Topic 12
TinyOS

Bhaskaran Raman,
Department of CSE, IIT Kanpur

http://www.cse.iitk.ac.in/users/braman/courses/wless-spring2007/
TinyOS

 - Section-2

- More related to **embedded computing** than wireless

- Necessary for **projects**
TinyOS Goals

• An "operating-system" for embedded sensor nodes
• Different requirements for such platforms
 – Should be designed for current & future hardware
 – Cater to a wide variety of applications
 – Limited resources: memory, power
 – Concurrency-intensive operation: data driven
TinyOS Design Overview (1 of 2)

• Modular framework:
 – A set of software components and interfaces
 – No strict definition of system/user boundary

• Issues addressed by this approach:
 – Adaptation to heterogeneous hardware
 • Reuse of software
 – Adaptation to different application requirements
 • Put together required software components
 – Memory resource constraints
 • Use only the required components
TinyOS Design Overview (2 of 2)

- Event-driven concurrency model:
 - Hardware *events* and software *tasks*

- Issues addressed by this approach:
 - Requirement for concurrency
 - Event-driven model is natural: no blocking or polling
 - Limited memory
 - Many concurrent tasks using just one stack
 - Power savings
 - No tasks ==> sleep
TinyOS Design

- **Interface**: a set of *commands* and *events*
 - Command: sub-routine to perform some action
 - Event: completion of request, or external trigger
 - Can be bound to a hardware interrupt

- **Component**:
 - *Provides* a set of interfaces (used by others)
 - *Uses* a set of interfaces (provided by others)

- An application "wire s”t ogether" the interfaces of a set of components
Blink: An Example TinyOS Appln.

- Split into Blink.nc & BlinkM.nc
- **BlinkM.nc:**
 - The *module*: the actual implementation
- **Blink.nc:**
 - The *configuration*: the “wiring-up” of interfaces
- Other examples: CountLeds, CountSend, CountReceive