g., {<,=,+,0,1}
• Structure M

Universe Z
<: (0,1),(−1,0),(5,7), . . . ,
=: (0,0), . . .
+ : (0,1)→ 1,(−3,2)→−1, . . .
0 : 0, 1 : 1

• Th(M) is the set of all true
sentences in M.

• Expansion of Vocabulary V (M)
{<,=,+,0,1,c0,c1,c−1, . . .}

• Expansion of Structure Mexp

Universe Z
<: (0,1),(−1,0),(5,7), . . . ,
=: (0,0), . . .
+ : (0,1)→ 1,(−3,2)→−1, . . .
0 : 0, 1 : 1
c0 : 0, c1 : 1, . . . ,c−1 :−1, . . .

• Th(Mexp) is the set of all true sentences in Mexp.

Also called elementary diagram of M, ED(M).

9



A brief detour into Model theory

• Vocabulary V
e.g., {<,=,+,0,1}
• Structure M

Universe Z
<: (0,1),(−1,0),(5,7), . . . ,
=: (0,0), . . .
+ : (0,1)→ 1,(−3,2)→−1, . . .
0 : 0, 1 : 1

• Th(M) is the set of all true
sentences in M.

• Expansion of Vocabulary V (M)
{<,=,+,0,1,c0,c1,c−1, . . .}

• Expansion of Structure Mexp

Universe Z
<: (0,1),(−1,0),(5,7), . . . ,
=: (0,0), . . .
+ : (0,1)→ 1,(−3,2)→−1, . . .
0 : 0, 1 : 1
c0 : 0, c1 : 1, . . . ,c−1 :−1, . . .

• Th(Mexp) is the set of all true sentences in Mexp.

Also called elementary diagram of M, ED(M).

9



A brief detour into Model theory

• Vocabulary V
e.g., {<,=,+,0,1}
• Structure M

Universe Z
<: (0,1),(−1,0),(5,7), . . . ,
=: (0,0), . . .
+ : (0,1)→ 1,(−3,2)→−1, . . .
0 : 0, 1 : 1

• Th(M) is the set of all true
sentences in M.

• Expansion of Vocabulary V (M)
{<,=,+,0,1,c0,c1,c−1, . . .}
• Expansion of Structure Mexp

Universe Z
<: (0,1),(−1,0),(5,7), . . . ,
=: (0,0), . . .
+ : (0,1)→ 1,(−3,2)→−1, . . .
0 : 0, 1 : 1
c0 : 0, c1 : 1, . . . ,c−1 :−1, . . .

• Th(Mexp) is the set of all true sentences in Mexp.

Also called elementary diagram of M, ED(M).

9



A brief detour into Model theory

• Vocabulary V
e.g., {<,=,+,0,1}
• Structure M

Universe Z
<: (0,1),(−1,0),(5,7), . . . ,
=: (0,0), . . .
+ : (0,1)→ 1,(−3,2)→−1, . . .
0 : 0, 1 : 1

• Th(M) is the set of all true
sentences in M.

• Expansion of Vocabulary V (M)
{<,=,+,0,1,c0,c1,c−1, . . .}
• Expansion of Structure Mexp

Universe Z
<: (0,1),(−1,0),(5,7), . . . ,
=: (0,0), . . .
+ : (0,1)→ 1,(−3,2)→−1, . . .
0 : 0, 1 : 1
c0 : 0, c1 : 1, . . . ,c−1 :−1, . . .

• Th(Mexp) is the set of all true sentences in Mexp.

Also called elementary diagram of M, ED(M).

9



A brief detour into Model theory

• Vocabulary V
e.g., {<,=,+,0,1}
• Structure M

Universe Z
<: (0,1),(−1,0),(5,7), . . . ,
=: (0,0), . . .
+ : (0,1)→ 1,(−3,2)→−1, . . .
0 : 0, 1 : 1

• Th(M) is the set of all true
sentences in M.

• Expansion of Vocabulary V (M)
{<,=,+,0,1,c0,c1,c−1, . . .}
• Expansion of Structure Mexp

Universe Z
<: (0,1),(−1,0),(5,7), . . . ,
=: (0,0), . . .
+ : (0,1)→ 1,(−3,2)→−1, . . .
0 : 0, 1 : 1
c0 : 0, c1 : 1, . . . ,c−1 :−1, . . .

• Th(Mexp) is the set of all true sentences in Mexp.
Also called elementary diagram of M, ED(M).

9



A brief detour into Model theory

• Vocabulary V
e.g., {<,=,+,0,1}
• Structure M

Universe Z
<: (0,1),(−1,0),(5,7), . . . ,
=: (0,0), . . .
+ : (0,1)→ 1,(−3,2)→−1, . . .
0 : 0, 1 : 1

• Th(M) is the set of all true
sentences in M.

• Expansion of Vocabulary V (M)
{<,=,+,0,1,c0,c1,c−1, . . .}
• Expansion of Structure Mexp

Universe Z
<: (0,1),(−1,0),(5,7), . . . ,
=: (0,0), . . .
+ : (0,1)→ 1,(−3,2)→−1, . . .
0 : 0, 1 : 1
c0 : 0, c1 : 1, . . . ,c−1 :−1, . . .

• Th(Mexp) is the set of all true sentences in Mexp.
Also called elementary diagram of M, ED(M).

Elementary diagram is said to be decidable if given any sentence ϕ in V (M), we can
algorithmically decide if ϕ ∈ ED(M).

9



A brief detour into Model theory

• Vocabulary V
e.g., {<,=,+,0,1}
• Structure M

Universe Z
<: (0,1),(−1,0),(5,7), . . . ,
=: (0,0), . . .
+ : (0,1)→ 1,(−3,2)→−1, . . .
0 : 0, 1 : 1

• Th(M) is the set of all true
sentences in M.

• Expansion of Vocabulary V (M)
{<,=,+,0,1,c0,c1,c−1, . . .}
• Expansion of Structure Mexp

Universe Z
<: (0,1),(−1,0),(5,7), . . . ,
=: (0,0), . . .
+ : (0,1)→ 1,(−3,2)→−1, . . .
0 : 0, 1 : 1
c0 : 0, c1 : 1, . . . ,c−1 :−1, . . .

• Th(Mexp) is the set of all true sentences in Mexp.
Also called elementary diagram of M, ED(M).

Elementary diagram is said to be decidable if given any sentence ϕ in V (M), we can
algorithmically decide if ϕ ∈ ED(M).

This is the necessary and sufficient condition for synthesis!
9



Consequences and more!

Theorem

SkSyn has a positive answer for M

and we can effectively synthesize Skolem functions as
halting Turing machines for M

iff the “elementary diagram” of M is decidable.

10



Consequences and more!

Theorem

SkSyn has a positive answer for M and we can effectively synthesize Skolem functions as
halting Turing machines for M iff the “elementary diagram” of M is decidable.

10



Consequences and more!

Theorem

SkSyn has a positive answer for M and we can effectively synthesize Skolem functions as
halting Turing machines for M iff the “elementary diagram” of M is decidable.

Consequences
1 SkSyn has a negative answer for (N,<,=,+,∗,0,1).
2 SkSyn has a positive answer and we can effectively synthesize Skolem functions for

1. Presburger arithmetic

2. Linear rational arithmetic

3. Real algebraic numbers

4. Dense linear orders without endpoints

10



Consequences and more!

Theorem

SkSyn has a positive answer for M and we can effectively synthesize Skolem functions as
halting Turing machines for M iff the “elementary diagram” of M is decidable.

Consequences
1 SkSyn has a negative answer for (N,<,=,+,∗,0,1).
2 SkSyn has a positive answer and we can effectively synthesize Skolem functions for

1. Presburger arithmetic

2. Linear rational arithmetic

3. Real algebraic numbers

4. Dense linear orders without endpoints

• In each case, we reduce to decidability of underlying theory Th(M).

10



Consequences and more!

Theorem

SkSyn has a positive answer for M and we can effectively synthesize Skolem functions as
halting Turing machines for M iff the “elementary diagram” of M is decidable.

Consequences
1 SkSyn has a negative answer for (N,<,=,+,∗,0,1).
2 SkSyn has a positive answer and we can effectively synthesize Skolem functions for

1. Presburger arithmetic

2. Linear rational arithmetic

3. Real algebraic numbers

4. Dense linear orders without endpoints

• In each case, we reduce to decidability of underlying theory Th(M).

• Not true in general! There exist M s.t. Th(M) is decidable but ED(M) is not (see paper).

10



Consequences and more!

Theorem

SkSyn has a positive answer for M and we can effectively synthesize Skolem functions as
halting Turing machines for M iff the “elementary diagram” of M is decidable.

Consequences
1 SkSyn has a negative answer for (N,<,=,+,∗,0,1).
2 SkSyn has a positive answer and we can effectively synthesize Skolem functions for

1. Presburger arithmetic

2. Linear rational arithmetic

3. Real algebraic numbers

4. Dense linear orders without endpoints

• In each case, we reduce to decidability of underlying theory Th(M).

• Not true in general! There exist M s.t. Th(M) is decidable but ED(M) is not (see paper).

Complexity
• Lower bound follows from complexity of deciding theory.

10



Consequences and more!

Theorem

SkSyn has a positive answer for M and we can effectively synthesize Skolem functions as
halting Turing machines for M iff the “elementary diagram” of M is decidable.

Consequences
1 SkSyn has a negative answer for (N,<,=,+,∗,0,1).
2 SkSyn has a positive answer and we can effectively synthesize Skolem functions for

1. Presburger arithmetic

2. Linear rational arithmetic

3. Real algebraic numbers

4. Dense linear orders without endpoints

• In each case, we reduce to decidability of underlying theory Th(M).
• Not true in general! There exist M s.t. Th(M) is decidable but ED(M) is not (see paper).

Complexity
• Lower bound follows from complexity of deciding theory.

• If theory admits effective constraint solving, then can give upper bounds! (see paper)

10



Conclusion - A beginning

A framework to the study algorithmic computation of Skolem functions.

• Skolem functions as Turing machines/programs.

• A characterization resulting in strong positive and negative results.

Other results in paper
• e.g., what happens if you fix the formula and vary the structure?

The future
• Synthesizing succinct Skolem functions and algorithms with better complexity.

• Characterization of when terms are sufficient.

• Implementation for certain theories? Work in progress!

11



Conclusion - A beginning

A framework to the study algorithmic computation of Skolem functions.

• Skolem functions as Turing machines/programs.

• A characterization resulting in strong positive and negative results.

Other results in paper
• e.g., what happens if you fix the formula and vary the structure?

The future
• Synthesizing succinct Skolem functions and algorithms with better complexity.

• Characterization of when terms are sufficient.

• Implementation for certain theories? Work in progress!

11



Conclusion - A beginning

A framework to the study algorithmic computation of Skolem functions.

• Skolem functions as Turing machines/programs.

• A characterization resulting in strong positive and negative results.

Other results in paper
• e.g., what happens if you fix the formula and vary the structure?

The future
• Synthesizing succinct Skolem functions and algorithms with better complexity.

• Characterization of when terms are sufficient.

• Implementation for certain theories?

Work in progress!

11



Conclusion - A beginning

A framework to the study algorithmic computation of Skolem functions.

• Skolem functions as Turing machines/programs.

• A characterization resulting in strong positive and negative results.

Other results in paper
• e.g., what happens if you fix the formula and vary the structure?

The future
• Synthesizing succinct Skolem functions and algorithms with better complexity.

• Characterization of when terms are sufficient.

• Implementation for certain theories? Work in progress!

11



Thank you!

12



A Short Sketch of proof

Theorem

SkSyn has a positive answer for M iff the “elementary diagram” of M is decidable.

(=⇒) Program/TM for Skolem function for Y in ∀X∃Yϕ(X ,Y ) is as follows:
1 Given value of X , say σ, construct Ψσ = ∃Yϕ(σ,Y )
2 Use dec proc for ED(M) on this.

– if false, output arbitrary value.
– if true, for each elt ρ in dom(Y ), do

1 construct ϕ(σ,ρ)
2 apply dec proc for ED(M) on this.
3 if true, output ρ, quit loop, else goto next elt.

13



A Short Sketch of proof

Theorem

SkSyn has a positive answer for M iff the “elementary diagram” of M is decidable.

(=⇒) Program/TM for Skolem function for Y in ∀X∃Y ϕ(X ,Y ) is as follows:

1 Given value of X , say σ, construct Ψσ = ∃Yϕ(σ,Y )
2 Use dec proc for ED(M) on this.

– if false, output arbitrary value.
– if true, for each elt ρ in dom(Y ), do

1 construct ϕ(σ,ρ)
2 apply dec proc for ED(M) on this.
3 if true, output ρ, quit loop, else goto next elt.

13



A Short Sketch of proof

Theorem

SkSyn has a positive answer for M iff the “elementary diagram” of M is decidable.

(=⇒) Program/TM for Skolem function for Y in ∀X∃Y ϕ(X ,Y ) is as follows:
1 Given value of X , say σ, construct Ψσ = ∃Y ϕ(σ,Y )

2 Use dec proc for ED(M) on this.
– if false, output arbitrary value.
– if true, for each elt ρ in dom(Y ), do

1 construct ϕ(σ,ρ)
2 apply dec proc for ED(M) on this.
3 if true, output ρ, quit loop, else goto next elt.

13



A Short Sketch of proof

Theorem

SkSyn has a positive answer for M iff the “elementary diagram” of M is decidable.

(=⇒) Program/TM for Skolem function for Y in ∀X∃Y ϕ(X ,Y ) is as follows:
1 Given value of X , say σ, construct Ψσ = ∃Y ϕ(σ,Y )
2 Use dec proc for ED(M) on this.

– if false, output arbitrary value.
– if true, for each elt ρ in dom(Y ), do

1 construct ϕ(σ,ρ)
2 apply dec proc for ED(M) on this.
3 if true, output ρ, quit loop, else goto next elt.

13



A Short Sketch of proof

Theorem

SkSyn has a positive answer for M iff the “elementary diagram” of M is decidable.

(=⇒) Program/TM for Skolem function for Y in ∀X∃Y ϕ(X ,Y ) is as follows:
1 Given value of X , say σ, construct Ψσ = ∃Y ϕ(σ,Y )
2 Use dec proc for ED(M) on this.

– if false, output arbitrary value.

– if true, for each elt ρ in dom(Y ), do
1 construct ϕ(σ,ρ)
2 apply dec proc for ED(M) on this.
3 if true, output ρ, quit loop, else goto next elt.

13



A Short Sketch of proof

Theorem

SkSyn has a positive answer for M iff the “elementary diagram” of M is decidable.

(=⇒) Program/TM for Skolem function for Y in ∀X∃Y ϕ(X ,Y ) is as follows:
1 Given value of X , say σ, construct Ψσ = ∃Y ϕ(σ,Y )
2 Use dec proc for ED(M) on this.

– if false, output arbitrary value.
– if true, for each elt ρ in dom(Y ), do

1 construct ϕ(σ,ρ)
2 apply dec proc for ED(M) on this.
3 if true, output ρ, quit loop, else goto next elt.

13



A Short Sketch of proof

Theorem

SkSyn has a positive answer for M iff the “elementary diagram” of M is decidable.

(=⇒) Program/TM for Skolem function for Y in ∀X∃Y ϕ(X ,Y ) is as follows:
1 Given value of X , say σ, construct Ψσ = ∃Y ϕ(σ,Y )
2 Use dec proc for ED(M) on this.

– if false, output arbitrary value.
– if true, for each elt ρ in dom(Y ), do

1 construct ϕ(σ,ρ)

2 apply dec proc for ED(M) on this.
3 if true, output ρ, quit loop, else goto next elt.

13



A Short Sketch of proof

Theorem

SkSyn has a positive answer for M iff the “elementary diagram” of M is decidable.

(=⇒) Program/TM for Skolem function for Y in ∀X∃Y ϕ(X ,Y ) is as follows:
1 Given value of X , say σ, construct Ψσ = ∃Y ϕ(σ,Y )
2 Use dec proc for ED(M) on this.

– if false, output arbitrary value.
– if true, for each elt ρ in dom(Y ), do

1 construct ϕ(σ,ρ)
2 apply dec proc for ED(M) on this.

3 if true, output ρ, quit loop, else goto next elt.

13



A Short Sketch of proof

Theorem

SkSyn has a positive answer for M iff the “elementary diagram” of M is decidable.

(=⇒) Program/TM for Skolem function for Y in ∀X∃Y ϕ(X ,Y ) is as follows:
1 Given value of X , say σ, construct Ψσ = ∃Y ϕ(σ,Y )
2 Use dec proc for ED(M) on this.

– if false, output arbitrary value.
– if true, for each elt ρ in dom(Y ), do

1 construct ϕ(σ,ρ)
2 apply dec proc for ED(M) on this.
3 if true, output ρ, quit loop, else goto next elt.

13



A Short Sketch of proof

Theorem

SkSyn has a positive answer for M iff the “elementary diagram” of M is decidable.

(⇐=) Dec proc for ED(M) using Sk fn generator for formulas over M.

1 Given V (M) sentence ϕ with constant c ∈ V (M), construct ϕ′(y) where c replaced by
fresh var y .

2 For fresh var, z1,z2 define ψ = ∀y∀z1∀z2∃x(((x = z1)∧ϕ′)∨ (x = z2)∧¬ϕ′) (note: this is
a valid formula!)

3 Use Sk fn gen on ψ to synthesize Sk fn for x , F(y ,z1,z2).
4 For two distinct elements d ,e ∈M, evaluate F(c,d ,e).

– if F(c,d ,e) = d , then ϕ is valid.
– else F(c,d ,e) = e and ϕ is not valid.

14



A Short Sketch of proof

Theorem

SkSyn has a positive answer for M iff the “elementary diagram” of M is decidable.

(⇐=) Dec proc for ED(M) using Sk fn generator for formulas over M.
1 Given V (M) sentence ϕ with constant c ∈ V (M), construct ϕ′(y) where c replaced by

fresh var y .

2 For fresh var, z1,z2 define ψ = ∀y∀z1∀z2∃x(((x = z1)∧ϕ′)∨ (x = z2)∧¬ϕ′) (note: this is
a valid formula!)

3 Use Sk fn gen on ψ to synthesize Sk fn for x , F(y ,z1,z2).
4 For two distinct elements d ,e ∈M, evaluate F(c,d ,e).

– if F(c,d ,e) = d , then ϕ is valid.
– else F(c,d ,e) = e and ϕ is not valid.

14



A Short Sketch of proof

Theorem

SkSyn has a positive answer for M iff the “elementary diagram” of M is decidable.

(⇐=) Dec proc for ED(M) using Sk fn generator for formulas over M.
1 Given V (M) sentence ϕ with constant c ∈ V (M), construct ϕ′(y) where c replaced by

fresh var y .
2 For fresh var, z1,z2 define ψ = ∀y∀z1∀z2∃x(((x = z1)∧ϕ′)∨ (x = z2)∧¬ϕ′) (note: this is

a valid formula!)

3 Use Sk fn gen on ψ to synthesize Sk fn for x , F(y ,z1,z2).
4 For two distinct elements d ,e ∈M, evaluate F(c,d ,e).

– if F(c,d ,e) = d , then ϕ is valid.
– else F(c,d ,e) = e and ϕ is not valid.

14



A Short Sketch of proof

Theorem

SkSyn has a positive answer for M iff the “elementary diagram” of M is decidable.

(⇐=) Dec proc for ED(M) using Sk fn generator for formulas over M.
1 Given V (M) sentence ϕ with constant c ∈ V (M), construct ϕ′(y) where c replaced by

fresh var y .
2 For fresh var, z1,z2 define ψ = ∀y∀z1∀z2∃x(((x = z1)∧ϕ′)∨ (x = z2)∧¬ϕ′) (note: this is

a valid formula!)
3 Use Sk fn gen on ψ to synthesize Sk fn for x , F(y ,z1,z2).

4 For two distinct elements d ,e ∈M, evaluate F(c,d ,e).
– if F(c,d ,e) = d , then ϕ is valid.
– else F(c,d ,e) = e and ϕ is not valid.

14



A Short Sketch of proof

Theorem

SkSyn has a positive answer for M iff the “elementary diagram” of M is decidable.

(⇐=) Dec proc for ED(M) using Sk fn generator for formulas over M.
1 Given V (M) sentence ϕ with constant c ∈ V (M), construct ϕ′(y) where c replaced by

fresh var y .
2 For fresh var, z1,z2 define ψ = ∀y∀z1∀z2∃x(((x = z1)∧ϕ′)∨ (x = z2)∧¬ϕ′) (note: this is

a valid formula!)
3 Use Sk fn gen on ψ to synthesize Sk fn for x , F(y ,z1,z2).
4 For two distinct elements d ,e ∈M, evaluate F(c,d ,e).

– if F(c,d ,e) = d , then ϕ is valid.
– else F(c,d ,e) = e and ϕ is not valid.

14



A Short Sketch of proof

Theorem

SkSyn has a positive answer for M iff the “elementary diagram” of M is decidable.

(⇐=) Dec proc for ED(M) using Sk fn generator for formulas over M.
1 Given V (M) sentence ϕ with constant c ∈ V (M), construct ϕ′(y) where c replaced by

fresh var y .
2 For fresh var, z1,z2 define ψ = ∀y∀z1∀z2∃x(((x = z1)∧ϕ′)∨ (x = z2)∧¬ϕ′) (note: this is

a valid formula!)
3 Use Sk fn gen on ψ to synthesize Sk fn for x , F(y ,z1,z2).
4 For two distinct elements d ,e ∈M, evaluate F(c,d ,e).

– if F(c,d ,e) = d , then ϕ is valid.
– else F(c,d ,e) = e and ϕ is not valid.

14


