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Introduction

Skolem functions

Given a FOL formula ϕ(X ,Y ) over (inputs) X and (outputs) Y , F(·) is a Skolem function iff

∀X
(
∃Y ϕ(X ,Y )⇔ ϕ(X ,F(X))

)

• Classical concept arising from quantifier elimination in FOL.
• Known to always exist! But,

1 Is the function computable?
2 Can we effectively compute/synthesize such a function?
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A storied history

Skolem functions play an important role in first order logic
• Getting rid of existential quantifiers

• Seminal work by Thoralf Skolem 1920s and Jacques
Herbrand 1930s.

• Skolemization and “Skolem-Normal form”

• Focus on existence of form, NOT computability.

We can trace this history even further back
• Existence and construction of Boolean unifiers

• Boole’1847, Lowenheim’1908.
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Applications

Why should we be interested in synthesizability of Skolem functions?
• Heart of Automated Program Synthesis and repair.

g(x1,x2)≥ x1 and
g(x1,x2)≥ x2 and
(g(x1,x2) == x1 or
g(x1,x2) == x2)
————–
Synthesize program for g

y1 ≥ x1 and
y1 ≥ x2 and
(y1 == x1 or
y1 == x1)
———
∀x1x2∃y1ϕ

Prior work
• Propositional setting: Akshay et al.’17,’18,’19,’20,’21, Rabe et al. ’17,’18, Golia et al.’20,’21,etc., Fried et al’16, John et al.’15, Heule et al.’14, etc.

• Beyond Propositional setting:
– Results on specific theories: Linear rational arithmetic Kuncak et al.’10, Bit vectors Spielman et al.,Priener et al.

– Partial approach for Quantifier Elimination Jiang’09.
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Skolem functions beyond terms

• Skolem functions are often conflated with terms in the logic.

Consider Presburger arithmetic, integers over vocabulary V = {<,+,=,0,1}

Idea of going beyond terms not new: Skolem functions as set of conditional statements [Jiang’09]
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Testing the limits

Can we always synthesize Skolem functions as Turing machines?

• Is there a theory where even programs fail? A theory where there is a formula for which
there is no Skolem function as a program?

• Unfortunately yes. Natural numbers over V = {=,+,∗,0,1}
• Follows from the classical Matiyasevich-Robinson-Davis-Putnam (MRDP) theorem!
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The problem statements

Given a vocabulary V and a V -structure M.

Questions of concern
1 For every V -formula ξ = ∀X∃Y ϕ(X ,Y ) , does there exist a Turing Machine TMξ,M that

serves as a Skolem function for Y in ξ, when evaluated over M? (SkExist)

2 Is there an algorithm AM that takes ξ as input and returns TMξ,M? (SkSyn)

Question 1
• Can SkExist ever return No?

• Is SkExist decidable?

Note: We assume structures to be
“computable”: predicates/functions
are effectively computable.

Question 2

When SkExist returns Yes, then

• can SkSyn return No?

• can we characterize precisely when SkSyn
returns Yes ?

• Moreover, can we explicitly construct AM?
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Main results

Negative results
1 Depending on M, SkExist can return Yes as well as No.

2 SkExist is undecidable,
1 even when V has a single binary predicate and a single constant.
2 even for ξ in quantifier prefix classes ∃∀∃ and ∀∃∃ (but not ∃+∀∗).

3 There are instances where SkExist has Yes answer but not SkSyn.

But we know many theories where Skolem functions can be synthesized for all formulas. So
what makes them decidable?

A characterization for Synthesis

Let M be a computable V -structure for vocabulary V .

• SkSyn has a positive answer for M iff the “elementary diagram” of M is decidable.
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A brief detour into Model theory

So what is the elementary diagram of M?

• Expansion of Vocabulary V (M)
{<,=,+,0,1,c0,c1,c−1, . . .}

• Expansion of Structure Mexp

Universe Z
<: (0,1),(−1,0),(5,7), . . . ,
=: (0,0), . . .
+ : (0,1)→ 1,(−3,2)→−1, . . .
0 : 0, 1 : 1
c0 : 0, c1 : 1, . . . ,c−1 :−1, . . .

• Th(Mexp) is the set of all true sentences in Mexp.

Also called elementary diagram of M, ED(M).
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algorithmically decide if ϕ ∈ ED(M).

This is the necessary and sufficient condition for synthesis!
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2 SkSyn has a positive answer and we can effectively synthesize Skolem functions for
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2. Linear rational arithmetic

3. Real algebraic numbers

4. Dense linear orders without endpoints

• In each case, we reduce to decidability of underlying theory Th(M).
• Not true in general! There exist M s.t. Th(M) is decidable but ED(M) is not (see paper).

Complexity
• Lower bound follows from complexity of deciding theory.

• If theory admits effective constraint solving, then can give upper bounds! (see paper)
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Conclusion - A beginning

A framework to the study algorithmic computation of Skolem functions.

• Skolem functions as Turing machines/programs.

• A characterization resulting in strong positive and negative results.

Other results in paper
• e.g., what happens if you fix the formula and vary the structure?

The future
• Synthesizing succinct Skolem functions and algorithms with better complexity.

• Characterization of when terms are sufficient.

• Implementation for certain theories? Work in progress!
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Thank you!
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A Short Sketch of proof

Theorem

SkSyn has a positive answer for M iff the “elementary diagram” of M is decidable.

(=⇒) Program/TM for Skolem function for Y in ∀X∃Yϕ(X ,Y ) is as follows:
1 Given value of X , say σ, construct Ψσ = ∃Yϕ(σ,Y )
2 Use dec proc for ED(M) on this.

– if false, output arbitrary value.
– if true, for each elt ρ in dom(Y ), do

1 construct ϕ(σ,ρ)
2 apply dec proc for ED(M) on this.
3 if true, output ρ, quit loop, else goto next elt.
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A Short Sketch of proof

Theorem

SkSyn has a positive answer for M iff the “elementary diagram” of M is decidable.

(⇐=) Dec proc for ED(M) using Sk fn generator for formulas over M.

1 Given V (M) sentence ϕ with constant c ∈ V (M), construct ϕ′(y) where c replaced by
fresh var y .

2 For fresh var, z1,z2 define ψ = ∀y∀z1∀z2∃x(((x = z1)∧ϕ′)∨ (x = z2)∧¬ϕ′) (note: this is
a valid formula!)

3 Use Sk fn gen on ψ to synthesize Sk fn for x , F(y ,z1,z2).
4 For two distinct elements d ,e ∈M, evaluate F(c,d ,e).

– if F(c,d ,e) = d , then ϕ is valid.
– else F(c,d ,e) = e and ϕ is not valid.
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