Universal Inbox: Extensible Personal Mobility and Service Mobility in an Integrated Network

Bhaskaran Raman, Randy H. Katz, Anthony D. Joseph
ICEBERG, EECS, U.C.Berkeley

Motivating Scenario

Problem Statement

ICEBERG: An IP-Centric Middleware Approach

Internet-based Infrastructure

Design Principles
An Example Scenario

Common Functionalities

- Any-to-any data transformation
 - For communication between heterogeneous devices
 - Device data-type independence
 - Automatic Path Creation (APC) service
- User preference based ubiquitous redirection
 - For personalization of communication
 - Achieves the “control to callee” design principle
 - Preference Registry service

Common Functionalities

- Device name mapping and translation
 - For dealing with multiple user identities and different name spaces
 - Device name independence
 - Naming service
- Also, gateways to access networks at different locations
 - Provide network independence
 - ICEBERG Access Points

Illustrating Extensibility
Extensibility

- Name-space
 - Hierarchical
 - New name-spaces added by creating a new sub-tree at root
- Automatic Path Creation service
 - Operators can be plugged in
 - Old operators are reusable
- Set of ICEBERG Access Points
 - New IAPs can be added independent of existing ones
 - All old IAPs are reachable from the new one

Implementation Experience

- Extensibility
 - Universal Inbox set of features extended to many device and service end-points
- Scalability
 - Components tested for latency and scaling bottlenecks

Extensions to the Universal Inbox

Step-wise addition of eight different devices and services to the system

Each step involves addition of an IAP – for the device/network or the service

Each step integrates the device/service with ALL existing ones

Implementation Experience with Extension

- Examples of extension:
 - IAP for MediaManager
 - Allow access to the MediaManager service
 - ~ 700 lines of Java
 - No other component had to be touched
 - Operators for G.723
 - Getting codec to work required effort
 - But, adding to APC was ~ two hours of work (simple API for adding operators)

Lessons learned: What was easy?

- Extension to include a new communication service or device
 - Build an IAP
 - Add appropriate operators

Effort involved in building a service is independent of the number of networks it is made available on

Scalability Analysis

- Shared infrastructure components
 - Scaling and provisioning concerns
- Three shared core components are:
 - APC
 - Preference Registry
 - Naming service
Scalability Analysis: APC

• Performance for the following operators
 - Null (copies input to output)
 - Toast (PCM to GSM)
 - Untoast (GSM to PCM)
• Path creation latency and throughput measured as a function of increasing load
• 500MHz Pentium-III 2-way multiprocessor running Linux-2.2 with IBM’s JDK 1.1.8

Path Creation: Latency vs. Load

Path Creation: Throughput vs. Load

Calculation of Scaling

• On average
 - 2.8 calls/hour/user
 - Average duration of calls (path) is 2.6 minutes
• Using these
 - 571 users can be supported by a two-node APC service
 - Telephone network uses expensive TRAU at the Inter-Working Function for these transformations

Related Work: State-of-the-Art

• Commercial services
 - Concentrate on functionality
 - No any-to-any capability
• Research projects
 - Mobile People Architecture: Personal Proxies
 - Telephony Over Packet networks
 - UMTS
• Not all issues addressed
 - Infrastructure support for network integration
 - Extensibility
 - Scalability
 - Personal mobility + Service mobility

Summary

• Universal Inbox: metaphor for any-to-any communication and service access
• Internet-based infrastructure
• Personal mobility
 - redirection by preference registry
• Service mobility
 - result of the any-to-any capability
• Architecture viable for global operation
 - IAPs can be developed and deployed by independent service providers
• Extensibility
 - Made easy by the separation and reuse of functionality