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Environment Matting Revisited

Figure 1: A transparent wine glass, a colored dragon, a mirrored table, and a chess pawn have been digitally composited in novel environ-
ments. Myriad light transport effects such as refraction, reflection and selective attenuation have been preserved. Best viewed in color.

Abstract

The most convincing environment matting (EM) techniques use a
large number of (monochrome, or two-tone) probing images to ex-
tract the matte. In this paper, we use multiple colors as cues, noting
that color encodes several bits of information. Compared to earlier
works, we use substantially smaller number of preprocessed im-
ages in the form of a color cube environment. If c colors are used
for the cube each of whose faces is k×k, the number of images we
needed is dlogc 6k2e. The number six comes in becomes we want
to emphasize that the problem needs to be solved in a complete
environment. Further, we also provide a version in which only 1
image is used for real-time imaging purposes.

We show quantitative as well qualitative results in the form of im-
ages that exhibit sophisticated illumination effects. The rendered
objects show effects such as highlights, simultaneous refraction and
reflection (instead of pure specular refraction). Objects my be col-
ored, and influence the attenuation of light. We have minimal mem-
ory and computational requirements. Applications of this work in-
clude the relighting for virtual and augmented reality.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Gen-
eration: — Display algorithms ; I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism: — Color, shading, shadowing,
and texture.

Keywords: image-based rendering, environment matte, colored
structured patterns, cube-map, refraction, reflection, colored trans-
parency, real-time capture.

1 Introduction

It is fascinating to look at transparent objects exhibiting complex,
yet beautiful, optical properties. The breathtaking beauty emanates
from the effects of refraction and reflection, often coupled with
glossy and light scattering effects. Further, transparent, colored ma-
terials exhibit selective wavelength-dependent attenuation resulting
in nice color shifts. These effects are generated due to the interplay
of the involved light matter interaction that occurs when light hits
the boundaries of the transparent object or travels through it.

Techniques based solely on captured images, which can be used
to change the illumination of a scene or of an object, are termed
as image-based relighting (IBRL) techniques. Lighting can be
changed by introducing new light sources in a scene, modifying
the existing light sources (position, intensity) or changing the en-
vironment in which the object is placed. Traditional matting and
compositing techniques can be interpreted as IBRL methods. It in-
volves capturing an image of an arbitrary object in an environment
and then determining the color and opacity at each image pixel, rep-
resented by an alpha channel [Porter and Duff 1984]. Traditional
compositing then simply involves placing (relighting) this object in
a novel environment using the opacity to control the relative contri-
butions to each pixel.

A typical matting and compositing technique, Blue screen matting
[Smith and Blinn 1996], captures images of the object with tai-
lored backdrops, but it fails to render the transparency correctly
after matte extraction. Although traditional matting and composit-
ing have proven tremendously useful in film, video, and computer
graphics production, they nevertheless fail to simulate the key ef-
fects exhibited by transparent objects, that are essential for realism.
To combat this, impressive methods have been developed in the re-
cent past as mentioned in the next section.

1.1 Related Work

In [Zongker et al. 1999], the authors develop a mathematical frame-
work for modeling the effects of refraction and reflection of light
passing through transparent objects, by analyzing several captured
images of the objects in front of hierarchical two-color patterned
backdrops (and sidedrops). Once the model is created, the object
can be composited in novel backgrounds, with all the relevant ef-
fects. But this model had several limitations, serious among them
being that the contributions to a pixel of the foreground image was
considered from only one region of a backdrop (sidedrop). In re-
ality, multiple contributions (of regions) corresponding to the same
backdrop are observed, for example when reflection and refraction
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result in two groups of rays that strike the same backdrop. These
issues were tackled in an extended and more accurate model of En-
vironment Matting(EM) and compositing [Chuang et al. 2000] at
the expense of using significantly additional backdrops. Neverthe-
less, as pointed in [Peers and Dutre 2003; Zhu and Yang 2004],
problems remain. One issue is the error prone non-linear optimiza-
tion which is mitigated by using a large number of “wavelet pat-
terns” [Peers and Dutre 2003] or working in the frequency domain
[Zhu and Yang 2004]. Another issue is moving from a parametric
Gaussian framework to the use of the non-parametric framework
[Wexler et al. 2002; Zhu and Yang 2004; Peers and Dutre 2003].
Notable in [Peers and Dutre 2003] is an EM extension where they
simulate complex effects by capturing (basis) images of the object
in front of thousands of wavelet illumination patterns, determined
on the fly depending on the observed properties of the environment
matte. During compositing, the novel background is first projected
onto the space of those wavelet illumination patterns to obtain the
appropriate coefficients. These coefficients are then used in con-
junction with the basis images to compute the composite image.
A major strength of this approach is that it captures diffuse reflec-
tions, which were found to be difficult to capture with the other
approaches [Zongker et al. 1999; Chuang et al. 2000] since the illu-
mination due to a sweep stripe was too weak. A possible solution,
in that context, of acquiring high-dynamic images was proposed
in [Chuang 2004]. [Matusik et al. 2002] combine EM [Chuang
et al. 2000] and reflectance fields [Debevec et al. 2000] to acquire
an image-based representation of transparent objects. They also re-
construct the 3D shape of the object, which allows the object to be
viewed from novel viewpoints by interpolating between the envi-
ronment mattes and reflectance images of nearby viewpoints.

In all of the above methods, the backdrop images were under user
control. [Wexler et al. 2002] presented an EM extension that is
able to work without the knowledge of the exact form of the back-
drop images used. The method, however, relies on having enough
background samples or sufficiently rich backdrop images (e.g. by
moving a backdrop image behind the scene) to successfully extract
an environment matte. Further, their method is effective for cap-
turing colorless, perfectly specular objects (with a possible opaque
alpha channel) only.

1.2 This Paper and Our Contributions

Despite the impressive achievements, the principal disadvantages
of the above methods is the use of a large number of backdrop im-
ages. For example, [Peers and Dutre 2003] requires a huge storage
for the basis images (average size of 2.5GB). The time limit for de-
termining the wavelet illumination patterns and capturing the cor-
responding basis images was set to 12 hours. Similarly, [Zhu and
Yang 2004] requires about 675 images for a 320x320 sized image.

• In general, all the methods which assume multiple regions of
the backdrop can impact the transparent object require at least
2k × 2k input images, for an output resolution of k × k. Our
method uses a color space decomposition approach that re-
quires approximately logc k input images where it is impor-
tant to note that the base of the logarithm is under our control.
This results follows because our backgrounds are coded with
c-coded decimals instead of a binary coded decimal.

• In addition to modeling multiple regions from the same back-
drop, we also model the fact that sidedrops and the floor, for
example, can simultaneously impact the object (Figure 2).
Therefore, unlike previous methods we embed the object in
a complete cubic environment map (cube map). This enable
us to discover any coupling between the various backgrounds.
The idea here is to assign unique color codes over the entire

Figure 2: In the environment matte (EM) problem, an optically ac-
tive object (here, a torus) is captured (see view frustum) against
various programmer defined backdrops. In this snapshot, the back-
drop is solid white, and three pixels (the footprint) from the (red)
ceiling, the backdrop, and the left (green) sidedrop contribute to the
observed color. By analyzing a large number of backdrops and sid-
edrops, the torus can be digitally composited in novel environments.
Our EM process uses a novel structured-colored cubic environment
map instead of previous monochrome backdrops.

cube map instead of a single face.

• A notable exception to the large number of backdrop images
issue appears in [Chuang et al. 2000] that uses a color gra-
dient as backdrop pattern. More specifically, a planar slice
of the RGB cube was used as the colors in the image. This
method is limited to perfectly specular colorless objects. Our
method is a straight forward generalization to the single back-
drop case where we use unique colors in the RGB cube that
are not necessarily limited to a single plane. As a result, we
are in a better position to avoid the noisy matte reported in
[Chuang et al. 2000].

• We demonstrate the correctness of our approach by compar-
ing our results to images of the models rendered in the same
novel environment (assuming known geometry) using a stan-
dard rendering software, Persistence-of-View RayTracer. We
are able to see desired properties such as colored transparent
objects, mirrored surfaces, as well as highlights.

While the environment mattes only provide an approximation to
the way an object truly refracts and reflects light, it produces quite
convincing and pleasing results. This then is the motivation for our
choice of color model.

1.3 Roadmap

The rest of the paper is organized as follows. In Section 2, we
present the mathematical preliminaries that form the basis of the
solution to the problem. Section 3 introduces the main idea behind
our approach. Section 3.1–3.5 details our algorithm for capturing
and rendering colored, reflective, and refractive objects in arbitrary
environments. The discussion and illustration of our results are pro-
vided in Section 4. We conclude with some ideas of future work in
Section 5.
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2 Problem Formulation

We follow the development in [Chuang et al. 2000]. Consider an
object O in a (cubic) environment map B. The (possibly virtual)
camera records, for each pixel p a value C from a blend of pixels
in B. The set of pixels which contribute to p is called the foot-
print [Wexler et al. 2002] of p. We can describe an environment as
light E(ω), coming from all directions ω. Thus we have the vector
equation,

C =

∫
W(ω)E(ω)dω (1)

The weighting function W comprises all means of light transport
of environment lighting from all directions ω through a foreground
object to the camera. Note that this equation holds under the as-
sumption that there is no wavelength coupling (e.g. fluorescence).

We now rewrite this equation as a spatial integral over a bounding
surface, an environment map T(x) (in our case, a cube environment
map). Further the equation is augmented to include an additive fore-
ground color F . This foreground color models object emissivity,
ambient illumination, and any additional reflection from lighting in
the scene that is separate from the environment map. Under these
assumptions, the equation becomes,

C = F +

∫
W(x)T(x)dx (2)

From this, various equations can be developed that allow a fore-
ground object to be embedded in a new environment with vary-
ing degrees of quality. If no assumptions are made about the na-
ture of the weighting function, then we can write a matrix equa-
tion C = F + LB where L represents a scene dependent transfer
matrix that represents all possible light transport. At the other ex-
treme, if only a small axis aligned region in the plane facing the
camera (the backdrop) is assumed to impact the foreground image,
then we have C = F + (1−α)B + Φ where α represents the cov-
erage of the pixel (in an input image) by the corresponding point on
the object surface and Φ represents the contribution of all refracted
and reflected light from the backdrop B through the same pixel. Φ
constitutes the positional information (region in the backdrop) of a
contributing pixel, and also the amount of contribution.

Chuang et al.’s [2000] formulation generalizes the weighting func-
tion for a single (side of the cube environment) texture map T(x)
as a summation of Gaussians Gi(x), n representing the number of
contributions from a texture map T(x) and Ri being an attenuation
factor,

W(x) =

n∑
i=1

RiGi(x) (3)

Here the summation is over n different portions of a backdrop back-
ground image. For modeling the complete environment, as required
in Eqn. 2, Chuang et al. [2000] independently model three sides (a
backdrop and two sidedrops) of the cube environment map. There-
fore, their weighting function is:

W(x) = W1(x)
⋃

W2(x)
⋃

W3(x) (4)

Here we use the union to indicate that the computation happens
independently over the different back and side drops. Substituting
Eqn. 3 & 4 into Eqn. 2,

C = F +

n1∑
i1=1

Ri1Gi1(x)T1(x)
⋃ n2∑

i2=1

Ri2Gi2(x)T2(x)

⋃ n3∑
i3=1

Ri3Gi3(x)T3(x) (5)

A third way ([Wexler et al. 2002]) of thinking about the weight-
ing function (over a single backdrop) is to abandon the parametric
Gaussian, and simply write it as

C = F + R
∑
u,v

W (u, v)B(u, v) (6)

which is a pixel based explicit representation of the footprint of p.
Here

∑
u,v

W (u, v) = 1.

Unlike all other work, our EM model considers the environment
encompassing the object to be a cube environment map as a whole.
It is represented as T(x), where we have six texture maps simulta-
neously affecting the foreground object. Since we must deal with
multimodal distributions, we adopt Equation 6 as our model result-
ing in

C = F +

m∑
i=1

W(xi)T(xi) (7)

There are a few points specific to our implementation that is worth
noting.

• The paradigm of working with a cube map (to discover cou-
pling) makes the task harder since we have to search over six
times the area for every pixel to find the footprint. An efficient
solution is a must.

• The weighting function W also takes into consideration the
alpha (α) associated with every pixel. Since the calculation
of α was shown in [Chuang et al. 2000], we do not focus on
computing α except to figure out the silhouette (as in [Zhu
and Yang 2004]) Pixels in the interior of the object have α =
1. We experimented with multiple values of α for pixels on
the object silhouette. In general, we found α = 0.4 to be a
conservative estimate of those pixels. The remaining pixels
have α = 0.

With higher camera resolutions available, we have to do more
work. However, we have the advantage that each pixel is
smaller justifying the above empirical values.

• As in other work, we place no constraints on the shape, or
the index of refraction (ior) of the transparent object. To en-
able comparison with a ray tracer, we use the same pinhole
synthetic camera model. Thus, multiple rays can join (as in
Figure 2) and come to a foreground pixel. However, only one
ray penetrates the pixel.

• The quantity F is computed similar to the method in [Chuang
et al. 2000] with a slight variation (Section 3.4) for the case of
the colored transparent object.

3 Our Approach

Determining the matte reduces to determining the contributing pix-
els in the background (the footprint), and their respective weights.
The key idea in our algorithm is to make each contributing pixel
of the cube map unique. A naive way of doing this would be to
illuminate one pixel at a time and sweep over the object. To cover
this area requires too many images – equal to the total surface area.
Sweeping a line segment, rather than a pixel at time, and using a
hierarchy of colored progressively finer stripe patterns [Boyer and
Kak 1987; Caspi et al. 1998; Zhang et al. 2002] reduces the number
of required images to O(logc(k)).

The input to our algorithm is a set of (foreground) images of the
scene, composed of the transparent object placed in patterned cube
maps (aka background image). These images are used for creating
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Figure 3: Number of patterns depends on number of pixels in the
background image and number of colors used for coding (Equa-
tion 8). In the pattern at the right bottom, the first, second, and
third pixels have the codes 000, 001, and 010 respectively.

a mapping between the cube map pixels and the (input) foreground
image pixels. This map is then utilized for relighting and composit-
ing in a novel environment. In the subsequent three sections, we
discuss the three primary stages of our algorithm – generating pat-
terns, which essentially assigns a unique color code to each pixel
of the cube map, generating the map, i.e., calculating and storing
the pixels from the cube map contributing to each pixel of the fore-
ground image, and relighting, i.e., compositing the transparent ob-
ject in a novel environment.

3.1 Pattern generation

In this section, we detail on the generation of patterns (for the cube
map) and their significance. The number of patterns required de-
pends on the number of pixels in the cube map and number of colors
(m) used for color coding the pixels. We choose 3-8 colors for gen-
erating these patterns. Theoretically, we could assign a unique color
to each pixel of the cube map, and thereby have just one pattern in
which the transparent object would be captured but that would make
the algorithm susceptible to noise. Note the trade off between in-
creasing the number of colors (thereby decreasing the number of
patterns and hence the number of input images) and the accuracy
of the algorithm. The intuition for the number of patterns required
for generating a unique color code for every pixel position in the
cube map is given in (Figure 3), and results (for a c-coded decimal
instead of a binary coded decimal) in the following number

d log(|Pixels|)
log(|Colors|)e = d log(k × k × 6)

log c
e (8)

Using the above formula, N patterns are generated which are used
as cube maps for enclosing the transparent object, under which im-
ages of the scene are captured. The captured N images are our input
images, which are used for generation of the mapping (between the
cube map pixels and the input image pixels).

For example, the number of patterns required for a cube map (with
each face) of resolution 512 × 512 and 3 colors for coding is 13
(Equation 8). Images of the scene composed of the transparent ob-
ject and these 13 (cube map) patterns are captured and used for the
next stage of the algorithm, finding maps. Note that the next two
stages of our algorithm (finding maps and relighting) is indepen-

dent of the resolution of a face of the cube map, but is dependent
on the resolution of the input images.

3.2 Map Generation

Let us consider the case when only one pixel in the enclosing cube
map contributes to the color of a pixel in the (input) foreground
image. Each pixel of a foreground image is observed across all pat-
terns. The sequence (color code) observed at each pixel is unique,
and hence we can find out the corresponding pixel of the cube map.
This case (when only one pixel in the background cube map affects
the pixel in the foreground image) occurs when the transparent ob-
ject has purely refractive properties. As only one of the light rays
present in the environment, after getting refracted through the ob-
ject, can reach a particular pixel in the foreground image (ray has
to pass through both the pixel and the camera pinhole), color of the
pixel is determined by the color of that (single) ray. We term this as
the case of purely refractive or reflective objects. A diagrammatic
illustration of map generation is shown in Figure 4(a).

In the general case of transparent objects with refractive and reflec-
tive properties, each pixel in a foreground image is influenced by
multiple pixels in the cube map, each contributing in definite (Fig-
ure 4(b)) proportions. We take into consideration the contribution
of the “major” pixels (ones with proportions above a threshold) in
the cube map, and thus, find the map for all the pixels in the fore-
ground image using the following recursive dominance heuristic.

The recursive dominance principle states that if pixels pi, i ∈
{1, 2, . . . , n}, with contribution values vi, i ∈ {1, 2, . . . , n} (in de-
creasing order) respectively, superpose to form a foreground pixel’s
color, then vi >

∑j=n

j=i+1
vj , ∀i ∈ {1, 2, . . . , n− 1} In the context

of transparent objects, this principle can be physically interpreted
to mean that the contribution of a refracted ray is much greater than
the contribution of a reflected ray, which in turn is greater than the
contribution of the reflected ray bounced twice, and so on. Our
experiments and results are also shown to support this heuristic
(Section 4). When only two pixels contribute to the foreground,
the principle holds trivially. Using this, and based on the principle
of superposition, we have the pseudocode for the (general case of)
map generation.

Algorithm 3.2: Map-Generation (foreground images)

1. Use three-colored (red, green, blue) patterns for generating
input images.

2. For each pixel in the foreground image,
• Find the major contributing pixel in the background

image.
• Store the index of this pixel and its contribution.
• Subtract the above contribution from the observed

values.
• Repeat the above steps until there doesn’t exist any

major contributing pixel.

The map calculated using Algorithm 3.2 is then used for composit-
ing the transparent object in novel environments. Finding an exact
match in Step 2 for the major contributing pixel is of course not
expected – a pixel using the least square measure can be found,
however.

3.3 Relighting

Relighting and compositing takes an environment cube map as in-
put and uses the map generated to relight the object. For each pixel
of the new image to be composited, we look up the map for pixels
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Figure 4: Finding the map, detecting the pixels in the background image (cube environment) which affected the (input) foreground image
pixel. In case of purely refractive/reflective objects, a pixel in the foreground image is affected by only one pixel of the background image. In
the general case (refractive and reflective objects), multiple pixels of the background image contribute to a foreground image pixel.

in the cube map (and their corresponding proportions) which con-
tribute to the color. The final color of each pixel in the composite is
determined by combining colors of the contributing pixels from the
novel cube map in their respective proportions.

So, the algorithm of capturing the transparent object and rendering
it in a novel environment is as follows:

Algorithm 3.3: The-Algorithm (foreground images, novel
environment)

1. Given the resolution of (each face) of the cube map and the
number of colors to be used for coding, generate appropriate
patterns.

2. Using the patterns generated in Step 1, capture images of
the transparent object in the patterned cube maps.

3. Apply Algorithm 3.2 to generate the map between each pixel
position in the foreground images and the pixels in the cube
map.

4. Using the map generated in Step 3 and the specified novel
environment, relight and compose the transparent object
into the scene.

3.4 Colored Objects

Transparent objects, with spatially varying unknown color, pose a
problem because, now the color of the light changes as it passes
through the object. Since the colors of a foreground image pixel
are filtered and modified, it is not possible to discover the major
pixel that contributes to the image. We adapt the solution given in
[Chuang et al. 2000].

First, instead of using arbitrary colors for the pattern, we choose
monochrome colors. This of course means that we have logarithm
to the base two in Equation 8, and thus a larger number (18 instead
of 7) of background images. In addition, we also generate three
cube maps with all faces having black (assumed intensity 0), white
and gray color respectively.

Next, we capture images Ij with the generated patterns and Q with
the solid black cube map. Recall that there is an ambient lighting
factor. As a result, Q contains pixels with values 0 (if the object is
unaffected by the ambient light), or colors β representing the true
object colors (we simply do not know the mapping yet). Consider
the image obtained by subtracting Q from one of the images I1.
Now the pixels in the resultant image are either black (value 0), or
some other non-zero value. If the value of a pixel is 0, we know

that this pixel must have come from only the black pixels in the
patterned images. The remaining pixels get their contribution from
the white pixels in the patterned cube maps. By proceeding through
the other patterned images I2 and so on, we are able to pinpoint the
exact pixel of the environment map responsible for the matte.

However, we still have no knowledge of the object’s color. This is
where the second solid image (with white background) contributes.
It gives us an estimate of the true color of the object because mul-
tiple contributing pixels could saturate the color. Therefore we use
a third (gray) image and compute the color as follows. Let N be
the color of a pixel in the novel environment map affecting a pixel
p in the foreground image. Let b, gc, and w be the foreground im-
ages obtained by rendering the object inside a solid black cube map,
solid gray cube map, and white cube map respectively. We observe
that the final color of p can be computed using:

C(p) = b(p) + N ∗ (w(p) − b(p)) + δ (9)

where δ = gc(p)− b(p)− 0.5 ∗ (w(p)− b(p). The first term tells
us the ambient illumination. The second term gives the emissivity
of the object, plus light reflected from the environment, and the
third term is a correction term for saturation. The equivalence of
this with prior methods when white is 1 and black is 0 is shown in
the Appendix; however, our formulation is slightly more robust to
saturation effects.

Figure 6: Rendered images of a transparent wine glass, with re-
fractive and reflective properties. Not the highlights created due to
the presence of bright point light sources in the scene (best viewed
in color).
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Figure 5: Rendered images of a transparent torus and a chess pawn, exhibiting only refractive properties; and a purely reflective table,
digitally composit in novel environments (best viewed in color).

3.5 Highlights

One of the most noticeable visual effect of transparent objects are
specular highlights. The objects we typically capture have curved
surfaces, and so highlights are important both, for better under-
standing of the object shape and its visual appeal. In this section,
we develop a method for recovering and generating highlights for
objects exposed to additional lighting in the scene apart from the
cube environment map.

Unlike the colored case, highlights are modeled as the foreground
color F of the object (with the restriction that it is white) and there-
fore is additive to the computed map (as in Eqn 7). For any object
exhibiting highlights, we capture a single image H of the object
exposed to bright, point-light sources and a solid black cube map
enclosing it. From Eqn. 7, we see that the observed color C = F .
Since we use point light sources, the only lit part in H are the high-
lights. Subtracting H from each of our input foreground image,
would give us a set of images having only the influence of the cube
environment map. Applying Algorithm 3.2, we compute the map
and thereby relit and composit the object into a novel environment.
Now, to create highlights on the object, we add the image H . Re-
sults for this case are in the additional material (it’s easier to appre-
ciate this in an electronic form).

4 Implementation and Results

For our novel environments, we use the data provided in [Debevec
], namely The Uffizi Gallery, Florence, St. Peter’s Basilica, Rome,
Grace Cathedral, San Francisco, Eucalyptus Grove, UC Berke-
ley, Kitchen at 2213 Vine St, Galileo’s Tomb, Santa Croce, Flo-
rence, and also generated two other environments (chess board, and
woods).

For purpose of comparison with ground truth, we generated results
for a purely refractive torus (with ior 1.5), which was relit and com-
posited in novel environments (Figure 5). The images obtained are
exactly the same as obtained using POV-Ray. The backdrop of the
chessboard is made up of violet and white, whereas the sidedrop
contains pink color; these are faithfully reproduced in the torus.
Thus even in the purely refractive case, it is possible to have colors
from the sidedrops.

Next, we show the results (Figure 7) obtained for the general case
of multiple refraction, and reflection. We exhibit the torus, a horse,
and a wine glass. We also demonstrate results using a colored torus
and the dragon captured and relit under different environments (Fig-
ure 8). For results, please check the additional material.

We also have produced results to demonstrate real time acquisition
of objects. For cases when we cannot afford to stop the motion
of an object, we use a single image (each pixel composed of an
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Figure 7: Rendered images of transparent torus, horse & glass, exhibiting reflective and refractive properties, under novel environments
(best viewed in color).

unique color) as a background image for data capture. As a proof
of concept, images of a purely refractive dice moving at 25fps along
an arbitrary path against a colored pattern were analyzed. Based on
this, the dice is composit in novel environments. For results, please
check the additional material.

All computations and timing calculations have been done with
MATLAB on a Dual-Core AMD processor with 2GB RAM. Typi-
cally, we require around 30 seconds to compute the matte for purely
refractive, reflective and colored objects of size 512×512. (An op-
timized C version is expected to take substantially less time.) The
time needed for compositing in the same categories is around 4–7
seconds. For objects exhibiting both refractive and reflective prop-
erties, the pre-processing and compositing time was found to be ap-
proximately 70 and 20-30 seconds respectively. Time taken by our
algorithm is independent of the geometry complexity of the object
(since we do not use any geometric information), but is dependent
on the (background and foreground) images’ resolution. This was
verified by performing experiments with two other image resolu-
tions, 256 × 256 and 1024 × 1024.

5 Conclusion and Future Work

Environment matting and compositing techniques involves an in-
herent tradeoff between the amount of input data required and the
quality of the discovered matte. Most of the previous impressive

techniques have come at the cost of unduly large amount of input
data. For a detailed perceptual discussion of accuracy in transparent
objects, please refer [Khan et al. 2006].

In this paper, we present a novel environment matting and com-
positing technique which uses color structured environment maps
as cues and performs adequately with a very small number of im-
ages. The approach allows us to capture objects exhibiting multi-
modal refractive and reflective properties. It also allows for selec-
tive attenuation of light (for colored transparent objects) and high-
lights. We also present a single-image method of computing mattes,
which enables us to capture the behavior of moving refractive ele-
ments.

Like most other techniques, our work assumes a fixed viewpoint.
In the future, it would be useful to have high quality real time un-
calibrated high dynamic range input data that can be processed in
real time and enable varying view points.
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APPENDIX A

Chuang et al. [2000] solves for the foreground color F (p) of a pixel
p by exposing with two solid backgrounds, say B1 and B2 using the
formula,

C(p) = F (p) + R(p) ∗ B (A-1)

So the two equations for the two unknowns are

C1(p) = F (p) + R(p) ∗ B1

C2(p) = F (p) + R(p) ∗ B2

where C1(p) and C2(p) are the observed color of the pixel under
the two solid backdrops. Given a novel backdrop N to composit
the object, the authors use the same formula with the computed
foreground color F . We have

Cnew(p) = F (p) + R(p) ∗ N (A-2)

Our formulation for colored objects (in Section 3.4) is:

C(p) = b(p) + N ∗ (w(p) − b(p)) + δ (A-3)

where, w(p) and b(p) are images of the object captured under a
white and black cube map respectively. We show that our formula-
tion results in the same result as that of Chuang et al. [2000] under
standard assumptions. Using Eqn. A-1,

w(p) = F (p) + R(p) ∗ W (A-4)
b(p) = F (p) + R(p) ∗ B (A-5)

δ = (F (p) + R(p) ∗ G) − (b(p) + G ∗ (w(p) − b(p))) (A-6)

where W ,B and G are environments (cube-maps, in our case) with
solid colors white, black and grey repsectively. Substituting the
values of Eqn. A-4, A-5 & A-6 into Eqn. A-3,

C(p) = (F (p) + R(p) ∗ B) + N ∗ R(p) ∗ (W − B)

+((F (p) + R(p) ∗ G) − (b(p) + G ∗ (w(p) − b(p))))

= (F (p) + R(p) ∗ B) + N ∗ R(p) ∗ (W − B) + F (p)

+R(p) ∗ G − (F (p) + R(p) ∗ B + G ∗ R(p) ∗ (W − B))

= F (p) + N ∗ R(p) ∗ W − N ∗ R(p) ∗ B + R(p) ∗ G

−G ∗ R(p) ∗ W + G ∗ R(p) ∗ B (A-7)

In the standard assumption W = 1 and B = 0, Eqn. A-7 becomes,

C(p) = F (p) + N ∗ R(p) (A-8)

We observe that Eqn. A-2 and A-8 are identical.
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