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Further Topics in ILP

e Multiple issue
« Software support
* Hardware support




Increasing ILP through Multiple
Issue

« With at most one issue per cycle, min CPI
possible is 1

- But there are multiple functional units
- Hence use multiple issue

 Two ways to do multiple issue

- Superscalar processor

* [ssue varying number of instructions per cycle
o Static or dynamic scheduling

- Very Large Instruction Word (VLIW)

e [ssue a fixed number of instructions




* Simple version: two instructions issued per

cycle

- One integer (load, store, branch, integer ALU) and

one FP

- Instructions paired and aligned on 64-bit

Superscalar DLX

boundaries - int first, FP next
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Superscalar DLX (continued)

* No conflicts, almost...

- Assuming separate register sets, only FP load,
store, move cause problems

o Structural hazard on register port
 New RAW hazard between a pair of instructions

— Structural hazard:

» Detect, and do not issue the FP operation
 Or, provide additional register ports

- RAW hazard:
 Detect, and do not issue the FP operation

e Also, result of LD cannot be used for 3
Instns.

— e — e e



Static Scheduling in the

Superscalar DLX: An Example

Loop: LD
ADDD
SD
SUBI

BNEZ
Loop: LD

LD
LD
LD
LD
SD
SD
SD
SUBI
SD
‘m e

F0, O(R1)
F4, FO, F2
0(R1), F4
R1,R1, 8

R1. L
0, O RT)Y

F6, -S(R1)
F10, -8(R1)
F14, -8(R1)
F18, -8(R1)
0(R1), F4
-8(R1), F$
-16(R1), F12
R1, R1, #40
.24(R1), F16

// FO is array element
// F2 has the scalar 'C'
// Stored result

// For next iteration

// More iterations?

ADDD F4, F0, F2
ADDD F8, F6, F2
ADDD F12, F10, F2
ADDD F16, F14, F2
ADDD F20, F18, F2




Dynamic Scheduling in the
Superscalar DLX

* Scoreboard or Tomasulo can be applied

* Should preserve in-order issue!
- Use separate data structures for Int and FP
* When the instruction pair has a dependence

— We wish to issue both in the same cycle

- Two approaches:

* Pipeline the issue stage, so that it runs twice as fast
» Exclude load/store buffers from the set of RSs




Multiple Issue using VLIW

e Superscalar ==> too much hardware
- For hazard detection, scheduling
 Alternative: let compiler do all the scheduling

- VLIW (Very Large Instruction Word)

- E.g., an VLIW may include 2 Int, 2 FP, 2 mem,
and a branch




Limitations to Multiple Issue

 Why not 10 issues per cycle? Why not 207
* Three limitations:

- Inherent ILP limitations in programs

- Hardware costs (even for VLIW)
* Memory/register bandwidth
- Implementation issues:

» Superscalar: complexity of hardware logic

* VLIW: increased code size, binary compatibility
problems




Support for ILP

e Software (compiler) support
* Hardware support
e Combination of both




Compiler Support for ILP

* Loop unrolling:
- Dependence analysis is a major component

- Analysis is simple when array indices are linear in
the loop variable (called affine indices)

 Limitations to dependence analysis:

- Pointers
— Indirect indexing
— Analysis has to consider corner cases too




Compiler Support for ILP
(continued)

* Two important techniques:

- Software pipelining
- Trace scheduling

» Software pipelining: reorganize a loop such
that each iteration is made from instructions
chosen from different iterations of the original
loop




Software Pipelining

Iteration O

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Software
pipelined [

1teration




Software Pipelining in Our

Example
Loop: LD FO, O(R1) // FOis array element
ADDD F4, F0, ¥2 // F2 has the scalar 'C'
SD O0(R1),F4 // Stored result
SUBI R1,R1,8 // For next iteration
BNEZ R1, Loop // More iterations?
Iteri: LD FO, O(R1)
ADDD F4, FO, F2 Software Pipelined Loop
SD 0(R1), F4 Loop: SD 16(R1), F4
Iteri+1: LD FO, O(R1) ADDD  F4, K0, F2
ADDD F4, FO, F2 LD k0, O(R1)
SD 0(R1), F4 SUBI R1,R1,8
Iteri+2: LD F0, O(R1) BNEZ R1, Loop
ADDD F4, F0, F2
SD 0(R1). F4




Trace Scheduling

» Compiler picks a program
trace which it considers
most likely

All] = Al1] + B[1]

— Schedule instructions from
the trace

— And branches into and out Bli] = ...
of the trace

- Also need bookkeeping N
instructions in case the
trace is not taken during
execution




