Improving Fault Tolerance in 802.11 Wireless Long Distance Rural Networks

Manikantah Kodali

Guidance Dr. Bhaskaran Raman Co-Guidance Dr. A.R. Harish

Motivation & Background

- More percentage of rural areas than urban areas in countries like India.
- Most of the rural areas are without any facilities of phone, internet....
- High cost of long distance wired networks than wireless networks to connect the rural areas.
- Increasing usage of wireless networks for connecting rural areas.
- Network Disconnection due to problems at one or more nodes (e.g. power failure).

Motivation & Background

Digital Gangetic Plains

Problem Statement

Intermediate node 4

Problem Statement

Problem Statement

Advantage

Ashwini Network

Design Issues

- Three possible ways of changing the link
 - Replication of directional antennae and switching between them.
 - Using a Stepper Motor to rotate the directional antenna.
 - Using a sector antennae (cantenna).

Related Work

- Community networks
 - MIT Roofnet
 - Omni directional antenna
 - Routing problem only
 - Wireless Leiden
 - Multiple radios and antennae
 - Routing problem
- Ad-hoc networks with directional antennae.
 - Multiple directional antennae at nodes
 - Routing problem
 - Not implemented.

Thesis Contributions

- Implemented Replication and Cantenna solutions.
- Partially implemented Rotation solution.
- Evaluated and documented performance and cost issues of the solutions.

• Replication:

- PSW-1211 switch circuit.
- RSW-2-25-P switch circuit.
- Hardware for generating control signals.
- Software sending control logic to hardware.

• Rotation:

- Circuit to interface the stepper motor.
- Software to rotate the motor in full step and half steps.
- Antenna mounting to the motor.

• Cantenna:

- Software to switch the link.

Replication: PSW-1211 switch circuit

Replication: RSW-2-25-P switch circuit

Replication: Hardware for control signals

Replication: Software

	Serial Port			
	Baud rate			
Logic '0'	0			
Logic '1'	Higher than 0			

Rotation: Interface circuit for motor

Rotation:

Control logic sequence

Full Step (1.8°)							
Red	Orange	Blue	Green				
0	1	0	1				
0	1	1	0				
1	0	1	0				
1	0	0	1				

Half Step (0.9°)							
Red	Orange	Blue	Green				
0	1	0	1				
0	0	0	1				
1	0	0	1				
1	0	0	0				
1	0	1	0				
0	0	1	0				
0	1	1	0				
0	1	0	0				

Rotation: Antenna Mounting

Cantenna:

Software:

Software to change the link is done by using commands (monitoring link using 'ping' & changing the wireless link)

- Two links FBTOP CSE and FBTOP MLA.
- FBTOP:
 - Two directional Antenna:
 - MLA:- beam width 13° and Gain 22.5 dBi
 - CSE :- beam width 8° and Gain 24 dBi
- MLA:
 - One directional Antenna with beamwidth 13° and Gain 22.5 dBi.
- CSE:
 - One sector Antenna with beamwidth 65° and Gain 12 dBi.
 - Attenuator (28 dB)
- One Laptop and prism chipset based *Senao* wireless card at each place.
- Hostap driver 0.4.7 and hostap utils 0.3.7.

Preliminary:

Replication (PSW-1211): Calibration - Transmission:

Replication (PSW-1211): Calibration - Isolation:

Replication (PSW-1211):

Replication (PSW-1211):

Replication (RSW-2-25-P): Calibration - Transmission:

Replication (RSW-2-25-P): Calibration - Isolation:

Replication (RSW-2-25-P):

Replication (RSW-2-25-P):

• Rotation:

- Interface circuit and software for rotation are implemented.
- Antenna mounting not implemented.
- Will be same as Preliminary case.

• Cantenna:

- Implemented using a Splitter.

Comparison

		Replication			
	Preliminary	PSW-1211	RSW-2-25-P	Rotation	Cantenna
No. of Antenna	N/A	2		1	1
Switching Time	N/A	Order of micro seconds		Order or minutes	Order of micro seconds
Interference	Negligible	17 dB less than other link		Negligible	Equal to signal
from other link		signal strength			strength
FBTOP – CSE	5.7 Mbps	6.2 Mbps	6.1 Mbps	5.7 Mbps	6 Mbps
FBTOP – MLA	6.2 Mbps	6.3 Mbps	6.2 Mbps	6.2 Mbps	6 Mbps
At FBTOP when CSE and MLA are transmitting data	N/A	5.8 Mbps	Will be same as PSW-1211	6 Mbps	2.4 Mbps
Cost	N/A	2*\$50+\$33	2*\$50+\$4	\$50+\$59	\$10

Conclusion

- Presently no cost-effective solutions.
- Presented and implemented three solutions Replication, Rotation (partially implemented) and Cantenna.
- Replication and Rotation are good for all cases.
- Cantenna is good only when one of the intermediate node or backup node is serving the far-end nodes.

Future Work

- Assumed that intermediate and backup nodes are given.
- Find the intermediate and backup nodes optimally.
- Rotation has to be implemented completely.

