An Introduction to
Moses & GIZA++ Toolsets

Anoop Kunchukuttan
anoopk@cse.iitb.ac.in

CS626
30 Jul 2013

mailto:anoopk@cse.iitb.ac.in

What is Moses?

Most widely used phrase-based SMT framework
— 'Moses' actually refers to the SMT decoder
- However, includes training, tuning, pre-processing tools, etc.

— Open-source, modular and extensible - developed primarily at
the University of Edinburgh

Written in C++ along with supporting scripts in various
languages
— https://github.com/moses-smt/mosesdecoder

Also supports factored, hierarchical phrase based, syntax
based MT systems

— Other decoders of interest: cdec, Joshua, ISI ReWrite
Visit: http://www.statmt.org/moses/

https://github.com/moses-smt/mosesdecoder
https://github.com/moses-smt/mosesdecoder
https://github.com/moses-smt/mosesdecoder
https://github.com/moses-smt/mosesdecoder
http://www.statmt.org/moses/
http://www.statmt.org/moses/

Recap: SMT basics

Generative Model Discriminative Model
* Noisy channel model of e Maximum Entropy based model,
translation from sentence f to incorporating arbitrary features
sentence e.
. _ é = argmaxexp Y Ah;(f,e)
* Task is to recover e from noisy f. ¢ Z
é = argmax Pr(e) Pr(f|e) e h.- feature; fun(.:tions.
e (phrase/lexical direct/inverse
P(f|e): Translation model, addresses translation probability, LM
adequacy probability, distortion score)

P(e): Language model, addresses fluency . A\ are weights of the features
|

GIZA++,train_moses.perl : phrase,
lexical, distortion probabilities
SRILM: language model score
moses: decoder

GIZA++ : translation model params

SRILM: language model
ISI ReWrite: decoder

What does Moses do?

10ne gets Moksha with a visit to the Saptapuris !
2Pilgrimage is of utmost importance in Hinduism .
3 Although all the pilgrimages are i

Lot

1 ARYRAT & 9 ¥ forerar 2 ey |
2 g e A Ao asrHEa 2 1

there is a great importance andffacceptance of
places .

4 A1l of these seven religious plfces are described as
the Seven Places or Saptpuris i the scyiptures .

51t has been stated that a view ff the a@@rrpus'

Chaturmas is worth providing Mo fo

€ _seven I

3y
alle

2 oS 3 SeH & , 71 e iR Fr
mragus ki Source sentence
4 3 Tt eeeE i SR a1 aagfat & e 7 afi T aftia &

éﬁ?%ﬁmﬁgwwz g TS A A BTl

6 Its name is Banaras or Varanasi also .

6 3@ AT &Y AT ARORAT 1 & |

7 This is a famous abode of Lord Shiva .

Moses
Training

i e ety B ko 1

3y

_Corpus (mono:hi)

L \LiF '.I?' [

e e o R R

30Jul-13

7 T R T8 T o f uRg T

SMT Model

moses.ini

Target sentence

Language
Model

Installing Moses

 Compile and install the following:
— Moses
— GIZA++
— Language Modelling toolkit (SRILM/IRSTLM)

* |nstallation Guides
— From StatMT: http://www.statmt.org/moses steps.html

— Works best for Ubuntu: http://organize-
information.blogspot.in/2012/01/yet-another-moses-
installation-guide.html

— A bit older guide: http://www.cfilt.iitb.ac.in/Moses-
Tutorial.pdf

 Beready for a few surprises !

30Jul-13

http://www.statmt.org/moses_steps.html
http://organize-information.blogspot.in/2012/01/yet-another-moses-installation-guide.html
http://organize-information.blogspot.in/2012/01/yet-another-moses-installation-guide.html
http://organize-information.blogspot.in/2012/01/yet-another-moses-installation-guide.html
http://organize-information.blogspot.in/2012/01/yet-another-moses-installation-guide.html
http://organize-information.blogspot.in/2012/01/yet-another-moses-installation-guide.html
http://organize-information.blogspot.in/2012/01/yet-another-moses-installation-guide.html
http://organize-information.blogspot.in/2012/01/yet-another-moses-installation-guide.html
http://organize-information.blogspot.in/2012/01/yet-another-moses-installation-guide.html
http://organize-information.blogspot.in/2012/01/yet-another-moses-installation-guide.html
http://organize-information.blogspot.in/2012/01/yet-another-moses-installation-guide.html
http://organize-information.blogspot.in/2012/01/yet-another-moses-installation-guide.html
http://organize-information.blogspot.in/2012/01/yet-another-moses-installation-guide.html
http://organize-information.blogspot.in/2012/01/yet-another-moses-installation-guide.html
http://organize-information.blogspot.in/2012/01/yet-another-moses-installation-guide.html
http://organize-information.blogspot.in/2012/01/yet-another-moses-installation-guide.html
http://www.cfilt.iitb.ac.in/Moses-Tutorial.pdf
http://www.cfilt.iitb.ac.in/Moses-Tutorial.pdf
http://www.cfilt.iitb.ac.in/Moses-Tutorial.pdf

Workflow for building a phrase based
SMT system

o Corpus Split: Train, Tune and Test split
o Pre-processing: Normalization, tokenization, etc.
o Training: Learn Phrase tables from Training set

o Tuning: Learn weights of discriminative model on
Tuning set

o Testing: Decode Test set using tuned data
o Post-processing: regenerating case, re-ranking
o Evaluation: Automated Metrics or human evaluation

Pre-processing -1 (Normalize the text)
Case normalization

* Recasing method:
— Convert training data to lowercase
— Learn recasing model for target language

scripts/recaser/train-recaser.perl --dir MODEL --corpus CASED [--
ngram-count NGRAM] [--train-script TRAIN]

— Restore case in test output using recasing model

scripts/recaser/recase.perl --in IN --model MODEL/moses.ini --moses
MOSES >0OUT

* Truecasing method
— Learnt via True casing model
scripts/recaser/train-truecaser.perl --model MODEL --corpus CASED

— Convert words at start of sentence to lowercase (if they generally occur in
lowercase in corpus)
scripts/recaser/truecase.perl --model MODEL < IN > OUT

— Restore case in test output using truecasing model
scripts/recaser/detruecase.perl < in > out

30Jul-13

Pre-processing -1 (Normalize the text)
Character Normalization

Important for Indic scripts

* Multiple Unicode representations

— e.g. ol can be represented as +u095B or +u091c
(o) +1093c¢ (nukta)

* Control characters
— Zero-Width Joiner/Zero-Width Non-Joiner

* Characters generally confused
— Pipe character (|) with poorna-virama (1)
— Colon(:) with visarga (:::)

Preprocessing-2 (Other steps)

* Sentence splitting

— Stanford Sentence Splitter
— Punkt Tokenizer (NLTK library)

* Tokenization
— Scripts/tokenizer/tokenizer.perl

— Stanford Tokenizer
— Many tokenizers in the NLTK library

Train Language Model

e Supported LM tools:
— KenLM comes with Moses

— SRILM and IRSTLM are other supported language
models

e Can train with one and test with another LM
— All generate output in ARPA format

* Training SRILM based language model

ngram-count —-order <n> —-kndiscount -interpolate —-text <corpus> -1m <Ilmfile>

Training Phrase based model

* The training script (train-model.perl) is a meta-script which does the following:

Run GIZA

Align words

Extract Phrases

Score Phrases

Learn Reordering model

* Run the following command
scripts/training/train-model.perl \

30Jul-13

-external-bin-dir <external bin dir>

-root-dir <workspace dir> \

—corpus <train path without ext> \

-e <tgt lang> -f <src lang> \

—alignment <phrase extraction strategy e.g. grow-diag-final-and> \
-reordering <reordering strategy e.g. msd-bidirectional-fe>

-lm <lm type, 0 for srilm>:<Ilm order>:<lm file>:0

11

More Training Options

* Configure maximum phrase length
— -max-phrase-length
* Train the SMT system in parallel

e -parallel

* Options for parallel training
— -cores, -mgiza, -sort-buffer-size, -sort-parallel, etc.

The phrase table
(Sworkspace_dir/model/phrase-table.tgz)

956 ' 'Twas he that ||| Frav i ||| 0.2 1.39907e-05 1 0.0834042 2.718 \|| 0-0 1-0 2-0 1-1 ||| 51 1

957 ' 'Twas he ||| FRe W ||| 0.2 0.00209263 1 0.0834042 2.718 ||| 0-0 1-0 2-0 1-1 ||| 511

958 ' "Very good. ||| --8@ @ & ||| 1 0.0123742 1 7.53276e-05 2.718 ||| 0-0 1-0 2-0 2-1 2-2 ||| 1 1 1

959 ' 'Very well, sir. ||| & @&l ||| 0.5 9.46519%-06 1 0.0063612 2.718 ||| 0-0 1-0 2-0 3-0 3-1 ||| 2 1 1

960 ' 'Very well, then. ||| S & & ||| 1 2.77816e-12 1 9.01339%-06 2.718 ||| 0-0 1-0 2-0 3-0 2-1 2-2 ||| 111

91 ' 'Very well. ||| @1l ||| 0.25 0.00115741 1 0.0434682 2,718 ||| 0-0 1-0 2-0 ||| 8 2 2

962 ' 'Watching me, of all persons. ||| --gg@1? ||| 1 2.14335e-05 1 0169273 2.718 ||| 0-0 1-0 2-0 3-0 4-0 5-0 ||| 111

963 ' 'We have heard that you have ||| " “& W & % T ||| 1 0.000316347 1 7.88927e-08 2.718 ||| 0-0 1-1 2-13-2 4-3 4-4 5-56-5 ||| 111
964 ' 'We have heard that ||| " “&% & & R ||| 1 0.00391593 1 2.99769e-06 2.718 ||| 0-0 1-1 2-1 3-2 4-3 4-4 ||| 11 1

965 ' 'We have heard ||| " & W ||| 1 0.0118525 1 4.3827e-05 2.718 ||| 0-0 1-1 2-13-2 ||| 111

966 ' "We have ||| " " ||| 1 0.0282705 1 0.00021881 2.718 ||| 0-0 1-1 2-1 [[| 111

97 ' 'Well, I do take rest, father. ||| F& @ 87 ||| 1 5.60474e-20 1 1.34553e-05 2.718 ||| 0-0 1-0 2-0 4-0 5-0 6-0 1-1 3-1 1-2 ||| 111
968 ' 'Well, it happens. ||| --w¢ & & ||| 1 0.00130446 1 0.000452107 2.718 ||| 0-0 1-0 2-0 3-0 3-13-2 ||| 111

969 ' 'Well. peonle who are good at ||| W [I] 7.19321e-05 7.11023e-21 1 0.299537 2.718 |11 3-0 |11 13902 1 1

* inverse phrase translation probability
* inverse lexical weighting

* direct phrase translation probability

e direct lexical weighting

* phrase penalty (always exp(1) = 2.718)
* Within-phrase alignment information

30Jul-13 13

The mOdel f||e (Sworkspace_dir/model/moses.ini)

PR T, W

#H MOSES CONFIG FILE ##¢

input factors
[input-factors]

9 # mapping steps

=]

[Ty

@

LD 0o =l

=}

[=Rr- - R S I)

A=Y R - R R VY)

b e B L0 LU LD LI LD LU LD LD L0 LI R RS R R R R BRI R R R

B pa

62

rg:

[mapping]

0TaoO

translation tables: table type (hierarchical(0), textual (0), binary (1)), source-factors, target-factors, number of scores, file
OLD FORMAT is still handled for back-compatibility

OLD FORMAT translation tables: source-factors, target-factors, number of scores, file
OLD FORMAT a binary table type (1) is assumed

[ttable-file]

0 005 /homefanoop/tmp/sample data/workspace/moses_data/model/phrase-table.gz

no generation models, no generation-file section

language models: type(srilm/irstlm), factors, order, file
[1model-file]
0 0 3 /home/anoop/tmp/sample_data/sample_monolingual.en.lm

limit on how many phrase translations e for each phrase f are loaded
0 = all elements loaded

[ttable-limit]

20

distortion (reordering) files
[distortion-file]
0-0 wbe-msd-bidirectional-fe-allff & /home/anoop/tmp/sample_data/workspace/moses_data/model/reordering-table.wbe-msd-bidirectional-fe.gz

distortion (reordering) weight
[weight-d]
0.3

coocooo
WL W W

language model weights
[weight-1]
0.5000

1 # translation model weights

[weight-t]
0.20
.20
.20
.20
20

cooo

no generation models, no weight-generation section

1 # word penalty

[weight-w]

OJul-13

14

Tuning the Model

Tune the parameter weights to maximize
translation accuracy on ‘tuning set’
Different tuning algorithms are available:
— MERT, PRO, MIRA, Batch MIRA

Generally, a small tuning set is used (~*500-1000
sentences)

MERT (Minimum Error Rate Tuning) is most
commonly used tuning algorithm:

— Model can be tuned to various metrics (BLEU, PER,
NIST)

— Can handle only a small number of features

MERT Tuning

e Command:

scripts/training/mert-moses.pl <tun src file>
<tun tgt file> <decoder binary path> \

<untuned model file> --working-dir <workspace> —--rootdilr
<moses script dir>

* Important Options
— Maximum number of iterations. Default: 25

-——maximum—-iterations=ITERS

— How big nbestlist to generate

--nbest=100

— Run decoder in parallel

-—Jjobs=N

http://mert-moses.pl/
http://mert-moses.pl/
http://mert-moses.pl/

Decoding test data

* Decoder command
bin/moses -config <moses config> -input-file <input file>
* Other common decoder options
— alignment-output-file <file>: output alignment information
— n-best-list: generate n-best outputs
— threads: number of threads
— ttable-limit: number of translations for every phrase

— xml-input: supply external translations (named entities,
etc.)

— minimum-bayes-risk: use MBR decoding to get best
translation

— Options to control stack size

Evaluation Metrics

Argument for validation of automated metrics: correlation
with human judgments

Automatic Metrics:

— BLEU (Bilingual Evaluation Understudy)

— METEOR: More suitable for Indian languages since it allows
synonym, stemmer integration

— TER, NIST

Commands
— Bleu scoring tool:
scripts/generic/multi-bleu.perl

— Mteval scoring tool: official scoring tool at many workshops
(BLEU and NIST)

scripts/generic/mteval-v13a.pl

More Moses Goodies

XML RPC server
Binarize the phrase tables
Load Phrase table on demand

Experiment Management System (EMS)

A simpler EMS
— https://bitbucket.org/anoopk/moses job scripts

... continue exploring

https://bitbucket.org/anoopk/moses_job_scripts

What is GIZA++7?

GIZA++ is a system for training word alignment
systems

Uses of GIZA++:

— Building block for phrase based MT system
— Learning probabilistic lexicon from corpus

Implementation of the IBM models

GIZA++ does not contain a decoder
— Try using ISI Rewrite decoder

Packages Needed to Run GIZA ++

(slides from : Bridget Mclnnes)

e GIZA++ package

e developed by Franz Och

e www-i6.informatik.rwth-aachen.de/Colleagues/och
e mkcls package

e developed by Franz Och

e www.-i6.informatik.rwth-aachen.de/Colleagues/och

Step 1

Retrieve data:

eCreate a parallel corpus: one sentence per line format

Step 2

Create files needed for GIZA++:

e Run plain2snt.out located within the GIZA++ package
*./plain2snt.out french english

e Files created by plain2snt
e english.vcb
e french.vcb

e frenchenglish.snt

Files Created by plain2snt

e english.vcb consists of:
e each word from the english corpus
e corresponding frequency count for each word
e an unique id for each word

e french.vcb
e each word from the french corpus
e corresponding frequency count for each word
e an unique id for each word

e frenchenglish.snt consists of:

e each sentence from the parallel english and french corpi translated
into the unique number for each word

Example of .vcb and .snt files

french.vcb:

2 Debates 4
3 du 767

4 Senate

5 (hansard) 1

english.vcb:

2 Debates 4
3 of 1658

4 the 3065

5 Senate 107
6 (hansard) 1

frenchenglish.snt

2345
23456

Step 3

Create mkcls files needed for GIZA++:

e Run _mkcls which is not located within the GIZA++ package
emkcls —pengish —Venglish.vcb.classes
emkcls —pfrench —Vfrench.vcb.classes
e Files created by _mkcls
e english.vcb.classes
e english.vcb.classes.cats
e french.vcb.classes

¢ french.vcb.classes.cats

Files Created by the mkcls package

e vcb.classes files contains:

* an alphabetical list of all words (including punctuation)

e each words corresponding frequency count

e vcb.classes.cats files contains

e a list of frequencies

e a set of words for that corresponding frequency

.vcb.classes ex:

“A 99
“Canadian 82
“Clarity 87
“Do 78
“Forging 96
“General 81

.vcb.classes.cats ex:

82: ... “Candian, “sharp, 1993, ...
87: “Clarity, “grants, 1215, ...

99: “A, 1913, Christian, ...

Step 4

Run GIZA++:

eGenerate co-occurrence file

Sn2cooc.out french.vcb english.vcb frenchenglish.snt > fe.cooc
*Run GIZA++ located within the GIZA++ package

¢./GIZA++ -S french.vcb —T english.vcb —C frenchenglish.snt —CoocurrencefFile fe.cooc

« Files created by GIZA++: ® Decoder.config ¢ t3.final
e ti.final e d3.final
¢ actual.ti.final e D4.final
* perp e d4.final
e trn.src.vcb ¢ n3.final
e trn.trg.vcb e p0-3.final

e tst.src.vch
e tst.trg.vch
e a3.final
e A3.final

e gizacfg

Files Created by the GIZA++ package

¢ Decoder.config
» file used with the ISI Rewrite Decoder
e developed by Daniel Marcu and Ulrich Germann

ehttp://www.isi.edu/licensed-sw/rewrite-decoder/

e trn.src.vcb
e list of french words with their unique id and frequency counts
e similar to french.vcb

e trn.trg.vch
e list of english words with their unique id and frequency counts
e similar to english.vcb

e tst.src.vcb
e blank

e tst.trg.vcb
e blank

http://www.isi.edu/licensed-sw/rewrite-decoder/
http://www.isi.edu/licensed-sw/rewrite-decoder/
http://www.isi.edu/licensed-sw/rewrite-decoder/
http://www.isi.edu/licensed-sw/rewrite-decoder/
http://www.isi.edu/licensed-sw/rewrite-decoder/

(cont) Files Created by the GIZA++ package

e ti.final
¢ file contains word alignments from the french and english corpus
e word alignments are in the specific words unique id
¢ the probability of that alignment is given after each set of numbers
* ex:
*300.237882
° 1171 1227 0.963072
e actual.ti.final
¢ file contains word alignments from the french and english corpus
e words alignments are the actual words not their unique id’s
e the probability of that is alignment is given after each set of words
° ex:
e of NULL 0.237882
e Austin Austin 0.963072

(cont) Files Created by the GIZA++ package

e A3.final

ematches the english sentence to the french sentence and give the match an
alignment score

® ex:

® #§Sentence pair (1) source length 4 target length 5 alignment score : 0.000179693

Debates of the Senate (Hansard)

Null ({3}) Debats ({1}) du ({2}) Senat ({4}) (hansard) ({5})
* perp
e list of perplexity for each iteration and model
#trnsz tstsz iter model trn-pp test-pp trn-vit-pp tst-vit-pp
2304 0 0 Modell110942.2 N/A 132172 N/A

® trns — training size

e tstsz — test size

e jter — iteration

e trn-pp — training perplexity

e tst-pp — test perplexity

e trn-vit-pp — training viterbi perplexity

o tst-vit-pp — test viterbi perplexity

(cont) Files Created by the GIZA++ package

¢ a3.final

¢ contains a table with the following format:

ex:

®ijlmp(i/j 1, m)

¢j = position of target sentence

¢ i = position of source sentence

¢ | = length of the source sentence
* m = length of the target sentence

e p(i/j, |, m)=is the probability that a source word in position i is moved to
pair of sentences of length | and m

® 011605.262135e-06

¢ 0 — indicates position of target sentence
¢ 1 —indicates position of source sentence
¢ 1 — indicates length of source sentence

¢ 60 indicates length of target sentence

¢ 5.262135e-06 — is the probability that a source word in position 1 is moved
sentences of length 1 and 60

e d3.final — similar to a3.final with positions i and j switched

position jin a

position 0 of

(cont) Files Created by the GIZA++ package

¢ n3.final

¢ contains the probability of the each source token having zero fertility,
one fertility, ... N fertility

e t3.final
e table after all iterations of Model 4 training
ed4.final
e translation table for Model 4
e D4.final
e distortion table for IBM-4
e gizacfg
e contains parameter settings that were used in this training.
¢ training can be duplicated exactly
ep_03.final
e probability of inserting null after a source word

¢ file contains: 0.781958

References

Moses Manual (Your complete ref. to Moses)

Hoang, Hieu, and Philipp Koehn. "Design of
the moses decoder for statistical machine
translation." Software Engineering, Testing,
and Quality Assurance for Natural Language
Processing. Association for Computational
Linguistics, 2008.

NLTK
Unicode Tutorial

http://www.statmt.org/moses/manual/manual.pdf‎
http://nltk.org/
http://www.unicode.org/notes/tn23/Muller-Slides+Narr.pdf

