CS422
Computer Architecture

Spring 2004

Lecture 15, 20 Feb 2004

Bhaskaran Raman
Department of CSE
II'T Kanpur

http://web.cse.litk.ac.in/~cs422/index.html

http://web.cse.iitk.ac.in/~cs422/index.html

Further Topics in ILP

e Multiple issue
« Software support
* Hardware support

Increasing ILP through Multiple
Issue

« With at most one issue per cycle, min CPI
possible is 1

- But there are multiple functional units
- Hence use multiple issue

 Two ways to do multiple issue

- Superscalar processor

* [ssue varying number of instructions per cycle
o Static or dynamic scheduling

- Very Large Instruction Word (VLIW)

e [ssue a fixed number of instructions

* Simple version: two instructions issued per

cycle

- One integer (load, store, branch, integer ALU) and

one FP

- Instructions paired and aligned on 64-bit

Superscalar DLX

boundaries - int first, FP next

CC1

CC2

CG3

CC4

CG5

CCo6

Integer

IF

ID

MEM

WB

FP

IF

ID

MEM

WB

Integer

EX

MEM

WB

FP

EX

MEM

WB

Superscalar DLX (continued)

* No conflicts, almost...

- Assuming separate register sets, only FP load,
store, move cause problems

o Structural hazard on register port
 New RAW hazard between a pair of instructions

— Structural hazard:

» Detect, and do not issue the FP operation
 Or, provide additional register ports

- RAW hazard:
 Detect, and do not issue the FP operation

e Also, result of LD cannot be used for 3
Instns.

— e — e e

Static Scheduling in the

Superscalar DLX: An Example

Loop: LD
ADDD
SD
SUBI

BNEZ
Loop: LD

LD
LD
LD
LD
SD
SD
SD
SUBI
SD
‘m e

F0, O(R1)
F4, FO, F2
0(R1), F4
R1,R1, 8

R1. L
0, O RT)Y

F6, -S(R1)
F10, -8(R1)
F14, -8(R1)
F18, -8(R1)
0(R1), F4
-8(R1), F$
-16(R1), F12
R1, R1, #40
.24(R1), F16

// FO is array element
// F2 has the scalar 'C'
// Stored result

// For next iteration

// More iterations?

ADDD F4, F0, F2
ADDD F8, F6, F2
ADDD F12, F10, F2
ADDD F16, F14, F2
ADDD F20, F18, F2

Dynamic Scheduling in the
Superscalar DLX

* Scoreboard or Tomasulo can be applied

* Should preserve in-order issue!
- Use separate data structures for Int and FP
* When the instruction pair has a dependence

— We wish to issue both in the same cycle

- Two approaches:

* Pipeline the issue stage, so that it runs twice as fast
» Exclude load/store buffers from the set of RSs

Multiple Issue using VLIW

e Superscalar ==> too much hardware
- For hazard detection, scheduling
 Alternative: let compiler do all the scheduling

- VLIW (Very Large Instruction Word)

- E.g., an VLIW may include 2 Int, 2 FP, 2 mem,
and a branch

Limitations to Multiple Issue

 Why not 10 issues per cycle? Why not 207
* Three limitations:

- Inherent ILP limitations in programs

- Hardware costs (even for VLIW)
* Memory/register bandwidth
- Implementation issues:

» Superscalar: complexity of hardware logic

* VLIW: increased code size, binary compatibility
problems

Support for ILP

e Software (compiler) support
* Hardware support
e Combination of both

Compiler Support for ILP

* Loop unrolling:
- Dependence analysis is a major component

- Analysis is simple when array indices are linear in
the loop variable (called affine indices)

 Limitations to dependence analysis:

- Pointers
— Indirect indexing
— Analysis has to consider corner cases too

Compiler Support for ILP
(continued)

* Two important techniques:

- Software pipelining
- Trace scheduling

» Software pipelining: reorganize a loop such
that each iteration is made from instructions
chosen from different iterations of the original
loop

Software Pipelining

Iteration O

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Software
pipelined [

1teration

Software Pipelining in Our

Example
Loop: LD FO, O(R1) // FOis array element
ADDD F4, F0, ¥2 // F2 has the scalar 'C'
SD O0(R1),F4 // Stored result
SUBI R1,R1,8 // For next iteration
BNEZ R1, Loop // More iterations?
Iteri: LD FO, O(R1)
ADDD F4, FO, F2 Software Pipelined Loop
SD 0(R1), F4 Loop: SD 16(R1), F4
Iteri+1: LD FO, O(R1) ADDD F4, K0, F2
ADDD F4, FO, F2 LD k0, O(R1)
SD 0(R1), F4 SUBI R1,R1,8
Iteri+2: LD F0, O(R1) BNEZ R1, Loop
ADDD F4, F0, F2
SD 0(R1). F4

Trace Scheduling

» Compiler picks a program
trace which it considers
most likely

All] = Al1] + B[1]

— Schedule instructions from
the trace

— And branches into and out Bli] = ...
of the trace

- Also need bookkeeping N
instructions in case the
trace is not taken during
execution

