CS698T
Wireless Networks: Principles and Practice

Topic 20
Introduction to Cryptography

Bhaskaran Raman,
Department of CSE, IIT Kanpur

http://www.cse.iitk.ac.in/users/braman/courses/wless-spring2007/
Cryptography and Network Security

Cryptography Fundamentals

• Privacy versus Authentication:
 – Privacy: preventing third party from snooping
 – Authentication: preventing impostering

• Two kinds of authentication:
 – Guarantee that no third party has modified data
 – Receiver can prove that only the sender originated the data
 • Digital Signature
 • E.g., for electronic transactions
Cryptographic Privacy

- Encrypt before sending, decrypt on receiving
 - Terms: plain text and cipher text
- Two components: key, and the algorithm
 - Should algorithm be secret?
 - Yes, for military systems; no, for commercial systems
- Key distribution must be secure
Cryptographic Authentication

- The same system can also be used for authentication
Cryptanalysis

- **Cryptanalysis**: attacker tries to break the system
 - E.g., by guessing the plain text for a given cipher text
 - Or, by guessing the cipher text for some plain text

- **Possible attacks**:
 - Cipher-text only attack
 - Known plain-text attack
 - Chosen plain-text attack
 - Chosen text attack
Security Guarantees

- Two possibilities:
 - Unconditional
 - Computational security
- Unconditional security: an example
 - One-time tape
- Most systems have computational security
 - How much security to have?
 - Depends on cost-benefit analysis for attacker
Public-Key Systems

• Shared-key ==> difficulties in key distribution
 – \(C(n,2) = O(n^2) \) keys

• Public key system
 – Public component and a private component
 – Two kinds:
 • Public key distribution: establish shared key first
 • Public key cryptography: use public/private keys in encryption/decryption
 – Public key cryptography can also be used for digital signatures
Some Example Systems

• Permuted alphabet (common puzzle)
 – Can be attacked using frequency analysis, patterns, digrams, trigrams
 – Attack becomes difficult if alphabet size is large

• Transposition

• Poly-alphabetic: periodic or running key

• Codes versus ciphering
 – Codes are stronger, and also achieve data compression
Some Popular Systems

- **Private key systems:**
 - DES, 3DES

- **Public key systems:**
 - RSA: based on difficulty of factoring
 - Galois-Field (GF) system: based on difficulty of finding logarithm
 - Based on knapsack problem
Digital Encryption Standard (DES)

64 bits + 64 bits → 64 bits

Plain-text Key Cipher-text

Permutation, 16 rounds of identical operation, inverse permutation

Each round uses a different 48-bit key K_i (from K) and a combiner function F
Triple-DES (3DES)

- DES can be broken with 2^{55} tries:
 - 4500 years on an Alpha workstation
 - But only 6 months with 9000 Alphas

- Triple-DES:
 - Use DES thrice, with 3 separate keys, or with two keys (K1 first, then K2, then K1 again)
Rivest, Shamir, Adleman (RSA) Public-Key Crypto-System

• Based on the fact that finding large (e.g. 100 digit) prime numbers is easy, but factoring the product of two such numbers *appears* computationally infeasible

• Choose very large prime numbers P and Q
 – $N = P \times Q$
 – N is public; P, Q are secret

• Euler totient: $\Phi(N) = (P-1)(Q-1) = \text{Number of integers less than } N \text{ & relatively prime to } N$
RSA (continued)

• Next, choose \(E \) in \([2, \Phi(N)-1]\), \(E \) is public
• A message is represented as a sequence \(M_1, M_2, M_3 \ldots \), where each \(M \) in \([0, N-1]\)
• Encryption: \(C = M^E \mod N \)
• Using the secret \(\Phi(N) \), \(A \) can compute \(D \) such that \(ED = 1 \mod \Phi(N) \)
• \(ED = k \times \Phi(N) + 1 \)
• Then, for any \(X < N \), \(X^{k \times \Phi(N)+1} = X \mod N \)
RSA (Continued)

- Decryption: \(C^D = M^{ED} = M^{k \times \phi(N)+1} = M \mod N \)

- Example: Choose \(P = 17, Q = 31 \)
 - \(N = 527, \phi(N) = 480 \)
 - Choose \(E = 7, \) then \(D = 343 \)
 - If \(M = 2, \) Encryption: \(C = 128 \)
 - Decryption: \(D = C^D \mod N = 128^{343} \mod 527 = 2 \)
Taxonomy of Ciphers

- **Block ciphers**: divide plain text into blocks and encrypt each independently

- **Properties required**:
 - No bit of plain text should appear directly in cipher text
 - Changing even one bit in plain text should result in huge (50%) change in cipher text
 - Exact opposite of properties required for systematic error correction codes

- **Stream cipher**: encryption depends on current state
Key Management

• Keys need to be generated periodically
 – New users
 – Some keys may be compromised

• Addressing the O(n^2) problem with key distribution
 – Link encryption
 – Key Distribution Centre (KDC): all eggs in one basket
 – Multiple KDCs: better security

• Key management easier in public key cryptography
Some Non-Crypto Attacks

- **Man-in-the-middle attack:** play a trick by being in the middle

- **Traffic analysis:**
 - Can learn information by just looking at presence/absence of traffic, or its volume
 - Can be countered using data padding

- **Playback or replay attacks:**
 - To counter: need to verify timeliness of message from sender while authenticating
 - Beware of issues of time synchronization