A Framework for Highly-Available Session-Oriented Internet Services

Bhaskaran Raman, Prof. Randy H. Katz
{bhaskar, randy}@cs.berkeley.edu

The ICEBERG Project
EECS, U.C. Berkeley
Resilient Session-Oriented Internet Services

• For Internet services (e.g., web-servers, proxies), robustness & high-availability are very important

• Session-Oriented Services
 - Client sessions live for long: many minutes to hours
 - E.g., Audio/Video transcoding proxies, Internet Video-on-demand, Game servers
 - Important, growing class of Internet applications

• For such services, high-availability means:
 - No session interruption at client in presence of failures
Motivation and Problem Scope

Motivation – Internet components subject to failure
- Should be hidden from end-clients
- Services often critical to users
- Session re-instantiation on failure little studied so far

Goal – A framework for robust session-oriented services:
- Handle failures at all levels
 - Process, machine, site-failure, network partition
- Quick recovery from failure
 - Minimal service interruption for interactive sessions

Assumption: Stateless services
- Little or no state build-up at service during session
 - All state at client(s) – problem of re-instantiating sessions is tractable
- Examples: transcoding proxies, video-on-demand servers
- We do not consider “stateful” services
 - Stateful ➔ Entirely different semantics for moving sessions
Our Framework

- In the wide-area
- Tolerance to site/network failures
- Clusters could belong to independent service providers
 - Orthogonality good for fault-tolerance

Replicated Clusters

Monitoring Mechanism
- Peer-clusters monitor each other
- Keep track of live-ness and performance behavior
 - For backup/fail-over purposes

Client

Optimal choice of server instance
- Not only for session setup but for the entire session duration
- Session-transfer on detecting poor performance or failure
Support for Session-transfer

Cluster monitors performance of its clients - or gets performance reports from clients

Periodic heart-beats to keep track of liveness - timeouts to detect failure

Peers know about each others’ clients - info exchanged during session setup

On cluster/network-failure, or poor performance, session is taken over by peer cluster
Support for Session-transfer (Contd.)

- **Process/machine failures** handled within cluster - by cluster-manager
- **Peer-monitoring** done by manager-nodes - overhead amortized across many clients
- **Replication** of cluster-manager for redundancy
- **Aggregation** of application performance information - based on client “location” - for choosing “best” peer-backup-cluster
Open Research Questions

• Location of replicated services
 - How do clusters find each other?
 - How do they agree to peer?
 • Who monitors who?
 • Who can serve as backup?
 - Which peer is the best backup for a particular client?
 - What are the trust relationships between service providers?

• Issues with inter-cluster wide-area monitoring
 - How to detect failures quickly in the wide-area Internet?
 - With low overhead?
 - Issue of false detection of failure due to latency variations
 - Stability: when site fails,
 • do not want to move all sessions to the same backup cluster
 • this may cause load-collapse of entire system
Next Steps...

- **Cluster location and peering:**
 - Graph of peering clusters should correspond to “network-closeness”. E.g.,
 - Peering can be similar to that for Internet backbone routers

- **To identify “best” backup peer cluster for a client**
 - Client clustering [Krishnamurthy & Wang, SIGCOMM’00]
 - Distance estimation [IDMaps, INFOCOM’99, INFOCOM’00]

- **Design of heartbeat mechanism & timeouts**
 - Studies of Internet delay behavior: [Allman & Paxson, SIGCOMM’99], [Acharya & Saltz, UMCP, ‘97]
 - RTT spikes are temporal ➔ possible to design **tight** and **reliable** heartbeat mechanism in the wide-area?
Related Work

Summary of related work:

1. **Cluster-based approaches:** TACC [A. Fox et al. SOSP’97], LARD [V.S. Pai et al. ASPLOS ’98]
2. **Video transcoding proxy:** Active Services [E. Amir et al. SIGCOMM 1998]
3. **Web-mirror selection methods:** SPAND [S. Seshan et al. INFOCOM 2000]
4. **Fault-tolerant distributed computing (not Internet services)**
5. **Our Approach:** Wide-area replicated clusters + Monitoring

<table>
<thead>
<tr>
<th>Scope of failure recovery</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Within cluster</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In the wide-area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local-area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Within and across wide-area clusters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session-transfer capability</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
</tbody>
</table>

Session-recovery in the wide-area not considered so far
Summary

• Requirement for robust session-oriented services:
 - Arose from use of transcoding services for device communication in hybrid networks [ICEBERG, U.C.Berkeley]
 - Availability requirements especially stringent for communication services (e.g., the telephone system)

• Framework for high availability
 - Wide-area monitoring mechanism betn. service cluster peers

• Approach promises low-overhead, low-delay fail-over
 - Amortization of control overhead with use of clusters
 - Common failure cases handled within cluster
 - Backup cluster peers for quick recovery from site/network failures

• Next step: prototype implementation and evaluation...
 - Study trade-off between (a) service re-instantiation time, (b) monitoring overhead, and (c) amount of pre-provisioning