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ABSTRACT
We propose a new method of information extraction from
large websites by learning the sequence of links that lead
to a specific goal page on the website. Sample applications
include finding computer science publications starting from
university root pages and fetching addresses of companies
on a web database.

We model the website as a graph on a set of important
states chosen via domain knowledge and train a Conditional
Random Field (CRF) over it. The conditional exponen-
tial models of CRFs enable us to exploit a variety of fea-
tures including keywords and patterns extracted from and
around hyperlinks and HTML pages and any sequential or-
derings amongst states. Our technique provides two times
better harvest rates than techniques used in generic focused
crawlers.

1. INTRODUCTION
We propose a new method of information extraction from

large websites by learning the sequence of links that lead to
a specific goal page on the website. Often websites within a
domain are structurally similar to each other. Humans are
good at navigating these websites to reach specific informa-
tion within large domain-specific websites. Our goal is to
learn the navigation path by observing the user’s clicks on
as few example searches as possible and then use the learnt
model to automatically find the desired pages using as few
redundant page fetches as possible. Unlike in focused crawl-
ing[4], our goal is not to locate the websites to start with.
These are collected either from web directories and similar
resource websites, or obtained through focused crawling. We
start from a listing of related websites and after watching
the user find the specific information from a few websites in
the list, we automate the search in the remaining.

1.1 Motivating Examples

We list a number of examples where such a functionality
would be useful.

1.1.1 Company Contact Information
Suppose a user needs to collect the contact addresses of

a number of companies. One motivating reason could be to
apply for jobs. The user might only be interested in jobs
that are available in a particular state or region. There are
many websites1 that give the URLs of the homepages of
companies. Instead of visiting each of these URLs manually
and checking if they meet his location constraints, the user
would like to collect all contact addresses automatically and
do a simple search to narrow down the list.

Is it possible to extract out this information and provide
it directly to the user?

Usually, homepages of companies contain links with an-
chor text like “Contact Us” or “About Us”. Following this
link leads either to a page with the contact addresses, or to
another page that lists links to various offices of the com-
pany. Contact information can be obtained by following
these links.

1.1.2 Faculty publications
Citation portals like Citeseer need to gather publications

on a particular discipline from homepages of faculty and
students starting from lists of universities easily obtained
from web directories like Dmoz.

Is it possible to help citation portals in finding all the fac-
ulty publications from an institute in a particular discipline,
given the homepage of the institute?

This is a more difficult, yet compelling, example. Faculty
members may have a list of their publications on their home-
pages; and the required result is a compilation of all such
listings. Hence, the solution is to first visit the homepages of
departments relevant to the discipline, from there visit the
homepages of faculty members, and then search for links
such as “Papers”, “Publications”, or “Research Interests”
that lead to the publications page, if it exists.

1.1.3 Seminar Announcements
Suppose a researcher wants to keep track of technical talks

from a list of favourite institutions. These talks are usually
announced either at the departmental level or at the level
of research groups within a department.

1E.g., http://www.hoovers.com/,
http://www.kdnuggets.com/, etc.
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Is it possible to provide that information, starting from
homepages of the institutes in the user’s favourite list?

This is similar to the faculty publications case above ex-
cept that the path to talk announcements tend to be less
templatized. Often talk announcements have a direct link
from a department’s main page and the link contains words
like “events”, “talks”, “seminars”, and so on. At other
times, talk announcements can only be reached through re-
search group or project pages within a department website.

1.1.4 Ph.D. requirements
A busy professor is asked to design the Ph.D. require-

ments for a new department. Naturally, she would first like
to study the Ph.D. requirements of several existing depart-
ments. A list of such departments is readily accessed from
a web directory. However, in our experience, searching for
the requirements page starting from a department home-
page is not obvious to start with but later a few patterns
start to emerge. We would like to be able to automatically
learn such patterns and use that to automatically find the
requirements page from the remaining pages.

1.1.5 Electronic shopping
A similar scenario arises when a user is searching for a

particular product on electronic stores and wishes to auto-
matically find if the product is on sale on each of a given list
of websites. Most of these follow similar product hierarchies
which need to be navigated to reach the desired product.

In each of the above examples, it is not easy to formulate
the user’s needs using keywords alone. So keyword searches
using a search engine with the domain restricted to each
link in the list may not be sufficient. In these cases, the
path leading to the goal page is part of the definition of
the user’s need. For example, a company website might
list addresses of its partners on a page that might be hard
to distinguish from a page listing its location. A stronger
indicator of a page listing the company’s contact address is
that this page is within one or two links away from the root
page and is associated with anchor words like “Contact us”.
This implies that a method that judges if a page is relevant
or not just based on its content is not likely to be as accurate.
The actual goal page may not have all the information to
correctly identify the page as the goal page.

1.2 Problem Statement
There are two phases to this task: first is the training

phase, where the user teaches the system by clicking through
pages and labeling a subset with a dynamically defined set
of classes, one of them being the Goal class. The classes as-
signed on intermittent pages along the path can be thought
of as “milestones” that capture the structural similarity across
websites. At the end of this process, we have a set of classes
C and a set of training paths where a subset of the pages
in the path are labeled with a class from C. All unlabeled
pages before a labeled page are represented with a special
prefix state for that label. The system trains a model using
the example paths, modeling each class in C as a milestone
state. The second phase is the foraging phase where the
given list of websites are automatically navigated to find all
goal pages.

In practice, we can also easily add an active learning phase
where the system starts with a very small number of labeled

paths and uses active learning[1] to seek labels of as few
paths as possible from the user.

Formally, we are given a website as a graph W (V, E) con-
sisting of vertex set V and edge set E, where a vertex is a
webpage and an edge e = 〈u, v〉 is a hyperlink pointing from
a webpage u to a webpage v. The goal pages PG constitute
a subset of pages in W reachable from starting seed page
PS . We have to navigate to them starting from PS visiting
fewest possible additional pages. Let P : P1, P2, . . . , Pn be
one such path through W from the start page P1 = PS to a
goal page Pn ∈ PG. The ratio of relevant pages visited to the
total number of pages visited during the execution is called
the harvest rate. The objective function is to maximize
the harvest rate.

There are two parts to solving this problem.

Recognizing a page as the goal page.This is a classifi-
cation problem where given a webpage we have to classify it
as being a goal page or not. Often the page alone may not
hold enough information to help identify it as the goal page.
We will need to consider text around the entire path leading
to the goal page in order to decide if it is relevant or not.
For example, consider the publications scenario explained in
section 1.1.2. If Citeseer wants to get all computer science
publications starting from a university root page, then it
is necessary to follow a path through computer science and
related departments’ homepages. A publication page on its
own might be hard to classify as holding “computer science
publications”.

Foraging for goal pages.This can be thought as a mini-
crawling exercise where, starting from the entry point, we
want to visit as few pages as possible in finding the goal
pages. This problem is different from the previous work on
focused crawling[4] where the goal is to find all webpages
relevant to a particular broad topic from the entire web. In
our case, we are interested in finding pages on a specific in-
formation need starting from given entry pages of several
related websites. We exploit the regularity in the structures
of websites in a given domain to build more powerful mod-
els than is possible in the case of general-purpose focused
crawlers.

1.2.1 Possible Approaches
One possible method of solving the problem is to train

a classifier that can discriminate the goal pages from the
non-goal pages. Then, extract from the classifier the set of
prominent features to serve as keywords to a search engine
that indexes all the websites of interest. By restricting the
domain to each given starting URL in turn, we issue a key-
word search to get a set of candidate pages. We further
classify these pages to identify if these are goal pages or not.
We will show in the experimental section (section 4.3.2)
that this method cannot provide high accuracy for the sim-
ple reason that the goal page itself may not hold enough
information to correctly identify it as the goal page. The
path leading to the goal page is important too.

A second method is to cast this as a generic focused crawl-
ing problem. We will show in section 4.4.2a comparison
with this method.

A third approach and the one that we develop is to treat
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this as a sequential labeling problem where we use graphical
models like Hidden Markov Models (HMMs)[22] and their
recent advanced conditional counterparts, the Conditional
Random Fields[14], to learn to recognize paths that lead to
goal states and then superimpose ideas from Reinforcement
Learning[20] to prioritize the order in which pages should
be fetched to reach the goal page. This provides an elegant
and unified mechanism of modeling the path learning and
foraging problem. Also, as we will see in the experimental
section (section 4) that it provides very high accuracy.

2. GOAL PAGE RECOGNITION
In this section, we will address the problem of goal page

recognition wherein given a path of webpages P1 . . . Pn, where
P1 = PS is the starting page, our aim is to recognize if the
path ends in a goal page or not. During training, we are
given examples of several paths of labeled pages where some
of the paths end in goal pages and others end with a special
“fail” label. We cast this as a sequential labeling problem:
the set of pages is denoted by the vector x and their cor-
responding labels is denoted by y. Each xi is a webpage
represented suitably in terms of features derived from the
words in the page, its URL, and the anchor text in the link
pointing to xi. A number of methods have been proposed
in the literature for solving this problem in the context of
applications like speech recognition and Information Extrac-
tion[7].

One popular mechanism so far has been hidden Markov
models that during training, learn a joint probability Pr(x, y)
of pairs of observation sequences x and label sequences y.
The parameters of the model are trained to maximize the
joint likelihood of the training examples. A major shortcom-
ing of generative models like HMMs is that they maximize
the joint probability of sequence and labels. This does not
necessarily maximize accuracy. Also, the conditional inde-
pendence of features is a restrictive assumption. Conditional
Random Fields (CRFs) are a recently introduced formalism
that learn a single global conditional model for Pr(y|x)[14]
and have been found to achieve high accuracy in a number
of applications.

2.1 Background on CRFs
A CRF models Pr(y|x) as a Markov random field, with

nodes corresponding to elements of the structured object
y, and potential functions that are conditional on (features
of) x. One common use of CRFs is for sequential learn-
ing problems like NP chunking[25], POS tagging[14], and
named-entity recognition (NER)[19]. For these problems,
the Markov field is a chain and y is a linear sequence of
labels from a fixed set Y, and the label at position i de-
pends only on its previous label. For instance, in the NER
application, where the task is to identify entity types like
people names and organization in plain text, x might be a
sequence of words, and y might be a sequence in {I, O}|x|,
where yi = I indicates “word xi is inside a name” and yi = O
indicates the opposite.

Notation: We will use bold-faced symbols to denote vec-
tors and non-bold faced symbols to denote scalars.

Assume a vector f of local feature functions f = 〈f1, . . . , fK〉,
each of which maps a pair (x,y) and a position i in the vector
x to a measurement fk(i,x,y) ∈ R. Let f(i,x,y) be the vec-

tor of these measurements and let F(x,y) =
∑|x|

i f(i,x,y).
For the case of NER, the components of f might include
the measurement f13(i,x,y) = [[xi is capitalized]] · [[yi = I]],
where the indicator function [[c]] = 1 if c if true and 0 oth-
erwise; this implies that F 13(x,y) would be the number of
capitalized words paired with the label I.

For the sake of efficiency, we restrict any feature fk(i,x,y)
to be local in the sense that the feature at a position i will
depend only on the previous labels. With a slight abuse
of notation, we claim that a local feature fk(i,x,y) can be
expressed as fk(yi, yi−1,x, i). Some subset of these features
can be simplified further to depend only on the current state
and are independent of the previous state. We will refer
to these as state features and denote these by fk(yi,x, i)
when we want to make the distinction explicit. The term
transition features refers to the remaining features that
are not independent of the previous state.

A Conditional Random Field (CRF)[14, 25] is an estima-
tor of the form

Pr(y|x,W) =
1

Z(x)
eW·F(x,y) (1)

where W is a weight vector over the components of F and

the normalizing term Z(x) =
∑

y′ eW·F(x,y′).

2.2 An efficient inference algorithm
The inference problem for a CRF is defined as follows:

Given W and x, find the best label sequence, arg maxy Pr(y|x,W),
where Pr(y|x,W) is defined by equation 1.

arg maxy Pr(y|x,W) = arg maxyW · F(x,y)

= arg maxyW ·
∑

j

f(yj , yj−1,x, j)

An efficient inference algorithm is possible because all fea-
tures are assumed to be local. Let yi:y denote the set of
all partial labels starting from 1 (the first index of the se-
quence) to i, such that the i-th label is y. Let δ(i, y) denote
the largest value of W · F(x,y′) for any y′ ∈ yi:y. The
following recursive calculation implements the usual Viterbi
algorithm[22]:

δ(i, y) =

{
maxy′ δ(i − 1, y′) + W · f(y, y′,x, i) if i > 0
0 if i = 0

(2)

The best label then corresponds to the path traced by maxy δ(|x|, y).

2.3 Training algorithm
Learning is performed by setting parameters to maximize

the likelihood of a set of a training set T = {(x�,y�)}N
�=1

expressed in logarithmic terms as

L(W) =
∑

�

log Pr(y�|x�,W) =
∑

�

(W · F(x�,y�) − log ZW(x�))

We wish to find a W that maximizes L(W). The above
equation is convex and can thus be maximized by gradient
ascent or one of many related methods. (In our implemen-
tation, we use a limited-memory quasi-Newton method[15,
18].) The gradient of L(W) is the following:
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∇L(W) =
∑

�

F(x�,y�) −
∑

y′ F(x�,y
′)eW·F(x�,y′)

ZW(x�)

=
∑

�

F(x�,y�) − EPr(y′|W)F(x�,y
′)

The first set of terms are easy to compute. However, we
must use the Markov property of F and a dynamic pro-
gramming step to compute the normalizer ZW(x�), and the
expected value of the features under the current weight vec-
tor, EPr(y′|W)F(x�,y

′). Details of computing these can be
found be in [25].

2.4 Using CRFs for path classification
A number of design decisions about the label space and

the feature space need to be made in casting the path clas-
sification problem into a CRF.

2.4.1 Single state per label

Faculty/Staff
Information

Faculty
List Homepage

Faculty
(Goal state)
Publication

Courses

Department
Homepage

Research
Grp. List

Research Grp.
Homepage

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
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(Events, etc.)
Fail state (News,

Figure 1: State transition diagram of the model for
Publications domain with a single state per label.
The Fail state has in-links from all other states (only
a few shown above) and represents negative path
end-state.

One option is to assign a state to each possible label in
the set L where two labels are special “Goal” and “Fail”.
During classification, if the last state in the predicted label
sequence y is labeled “Goal”, we classify this as a positive
path; otherwise it is considered a negative path.

An example of such a model for the Publications scenario
(section 1.1.2) is given in figure 1 where each circle rep-
resents a label. Any path classified as leading to the Goal
state would be considered positive and all other paths would
be considered negative.

State features are defined on the words or other proper-
ties comprising a page. For example, state features derived
from words are of the form fk(i,x, yi) = [[xi is “computer”
and yi = “faculty”]]. The URL of a page also yields valu-
able features. For example, a tilde in the URL is strongly
associated with a personal homepage and a link with text
containing the word “contact” is strongly associated with
an address page. We tokenize each URL on delimiters such
as ‘/’ and add a feature corresponding to each token.

Transition features capture the soft precedence order amongst
labels. One set of transition features are of the form:
fk(i,x, yi, yi−1) = [[yi is “faculty” and yi−1 is “department”]].
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Figure 2: State transition diagram of the model for
Publications domain with two states per label

They are independent of xi and are called edge features
since they capture dependency amongst adjacent labels. In
this model, transition features are also derived from the text
surrounding the link leading to the next state. Thus, a tran-
sition feature could be of the form fk(i,x, yi, yi−1) = [[xi is
“advisor”– an anchor word, yi is “faculty”, and yi−1 is “stu-
dent”]].

2.4.2 Two states per labels
A second option is to model each label as a dual-state —

one for the characteristics of the page itself (page-states)
and the other for the information around links that lead to
such a page (link-states). Hence, every path alternates be-
tween a page-state and a link-state. In figure 2, we show the
state space corresponding to this option for the Publications
domain. There are two advantages of this labeling. First,
it reduces the sparsity of parameters by making the anchor
word features independent of the label of the source page.
In practice, it is often found that the anchor text pointing
to the same page are highly similar and this is captured by
allowing multiple source labels to point to the same link-
state of destination label. Second, for the foraging phase, it
allows one to easily reason about intermediate probability
of a path prefix where only the link is known and the page
leading to it has not been fetched.

In this model, the state features of the page-states are
the same as in the previous model; the state features of the
link-states are derived from the anchor text. The anchor-
text transition features of the previous model become state
features of the link-state. Thus, the only transition features
in this model are the edge features that capture the prece-
dence order between labels.

3. PATH FORAGING
Given the trained sequential model M and a list of start-

ing pages of websites, our goal is to find all paths from the
list that lead to the Goal state in M while fetching as few
unrelated pages.

The key technical issue in solving this is to be able to
score from the prefix of a path already fetched, all the out-
going links with a value that is inversely proportional to the
expected work involved in reaching the goal pages. Con-
sider a path prefix of the form P1L2P3 . . . Li where Li−1 is
a link to page Pi in the path. We need to find for link Li

a score value that would indicate the desirability of fetching
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the page pointed to by Li. This score is computed in two
parts. First in section 3.1, we estimate for each state y, the
proximity of the state to the Goal state. We call this the
“reward” associated with the state. Then in section 3.2, we
show for the link Li, the probability of its being in state y.

3.1 Reward of a state
We apply techniques from Reinforcement Learning[20] to

compute the reward score using the CRF model learnt dur-
ing path classification phase. Reinforcement Learning is a
machine learning paradigm that helps in choosing the op-
timal action at each state to reach the Goal states. The
Goal states are associated with rewards that start to depre-
ciate as the Goal states get farther from the current state.
The actions are chosen so as to maximize the cumulative
discounted reward.

We apply Reinforcement Learning to compute the prob-
ability of a partially-observed sequence to end-up in a Goal
state. Since we cannot predict the state sequence that would
be followed by the unseen observation subsequence, we can-
not compute the actual probability of the sequence ending
in a Goal state. Instead, we estimate this probability based
on the training data by learning a reward function R for
each state. For each position i of a given sequence x we
estimate the expected proximity to the Goal state from a
state y Rx

i (y) recursively as follows:

Rx
i (y) =




∑
y′ eW·f(y′,y,x,i+1)Rx

i+1(y′)
∑

y′ eW·f(y′,y,x,i+1) 1 ≤ i < n

[[y = Goal]] i = n
(3)

When i = n, the reward is 1 for the Goal state and 0
for every other label. Otherwise, the values are computed
recursively from the proximity of the next state and the
probability of transition to the next state from the current
state.

We then compute a weighted sum of these positioned re-
ward values to get position independent reward values. The
weight are controlled via γ, a discount factor that captures
the desirability of preferring states that are closer to the
Goal state, as follows:

Rx(y) =

n−1∑
k=0

γk · Rx
n−k(y)

n−1∑
k=0

γk

(4)

where n is the length of the sequence.
The final reward value of a state is computed by averaging

over all training sequences x1 . . .xN as

R(y) =

∑N
�=1 Rx�(y)

N
(5)

3.2 Probability of being in a state
Consider a path prefix of the form P1L2P3 . . . Li where

Li−1 is a link to page Pi in the path. We need to find for
link Li, the probability of its being in any one of the link-
states. We provide a method for computing this. Let αi(y)
denote the total weight of ending in state y after i states. We

thus define αi(y) as the value of
∑

y′∈yi:y
eW·F(x,y′) where

yi:y denotes all label sequences from 1 to i with i-th position
labeled y. For i > 0, this can be expressed recursively as

αi(y) =
∑
y′∈Y

αi−1(y
′)eW·f(y,y′,x,i) (6)

with the base cases defined as α0(y) = 1.
The probability of Li being in the link-state y is then

αi(y)∑
y′∈YL αi(y′) where YL denotes the set of link-states.

3.3 Score of a link
Finally, the score of a link Li after i steps is calculated as

the sum of the product of reaching a state y and the static
reward at state y.

Score(Li) =
∑

y

αi(y)∑
y′∈YL αi(y′)

R(y) (7)

If a link appears in multiple paths, we sum over its score
from each path.

3.4 Algorithm to prioritize links
So, to put it all together,

1. During training, for all training instances, compute
Rx(y) for all y (Eq. 4) during the backward pass.

2. Average the R(y)-values computed in step 1 over all
training instances (Eq. 5).

3. During testing,

(a) Maintain a priority queue of links that lead from
pages fetched. The links are scored using Eq. 7.
Since computation of score requires the α-values
(Eq. 6), those are also maintained along with the
link information.

(b) In addition to the score and the α-values, the δ-
values (Eq. 2) used to compute the label are also
maintained.

(c) Initially, the queue contains the URL of seed page
with score 0, and the α and δ-values are set to 1
and 0 respectively.

4. For each seed URL in priority queue,

(a) Crawl the highest priority link to fetch the target
page P .

(b) Compute α and δ for page P using Eqs. 6 and 2
respectively.

(c) Label the page P with the label of the state that
maximizes Eq. 2.

(d) For every outlink from page P ,

i. calculate α-values to compute the score,

ii. calculate δ-values to label the link,

iii. enter the link in the priority queue.

(e) If more URLs to be crawled, go back to step 4a.
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4. EXPERIMENTAL RESULTS
Experiments were conducted over two application exam-

ples — the Publications example, as explained in section 1.1.2
and the Company Address example, as explained in sec-
tion 1.1.1. The experimentation was done in two phases.
We first tested the accuracy of the CRF-based sequential
classifier in distinguishing between positive and negative
paths and segmenting a path. The results were compared
with those using other known techniques, such as näıve
Bayes and Maximum Entropy classifiers. In the second
phase, the trained model was used in foraging mode to fetch
relevant pages from the Web. The results were compared
with generic focused crawlers.

4.1 Dataset description
Two datasets were generated with labeled sequences for

the Publication and the Company Address extraction appli-
cations. The Publications dataset is used to train the CRF
model to recognize paths that lead to the publications pages
from department homepages (refer section 1.1.2), while the
Address dataset is used to recognize company address pages
(refer section 1.1.1). The datasets were built manually by
crawling sample websites and enlisting the sequence of web-
pages from the entry page to a goal page. Sequences that
led to irrelevant pages were identified as negative examples.

The statistics for the two datasets is given in Table 1. The
CRF model for the Publications dataset was trained on 44
sequences from 7 university domains including domains from
IIT Bombay2, and computer science departments of US uni-
versities chosen randomly from an online list3. The training
dataset included 28 positive and 16 negative sequences and
the model was tested on 23 sequences. The test data in-
cluded some sequences from domains that were not included
in the training data. The state diagram with the page-states
and the transitions between them is shown in Fig. 1.

Table 1: Description of the datasets
Parameters Datasets

Publications Address
#sites 7 15
#training examples 44 32
#training positives 28 17
#test examples 23 12
#test positives 14 7
#Labels 17 7
#Extracted words 3062 1035
#Features learnt 5834 1763

The key states in the CRF model for the Address domain
correspond to company homepage, page on company details
(“About Us”), and the address page. The state transition
diagram is shown in Fig. 3. The Address dataset was trained
on 32 sequences out of which 17 sequences were positive, and
was tested on 12 sequences. All test sequences were from
domains other than those in the training data.

2The two domains were http://www.it.iitb.ac.in/ and
http://www.cse.iitb.ac.in/
3http://www.clas.ufl.edu/CLAS/american-universities.
html

Company
Homepage

"About Us"

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
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Products, etc.)
Fail state (Mgmt,

Goal state
(Company Address)

Figure 3: State transition diagram of the model for
Company Address domain. Shows only page-states.

4.2 Feature Extraction
When an HTML page is fetched, the page is represented

in DOM structure format (http://www.w3.org/DOM/) using
the Hypertext Parsing suite[11]. The text content from the
page is split into tokens on white-space delimiters (space,
tab, etc.). The page-state tokens are extracted from the
head and body fields of the HTML page, while the link-
state tokens are collected from the URL anchor text and
the neighbourhood text around the link. To capture the text
around the anchor text of a hyperlink, we extracted tokens
from a fixed-sized window before and after the link. In our
experiments, we kept the window size constant at 10. In ad-
dition to these, the words from the relative part of the target
URL and the target file extension are also included as tokens.
As an illustration, for the URL “http://www-2.cs.cmu.edu/
∼svc/papers/view-publications-ckl2004.html”, the to-
kens extracted from the URL were ∼svc, papers, view,
publications, ckl2004, and html. Since ‘∼’ is a key fea-
ture that usually distinguishes homepages from departmen-
tal pages, we also add ‘∼’ as a separate token.

This way, for the publication dataset we had a total of
5834 features for which the CRF learnt corresponding weights.
The corresponding number for the address dataset was 1763.

Experimental platform.Our experiments were performed
on a two processor Pentium III server running Linux and
with 1 GB of RAM. The CRF code was a JAVA implemen-
tation of the algorithm described in [25] and is available via
free download at http://crf.sourceforge.net/.

4.3 Path segmentation and labeling
Our first set of experiments were to understand the per-

state labeling accuracy of the CRF model. In this phase, we
test whether the model correctly segments and labels path
sequences.

4.3.1 Effect of number of page-state tokens
In this task, we vary the number of tokens extracted from

the body of the HTML page. Table 2 shows the variation of
the precision, recall, and F1 values as we decrease the num-
ber of tokens from 100 to 0. The F1-value is the harmonic
mean of the precision and recall values.

The first row for each dataset (marked (A)) shows the av-
erage accuracy over all states, while the second row (marked
(G)) shows the accuracy values for the Goal states alone. We
observe that for the Publications dataset, the best perfor-
mance is obtained on considering 100 tokens per page and
the F1 accuracy mostly keeps decreasing as the number of
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Table 2: Effect of number of page-state tokens on precision, recall, and F1 values. The rows marked (A)
show average accuracy over All states and (G) over Goal states alone.

Dataset Number of Tokens extracted from HTML page
#Page Tokens = 100 #Page Tokens = 10 #Page Tokens = 0

Precision Recall F1 Precision Recall F1 Precision Recall F1

Publication (A) 88.3 81.4 84.7 87.0 87.7 87.3 72.4 75.4 73.9
Publication (G) 93.4 96.3 94.8 83.3 92.6 87.7 75.2 82.8 78.8

Address (A) 56.3 45.0 50.0 81.2 62.5 70.6 80.6 78.6 79.6
Address (G) 54.6 85.7 66.7 100.0 42.9 60.0 71.4 83.3 76.9

tokens per page is decreased.
For the Address dataset, the accuracy increases as the

number of page-tokens is reduced. This is because in the
Address dataset, the tokens extracted from the link and
link neighbourhood is sufficient to correctly classify the path
sequence. Addition of too many page-tokens reduces the
effect of the link-tokens. So, the accuracy drops by about
30%.

4.3.2 Comparison with naı̈ve Bayes and Maximum
Entropy classifiers

To emphasize the power of Conditional Random Fields,
we compare the results with

• A set of multinomial näıve Bayes classifiers with Lapla-
cian smoothing.

• A Maximum Entropy model, which learns a per-state
exponential distribution of conditional probability of
labels given the input sequence.

Both the näıve Bayes and the Maximum Entropy models
were learnt on the same set of tokens extracted from the
current page or link. The näıve Bayes model was learnt
with the set of tokens treated as a “bag-of-words” associ-
ated with the current state. The Maximum Entropy model,
however, was learnt over an exponential feature space of the
type eW·F(x,y). Since the transition features were deacti-
vated, the Maximum Entropy model was trained, in effect,
as a multi-state exponential-model classifier instead of a se-
quence classifier.

The experimental results are shown in Table 3. The first
row for each dataset (marked (A)) shows the average ac-
curacy over all states, while the second row (marked (G))
shows the accuracy values for the Goal state alone. The
third row in both datasets (marked (B)) shows the preci-
sion, recall, and F1 values for the goal state when trained
using a binary classification scenario where all goal pages are
labeled relevant and all other pages are labeled irrelevant.
The number of page-tokens extracted was kept constant at
10 for both datasets.

We observe that CRFs perform better than näıve Bayes
for both datasets and for both binary and multi-class classi-
fication experiments. The näıve Bayes technique gives very
high precision value for Goal state, but the recall values are
very poor. This is because the näıve Bayes technique labels
very few examples as the Goal state, thereby getting away
with a large precision value.

For the Publications dataset, CRFs also perform about
20% better than the Maximum Entropy models in the multi-
class classification. For the binary classification, we found

that both models performed at par.
On comparing the CRFs with the Maximum Entropy mod-

els for the Address dataset, we see that the CRFs label pages
with higher precision and recall values; thereby confirming
that the path information captured by the transition fea-
tures helps building a more accurate classification model.

For the CRF method, we find the binary model to be
worse than the multi-class model in recognizing the Goal
state (comparing methods (G) in the second row and (B)
in the third row) in the case of the Publications dataset.
The reason is that this dataset has lot more useful mile-
stone states than the Address dataset which has just one
additional state.

4.4 Performance of our system in foraging mode

4.4.1 Publications dataset
The CRF model for the Publications dataset was learnt

on domains that included websites from Indian and US uni-
versities as described in section 4.1. The model was then
run in foraging mode, in which the model is left to crawl
links based on the scoring measure as described by Eq. 7.
The γ parameter in equation 4, required for computation of
the per-state reward, was set to 0.9. The experiments were
run on the following sites:

• http://www.it.iitb.ac.in/, henceforth referred to
as the IT domain.

• http://www.cse.iitb.ac.in/, henceforth referred to
as the CS domain.

• http://www.cs.cmu.edu/, henceforth referred to as the
CMU domain.

• http://www.cs.utexas.edu/, henceforth referred to
as the UTX domain.

Performance was measured in terms of “harvest rates”.
Harvest Rate is defined as the ratio of relevant pages (goal
pages, in our case) found to the total number of pages vis-
ited.

Fig. 4(a) shows the performance of our model in the four
domains. Our model is able to achieve harvest rates of over
80% after the transients. In the CMU and UTX domains,
where the number of publication pages is higher, the model
achieved higher harvest rates. In the IT and CS domains,
the harvest rates reduced after the initial surge, probably
because most of the publication pages were fetched in the
initial 1500 pages crawled.

The graphs in Fig. 4(b) show the number of irrelevant
pages fetched in the total pages crawled. The slope of the
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Table 3: Comparison of CRF with näıve Bayes and Maximum Entropy models. The precision, recall, and
F1 values shown for (A) average of All states, (G) only Goal state, and (B) goal state when trained using a
Binary (relevant/irrelevant) classifier.

Dataset näıve Bayes Maximum Entropy CRFs
Precision Recall F1 Precision Recall F1 Precision Recall F1

Publications (A) 49.6 46.4 48.0 67.2 61.6 64.3 87.0 87.7 87.3
Publications (G) 100.0 11.1 20.0 81.8 66.7 73.5 83.3 92.6 87.7
Publications (B) 100.0 18.5 31.3 91.3 77.8 84.0 91.3 77.8 84.0

Address (A) 29.5 27.5 28.5 51.4 25.0 33.7 81.2 62.5 70.6
Address (G) 36.4 57.1 44.4 66.7 28.6 40.0 100.0 42.9 60.0
Address (B) 100.0 20.0 33.3 64.3 60.0 62.1 89.8 48.3 62.8
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Figure 4: Results for all domains showing relevant page fetch values, with number of page-tokens = 100
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Figure 6: Effect of the number of tokens on harvest rates. The graph labels show the domain and the number
of tokens.

line must be as small as possible (with the worst case slope =
1, i.e. a 45◦ line). The slope of graphs in our experiment is
between 0.12 and 0.44 (6.5◦ to 24◦).

For the sake of comparison, we ran the CRF in foraging
mode using a model that was trained on 10 page-tokens. Our
experiments on path classification (section 4.3.1) had shown
comparable results between models trained with 10 and 100
page-tokens, though the model with 100 page-tokens had a
better precision value. On running the model trained on 10
page-tokens in foraging mode, the harvest rates reduce to
20–70% range. As seen in Fig. 5(b), the slope of graph for
the UTX is as high as 0.8 (i.e. 38.7◦).

The comparison showed that with very few page-tokens,
the information on the page, and hence the page type, is not
captured sufficiently. A head-to-head comparison to show
the effect of number of page-tokens is shown in Fig. 6.

4.4.2 Comparison with Accelerated Focused Crawler

Focused crawlers[4] are designed to crawl all webpages on
a topic specified through examples of pages related to the
topic. The basic property that such crawlers exploit is that
pages on a topic are often linked to each other. Acceler-
ated Focused Crawlers[4] use a näıve Bayes model to clas-
sify a crawled page. The crawler consists of two classifiers
— a Baseline classifier that trains on the page-tokens, and
an apprentice that trains on link-tokens to choose the best
hyperlink out of the crawl frontier. The focused crawler de-
cides the most potential outlink by first choosing pages on
the crawl frontier that are close enough to the goal page,
and then selecting the most probable link from the hyper-
links out of those pages.

We approximated the Focused Crawler by building a C-way
Maximum Entropy classifier on the C labels defined dur-
ing training. The experimental results in Table 3 already
clearly show that the Maximum Entropy classifier is signif-
icantly better than the näıve Bayes classifier. Interestingly,
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Figure 7: Comparison with simplified Accelerated Focused Crawler. The graphs labeled PathLearner show
the performance of our model.
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this makes the classifier similar to our CRF model but with-
out the transition features. The set of features used in the
focused crawler were identical to the state features of our
CRF model to standardize comparison. In this mode, we
pick that link for expanding which has the highest probabil-
ity of being the Goal state.

Fig. 7 shows a comparison on how our model performs
against the simplified model of the Accelerated Focused Crawler
(AFC). We observe that the performance of our model is
significantly better than the AFC model. In all four do-
mains, the relevant pages fetched by the CRF model in-
creases rapidly at the beginning before stabilizing at over
60%, when the AFC model barely reaches 40%.

This shows that using path information helps in fetching
relevant pages faster. The scoring measure, which employs
discounted rewards using Reinforcement Learning, is able to
weigh the links leading to goal page higher than other links.

4.4.3 Address dataset
The foraging experimentation on Address dataset differs

slightly from the one on the Publications dataset.
In the Publications dataset, we have multiple goal pages

within a website. During the foraging experiment, the model
aims at reaching as many goal pages as possible quickly. In
effect, the model tries to reach a hub — i.e. a page that links
many desired pages directly such that the outlink probability
from the page to Goal state is maximum. As the goal pages
get crawled and the unfetched goal pages become scanty,
the harvest rates tend to decline as the number of crawled
pages increase. After an initial burst of fetching a lot of
goal pages, the number of goal pages fetched become scarce.
This effect was seen prominently in the IT and CS domains
in the Publications dataset when the model was run for
extended crawls (refer Fig. 4(a)).

In the Address dataset, there is only one (or a countable
few) goal pages. Hence, following the approach similar to
that of the Publications dataset would lead to declining
harvest rates once the address page is fetched. Hence, we
modify the foraging run to stop when a goal page is reached.
We proceed with the crawling only when we have a link with
a higher score of reaching the Goal state than the current
page score.

The experiment was run on 108 domains of company ad-
dresses taken randomly from the list of companies avail-
able at http://www.hoovers.com/. We calculate the aver-
age number of pages required to reach the goal page from
the homepage.

The average length of path from homepage to goal page
was observed to be 3.426, with the median and mode value
being 2. This agrees with the usual practice of having a
“Contact Us” link on the company homepage that leads in
one link access to the contact address.

5. RELATED WORK
The work presented here is related to work in web wrap-

per induction, focused crawling, information extraction, and
sequential learning.

A popular subproblem in the domain of web wrapper in-
duction is extracting structured fields from HTML docu-
ments. These do shallow information extraction based on
syntactic cues present as HTML tags. Except for a few

initial systems based on manual approaches, most of the re-
cent ones follow the same learn-from-example approach. Ex-
ample systems of these kind are WEIN[13], SoftMealy[10],
Stalker[21, 3], W4F[2] and XWrap[16].

One of the earliest projects that perform extraction of
structured information from multi-page sources like a web-
site is WebKB[6]. They describe similar learning tasks of
recognizing relations by traversing paths through hyperlinks.
However, their approach is based on generative classifiers
(like näıve Bayes) for recognizing correct hits coupled with
first order rules (like FOIL[12]) for finding the right page.
We have already shown the inferiority of the näıve Bayes
classifier compared to conditional classifiers even for the un-
derlying path classification problem.

Rennie and McCallum[23] study a similar path learning
problem by using Reinforcement Learning. They learn a
mapping function from the text in the neighbourhood of the
link to a Q-value determined using Reinforcement Learning.
They then bin the Q-values based on the minimum num-
ber of links required to reach the current page from the seed
page. However, they make an assumption that states are in-
dependent of which on-topic documents have been visited.
In other words, they collapse all states into one. By doing
this, an occurrence of a word is considered independent of
the context of its usage. The Q function simply becomes
a mapping from a “bag-of-words” to a scalar value. In our
model, we try to preserve the context of usage of keywords,
by having different states to represent different page-types.
This facilitates in having different mappings for a similar
set of keywords depending on the state. The availability of
multiple states also makes the model more robust for unseen
data. Also as we have shown in Table 3, CRF outperforms
the näıve Bayes model that follows the “bag-of-words” tech-
nique.

We have already compared our work with focused crawlers
in section 4.4.2. Another related paper on focused crawling
is by Diligenti, et al. [8]. This paper suggests creation of
a graph in which the topic-relevant documents are at level
0, all pages linking to these are at level 1, and so on. All
documents marked by the same level are clubbed together
as being of the same class. The distance from the goal page
is used as a direct measure in determining the class. In
this respect, the idea is similar to Q-value binning in [23].
However, this does not take into account the case in which
multiple pages of similar kind may have to be passed before
transiting to a page of another kind. Graphical models such
as HMMs and CRFs are able to include such cases as well,
thereby making the model stronger.

6. CONCLUSION
We show that Conditional Random Fields provide an el-

egant, unified, and high-performance method of solving the
information foraging task from large domain-specific web-
sites. The proposed model performs significantly better than
a generic focused crawler and is easy to train and deploy.

We are continuing further work on making the system
work in a semi-supervised setting where the user does not
need to specify milestone states. Future work includes inte-
grating it with a finer grained information extraction engine
that can find more specific information like the exact address
from the goal page.
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