CS698T

Wireless Networks: Principles and Practice

Topic 06
Modulation

Bhaskaran Raman,
Department of CSE, IIT Kanpur

http://www.cse.iitk.ac.in/users/braman/courses/wless-spring2007/
Modulation

- **Modulation**: the process of converting a digital signal to “appropriate” signals on wire or on air (wireless)

- **Wireless**:
 - **Digital modulation**: converting the digital signal to an analog signal
 - This results in a signal with bandwidth proportional to B Hz, if the digital signal is B bits/sec
The Need for Analog Modulation

• Cannot send a signal of frequency B Hz directly:
 – Antenna size may be inappropriate
 – Propagation characteristics may not be desirable
 – Frequency Division Multiplexing (FDM) not possible

• Hence **analog modulation**:
 – Convert one frequency range to another
 – Using a **carrier frequency**
Modulation at the Transmitter

Source: Mobile Communications, Jochen Schiller

Also known as keying
Demodulation at the Receiver

Source: Mobile Communications, Jochen Schiller
An RF Signal

\[g_t = A_t \sin (2 \times \pi \times f_t \times t + \phi_t) \]

- Has **three** components: amplitude, frequency, and phase
- Modulation/keying can be based on any of these three (or a combination)
Amplitude Shift Keying

Source: Mobile Communications, Jochen Schiller
Frequency Shift Keying

Source: Mobile Communications, Jochen Schiller
Phase Shift Keying

Source: Mobile Communications, Jochen Schiller
Some Remarks

- Phase Shift Keying: binary, quadrature, etc.
 - 802.11b uses BPSK, QPSK, CCK
- **Metrics in modulation:**
 - Spectral efficiency: bits/sec/Hz
 - Power efficiency
 - Robustness to noise
BER vs. SNR

- For a given modulation:
 - Bit-Error-Rate (BER) is a function of the Signal-to-Noise-Ratio (SNR)

- Thermal noise: $k \times T \times B$
 - k: Boltzmann’s constant $= 1.38 \times 10^{-23}$
 - T: temperature in Kelvin
 - B: bandwidth in Hz

- Strictly, Signal-to-Interference-and-Noise-Ratio (SINR) must be used
Spread Spectrum

- Spreading a signal over a wider frequency range
 - Avoids narrow-band interference
 - E.g. 802.11b Barker code: 10110111000

- Two techniques for spread-spectrum
 - Direct Sequence, Frequency Hopping

Source: Mobile Communications, Jochen Schiller