
Architectural Connectors

Ph. D. Seminar Report

by

Arvind W. Kiwelekar

Roll No: 04405301

under the guidance of

Dr. R. K. Joshi

Department of Computer Science and Engineering
Indian Institute of Technology, Bombay

Mumbai

Acknowledgements

I would like to thank my guide, Dr. R. K. Joshi for the consistent direc-
tions he has fed into my work.

Arvind W. Kiwelekar

1

Contents

1 Introduction 1
1.1 Introduction to Software Architecture 1

1.1.1 Elements of Software Architecture 2
1.2 Example of a Software Architecture 4

1.2.1 Roles of Software Architecture 5

2 Architectural Description Languages 8
2.1 Elements of an Architectural Description Languages 9
2.2 C2SADL : A domain Specific Architectural Description Lan-

guage . 10
2.2.1 Component Specification 11
2.2.2 Connector Specification 11
2.2.3 Architecture Specification 13
2.2.4 System Specification 13

2.3 Wright: General Purpose Architectural Description Language 14
2.4 Acme: As a Architectural Description Interchange Language . 15
2.5 xArch: Extending Existing Language to Define a New ADL . 17
2.6 Some other Approaches . 18
2.7 Comparison of ADLs from Connector point of View 18

3 Architectural Connectors 19
3.1 Introduction . 19

3.1.1 Why Connectors are First Class entities? 20
3.1.2 Types of Architectural Connectors 21

3.2 UniCon: Language for Universal Connector 23
3.3 Higher Order Connectors . 25

2

4 Architectural Design 26
4.1 Architectural Styles . 26

4.1.1 Pipes and Filters . 27
4.1.2 Object Invocation . 27
4.1.3 Event based or Implicit Invocation 27
4.1.4 Layered Systems . 28
4.1.5 Repositories . 28

4.2 Unit Operations . 29
4.2.1 Separation . 29
4.2.2 Uniform Decomposition 29
4.2.3 Replication . 30
4.2.4 Abstraction . 30
4.2.5 Compression . 30
4.2.6 Resource Sharing . 30

5 Specifying Semantics of Architectural Connectors 32
5.1 Introduction . 32
5.2 Requirement for specifying Semantics of Architectural Con-

nectors . 32
5.3 Connector Semantics using Process Algebra 33
5.4 Proving Correctness of Software Architecture using First Or-

der Logic . 35
5.4.1 Defining Theory of Architectural Style 36
5.4.2 Defining Name Mapping 37
5.4.3 Defining Style Mapping 38
5.4.4 Interpretation Mapping 39

6 Mathematical Semantics of Architectural Connectors 41
6.1 Introduction . 41
6.2 Category Theory . 42

6.2.1 Basics of Category Theory 42
6.3 Specifying Design of a Component 44

6.3.1 Elements of CommUnity 45
6.4 Design Objects and Morphisms 46
6.5 Semantics for Interconnection and Configuration 50

6.5.1 Semantics for Interconnection 51
6.5.2 Semantics for Configuration 52

6.6 Semantics of Architectural Connectors 54

3

7 Conclusions 55
7.1 Recent Trends . 56
7.2 Proposed Future Work . 56

4

Abstract

Software Architecture is an offshoot of software engineering discipline.
Software Architecture provides a conceptual framework for gaining control
over the complexity of ever increasing size of a software system. The main
objective of this report is to understand various abstractions provided by the
software architecture and to create a basis for understanding semantics of
architectural connectors.

The report proceeds by defining software architecture and placing the
software architecture in the context of software engineering. Architectural
Description Languages (ADL), Architectural Styles, Unit operations, Com-
ponents and Connectors are the examples of different abstractions that fre-
quently occurs in the field of software architecture. These abstractions are
studied in depth and reported.

Further, the report discusses semantics issues for architectural connectors.
Semantics of architectural connectors like Client-Server Connectors, Shared
Variable, and Pipes is given in three different formalisms i.e. First Order
Logic, Process Algebra and Category Theory. Finally, the report compares
these techniques based on the type of reasoning supported by them.

Chapter 1

Introduction

1.1 Introduction to Software Architecture

Software Architecture is an offshoot of software engineering discipline. As
it happens with every nascent disciplines, software architecture is defined in
numerous ways. Each one of this definition highlights certain aspect of the
software architecture.

One of the widely accepted definition of the software architecture is due
to Bass and Kazman[3]. They define architecture of a software system as
a structure of software depicted in terms of components, externally visible
properties of components and the relationship among the components. This
definition highlights the structural aspect of a software system.

Another, equally accepted definition [14] of software architecture enumer-
ates the design issues for specifying overall system structure that one must
address at this level of abstraction. These issues are gross organization,
global control structure, protocols for communication and synchronization,
assignment of functionality to design elements, physical distribution of de-
sign elements, composition of design elements, scaling and performance, and
selection among design alternatives.

Our view of Software architecture is that of a discipline providing mecha-
nisms to deal with ever increasing size and complexity of a software system.
Software architecture manages the complexity of a software system by sepa-
rating the computations performed by components from the interactions in
which they involve with other components. Hence, architecture of a soft-
ware system is depicted by specifying the constituent components and their

1

interactions with each other. Although, this definition misses other struc-
tural and design aspects of the software system it gives equal importance to
computation and interaction.

To get better insight, software architecture is often compared with other
architectural disciplines. In this respect, software architecture finds many
similarities with building architecture. Like building architecture, software
architecture is described by multiple views. Like building architecture, soft-
ware architecture exhibits different architectural styles. Like building archi-
tecture, we find a close relationship between architectural style and engi-
neering. Unlike building architecture, for software architecture boundaries
between architecture, design, and implementation are not clearly defined.

So, to have a better understanding of what activities comes under software
architecture, here, we are placing software architecture in the context of soft-
ware engineering process. Normally, development cycle of a software project
involves phases like requirement analysis, specifying architecture, specifying
design, and implementing the software. Details of the activities that comes
under each one of these phases are -

• Requirement Analysis is concerned with determination of the infor-
mation, processing and characterizing of that information.

• Architecture is concerned with selection of architectural elements,
their interactions and specifying the constraints on those elements and
their interactions. Software Architecture provides a framework that
satisfies the requirement and acts as a basis for the design.

• Design is concerned with the modularization, specifying detailed in-
terfaces of the design elements, their algorithms and procedures, and
the data types needed to support the architecture. Design must satisfy
properties specified in the architecture and the requirement analysis.

• Implementation is concerned with the representations of the algo-
rithms and data types. Implementation must satisfy the design, archi-
tecture, and requirements.

1.1.1 Elements of Software Architecture

The architecture of a software system is modelled using following design level
entities.

2

• Components Components represent the primary computational ele-
ments and data stores of a system. Typical examples of component
include such things as clients, servers, filters, objects, blackboards and
databases. Components may have multiple interfaces, each interface
defining a point of interaction between a component and its environ-
ment. Components are classified based upon how they are packaged.
Packaging of a component also determines their mode of interactions.
Following table summarizes common packaging techniques and their
mode of interaction.

Type of a Component Interaction Supported
Module Procedure Call, Data Sharing
Object Method Invocation
Filter Data Flow
Process Message Passing, RPC, Communi-

cation Protocol, Synchronization.
Data File Read, Write
Database Schema, Query Language

Table 1.1: Types of Components and Interactions Supported by them

• Connectors Connectors represent interaction among components. They
provide the glue for architectural designs. From the run time perspec-
tive, connectors mediate the communication and coordination activi-
ties among components. Examples include simple forms of interaction,
such as pipes, procedure call, and event broadcast. Connectors may
also represent complex interactions, such as client-server protocol, or
a SQL Link between a database and an application. Connectors have
interfaces that define the roles played by the participants in the in-
teraction. Connectors are further described in detail in the Chapter
3.

• Systems System represents graphs of components and connectors. A
particular arrangement of components and connectors are defined as a
system configuration. In general, systems may be hierarchical. Com-
ponents and connectors may represent subsystems that have their own
internal architecture.

3

• Architectural Style Architectural styles describe the families of sys-
tem that use the same types of components, types of interactions, struc-
tural constraints, and analysis. System built within a single style can
be expected to be more compatible than those that mix styles: it may
be easier to make them interoperate, and it may be easier to reuse parts
within the family. Architectural styles are further described in detail
int the chapter 4.

• Application Oriented Properties These properties describe the
states of a data structure that are of significance to the processing ele-
ments manipulating that structure. They can be used for such things
as controlling the order of processing, helping to define the effects of
a processing element on a data structure and even helping to define
operations needed by the processing elements to achieve those effects.

Formulating the process of deriving an architecture for a software system
from the requirement is a difficult task. But certain set of operations help an
architect to simplify the task of architectural design. These operations are
described in the Chapter 4. Normally, valuable time of a Software Architect
is spent for giving a concrete form to these conceptual notions. To document
these concepts and notions software architect uses Architectural Description
Languages (ADL). ADLs are used to describe the architecture of a software
system. The ADL document acts as an input for a design process. Archi-
tectural description languages are further described in detail in the Chapter
2.

Next section illustrates the elements of software architecture by giving an
example.

1.2 Example of a Software Architecture

This example describes a compiler from architectural viewpoint. While de-
scribing the architecture of a compiler we are making a distinction between
processing element and data element. Processing element and data element
are types of components. We are giving architecture of a compiler in two
different architectural styles.

A typical compiler have five phases: lexical analysis, syntactic analysis,
semantic analysis, optimization and code generation. Optimization phase

4

is considered as preferred, but not necessary aspect. So, the architectural
elements used in compiler are given in Table 1.2.

Processing Elements
Lexer, Parser, Semantor, Optimizer , Code generator
Data Elements
Characters, Tokens, Phrases, Correlated Phrases,Annotated
Phrases, and Object Code
Application level properties
has-all-tokens, has-all-phrases, has-all-correlated-phrases, has-
all-optimization-annotations

Table 1.2: Architectural Elements of a Compiler

Normally, a compiler is constructed in sequential architecture, when one
phase completes its operation it calls the next phase. In this architectural
style, components forms the programme module and connectors are proce-
dure calls. As we have seen in the introductory section, architecture can
be described in multiple views. Here, we are describing the architecture in
two different views. One is the processing view as shown in the Figure 1.1.
Second view, called data view is given in Figure 1.2.

Sometimes, we require to improve on the performance of a compiler i.e.
specifically if compiler is running in a multiprocessor environment. In such
an environment compiler is built using parallel architectural style. For a
compiler built using parallel architectural style, shared variables are connec-
tors. A Parallel architecture for a compiler is described in the Figure 1.3.
This example highlights two facts

1. A given software can be constructed in more than one architectural
style.

2. Multiple views are associated with a given software architecture.

1.2.1 Roles of Software Architecture

The benefits that software architecture are

5

has-
all-
tokens

Lexer

Parser

has-
all-
phrases

Semantor

Optimizer

Code Generator

has-
all-
optiz

Code Generator

has-
all-
corelated-
phrases

Figure 1.1: Data View of Sequential Compiler Architecture

Characters
Lexer

Parser

Semantor

Optimizer

Code
Generator

Object Code

Tokens

Phrases

Corelated Phrases

Corelated Phrases

Annotated
Corelated
 Phrases

Figure 1.2: Processing View of Sequential Compiler Architecture

6

Internal
Representations

Characters
Lexer

Parser

Semantor

Tokens
Tokens

Phrases

Phrases

Corerelated
Phrases

Figure 1.3: Shared Data Structure Compiler Architecture

• Understanding Software architecture simplifies our ability to com-
prehend large systems by presenting them at a level of abstraction at
which system’s design can be easily understood.

• Reuse Architectural design can support reuse in several ways. Archi-
tectural styles, Frameworks, Design Patterns, Domain Specific Software
Architectures (DSSA) are some mechanism that achieve reuse at archi-
tectural level.

• Construction An architectural description provides a partial blueprint
for development and dependencies between them.

• Analysis Architectural descriptions provide new opportunities for anal-
ysis, including system consistency checking, conformance to constraints,
dependency analysis etc.

• Communication An architectural description often serves as a vehicle
for communication among stakeholder.

7

Chapter 2

Architectural Description
Languages

Box-line diagrams are normally used to describe the structure of a software
system. System modelling using box-line diagram is the simplest way to iden-
tify important elements of a software system and their relationship. However,
the problem with the approach is that boxes and lines are overloaded with
the meaning assigned to them. For example, a line in the diagram represents
either a link between two software component, or an interdependence of a
software component, or a procedure call. Earlier, Module Interconnection
Languages (MIL) are used to describe the inter-relationship among the mod-
ules of a software. Also, Interface Description Languages (IDL) are used for
the same purpose in object and component oriented programming. MIL and
IDL captures relationship between the source code but fails to capture the
dynamic relationship among the components of a software. Hence, a different
set of tools and techniques are required to define the structure of a software
system. Architectural Description Languages (ADL) describe the struc-
ture of a software system at a level of abstraction that is more closest to the
intuition of a system designer. In this chapter, First we are enumerating the
characteristics of a generic ADL. Then, we are going to describe how these
characteristics are realized in some sample ADLs.

8

2.1 Elements of an Architectural Description

Languages

An ideal Architectural Description language must provide notations to de-
scribe architectural components and their interactions at a higher level of
design for a sufficiently large-scale software system. Shaw and Garlan [19]
propose a framework for characteristics of languages describing the architec-
ture of a software system. Such a language is required to possess following
characteristics

• Composition An ideal ADL should be able to describe a system as a
composition of independent components and connections. Composition
capabilities allow us to combine independent architectural elements into
a larger system. With this capability- we can divide a complex system
hierarchically into smaller manageable subsystems, we can understand
components and connectors in isolation from the system, and we sepa-
rate architecture level concerns from design and implementation level
concern.

• Abstraction An abstraction suppresses unnecessary details while bring-
ing out important properties. Use of abstraction is a widely used tech-
nique for managing complexity. In programming languages, we use
records, modules, procedures; as an abstraction for data and set of op-
erations. At architectural level, we need a separate set of abstractions
to address architectural design issues. An ideal ADL should have at
the minimum components, connectors, and system as a set of abstrac-
tions to describe real word components and interactions of components
within a system.

• Reusability Reusability allows us to develop a new system using ex-
isting or predefined components. Mechanisms to realize reusability is
provided at all level of software evolution i.e. from coding to design. In
an ideal ADL, it should be possible to reuse components, connectors,
and architectural patterns predefined in different architectural setting.

• Configuration Architectural descriptions should localize the descrip-
tion of system structure, independently of the elements being struc-
tured. They should also support dynamic reconfiguration. This will

9

permit us to understand and change the architectural structure with-
out having to examine each of the systems individual components.

• Heterogeneity An ideal ADL should able to inter-operate with other
ADLs.

Table 2.1 gives examples of few ADLs along with their distinguished charac-
teristics.

ADL Purpose
Wright[2] Specification and analysis of inter-

action between architectural com-
ponent.

Aesop[8] Supports use of Architectural style.
Adage [5] Supports the description of archi-

tectural frameworks for Avionics
applications.

C2[16] Supports the description of user in-
terface systems using a message-
based style.

Rapide[10] Allows architectural designs to be
simulated

SADL[9] provides a formal basis for architec-
tural refinement.

Table 2.1: Examples of ADL

Next section describes few examples of ADLs that are widely used for
describing the architecture of a software system. The objective of reviewing
these ADLs is to know how above mentioned characteristics are supported
by these different ADLs

2.2 C2SADL : A domain Specific Architec-

tural Description Language

The C2SADL is an example of a domain specific architectural description
language. The C2SADL allows us to model the architecture of a software

10

system that uses C2 architectural style. Most of the GUI and distributed
applications are structured around C2 style.

Here, we are going to describe essential ingredients of C2 style [16]. In a
C2-style architecture, software connectors transmit messages between com-
ponents, while components maintain state, perform operations and exchange
messages with other components via two interfaces. These two interfaces are
named as top and bottom. Each interface consists of a set of messages that
may be sent and set of messages that may be received. A component interface
may be attached to at most one connector. A connector may be attached to
any number of other components and connectors. Inter-component messages
are either requests for a component to perform an operation, or notifications
that a given component has performed an operation or changed state. Re-
quest messages may only be sent ”upward” through the architecture, and
notification messages only be sent ”downward.”

The C2 style further demands that components communicate with each
other only through message passing, never-though shared memory. Also,
C2 style requires that notifications sent from a component correspond to
its operations, rather than the needs of any components that receive those
notifications. This constraint on notifications helps substrate independence,
which is ability to reuse a C2 component. The C2 style does not make any
assumptions about the languages in which components or connectors are
implemented.

2.2.1 Component Specification

C2SADL allows to define two separate interfaces for a component. One
interface is called top and another one is called bottom. A component will
have two main sections i.e. Interface and Behavior. Interface section is
divided further into two sections and i.e. Out and In. A example of a
component definition is given in the Figure 2.1

2.2.2 Connector Specification

Connectors bind components together into a C2 architecture. They may
be connected to any number of components as well as other connectors. A
connectors primary responsibility is the routing and broadcast of messages.
A secondary responsibility is message filtering.

11

Component MeetingInitiator is
Interface top domain is
out
GetPrefSet();

GetExclSet();

RemoveExclSet();

in
PrefSet();

ExclSet();

EquipReqts();

behavior
received messages PrefSet may generate RemoveExclSet

Figure 2.1: Component Definition

Connectors may provide a number of filtering and broadcast policies for
messages, such as -

• No Filtering: Each message is sent to all connected component on
the relevant side of the connector i.e. bottom for notification and top
for requests.

• Notification Filtering Each notification is sent to only those compo-
nents that registered for it.

• Prioritized The connector defines a priority ranking over its compo-
nents, based on a set of evaluation criteria specified by the software
designer during the construction of the architecture. This connector
then sends a notification to each component in order of priority until a
termination condition has been met.

• Message Sink The connector ignores each message sent to it. This is
useful for isolating subsystems of an architecture as well as incremen-
tally adding components to an existing architecture.

A connector has an upper and lower domain, defined by the components and
connectors attached to it. The syntax for connector specification is described
in the Figure 2.2.4.

12

Architecture MeetingSchedular is
Conceptual Components
Attendee, ImportantAttendee, MeetingInitiator

Connectors
MainConn is message filter no filtering;
AttConn is message filter no filtering;

Architectural topology
Connector AttConn connections
top ports Attendee;
bottom ports MainConn;
Connector MainConn connections
top ports AttConn; ImportantAttconn;
bottom ports MeetingInitiator;

System MeetingSchedular 1 is
architecture MeetingSchedular with
Attendee instance Att 1, Att 2;

Figure 2.2: Architecture and System Definition in C2SADL

2.2.3 Architecture Specification

Architecture specification in C2SADL means specifying component connector
topology. It identifies components, connectors and their interconnection. The
syntax for architecture specification is described on the fig 2.2.4.

2.2.4 System Specification

An instance of the architecture is specified by instantiating the components.
The syntax for defining system in C2SADL is given in Figure 2.2.4

13

2.3 Wright: General Purpose Architectural

Description Language

Wright is a general purpose ADL supporting specification and Analysis of
interaction between architectural components. Unlike C2, Wright does not
enforce the rules of a particular style, but is applicable to multiple styles.
However, it still places certain topological constraints on architecture. For
example, as in C2, two components cannot be directly connected, but must
communicate through a connector. On the other hand, unlike C2, Wright
disallows two connectors from being directly attached to one another. Here,
we are explaining the syntax of Wright by giving an example of a architectural
description in Wright.

Figure 2.3 shows how a simple client-server system would be described
using Wright[19]. An architecture in Wright is described in three parts[11]:

• Component and Connector Types.

• Component and Connector Instances.

• Configuration of Component and Connector Instances.

The First part of the description defines component and connector types.
A component type is described as a set of ports and component-spec that
specifies its function. Each port defines a logical point of interaction between
the component and its environment. Thus port allows to define multiple
interfaces for a component.

A connector type is defined by a set of roles and glue specification. The
roles describe the expected local behavior of each of the interacting parties.
Roles are interfaces of a connectors. The glue specification describes how the
activities of the client and server roles are coordinated.

The second part of the system definition is a set of component and con-
nector instances. These specify the actual entities that will appear in the
configuration.

In the third part of the system definition, component and connector in-
stances are combined by prescribing which component ports are attached as
which connector roles.

14

System SimpleExample

Component Server =
Port provide;
Component Client =
Port request;
Connector C-S-Connector =
Role client;
Role server;

Instances
s:Server, c:Clinet, cs:C-S-Connector;

Attachments
s.provide as cs.server;
c.request as cs.client;
end SimpleExample

Figure 2.3: Architecture Definition in Wright

2.4 Acme: As a Architectural Description In-

terchange Language

Acme is an architectural description language supporting interchange of ar-
chitectural description written in different ADL. Acme supports seven basic
entities using which we can built a architectural description of a software
system. These seven entities are components, connectors, systems, ports,
roles, representations, and rep-maps [9].

• Components and Ports: Components represent the primary com-
putational elements and data stores of a system. They correspond to
the boxes in box-line descriptions of a software system. Examples of a
components are clients, server, filters, objects, and databases.

Components’ interfaces are defined by a set of ports. Each port identi-
fies a point of interaction between the component and its environment.
A component may provide multiple interfaces by using different types of
ports. A port can represent an interface as simple as a single procedure

15

System simple cs = {
Component client = {Port send-request }
Component server = {Port receive-request }
Connector rpc = {Roles { caller, callee } }
Attachments: { client.send-request to rpc.caller;
server.receive-request to rpc.callee }
}

Figure 2.4: Simple Client-Server System in Acme

signature, or more complex interfaces, such as collection of procedure
calls that must be invoked in certain specified orders.

• Connectors and Roles: Connectors represent interactions among
components. Computationally speaking, connectors mediate the com-
munication and coordination activities among components. Informally
they provide the glue for architectural designs, they correspond to lines
in box-line diagrams. Examples are pipes, procedure call, method in-
vocation, client-server protocol, and SQL link between database and
application.

Connectors also have interfaces that are defined by a set of roles. Each
role of connector defines a participant of the interaction represented by
the connector. Binary connectors have two roles such as caller, and
callee roles of an RPC connector, reading and writing role of a pipe.
Some connectors may have more than two roles. For example, event
broadcaster. Figure 2.4 gives and example to explain syntax for writing
and architectural description in Acem using these primitives.

• System: System represents configurations of components and connec-
tors.

• Representation and rep-maps Acme supports the hierarchical de-
scription of architectures. Specifically, any component or connector can
be represented by one or more detailed, low-level descriptions. Each
such description is termed as representation in Acme.

When a component or connector has an architectural representation
there must be some way to indicate correspondence between the inter-

16

nal system representation and the external interface of a component or
connector that is being represented. A rep-map defines this correspon-
dence.

Finally to summarize we are mapping the characteristics of an ideal ADL
to the mechanisms used in Acme to realize those characteristics. Table 2.2
provides this mapping.

ADL Characteristics Mechanism in Acme
Composition Representation and Rep-Maps
Abstraction System, Representations, Compo-

nent, Connectors, Ports and Roles
Reusability Templates
Configuration System and Attachments
Heterogeneity Properties
Analysis Open Semantic Framework

Table 2.2: Examples of ADL

2.5 xArch: Extending Existing Language to

Define a New ADL

ADLs that have been discussed so far are the ADLs that have designed from
the scratch. Another approach of defining a new ADL is to extend existing
language. XArch[6] is an extension of XML. xArch is basically a set of XML
schemas that allows us to define architecture of a system. xArch makes
an explicit distinction between the run-time architecture of a system and
design time architecture of system. At design time, precise information about
components and connectors are not known. At design time, we are interested
in approximate behavior of components that can be well described in text. At
run time, we are interested in knowing the state of a component i.e. whether
a component is started, running or blocked. Hence, xArch defines two sets
of schemas- one called Structure and Type schema and another one is called
Instances schema. Also, xADL provides a placeholder in Structure and Type
schema to provide an implementation mapping.

17

2.6 Some other Approaches

ArchJava [1] is another example of ADL that is based on the principle of ex-
tending existing languages. ArchJava is an extension of Java programming
language. ArchJava aims at preserving communication integrity of compo-
nents i.e. at run time, components should engage in only those interactions
that has been specified in the architecture of a system.

Also, we can use design specification languages like UML [11] to model
software architecture.

2.7 Comparison of ADLs from Connector point

of View

Table 2.7 gives the comparison of ADLs that we have discussed in this chapter
on the basis of how connectors are supported in those language.

Table 2.3: Comparison of ADLs from Connector Point View
Type of
ADL

Support for Connectors

C2SADL C2SADL being an domain specific ADL supports only
message passing connectors. No other connector types
are supported.

Wright Wright is a general purpose ADL. Supports to define con-
nectors in terms of roles and glue specification. Type
checking in terms of definition/use is supported. Com-
position of connectors are not allowed . No support of
in-built connectors.

Acme Acme is an interchange language. Connectors are de-
fined in terms of glue/role specification. Definition/use
type checking is supported. Connector composition and
in-built connectors are not supported. To facilitate in-
terchange of architectural specification among multiple
languages, Acme annotates connectors with application
specific properties.

xArch Supports to define connectors in terms of roles and glue
specification.

18

Chapter 3

Architectural Connectors

Software Architecture treats connectors as a first class entities. Earlier tech-
niques for specifying software structure like Module Interconnection Lan-
guages and Interface Definition languages (IDL) emphasizes components as
a focal point of system development. Techniques like Module Interconnection
Languages and IDL does not differentiate between implementation relation-
ship and interaction relationship. This chapter first gives reasons for why
one should treat connectors on an equal footing as that of components. Sec-
ond section, of this chapter describes types of connectors. Third sections
describes an example of ADL that supports in-built connectors to facilitate
architectural specification. The main objective of this chapter is create the
basis for understanding the semantics of architectural connectors to be dis-
cussed in the Chapter 5

3.1 Introduction

In software architecture, components are the primary computational entity.
Components are realized at programming level by different mechanisms like-
objects, databases, files, processes etc. Software architecture is basically
intended to model the interactions among different components. Software
architecture derives the behavior of a software system from the behavior of
individual components and how they interact with each other. Interaction is
the central focus of software architecture. Connector is an abstraction used
for mediating and regulating interaction among the component. At program-
ming level, connectors may be realized by simple procedure call. Sometimes,

19

to realize a connector at programming level more elaborate support from
operating system is required. Operating system provides mechanisms like
pipes, events, streams, and communication protocols to realize a complex
connectors. There are many similarities between the working of a compo-
nent and connector. Like a component connectors to can be composed. Like
components, connectors is also an abstraction that must realized differently
at programming level. Next section gives some of the reasons behind treating
connectors as a first class entity.

3.1.1 Why Connectors are First Class entities?

In order to understand rationale behind treating connectors as a first class
entity, one must appreciate the distinction between implementation and in-
teraction relationship.

First point of distinction lies in the mechanisms used to realize imple-
mentation and interaction relationship at programming level. Normally,
implementation relationship is realized by procedure call. More elaborate
mechanisms like pipes, protocols of communications, streams and events are
required to realize interaction.

Second point of distinction is the consistency check performed on them.
Consistency check performed on implementation relationship is of the type
that whether use of a procedure call is consistent with its definition. For a
connector, consistency check performed is of the type that whether the real-
ization is guaranteing the specified protocol of communication. For example,
whether a server is initialized first in a client-server type of interaction or
not.

Completeness criteria for implementation and interaction is also quite
different. Completeness criteria for implementation relationship means that
checking of every facility required by a module is provided by some other
module or not. Similarly, with respect to interaction relationships, the com-
pleteness of a system is concerned with whether the assumptions of each
component about the rest of the system have been met and whether all par-
ticipants are present in the specified interaction.

Hence, Architectural Definition Languages (ADL) treats connectors and
components alike. Additionally, following are some more reasons for having
a separate mechanism for describing connectors in ADL.

• Connectors may be quite sophisticated, requiring elaborate and com-

20

plex specifications.

• Definition of connectors should be localized.

• Connectors are potentially abstract. They may be parametrizable.

• Connectors may require distributed system support. To provide reuse
of connectors.

3.1.2 Types of Architectural Connectors

Mehta and Medvidovic [12] has observed that architectural connectors are
required to realize four types of basic services i.e. communication, conversion,
coordination and facilitation. They classified architectural connectors into
several categories depending upon how the basic services are realized by
connectors.

Types of architectural connectors identified by them are- Procedure Call,
Event, Stream, Distributor, Data Access, Arbitrator, Adaptor, and Linkage.
Now, we are briefly characterizing these connectors.

• Procedure Call: Procedure call connector model the flow of con-
trol through various invocation techniques (coordination), and perform
transfer of data among the interacting components through the use
of parameters (communication). Examples of PC connectors include
functions, procedure, object oriented methods, callback invocation, op-
erating system call. Higher order connectors such as RPC can also be
composed ”on top of” a procedure call by adding facilitation and con-
version services.

• Event: Event connectors are similar to procedure call connectors in
that they model the flow of control among components (communica-
tion). In this case, the flow is precipitated with an event. Messages
containing a description of the event can be generated upon the occur-
rence of a single event or a specific pattern of events. The contents of
an event message can be structured to contain information about the
event and other application specification information (communication).
An example of this connector type are GUI events. Some events like
page fault are caused by hardware.

21

• Stream: Streams are used perform transfers of large amount of data
between autonomous processes (communication). Streams are also
used in client-server systems with data transfer protocols to deliver
results of computations. Streams may provide unidirectional or bidi-
rectional data transfer. Examples of stream connectors are Unix Pipes,
TCP/UDP communications.

• Distributor: Distributed systems require identification of component
locations and interaction paths to them based on symbolic names.
Distributor connector perform the identification of interaction paths
and subsequent routing of communication and coordination informa-
tion among components along these paths (facilitation) Examples are
Domain Name Service.

• Data Access: Data Access connectors allow components to access
data maintained by a data store component. (communication) Exam-
ples of persistent data access include database query mechanisms , such
as SQL, and file I/O.

• Arbitrator When component are aware of the presence of other com-
ponents but can not make assumptions about their needs and state,
arbitrators streamline operation and resolve any conflicts (facilitation),
and redirect the flow of control(coordination. For example, multi-
threaded systems that require shared memory access use concurrency
control to guarantee consistency and atomicity of operations.

• Adaptor Adaptor connectors provide facilities to support interaction
between components that have not been designed to inter-operate.
Adaptors involve matching communication policies and interaction pro-
tocols among components (conversion) These connectors are necessary
for inter-operation of components in heterogeneous enviornments.bv

• Linkage: Linkage connectors are used to die the system components
together and hold them in such a state during their operation and inter-
action. Linkage connectors enable the establishment of ducts, identified
as primitives of connectors that form the channels for communication
and coordination which are then used by more functional connectors
to enforce interaction semantics. Examples of linkage connectors are C
export mechanism and Java dynamic class loader.

22

3.2 UniCon: Language for Universal Connec-

tor

UniCon [18] is the Architectural Description Language that supports built-in
connector types. Like all other ADLs, UniCon has a mechanism to define
components at the same time it supports some predefined components. In
UniCon, components are composable. Composition of connectors is not al-
lowed at present.

In UniCon, connectors define the protocols and mechanics of interaction
together with any additional mechanisms required to carry out the interac-
tion: auxiliary data structures, initialization, initialization routines, and so
on. The connector definition is also the location for specifications of required
behavior such as interchange representations and the internal manifestation
of the connector in the code of a component. At present all connectors are
primitives.

The protocol defines the allowable interactions among a collection of com-
ponents and provides guarantees about those interactions. To do this it
defines roles or the responsibilities of various parties that set requirements
for the players of components whose interactions are to be governed by the
connector. The author of the component is responsible for ensuring that
these responsibilities are satisfied by the implementation. The protocol must
include:

• The connector type.

• Assertions that constrain the entire connector; these are the commit-
ments about the interaction that the protocol supports.

• The roles that participate in the protocol; each consist of a name and
the type and optional attributes like signature, functional specifications
or constraints on their use.

A connector type expresses the designers intention about the general class
of connection to be provided by the connector, it restricts the numbers, types
and specifications of the Roles provided by the connector. In particular, some
roles may require players, some may be optional but constrained if present
and some may be restricted to match certain player types.

The roles are the visible semantic units through which the connector me-
diates the interaction among components. Their types are primitive typing

23

units. They are used to identify the players that must cooperate in a suc-
cessful interaction. Roles identify the kinds of interactions a connector can
establish- the kinds of components it can work with and the player types it
can handle. When a role appear in a protocol, it must specify a name and role
type and may optionally specify other attributes; some of these attributes
may be required in particular instances.

At present, only primitive implementations of connectors are supported.
The in-built connectors supported are Pipe, FileIO, ProcedureCall, DataAc-
cess, PLBundler, RemoteProcedureCall, and RTScheduler. These connectors
are summerized in the Table 3.2

Connector
Type

Roles Types and the Players Supported

Pipe Source (accepts StreamOut of Filter, ReadNext of Seq-
File)
Sink(accepts StreamIn of filter, WriteNext of SeqFile)

FileIO Reader(accepts ReadFile of Module)
Readee(accepts ReadNext of SeqFile)
Write(accepts WriteFile of Module)
Writee(accepts WriteFile of SeqFile)

ProcedureCall Definer (accepts RoutineDef of Computation or Module)
Caller (accepts RoutineCall of Computation or Module)

DataAccess Definer(accepts RoutineDef of Computation or Module)
User(accepts GlobalDataUse of SharedData, Computa-
tion or Module)

PLBundler Participant(accepts PLBundle, RoutineDEf, Rou-
tineCall, GlobalDataUse, GlobalDataDef of Computa-
tion, Module or SharedData)

RemoteProcCall Definer(accepts RPCDef of Process or SchedProcess)
Caller (accepts RPCCall of PRocess or SchedProcess)

Table 3.1: In-built Connectors Supported in UniCon

24

3.3 Higher Order Connectors

The types of connectors that we have seen so far are the most primitive types
of connectors. A more complex type of connector can be constructed from
predefined primitive connectors. Higher order connectors are those connec-
tors which takes primitive connectors as there argument and returns another
connector as a result. Garlan []has identified the different ways to construct
a higher order connectors. Bundling, Monitoring, Confirmation, Security,
and Compression are some of the methods that are commonly used to form
higher order connectors. Component Adaptation is widely used technique in
component based software development. Higher order connectors is giving
an alternative solution to address the mismatch of component i.e. connector
adaptation.

25

Chapter 4

Architectural Design

Designing an architecture for a software system requires ingenuity. But hav-
ing a knowledge of Architectural styles and set of Unit Operations helps ones
to make it more simpler. Architectural style gives us an insight regarding
type of components and interactions that will be involved in the system to be
designed. Unit Operations help us to gain control over the complexity of the
system. First Section of this chapter discusses architectural styles. Second
Section elaborates on how to apply unit operations.

4.1 Architectural Styles

An architectural style found in a software system is defined as a pattern of
components and connectors that occur repeatedly. Usually an architectural
style has similar type of components and connectors. They exhibit a par-
ticular way of interaction among the components. They are not a complete
software system/subsyetm. Architectural styles are intentionally ambiguous
on the number of components and connectors present in it. Architectural
styles puts some constraints on components and connectors. Most of the
ADL supports a mechanism to define architectural styles.

Shaw and Garlan [19] has catalogued such architectural styles that fre-
quently occur in software system design. Although, this is not a complete
catalogue it essentially defines what an architectural style is and how it should
be used in a system design. Following sections explains some of these archi-
tectural styles.

26

4.1.1 Pipes and Filters

In this type of architectural style, filters are components. Filters have a set
of input and set of outputs. The output of a filter is produced by doing
certain kind of transformation on the input data. The pipes are connectors,
they forms the conduits for data from one filter to another. Pipes transfers
the data without doing any kind of transformation.

The main invariants of this style are- 1. filters do not share any state
with each other or they are completely independent entities, 2. they do not
know the identity of their upstream and downstream filters.

The best known example of this style is programs written in Unix shell.
The advantages of this style are- first, they allow the designer to under-

stand the overall input/output behavior of a system as a simple composition
of the behaviors of the individual filters; second, they support reuse; third
systems are easy to maintain. Disadvantage is pipe and filter style often lead
to batch organization of processing.

4.1.2 Object Invocation

This style is based on data abstraction and object-oriented organization.
Data representation and primitive operations are encapsulated in an abstract
data type. Here, objects are components and method invocations on objects
are connectors. Two main invariants of this style are that object is respon-
sible for preserving the integrity of its representation and representation of
object is hidden from other object. The main disadvantage of this style is
that in order to interact with another object, first object is required to know
the identity of second one.

4.1.3 Event based or Implicit Invocation

In this style of invocation, rather than invoking a method explicitly, a method
gets invoked upon occurrence of a particular event. This style of invocation
is called implicit invocation or reactive invocation. The components in this
style are the set of procedures. Connectors are the events. The main invariant
of this style is that announcer of the event does not know which component
is going to be affected by the occurrence of the event.

27

Architectural
Styles

Type of connectors used

Pipes and Filters Pipes
Object Invoca-
tion

Method Invocation, Procedure Call.

Event Based Procedure Call, Method Invocation
Layered Systems Procedure Call, Data Access, Method Invocation
Repositories Data Access

Table 4.1: Comparison of Architectural Styles from Connector Point of View

4.1.4 Layered Systems

A layered system is organized hierarchically, each providing service to the
layer above it. In some layered systems inner layers are hidden from all except
the adjacent outer layer. Thus in these systems components implement a
virtual machine at some layer in the hierarchy. The connectors are defined
by the protocols that determine how the layers will interact.

4.1.5 Repositories

In a repository style, there are two quite distinct kinds of components: a
central data structure represents the current state and a collection of inde-
pendent components operate on the central data store. Interactions between
the repository and its external components vary significantly among systems.

The choice of a control discipline leads to two major subcategories. If
the types of transactions in an input stream trigger selection of processes to
execute, the repository can be traditional databases. On the other hand, if
the current state of the central data structure is the main trigger for selecting
processes to execute, the repository can be a blackboard.

Blackboard systems have traditionally been used for applications requir-
ing complex interpretations of signal processing.

Following table summarizes architectural styles from connector point of
view. 4.1

28

4.2 Unit Operations

A software system exhibits two types of quality attributes. One set of char-
acteristics are observable during system execution time like response time,
bandwidth, and throughput. These are known as functional properties. Sec-
ond set of quality attributes are not observable during system execution time
like modifiability, portability etc. These are known as non-functional prop-
erties. Unit operations [3] are the set of operations that guides us on how
to organize the software when particular non-functional attribute is a design
goal.

4.2.1 Separation

Separation places a distinct piece of functionality into a distinct component
that has a well defined interface to the rest of the world. It is the most
primitive and most common tool of a software architect. Separation isolates
a portion of a system’s functionality. The motivation for determining what
portion of a systems’ functionality to isolate comes from a desire to achieve
a set of quality attributes. For example, one might separate functionality for
performance or ease of creation.

Separation may also be used to ensure that changes to the external en-
vironment do not affect a component, and changes to the component do not
affect the environment, as long as interface is unchanged. Thus, the operation
of separation aids both modifiability.

Examples of separation are found in data-flow architectures, compilers,
and user management systems.

4.2.2 Uniform Decomposition

Decomposition is the operation of separating a large system component into
two or more smaller ones. Uniform decomposition is a restriction of this oper-
ation, limiting the composition mechanisms to a small, uniform set. Having
uniform mechanism eases integration of components and scaling of the system
as a whole. Two commonly used decomposition mechanism are Part-whole
and Is-a relationship. Examples are commonly found in the object oriented
system.

29

4.2.3 Replication

Replication is the operation of duplicating a component within an architec-
ture. This technique is used to enhance reliability and performance. This
unit operation is used in hardware as well as in software. When compo-
nents are replicated it requires the simultaneous failure of more than one
component to make the system as whole fail. As the amount of replication
in a system increases, the available work can be spread among more of the
systems’ components, thus increasing throughput.

4.2.4 Abstraction

Abstraction is the operation of creating a virtual machine. A virtual machine
is a component whose function is to hide its underlying implementation.
Virtual machines are often complex piece of software to create, but once
created they can be adopted and reused by other software components, thus
simplifying their creation and maintainability. Java Virtual Machine is the
example of use of this unit operation.

Separation and abstraction are related but are not the same concept.
There are many examples of separation for reasons other than to create a
set of abstract services, such as load balancing, parallelizing operations, and
dividing work among development teams.

4.2.5 Compression

Compression is the operation of removing layers or interfaces that separate
system functions and so it is the opposite of separation. These layers may
be either software or hardware. When one compresses software, one takes
distinct functions and places them together. Compression serves three main
purposes- 1. To improve system performance. 2. To circumvent layering
when it does not provide needed services. 3 To speed up development.

4.2.6 Resource Sharing

Resource sharing is an operation that encapsulates either data or services
and shares them among multiple independent consumers. Typically there is
a resource manager that provide the sole access to the resource. Shared re-
sources are costly to build, but ones built they provide numerous advantages

30

like integrability, modifiability, and portability. The X-Windowing server, for
example, is a shared resource that provides an abstraction of the underlying
graphics hardware.

31

Chapter 5

Specifying Semantics of
Architectural Connectors

5.1 Introduction

The main intention of formalizing the semantics of architectural connections
is to define the notion of connectors more precisely. Various formal techniques
are used to give semantics of connectors. We are restricting ourselves to three
widely used techniques i.e. 1. Process Algebra, 2. First Order Logic and 3.
Category Theory. This chapter discusses how to use of process algebra and
First order Logic. The Chapter 6 will discuss use of category theory in
formalizing semantics of architectural connector.

5.2 Requirement for specifying Semantics of

Architectural Connectors

Techniques used to provide the semantics of connectors must satisfy two
different types of requirements. First, such techniques should be able to
provide expressive notations to specify connectors. Second, such techniques
should provide analytical capabilities to reason about connectors [2]. Here,
is the list of desired properties that are expected from such techniques-

1. Expressive Requirement

• Allow us to specify common cases of architectural connections.
For example, pipes, client server interaction etc.

32

• Allow to specify complex dynamic interactions among compo-
nents. For example, server must be initialized first before client
in client-server interaction.

• Should allow to make fine grained distinction between a given
architectural connector. For example, a shared variable which
must be initialized before its first use by the initializer, shared
variable that must be first initialized by any process before its
first use, shared variable which must be initialized first but it
does not matter who initializes it, all these are the type of more
general shared variable type of connector which can be read and
written only.

2. Analytical Requirement

• Should able to understand the behavior independently of specific
context in which connectors are used.

• Should able reason about whether the use of connectors is com-
patible with its definition.

5.3 Connector Semantics using Process Alge-

bra

Robert Allen and David Garlan [2] first proposed to use Process Algebra to
provide the semantics for architectural connectors. Process Algebra is based
on notion of Communicating Sequential Processes (CSP). CSP [17] [15] is
the widely used technique to model communication protocols. CSP provides
a rich set of constructs for describing communicating entities. A subset of
CSP is used to model architectural connections. Notations of CSP that are
used in providing semantics of connectors are described in the next section.

Definition 5.1 Process Notations

• Processes and Events : A process describes an entity that can engage
in communication events. The simplest process is STOP process that
engages in no events. The set of events in which a process can engage
is denoted by αP .

Events may be primitives or they can have associated data. For example
e?x represents an in input of data x by an event e, and e!x represents

33

an output operation of x over channel e The most primary event is
√

used to represent success.

• Prefixing: A process that engages in event e and then becomes process
P is denoted by e → P

• External choice: A process that can behave like P or Q where the choice
is made by the environment, is denoted by P¤Q

• Internal Choice A process that can behave like P or Q, where the choice
is made by the process itself is denoted by P uQ

• Named Process: Process names can be associated with a process expres-
sion.

• Processes can be composed using ‖ operator. Parallel processes may
interact by jointly engaging in events that lie within the intersection of
their alphabets.

Now, we are giving few examples to demonstrate how these notations are
used to define architectural connections.

Example 5.1 C-S-connector =
role Client = (request!x → result?y → Client) u $
role Server = (invoke?x → return!y → Server)¤$
glue = (Client.request!x → Server.invoke?x → Server.return!y →
Client.result!y → glue)¤$

The Example 5.1 gives the specification for client-server connector in
process algebra. This example identifies tow roles for c-s-connector i.e. Client
and Server. Two roles are modelled in terms of process. The behavior of
client is modelled by process definition. Client engages in two events i.e.
result and request. Similarly process Server models role server, it engages in
two events invoke and return. The glue process coordinates the interaction
between client and server. This example describes how to model a connector
in process algebra.

34

Example 5.2 connectorShared Data1 =
role User1 = set → User1 u get → User1 u

√
role User2 = set → User2 u get → User2 u

√

glue = User1.set → glue¤User2.set → glue¤User1.get →
glue¤User2.get → glue

The examples 5.2 and 5.3 demonstrates how CSP notations are used to
provide a specification for fine grained connectors. Connector described in
Example 5.2 is the most general type of shared variable connector which
models a shared variable with two users and they can access it without any
initialization. Connector described in Example 5.3 is the special case of
Example 5.2 in which a special process called initializer is used to initialize
a connector. After initialization user can access data.

Example 5.3 connectorShared Data2 =
role User = set → User u get → User u√
role Initializer =
let A = set → A u get → A u√
in set → A
glue = let Continue = Initializer.set → Continue
¤User.set → Continue
¤User.get → Continue
¤Initializer.get → Continue¤√
inInitializer.set → Continue
¤User.set → Continue¤√

5.4 Proving Correctness of Software Archi-

tecture using First Order Logic

This section defines architectures at two different levels. First level is called
the abstract level which is more closer to the designer’s intuition. The second
level is called concrete level architecture and it is more closer to the imple-
mentation. Concrete level architecture is the realization of the architecture

35

defined at abstract level. Correctness of software architecture is intended to
prove the completeness assumption. Completeness assumption means that
if an architectural fact is not explicit in the architecture, or deducible from
the architecture, then the fact is not intended to be true of the architec-
ture. Completeness assumption is proved in two steps. First by proving for
type-level properties that are achieved only once for each pair of architec-
tural style. In the Second step, instance level properties that is proved for
every architecture. The steps involved in carrying out correctness proof are
enumerated below [13]-

1. Define the theory of architectural style for abstract and concrete archi-
tecture in First order logic.

2. Provide following mappings from abstract architecture to concrete ar-
chitecture.

• Name Mapping

• Style Mapping

• Interpretation Mapping

We are going to explain these steps by taking an example. We are going
to define the architecture of compiler at abstract level by using dataflow style
and at concrete level by using shared memory style.

5.4.1 Defining Theory of Architectural Style

Definition of a theory of architectural style involves identifying vocabulary
associated with a particular style and expressing them in the form of a first
order predicates.

For example, Dataflow style vocabulary contains predicates for describing
functional components, ports, values associated with ports, dataflow chan-
nels, values associated with dataflow channels, and connections of channels
to ports. Hence, dataflow style is described using predicates like Function,
OutPort, Supplies, InPort, Accepts, Carries, Connects. These predicates are
defined in the table 5.4.1

The shared-memory style uses the reading and writing of a variable for
intercommunication. Shared-variable communication is modelled using a call
site as an interface between a function and the shared variable. A call site

36

Functions Predicates

1. OutPort : oport ×
function → bool

2. Supplies : oport × val →
bool

3. InPort : iport×function →
bool

4. Accepts : iport×val → bool

5. Carries : channel × val →
bool

6. Connects : channel ×
oport× iport → bool

1. Function(parser, analyzer)

2. OutPort(oast,parser)

3. ∀v[Supplies(oast, v) ⊃
ast(v)]

4. InPort(iast,analyzer)

5. ∀v[ast(v) ⊃ Accepts(iast, v)]

6. Channel(ast channel)

7. ∀[ast(v) ⊃
Carries(ast channel, v)]

8.
Connects(ast channel,oast,iast)

Table 5.1: Architectural Specification for Compiler using Data Flow
Style in First Order logic

serves as the same purpose as a port in the dataflow style. The name of
every different call site must be unique. The shared memory style has the
following style specific sorts, variable, Holds, CallSite, Writes, Puts, Reads
and Gets. Its definition and use is explained in the table 5.4.1

5.4.2 Defining Name Mapping

An Name Mapping (IN)associates the objects declared in an abstract ar-
chitecture with objects declared in a concrete architecture. The name for
Dataflow style to Shared Memory style is defined as-

37

Functions Predicates

1. Holds : variable × val →
bool

2. CallSite : site×function →
bool

3. Writes : wsite× variable →
bool

4. Puts : wsite× val → bool

5. Reads : rsite × variable →
bool

6. Gets : rsite× val → bool

1. Function(parser, analyzer)

2. Variable(tree)

3. ∀v[ast(v) ⊃ Holds(tree, v)]

4. CallSite(site1, parser)

5. ∀v[Puts(site1, v) ⊃ ast(v)]

6. Writes(parser, tree)

7. CallSite(site2, analyzer)

8. ∀[ast(v) ⊃ Gets(site2, v)]

9. Reads(analyzer,tree)

Table 5.2: Architectural Specification for Compiler using Shared
Memory Style in First Order logic

oast 7→ site1

iast 7→ site2

ast channel 7→ tree

5.4.3 Defining Style Mapping

A style mapping says how the constructs of the abstract-level style can be
implemented in terms of the constructs of the concrete-level style. More
specifically, it maps all atomic formulas of the abstract-level theory to for-
mulas of the concrete-level theory. Let IS denote the style mapping which is

38

defined as-
Function(t1) → Function(t2)

Outport(t1, t2) → CallSite(t1, t2) ∧ ∃vPuts(t1, v)
Supplies(t1, t2) → Puts(t1, t2)
InPort(t1, t2) → CallSite(t1, t2) ∧ ∃vGets(t1, v)
Accepts(t1, t2) → Gets(t1, v)
Channel(t1) → V ariable(t1)
Carries(t1, t2) → Holds(t1, t2)
Connects(t1, t2, t3) → Writes(t2, t1) ∧Reads(t3, t1)

5.4.4 Interpretation Mapping

An interpretation mapping is determined from a name mapping IN and a
style IS as follows: for every predicate P, all terms t1, t2,.....t1, every variable
x, and all formulas F and G of the abstract language,

1. I(P (t1, t2, t3...tn)) = IS(P (IN(t1),
IN(t2), ...IN(tn)))

2. I(¬F) = ¬(I(F))

3. I(F ∧G) = I(F) ∧ I(G)

4. I(F ∨G) = I(F) ∨ I(G)

5. I(F ⊃ G) = I(F) ⊃ I(G)

6. I(∀xF) = ∀xI(F)

7. I(∃xF) = ∃xI(F)

Let ID
M denote the interpretation mapping from theory ΘD, to theory

ΘM . Both the ground facts and general axioms in ΘD must be mapped. For
example-

39

ID
M(Connects(ast channel, oast, iast))

= IS(Connects(IN(ast channel), IN(oast), IN(iast)))

= IS(Connects(tree, site1, site2))

= Writes(site1, tree) ∧Reads(site2, tree)
which is intended implementation.

40

Chapter 6

Mathematical Semantics of
Architectural Connectors

6.1 Introduction

In this chapter, we are taking a system level perspective of softwares. We are
looking softwares as a collection of interconnecting components. In a modular
approach to software development, software system is built around existing
components. Existing components are augmented whenever necessary while
preserving their properties. Here, our main objective is to define collected
behavior of a software from the behavior of individual components. To do
this we are making use of categorical techniques.

Earlier, categorical techniques are effectively used to provide semantics
for various notions that are found in General System Theory [7]. Fiadeiro
et.al. adapts those techniques to software system. Our discussion in this
chapter is primarily based upon the framework proposed by Fiadeio et. al.
in [7]. We have selected three different notions i.e.- configuration of a soft-
ware system, interconnection of components, and architectural connectors,
to emphasize the role of categorical techniques in software system design.
Category Theory is all about mathematical structures and mapping between
those structures. Hence, Second section of this chapter gives necessary cat-
egorical background required to define semantics for configuration, intercon-
nection, and connectors. Component is an essential ingredient of any system.
So, in the Third section, we are going to specify design of a component in
CommUnity. CommUnity is a design specification language that suits our

41

requirement. Unlike, other commercial design specification languages (IDL
and UML), CommUnity is a very simple design specification language. Com-
mUnity offers a minimal set of features for writing component specification.
Hence, essentials of CommUnity language are discussed in the Third section.
Here, we must clarify that providing semantics for interconnection, configu-
ration and connectors in the category theory is not dependent on any a par-
ticular language for component specification. As said earlier, category theory
is all about mathematical structures and mapping between those structures.
In the Fourth section, we objectifying components in two different mathe-
matical structures called signature and design. Fourth section, also defines
mapping between these two structures. Finally, Fifth section develops the
semantics for configuration, interconnection and design using ideas defined
in the earlier sections.

6.2 Category Theory

6.2.1 Basics of Category Theory

Categories originally arose in mathematics out of the need of a formalism to
describe properties of different mathematical structures in a unified way. A
category itself is a mathematical structure. It is a generalization of mathe-
matical structures like ordered sets, poset, groups, and monoids. A category
theory is an abstract structure. A collection of objects, together with a col-
lection of arrows between them. For example, the objects could be geometric
figures and arrows could be ways of transforming one into another. The no-
tion of function is one of the most fundamental in mathematics. Category
theory is the algebra of function. The principal operation on function is
taken to be composition.

An essential to computer programming is the ability to abstract from the
real world problem to a machine based representation with which solution
is to be computed. During abstraction procedure, our prime concern is not
with internal representation involved with the operations to be carried out
and how they combine.

Category theory provides just an abstraction, studying objects and arrows
between them and the properties and constructs which may be defined in
terms of arrows and their composition.

Fundamental to success of such an abstraction is the wealth of information

42

about the object is embodied in the arrows between them. A category has
objects and morphism. We have no immediate access to internal structure
of objects. Thus all properties must be expressed in terms of morphisms.

Category theory has role in program specification. Indeed many familiar
programming tasks can be described in categorical terms.

Category theory is used as a mathematical tool in the semantics of pro-
gramming languages.

Here, we are defining categories, and two other universal constructions
found in category theory i.e. coproduct and colimit. We are using universal
constructions co-product and co-limit in formulating architectural semantics.

Definition 6.1 (Categories) A category A consists of a set of objects called
obj(A) and a set of morphisms or arrows called Arr(A). The objects are
denoted-

A,B, C,X, Y, Z

and morphism are denoted by

f, g, h.........

Further

• Each morphism has a designated domain and codomain in Obj(A) when
the domain of f is A and the codomain of f is B we write f : A → B

• Given morphism f : A → B, g : B → C there is designated composite
morphism gof : A → C

• Given any object A there is a designated identity morphism 1A = A →
• The data above is required to satisfy the following.

– Identity Law If f : A → B then 1Bof = f and fo1A = f

– Associative Law If f : A → B, g : B → C and h : C → D then
(hog)of = ho(gof) = A → D

Definition 6.2 (Coproduct) A coproduct of two objects A and B is an
object A + B together with two arrows i1 : A → A + B and i2 : B → A + B,
such that for any object C and a pair of arrows f : A → C, f : B → C,

43

there is exactly one arrow [f, g] : A + B → C making the following diagram
commute.

In the category SET, the disjoint union x
⊕

y is the co-product of x and
y.

Definition 6.3 (Pushout) Let C be a category and f : x → y, g : x → z
are the morphisms of C. A pushout of f and g consists of two morphisms
f ′ : y → w and g′ : z → w such that-

• f;f ’ = g;g’

• for any other two morphisms f ′′ : y → v and g′′ : z → v such that
f ; f ′′ = g; g′′, there is a unique morphism k : w → v in C such that
f ′; j = f ′′ and g′k = g′′

In SET, pushouts perform

6.3 Specifying Design of a Component

Fiadeiro et.al. uses CommUnity as a language to specify design of com-
ponents. Interface Definition Language(IDL) and Unified Modelling Lan-
guage(UML) are other examples of languages that are used in practice to
specify design of components. The choice of CommUnity as a design specifi-
cation language is guided by its simplicity. CommUnity provides a minimal
set of features that are required for component specification. Using the fea-
tures offered by CommUnity, we are able to capture all kinds of interactions
of component to outside world. IDL/UML also allows us to specify internal
design details of components. Here, we are giving more importance to in-
teraction of component to outside world than internal details. CommUnity
supports separation of interaction from computation. CommUnity allows us
to specify component design at two different levels i.e. signature level and
another one at design level. In CommUnity methods or functions are called
as actions. At signature level, actions are described by number and type of
parameters it takes as input and output. At design level, functionalities of
actions is specified using sentences in First-Order logic. Following section
discusses elements of CommUnity language.

44

6.3.1 Elements of CommUnity

The two basic elements of CommUnity are Actions and Variables. The gen-
eralized structure of component specification in CommUnity is given below-

Component P is
out out(V)
in in(V)
prv prv(V)
do
g ∈ sh(Γ) g[D(g)] : L(g), U(g) → R(g)
g ∈ prv(Γ) g[D(g)] : L(g), U(g) → R(g)

1. Variables(V): V is the set of variables. Variables can be declared as
input, output, or private. Input variables are read from the environ-
ment and cannot be modified by the component. Output and private
variable are local to the component. loc(V) is used to denote union of
output and private variables.

2. Actions (Γ) The named action can be declared as shared or private.
Private action represent internal computation. Shared action represent
possible interaction between the components and enviornment. For
each action name ,g, the following attributes are defined

• Write Frame (D(g)) : D(g) ⊆ ofloc(V) The subset of local vari-
ables that gets affected or written by action g. Given a variable
v ∈ V we also denote D(v) ⊆ Γ to denote set methods that mod-
ifies variable v.

• Precondition L(g) and U(g) Lower and upper bounds on enabling
condition of g.

• Postcondition R(g) is a post condition of command g.

Example 6.1 (Design Specification of a Buffer in CommUnity)

Component buffer [t: sort bound: t] is
out i : t
in o : t
prv rd : bool, b : list(t)
do

45

sh [] put : (—b— ¡ bound) → b := b.i
prv [] next : (|b| > 0∧ ∼ rd) → o := head(b) ||b := tail(b)||rd := true
sh [] get : rd → rd := false

This example models a buffer with limited capacity working on FIFO or-
der. We frequently come across this kind of buffer in applications like printer
drivers, networking protocols etc. t is a type variable. So, design of compo-
nent buffer is parametric one. Here; i, o, and {rd, b} are output, input,
and private variables respectively. Actions supported by the buffer are put,
next, and get. put is a shared action for which (|b| < bound) is an en-
abling condition with b as its write frame. Action next is a private one with
(|b| > 0∧ ∼ rd) as enabling condition with {o, b, rd} in its write frame. For
shared action get (rd == True) is the enabling condition and {rd} as a write
frame.

6.4 Design Objects and Morphisms

As seen in the second section, categories are collection of objects and arrows.
Normally in any category, objects are mathematical structures and arrows
are structure preserving maps. We are using categories to model software as
a system. So, software components takes the form of objects in the resultant
category. We are assigning different meaning to arrows depending on the
context. To model software component as a object in the category, software
component should be given some kind of mathematical structure. Here,
we are representing software component using two different mathematical
structures i.e. Signatures and Designs. Following sections formally defines
these structures-

Definition 6.4 (Signature) A signature is a tuple < V, Γ, tv, ta, D > where

• V is an S-indexed family of mutually disjoint finite sets.

• Γ is a finite set.

• tv : V → {out, in, prv} is a total function.

• ta : Γ → {sh, prv}

46

• D : Γ → 2loc(V) is a Total function.

Following example illustrate how to represent the component buffer that
has been defined in example 3.1

Example 6.2 The signature of component Buffer is a tuple < V, Γ, tv, ta,D >
with V, Γ, tv, ta, and D defined as follow-

• V = {i, o, rd, b }
• Γ = { put, next, get }
• tv : V → {out, in, prv}

i 7→ out
o 7→ in
rd 7→ prv
b 7→ prv

• ta : Γ → {sh, prv}
put 7→ sh
next 7→ prv
get 7→ sh

• D : Γ → 2loc(V)

put 7→ {b}
next 7→ {o, b, rd}
get 7→ {rd}

Definition 6.5 (Design) A design is a pair < Θ, ∆ >, where Θ =< V, Γ, tv, ta, D >
is a signature and ∆, the body of the design is a tuple < R,L, U > where:

• R assigns to every action g ∈ Γ, a proposition over V ∪D(g)′

• L and U assign a proposition over V to every action g ∈ Γ

Following example illustrates the design structure for Component Buffer
specified in the example 3.1-

47

Example 6.3 The design for Component buffer is a pair < Θ, ∆ > where
Θ =< V, Γ, tv, ta,D > is same as that of defined in the example 3.3. Here
we are defining ∆

• Postconditions R : Γ → P (V ∪ D(g′))

put 7→ {b = b.i}
next 7→ {o = o.head, b = tail, rd = True}
get 7→ {rd = False}

• Preconditions (L and U):
put 7→ {|b| < bound}
next 7→ {|b| > 0∧ ∼ rd}
get 7→ {rd = True}

From these examples, we can note that, signature structure defines the
interface of a component. Design structure assigns precondition and post-
condition to the actions in the component. This is nothing but specifying
components contract. (Design by Contract.) This also defines the object
in the category. So, the category that we are using to model the software
system will have to different types of objects one is signature and another
one is design.

Now, we are in a position to define arrows interconnecting these objects.
We will have two different types of arrows- 1. Signature Morphism: In-
terconnecting signature objects and another 2. Design Morphism inter-
connecting design objets. Informally, purpose of these morphisms is to check
whether the contract specified by the component is satisfied in the resul-
tant system or not. Contract checking is performed in two different steps.
First, signature morphism allows to identify the corresponding variable and
synchronizing actions in the system. Second, design morphism allows to per-
form a check on preconditions and post-conditions. These morphisms put
constraints on mapping so that only valid assignments be defined by the
morphisms.

Definition 6.6 (Signature Morphism) A morphism σ : θ1 → θ2 between
signatures θ1 =< V1, Γ1, tv1, ta1, D1 > θ2 =< V2, Γ2, tv2, ta2, D1 > is a pair
< σvar, σac > where-

1. σvar : V1 → V2 is a total functions satisfying:

48

(a) sort2(σvar(v)) = sort1(v) for every v ∈ V1

(b) σvar(o) ∈ out(V2) for every o ∈ out(V1)

(c) σvar(i) ∈ out(V2) ∪ in(V2) for every i ∈ in(V1)

(d) σvar(p) ∈ prv(V2) for every p ∈ prv(V1)

2. σac : Γ2 → Γ1 is a partial mapping satisfying for every g ∈ Γ2. σac(g)is
defined:

(a) if g ∈ sh(Γ2) then σac(g) ∈ sh(Γ1)

(b) if g ∈ prv(Γ2) then σac(g) ∈ prv(Γ1)

(c) σvar(D1(σac(g))) ⊆ D2(g)

(d) σac(D2(σvar(v))) ⊆ D1(v) for every v ∈ loc(v1)

As defined in the above section, signature morphism is a pair of two
functions σvar and σac.

σvar is a total function from V1 to V2. i.e. Component → System. σvar

identifies a variable in the system for each component variable. While per-
forming these assignments rules from 1.a to 1.d be satisfied. $ Rule 1.a
enforces type-checking and says that type of the system variable be matched
with the type of component variable. $ Rule 1.b says that output variable
of component should become the output variable of a system. $ Rule 1.c
is performing an assignment of input variable of a component with a sys-
tem variable which may be either an input or output variable. $ Rule 1.d
is performing an assignment of a private variable of a component with pri-
vate variable of a system. In short, these rules are telling us how to keep a
component in a container.

σac is a partial function from V2 to V1 i.e. from a System → Component.
This function has a opposite direction as that of σvar. From the action point
of view, system plays a role of synchronizing actions of individual compo-
nents. A unique action from the set of action of a component is associated
for a synchronizing set of a system. But reverse is not true, a component
method may participate in more than one synchronizing set of a system. To
satisfy this functional property, mapping goes from system to component.
The mapping is partial in the sense that out of total actions supported by
the system only few will be realized by a component. $Rule 2.a and $ Rule
2.b assigns private methods of a system to private methods of a component
and shared methods of a system to shared methods of a component. The

49

next two rules says that actions of the system in which a component is not
involved can not have local variables of the components in its write frame.

Definition 6.7 (Design Morphism) A morphism σ : P1 → P2 of designs
P1 =< Θ1, ∆1 > and P2 =< Θ2, ∆2 > and, consists of a signature morphism
σ : Θ1 → Θ2 such that for every g ∈ Γ2, σac is defined:

1. R2(g) ⊃ σ(R1(σac(g)))

2. L2(g) ⊃ σ(L1(σac(g)))

3. R2(g) ⊃ σ(U1(σac(g)))

Design morphism helps us to check whether the preconditions and post-
condition specified for every action in the component is maintained by the
system or not. It puts additional constraints for valid action mapping. Con-
dition 1 reflects the fact that the effects of the actions of the components can
only be preserved or made more deterministic in the system. This is because
the other components in the system cannot interfere with the transforma-
tions that the actions of a given component make on its state. Condition
2 and 3 allow the bounds that the component design specifies for enabling
action to be strengthened but not weakened.

6.5 Semantics for Interconnection and Con-

figuration

As seen in the section 3.3 names of the variables are local to the components.
If certain named variable appears in more than one component, it does-not
mean that the variable’s value is shared by both component. If we require
such kind of sharing then that has to be made explicit. Interconnection is a
mechanism that allows us to make such name bindings explicit in the design.

Configuration of a system allows us understand the collected behavior of
the system from the individual components depending upon how the com-
ponents are placed within the system. Within a system, components may
be placed in two different ways. In the first arrangement, a system is just
a collection of components having no interaction between them. In the sec-
ond kind of arrangement, components are interconnected and has interaction
among themselves. Our objective is to derive the collected behavior of the

50

Component Pb [t: sort] is
out a : t
prv b : t
do
sh [] f : (true) → a := ψ(a, b)
prv [] g : (true) → b := ψ(a, b)

system in both situations using the categorical constructions. First, We are
defining design of two components that we are extensively using in the run-
ning example to illustrate applying of categorical constructions.

Example 6.4 (Component Pr)
Component Pr [t: sort] is
in x : t
prv d : bool, a : t
do
sh [] r : (∼ d ∧ (x 6= a)) → a := x
prv [] t : (∼ d ∧ (x = a)) → d := true
Component Pr reads an input variable x continuously from the environment
through the action r , until it reads the same value twice upon which method
t sets the boolean variable d. From this specification we can construct two
objects called SIGNATURE(Pr) and DESIGN(Pr)

Example 6.5 (Component Pb) From this specification we can construct
two objects called SIGNATURE(Pb) and DESIGN(Pb)

6.5.1 Semantics for Interconnection

The model of interaction between components in CommUnity is based upon
on action synchronization and the interconnection of input variables of a
component with output variables of other component. This procedure is also
called name binding.

In the above example, we would like to establish a communication chan-
nel between component Pr and Pb. Purpose of this interconnection is that
Pr should read the value provided by Pb. To achieve this, we interconnect-
ing output variable of Pb with input variable of Pr and synchronizing the
execution of method f with method r.

51

So, we are defining a third object called ChC as shown in the figure.
Componet Ch C will have one input variable c and a shared method s. Also,
we are defining two morphisms-

1. σa i.e. ChC → Pb . This morphis, will define mappings like { c 7→ a,
s 7→ f }

2. σa i.e. ChC → Pb . This morphism, will define mappings like { c 7→ x,
s 7→ r }

What we have done above to establish interconnection between two com-
ponent is equvivalent to writing a glue code in programming language. The
object that we have defined along with its morphism has mathematical struc-
ture. It means that the objects will take the form either signature or design
structure and morphisms will take the form of either signature or design
morphisms.

Ch C
 in c: t
 do
 sh s: []

PrP
b

Figure 6.1: Interconnection Semantics

6.5.2 Semantics for Configuration

Configuration allows us to derive the collected behavior of a system from its
components. Let us consider a simple case in which a system is composed
of two components having no interactions between them. Two components
that we are talking about are Pr and Pb. By looking at the signature of two
given components, we can infer that the system which is composed of these

52

components should have four methods in it i.e. r, t, f, and g. The category
construction that will give such amalgamated sum is the coproduct. By
taking the coproduct of Pr and Pb we will have the component that will
exhibit the behavior of Pr and Pb.

The coproduct of Pr and Pb is an object denoted by Pr||Pb and it has two
morphisms from ib : Pb → Pr||Pb and ir : Pr → Pr||Pb Component design
for the object Pr||Pb and mappings defined by the arrows ir and ib is given
below:

Component Pr||Pb [t: sort] is
in x : t
out a : t
prv d : bool, a0, b : t
do
sh [] r : (∼ d ∧ (x 6= a0)) → a0 := x
prv [] t : (∼ d ∧ (x = a0)) → d := true
sh [] f : (true) → a := ψ(a, b)
prv [] g : (true) → b := ψ(a, b)

ib : Pb → Pr||Pb

a 7→ a
b 7→ b
f 7→ f
g 7→ g

ir : Pr → Pr||Pb

x 7→ x
a 7→ a0
d 7→ d
r 7→ r
t 7→ t

Notice that the attribute a of Pr was renamed. This is because coproduct
models disjoint sum so any thing that has same name must be renamed.

But, very few systems are there, in which component have no interac-
tion among themselves. Most of the systems are constructed by interacting
components. Pushout is the categorical construction used to derive the the
collected behavior of the system having two interacting components. Follow-
ing example illustrates this mecahnism.

Pushout of two objects Pr and Pb is a third object denoted by Pr||cPb

alongwith two morphisms µr and µb. The definition of Pr||cPb in CommUnity,

53

and mapping provided by µr and µb is given below-

Component Pb||cPr [t: sort] is
in a : t
out a0 : t
prv d : bool, b : t
do
sh [] fr : (∼ d ∧ (a0 6= a)) → a := ψ(a, b)||a0 := a
prv [] t : (∼ d ∧ (a0 = a)) → d := true
prv [] g : (true) → b := ψ(a, b)

µb : Pb → Pb||cPr

a 7→ a
b 7→ b
f 7→ fr
g 7→ g

µr : Pr → Pb||cPr

x 7→ a
a 7→ a0
d 7→ d
r 7→ fr
t 7→ t

6.6 Semantics of Architectural Connectors

Architectural connectors are defined as a collection of roles whose behavior is
governed by the glue specification. Hence, architectural connection consists
of-

• Two designs G and R, called the glue and the role of the connection,
respectively.

• A signature θ and two morphisms σ : design(θ) → G ;µ : design(θ) →
R connecting the glue and the role.

• A connector is a finite set of connections with the same glue that,
together, constitute a well formed configuration

• The semantics of a connector is the colimit of the diagram formed by
its connections.

54

Chapter 7

Conclusions

This report presents an overview of software architecture field and devel-
ops basis for formalizing semantics of architectural connectors. The report
concludes with-

• Architecture of a software system is the highest possible abstraction
to describe the structure of a software system. Software Architecture
describes a software system in terms of constituent components and
interactions among those components. This type of description offers
enormous benefits and challenges. Benefits are in terms of increased
level of understanding, reuse, and better communication.

• Challenges offered by the software architecture are devising better ways
to describe the software system. Most of the earlier research was fo-
cussed to solve the problem of how to describe a software architecture.
As a result, a set of Architectural Description languages have been
emerged. These languages either extends an existing language or a
new ADL was created. Adding new features to ADLs is still a open
area of research.

• Extracting architectural specification from requirement is a difficult
task but use of architectural styles and unit operations simplifies the
task of designing an architecture.

• Then report presents semantics of architectural connectors in three
different formalisms i.e. First Order Logic, Process Algebra and Cat-
egory theory. Each one of this formalism supports a different kind of

55

reasoning. Use of the first order logic allows us to answer the question-
whether a concrete architecture realizes an abstract architecture or not.
By using Process Algebra we can answer the question- whether the use
of connectors is consistent with its definition or not. Category the-
ory allows us a set of operators. These operators derives the collected
behavior of a system from the specification of components and their
interactions.

7.1 Recent Trends

The current research in the field of software architecture is addressing fol-
lowing problems-

• Linguistic researchers are devising new mechanisms for enforcing archi-
tectural specification at run time [1].

• Researchers engaged in the field of formalizing software specification
are trying to give semantics to higher order connectors, and defining a
category theory based algebra for connector composition.[7]

• Analytical models for estimating functional and nonfunctional proper-
ties from architectural specification is also one of major area of research
currently pursued by researchers. [4]

7.2 Proposed Future Work

As a continuation of the study of architectural connectors, it has been pro-
posed to undertake the architectural modelling of Linux operating system.
The proposed work includes

1. To extract architectural information from the existing source code.

2. To identify architectural connectors used in the Linux.

3. To model Linux architecture using ADLs discussed in the report.

56

Bibliography

[1] Jonathan Aldrich. Using types to enforce architectural structure. Un-
plished.

[2] R. Allen and D. Gallen. A formal basis for architectural connection.
ACM TOSEM, 6(3):213–249, May 1997.

[3] L. Bass. Software Architecture Practice. Addision-Wesley, 1998.

[4] Len Bass. Achieving usability through architectural styles. Conference
on Human Factors in Computer Systems, pages 171–172, 2000.

[5] L. Coglianese. Dssa- adage: An open enviornment for architecture based
avionics development. In In Proceedings of AGARD’93, May 1993.

[6] Eric Dashofy. An infrastructure for the rapid development of xml-based
architecture description language.

[7] Jose Luiz Fiadeiro. A mathematical semantics for architectural connec-
tors.

[8] D. Garlan. Exploiting style in architectural design environments. In In
Proceedings of SIGSOFT’94 The Second ACM SIGSOFT Symposium on
the Foundations of Software Engineering,. ACM Press, December 1994
179-185.

[9] David Garlan. Acme: An architecture description interchage language.
In Proceedings of CASCON’97, November 1997.

[10] David Luckham. Specification and analysis of system architecture using
rapde. In IEEE TRansactions on Software Engineering Special issue on
Software Architecture, pages 336–355, April 1995.

57

[11] Nenad Medvidovic. Modeling software architectures in the unified
modeling language. ACM Transactions on Software Engineeirng and
Methodology, 11(1):2–57, January 2002.

[12] Nikunj R Mehta Nenad Medvidovic. Understanding software connector
compatibilities using a coonector taxonomy. December 2002.

[13] Mark Moriconi and Xiaolei Quian. Correctness and composition of soft-
ware architectures. 1994.

[14] Dewayne E. Perry. Foundations for the study of software architecture.
Software Engineering Notes, 17(4):40, October 1992.

[15] Hoare C. A. R. Communicating Sequential Processses. Prentice Hall,
Englewood Cliffs N. J.

[16] Nenad Medvidovic Richard N. Taylor. A component and message based
architectural style for gui software. IEEE Transactions on Software
Engineering,, 22(1996):390–406, June 1996.

[17] A. W. Roscoe S. D. Brookes, C. A. R. Hoare. A theory of communi-
cating sequential processes. Journal of the Association for Computing
Machinery, 31 No. 3:560–599, July 1984.

[18] Mary Shaw. Abstractions for software architecture and tools to support
them. IEEE Transactions on Software Engineering, Special Issue on
Software Architecture, 21(4):314–335, 1995.

[19] Mary Shaw. Software Architecture Perspective on an Emerging Disci-
pline. Prentice Hall India, first edition, 2000.

58

