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What is Moses?

Most widely used phrase-based SMT framework
— 'Moses' actually refers to the SMT decoder
- However, includes training, tuning, pre-processing tools, etc.

— Open-source, modular and extensible - developed primarily at
the University of Edinburgh

Written in C++ along with supporting scripts in various
languages
— https://github.com/moses-smt/mosesdecoder

Also supports factored, hierarchical phrase based, syntax
based MT systems

— Other decoders of interest: cdec, Joshua, ISI ReWrite
Visit: http://www.statmt.org/moses/
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Recap: SMT basics

Generative Model Discriminative Model
* Noisy channel model of e  Maximum Entropy based model,
translation from sentence f to incorporating arbitrary features
sentence e.
. _ é = argmaxexp Y Ah;(f,e)
* Task is to recover e from noisy f. ¢ Z
é = argmax Pr(e) Pr(f|e) e h.- feature; fun(.:tions.
e (phrase/lexical direct/inverse
P(f|e): Translation model, addresses translation probability, LM
adequacy probability, distortion score)

P(e): Language model, addresses fluency . A\ are weights of the features
|

GIZA++,train_moses.perl : phrase,
lexical, distortion probabilities
SRILM: language model score
moses: decoder

GIZA++ : translation model params

SRILM: language model
ISI ReWrite: decoder




What does Moses do?

10ne gets Moksha with a visit to the Saptapuris !
2Pilgrimage is of utmost importance in Hinduism .
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Installing Moses

 Compile and install the following:
— Moses
— GIZA++
— Language Modelling toolkit (SRILM/IRSTLM)

* |nstallation Guides
— From StatMT: http://www.statmt.org/moses steps.html

— Works best for Ubuntu: http://organize-
information.blogspot.in/2012/01/yet-another-moses-
installation-guide.html

— A bit older guide: http://www.cfilt.iitb.ac.in/Moses-
Tutorial.pdf

 Beready for a few surprises !
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Workflow for building a phrase based
SMT system

o Corpus Split: Train, Tune and Test split
o Pre-processing: Normalization, tokenization, etc.
o Training: Learn Phrase tables from Training set

o Tuning: Learn weights of discriminative model on
Tuning set

o Testing: Decode Test set using tuned data
o Post-processing: regenerating case, re-ranking
o Evaluation: Automated Metrics or human evaluation



Pre-processing -1 (Normalize the text)
Case normalization

* Recasing method:
— Convert training data to lowercase
— Learn recasing model for target language

scripts/recaser/train-recaser.perl --dir MODEL --corpus CASED [--
ngram-count NGRAM] [--train-script TRAIN]

— Restore case in test output using recasing model

scripts/recaser/recase.perl --in IN --model MODEL/moses.ini --moses
MOSES >0OUT

* Truecasing method
— Learnt via True casing model
scripts/recaser/train-truecaser.perl --model MODEL --corpus CASED

— Convert words at start of sentence to lowercase (if they generally occur in
lowercase in corpus)
scripts/recaser/truecase.perl --model MODEL < IN > OUT

— Restore case in test output using truecasing model
scripts/recaser/detruecase.perl < in > out
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Pre-processing -1 (Normalize the text)
Character Normalization

Important for Indic scripts

* Multiple Unicode representations

— e.g. ol can be represented as +u095B or +u091c
(o) +1093c¢ (nukta)

* Control characters
— Zero-Width Joiner/Zero-Width Non-Joiner

* Characters generally confused
— Pipe character (|) with poorna-virama (1)
— Colon(:) with visarga (:::)



Preprocessing-2 (Other steps)

* Sentence splitting

— Stanford Sentence Splitter
— Punkt Tokenizer (NLTK library)

* Tokenization
— Scripts/tokenizer/tokenizer.perl

— Stanford Tokenizer
— Many tokenizers in the NLTK library



Train Language Model

e Supported LM tools:
— KenLM comes with Moses

— SRILM and IRSTLM are other supported language
models

e Can train with one and test with another LM
— All generate output in ARPA format

* Training SRILM based language model

ngram-count —-order <n> —-kndiscount -interpolate —-text <corpus> -1m <Ilmfile>



Training Phrase based model

* The training script (train-model.perl) is a meta-script which does the following:

Run GIZA

Align words

Extract Phrases

Score Phrases

Learn Reordering model

* Run the following command
scripts/training/train-model.perl \

30Jul-13

-external-bin-dir <external bin dir>

-root-dir <workspace dir> \

—corpus <train path without ext> \

-e <tgt lang> -f <src lang> \

—alignment <phrase extraction strategy e.g. grow-diag-final-and> \
-reordering <reordering strategy e.g. msd-bidirectional-fe>

-lm <lm type, 0 for srilm>:<Ilm order>:<lm file>:0
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More Training Options

* Configure maximum phrase length
— -max-phrase-length
* Train the SMT system in parallel

e -parallel

* Options for parallel training
— -cores, -mgiza, -sort-buffer-size, -sort-parallel, etc.



The phrase table
(Sworkspace_dir/model/phrase-table.tgz)

956 ' 'Twas he that ||| Frav i ||| 0.2 1.39907e-05 1 0.0834042 2.718 \|| 0-0 1-0 2-0 1-1 ||| 51 1

957 ' 'Twas he ||| FRe W ||| 0.2 0.00209263 1 0.0834042 2.718 ||| 0-0 1-0 2-0 1-1 ||| 511

958 ' "Very good. ||| --8@ @ & ||| 1 0.0123742 1 7.53276e-05 2.718 ||| 0-0 1-0 2-0 2-1 2-2 ||| 1 1 1

959 ' 'Very well, sir. ||| & @&l ||| 0.5 9.46519%-06 1 0.0063612 2.718 ||| 0-0 1-0 2-0 3-0 3-1 ||| 2 1 1

960 ' 'Very well, then. ||| S & & ||| 1 2.77816e-12 1 9.01339%-06 2.718 ||| 0-0 1-0 2-0 3-0 2-1 2-2 ||| 111

91 ' 'Very well. ||| @1l ||| 0.25 0.00115741 1 0.0434682 2,718 ||| 0-0 1-0 2-0 ||| 8 2 2

962 ' 'Watching me, of all persons. ||| --gg@1? ||| 1 2.14335e-05 1 0169273 2.718 ||| 0-0 1-0 2-0 3-0 4-0 5-0 ||| 111

963 ' 'We have heard that you have ||| " “& W & % T ||| 1 0.000316347 1 7.88927e-08 2.718 ||| 0-0 1-1 2-13-2 4-3 4-4 5-56-5 ||| 111
964 ' 'We have heard that ||| " “&% & & R ||| 1 0.00391593 1 2.99769e-06 2.718 ||| 0-0 1-1 2-1 3-2 4-3 4-4 ||| 11 1

965 ' 'We have heard ||| " & W ||| 1 0.0118525 1 4.3827e-05 2.718 ||| 0-0 1-1 2-13-2 ||| 111

966 ' "We have ||| " " ||| 1 0.0282705 1 0.00021881 2.718 ||| 0-0 1-1 2-1 [[| 111

97 ' 'Well, I do take rest, father. ||| F& @ 87 ||| 1 5.60474e-20 1 1.34553e-05 2.718 ||| 0-0 1-0 2-0 4-0 5-0 6-0 1-1 3-1 1-2 ||| 111
968 ' 'Well, it happens. ||| --w¢ & & ||| 1 0.00130446 1 0.000452107 2.718 ||| 0-0 1-0 2-0 3-0 3-13-2 ||| 111

969 ' 'Well. peonle who are good at ||| W [I] 7.19321e-05 7.11023e-21 1 0.299537 2.718 |11 3-0 |11 13902 1 1

* inverse phrase translation probability
* inverse lexical weighting

* direct phrase translation probability

e direct lexical weighting

* phrase penalty (always exp(1) = 2.718)
* Within-phrase alignment information
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The mOdel f||e (Sworkspace_dir/model/moses.ini)

PR T, W

#H MOSES CONFIG FILE ##¢

# input factors
[input-factors]

9 # mapping steps
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[mapping]

0TaoO

# translation tables: table type (hierarchical(0), textual (0), binary (1)), source-factors, target-factors, number of scores, file
# OLD FORMAT is still handled for back-compatibility

# OLD FORMAT translation tables: source-factors, target-factors, number of scores, file
# OLD FORMAT a binary table type (1) is assumed

[ttable-file]

0 005 /homefanoop/tmp/sample data/workspace/moses_data/model/phrase-table.gz

# no generation models, no generation-file section

# language models: type(srilm/irstlm), factors, order, file
[1model-file]
0 0 3 /home/anoop/tmp/sample_data/sample_monolingual.en.lm

# limit on how many phrase translations e for each phrase f are loaded
# 0 = all elements loaded

[ttable-limit]

20

# distortion (reordering) files
[distortion-file]
0-0 wbe-msd-bidirectional-fe-allff & /home/anoop/tmp/sample_data/workspace/moses_data/model/reordering-table.wbe-msd-bidirectional-fe.gz

# distortion (reordering) weight
[weight-d]
0.3

coocooo
WL W W

# language model weights
[weight-1]
0.5000

1 # translation model weights

[weight-t]
0.20
.20
.20
.20
20

cooo

# no generation models, no weight-generation section

1 # word penalty

[weight-w]
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Tuning the Model

Tune the parameter weights to maximize
translation accuracy on ‘tuning set’
Different tuning algorithms are available:
— MERT, PRO, MIRA, Batch MIRA

Generally, a small tuning set is used (~*500-1000
sentences)

MERT (Minimum Error Rate Tuning) is most
commonly used tuning algorithm:

— Model can be tuned to various metrics (BLEU, PER,
NIST)

— Can handle only a small number of features



MERT Tuning

e Command:

scripts/training/mert-moses.pl <tun src file>
<tun tgt file> <decoder binary path> \

<untuned model file> --working-dir <workspace> —--rootdilr
<moses script dir>

* Important Options
— Maximum number of iterations. Default: 25

-——maximum—-iterations=ITERS

— How big nbestlist to generate

--nbest=100

— Run decoder in parallel

-—Jjobs=N


http://mert-moses.pl/
http://mert-moses.pl/
http://mert-moses.pl/

Decoding test data

* Decoder command
bin/moses -config <moses config> -input-file <input file>
* Other common decoder options
— alignment-output-file <file>: output alignment information
— n-best-list: generate n-best outputs
— threads: number of threads
— ttable-limit: number of translations for every phrase

— xml-input: supply external translations (named entities,
etc.)

— minimum-bayes-risk: use MBR decoding to get best
translation

— Options to control stack size



Evaluation Metrics

Argument for validation of automated metrics: correlation
with human judgments

Automatic Metrics:

— BLEU (Bilingual Evaluation Understudy)

— METEOR: More suitable for Indian languages since it allows
synonym, stemmer integration

— TER, NIST

Commands
— Bleu scoring tool:
scripts/generic/multi-bleu.perl

— Mteval scoring tool: official scoring tool at many workshops
(BLEU and NIST)

scripts/generic/mteval-v13a.pl



More Moses Goodies

XML RPC server
Binarize the phrase tables
Load Phrase table on demand

Experiment Management System (EMS)

A simpler EMS
— https://bitbucket.org/anoopk/moses job scripts

... continue exploring


https://bitbucket.org/anoopk/moses_job_scripts

What is GIZA++7?

GIZA++ is a system for training word alignment
systems

Uses of GIZA++:

— Building block for phrase based MT system
— Learning probabilistic lexicon from corpus

Implementation of the IBM models

GIZA++ does not contain a decoder
— Try using ISI Rewrite decoder



Packages Needed to Run GIZA ++

(slides from : Bridget Mclnnes)

e GIZA++ package

e developed by Franz Och

e www-i6.informatik.rwth-aachen.de/Colleagues/och
e mkcls package

e developed by Franz Och

e www.-i6.informatik.rwth-aachen.de/Colleagues/och



Step 1

Retrieve data:

eCreate a parallel corpus: one sentence per line format



Step 2

Create files needed for GIZA++:

e Run plain2snt.out located within the GIZA++ package
*./plain2snt.out french english

e Files created by plain2snt
e english.vcb
e french.vcb

e frenchenglish.snt



Files Created by plain2snt

e english.vcb consists of:
e each word from the english corpus
e corresponding frequency count for each word
e an unique id for each word

e french.vcb
e each word from the french corpus
e corresponding frequency count for each word
e an unique id for each word

e frenchenglish.snt consists of:

e each sentence from the parallel english and french corpi translated
into the unique number for each word



Example of .vcb and .snt files

french.vcb:

2 Debates 4
3 du 767

4 Senate

5 (hansard) 1

english.vcb:

2 Debates 4
3 of 1658

4 the 3065

5 Senate 107
6 (hansard) 1

frenchenglish.snt

2345
23456




Step 3

Create mkcls files needed for GIZA++:

e Run _mkcls which is not located within the GIZA++ package
emkcls —pengish —Venglish.vcb.classes
emkcls —pfrench —Vfrench.vcb.classes
e Files created by _mkcls
e english.vcb.classes
e english.vcb.classes.cats
e french.vcb.classes

¢ french.vcb.classes.cats



Files Created by the mkcls package

e vcb.classes files contains:

* an alphabetical list of all words (including punctuation)

e each words corresponding frequency count

e vcb.classes.cats files contains

e a list of frequencies

e a set of words for that corresponding frequency

.vcb.classes ex:

“A 99
“Canadian 82
“Clarity 87
“Do 78
“Forging 96
“General 81

.vcb.classes.cats ex:

82: ... “Candian, “sharp, 1993, ...
87: “Clarity, “grants, 1215, ...

99: “A, 1913, Christian, ...




Step 4

Run GIZA++:

eGenerate co-occurrence file

Sn2cooc.out french.vcb english.vcb frenchenglish.snt > fe.cooc
*Run GIZA++ located within the GIZA++ package

¢./GIZA++ -S french.vcb —T english.vcb —C frenchenglish.snt —CoocurrencefFile fe.cooc

« Files created by GIZA++: ® Decoder.config ¢ t3.final
e ti.final e d3.final
¢ actual.ti.final e D4.final
* perp e d4.final
e trn.src.vcb ¢ n3.final
e trn.trg.vcb e p0-3.final

e tst.src.vch
e tst.trg.vch
e a3.final
e A3.final

e gizacfg



Files Created by the GIZA++ package

¢ Decoder.config
» file used with the ISI Rewrite Decoder
e developed by Daniel Marcu and Ulrich Germann

ehttp://www.isi.edu/licensed-sw/rewrite-decoder/

e trn.src.vcb
e list of french words with their unique id and frequency counts
e similar to french.vcb

e trn.trg.vch
e list of english words with their unique id and frequency counts
e similar to english.vcb

e tst.src.vcb
e blank

e tst.trg.vcb
e blank


http://www.isi.edu/licensed-sw/rewrite-decoder/
http://www.isi.edu/licensed-sw/rewrite-decoder/
http://www.isi.edu/licensed-sw/rewrite-decoder/
http://www.isi.edu/licensed-sw/rewrite-decoder/
http://www.isi.edu/licensed-sw/rewrite-decoder/

(cont ) Files Created by the GIZA++ package

e ti.final
¢ file contains word alignments from the french and english corpus
e word alignments are in the specific words unique id
¢ the probability of that alignment is given after each set of numbers
* ex:
*300.237882
° 1171 1227 0.963072
e actual.ti.final
¢ file contains word alignments from the french and english corpus
e words alignments are the actual words not their unique id’s
e the probability of that is alignment is given after each set of words
° ex:
e of NULL 0.237882
e Austin Austin 0.963072



(cont ) Files Created by the GIZA++ package

e A3.final

ematches the english sentence to the french sentence and give the match an
alignment score

® ex:

® #§Sentence pair (1) source length 4 target length 5 alignment score : 0.000179693

Debates of the Senate (Hansard)

Null ({3}) Debats ({1}) du ({2}) Senat ({4}) (hansard) ({5})
* perp
e list of perplexity for each iteration and model
#trnsz tstsz iter model trn-pp test-pp trn-vit-pp tst-vit-pp
2304 0 0 Modell110942.2 N/A 132172 N/A

® trns — training size

e tstsz — test size

e jter — iteration

e trn-pp — training perplexity

e tst-pp — test perplexity

e trn-vit-pp — training viterbi perplexity

o tst-vit-pp — test viterbi perplexity



(cont ) Files Created by the GIZA++ package

¢ a3.final

¢ contains a table with the following format:

ex:

®ijlmp(i/j 1, m)

¢j = position of target sentence

¢ i = position of source sentence

¢ | = length of the source sentence
* m = length of the target sentence

e p(i/j, |, m)=is the probability that a source word in position i is moved to
pair of sentences of length | and m

® 011605.262135e-06

¢ 0 — indicates position of target sentence
¢ 1 —indicates position of source sentence
¢ 1 — indicates length of source sentence

¢ 60 indicates length of target sentence

¢ 5.262135e-06 — is the probability that a source word in position 1 is moved
sentences of length 1 and 60

e d3.final — similar to a3.final with positions i and j switched

position jin a

position 0 of



(cont ) Files Created by the GIZA++ package

¢ n3.final

¢ contains the probability of the each source token having zero fertility,
one fertility, ... N fertility

e t3.final
e table after all iterations of Model 4 training
ed4.final
e translation table for Model 4
e D4.final
e distortion table for IBM-4
e gizacfg
e contains parameter settings that were used in this training.
¢ training can be duplicated exactly
ep_03.final
e probability of inserting null after a source word

¢ file contains: 0.781958
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