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ABSTRACT

A large number of clustering algorithms have been proposed
of late, which can identify clusters of arbitrary shapes, vary-
ing densities and sizes. There are no benchmarking datasets
with high dimensionality and noise, which can evaluate clus-
tering algorithms on various aspects like scalability, accu-
racy and robustness to noise. Real-life datasets are few in
number and do not have the “original” clustering results by
default. This emphasizes the need to have a toolkit that
can generate datasets, which mimic real-life data and pro-
vides the actual clustering results. In this paper, we pro-
pose few algorithms and methodologies that generate high-
dimensional datasets along with the original clustering re-
sults. We developed a toolkit called SynDECA [15] that
generates synthetic datasets based on the algorithms pro-
posed.

1. INTRODUCTION

Clustering is the process of grouping a set of objects into
classes of similar objects. A cluster is a collection of data
objects that are similar to objects within the same clus-
ter and dissimilar to those in other clusters [6]. Similarity
! between two objects is calculated using a distance mea-
sure. The family of Li-norm distances, Mahalanobis dis-
tance functions are few to mention. Grouping of the objects
can be done using any of partitioning [7, 8], hierarchical [8,
14, 16], density-based [10, 9], grid-based [18] and model-based
[1] techniques. The goal of clustering is to identify underly-
ing patterns based on the similarities between the objects.

Of late, with the explosion of data, the size of datasets
to be clustered has increased tremendously. Thus enforcing,

'The terms similarity and distance are used interchangeably.
The less the distance between the two objects the more sim-
ilar they are.
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the following new requirements on the clustering algorithms:

1. Scalability of the algorithm: The algorithm should be
able to handle very large datasets. The order of the
input records in a dataset should not affect the output
of the clustering algorithm.

2. High-dimensional data: The algorithms should be able
to handle large dimensional data.

3. Heterogeneous attributes: Ability to handle various
types of attributes (numerical, categorical) is impor-
tant, due to increasing nature of heterogeneous data,
of late.

4. Complex shapes of clusters: The accuracy of the clus-
tering result should be acceptable despite the presence
of complex shaped clusters.

5. Noise: The algorithm should be able to handle noise
too. Presence of noise should not deter the accuracy
or efficiency of the clustering algorithm.

The most recent work in clustering algorithms [4, 3, 17,
5] address almost all the issues mentioned above. However,
any clustering algorithm needs to be evaluated for its ability
to handle these issues. For the sake of evaluation, we need
datasets which are large, noisy and high-dimensional with
the presence of complex clusters. In addition to this, the “ac-
tual” clustering result should also be available to benchmark
the results given by various clustering algorithms. Such
datasets along with the clustering results are very less in
number. Though there are few readily available real-life
datasets, the actual clustering results are not known. This
necessitates a tool to be devised, capable of generating high-
dimensional, noisy datasets along with the original cluster-
ing results. Our toolkit SynDECA (Synthetic Datasets to
Evaluate Clustering Algorithms) generates large noisy high-
dimensional datasets. Our techniques are robust and in our
experimental section we show that SynDECA could generate
a 100-dimensional dataset with 1,00,000 data points, with
a small percentage of noise. SynDECA also provides the
information about each point (whether it belongs to cluster
or noise) and a brief statistical description of the clusters
present in the dataset.

The outline of this paper is as follows. In section 2, we
present the related work. Major steps approached in dealing



the problem are explained in section 3. In section 4, algo-
rithms used to place clusters in the given space and gener-
ation of cluster points and noise are given. Section 5 gives
the validity of the generated datasets. Few datasets that
are generated are illustrated in section 6. Section 7 presents
conclusions and future work.

2. RELATED WORK

The idea of synthetic dataset generation is not new and
there have been attempts to generate synthetic data for use
in various fields. For instance, an automatic test data gen-
erator [2] is one of the most important components in a
testing environment. This kind of data generators contain
a program analyzer, a path selector and a test data gener-
ator. Given a program P, which is represented as a control
flow-graph and a path (unspecified) u, the aim is to generate
input z, so that x traverses u. This can be done by finding
the path predicate and then solving the path predicate in
terms of input variables [2]. Basically three approaches are
followed while constructing a test data generator random,
goal-oriented, and path-oriented. Each of these methods can
be implemented statically or dynamically.

In the area of spatio-temporal data management, datasets
are required in order to evaluate spatio-temporal databases,
spatio-temporal data modeling, query languages, spatio- tem-
poral data mining and spatio temporal indexing. A re-
cent work on data generation for spatio-temporal databases
can be found in [12]. Given few parameters such as du-
ration, shift and resizing of an object, tools like GSTD, G-
TERD, and Oporto will generate spatio-temporal data. Out
of which Oporto mimics a very specific scenario: fishing at
sea. But these techniques being spatio-temporal, data is
upto 4-dimensions.

Synthetic dataset generation is not only limited to pro-
gram testing and spatio-temporal databases. There have
been some early attempts to generate synthetic data to test
the clustering algorithms. Few schemes for generating arti-
ficial data have appeared in the literature [11]. One of the
processes used is multivariate normal mixtures with fairly
complex covariance matrices. This leads to the generation
of the non-overlapping clusters. The algorithm proposed by
Glenn [11] generates data in either 4, 6, or 8 dimensional
space containing up to 5 clusters. Three different methods
are followed in assigning the points to each cluster.

The overall approach followed by the Glenn’s algorithm
is as follows. Initially the extent of each cluster in the first
dimension is fixed in such a way that there will not be any
overlap between any clusters in this dimension. Then the
extent of each cluster in the remaining dimensions is cal-
culated. Points are generated within the bounding box? of
each cluster. Outliers associated for each cluster are gener-
ated, which are not within the bounding box of the cluster.
Finally error measures, such as error perturbation to each
dimension of each point in the dataset, are added. Since the
clusters are non-overlapping in the first dimension, they re-
main non-overlapped in any number of dimensions. In such
case any clustering algorithm will be able to identify clusters

2The term bounding box is used extensively in this paper
to mean minimum bounding box

properly in any of n—3i (i=1...n—1, where n is total number
of dimensions) dimensions. For each cluster some percent-
age of the cluster points are added as noise to that cluster.
There could be every chance that a noise point assigned to a
cluster may fall within the bounding box of some other clus-
ter. The major drawback is that the algorithm is limiting
the number of dimensions as well as the number of clusters.
“Clusutils” [13], has a component called “clusgen”which is
a tool based on Glenn’s [11] algorithm. Though this tool
does not limit the number of dimensions and the number of
clusters, it can generate only rectangular/square shaped (a
fixed shape) clusters but not random shaped clusters. On
the otherhand, SynDECA is capable of generating clusters
having different shapes such as circular, elliptical, rectangu-
lar, squared, random shape. SynDECA can also generate
clusters whose bounding boxes may overlap when k (< d,
total number of dimensions) dimensions are considered.

3. SYNDECA - FRAMEWORK

SynDECA currently deals with numerical dataset gener-
ation. In the following sections, we describe the various
components of SynDECA and their functionalities.

3.1 Notation

Let the dataset to be generated be represented as X. Let
the dimensionality of the dataset be d, the dimensional space
be D C R? and the number of points in the dataset be n. Let
the range of each axis be [0, m], where m is, the maximum
allowable value in each dimension. Let ¢ be the number of
clusters to be present in the dataset X, X. be the set of
points that belong to clusters and X,, be the set of points
that are noise. Let 1 be the noise percentage, i.e. ‘f;"ll X
100. Let p represent the set of cluster centers, p; represents
the cluster center of cluster ¢ and u;; is the value of j-th
dimension of cluster center i. With the above notation, we
define the problem of synthetic numerical cluster dataset
generation as:

Given the number of points to be present in the dataset n,
the dimensionality of the dataset d, the maximum range of
each dimension m and the number of non-overlapping clus-
ters to be present in the dataset ¢, our aim is to generate
a cluster dataset that is spread across all the d dimensions
with exactly ¢ (< n) non-overlapping clusters and 7 percent-
age of noise points within the dataset.

We list out the tasks, step-by-step, that together address
the above problem statement. We divide the problem into
4 smaller tasks (as shown in Figure 1):

1. Cluster placement: For all the ¢ clusters, the radius of
the cluster and the cluster centers are to be determined
such that there is no overlapping between the clusters
in all d dimensions. The algorithm is in table 1.

2. Cluster and Noise Cardinality estimation: For each
cluster, the number of points to be placed is in pro-
portion with its radius. The number of points to be
placed as noise also needs to be determined.

3. Filling clusters with points: In this technique, with the
cluster centers and their radii in place, we sprinkle ran-
domly generated points in bounding boxes of various
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clusters, till the required number of cluster points |X|
is achieved (as described in table 2).

4. Sprinkling noise: After filling up the clusters with ran-
dom points, noise points need to be added such that
they do not lie within the region of any cluster, in
which cluster points are placed. Noise points are gen-
erated till the | X, | number of noise points is achieved
(as described in table 3).

Fix positions and
sizes of clusters

Estimation of cardinalities
for clusters and noise

Generate points for
each cluster

b4

| Generate noise I

Figure 1: Generation of data

4. ALGORITHMS

With the brief mention of the various tasks in the previ-
ous section, we now explain the algorithms in detail. Inputs
from the user are: number of points in the dataset n, di-
mensionality of the dataset d, number of non-overlapping
clusters ¢ and maximum allowable range for a dimension m.

Apart from these user-given parameters, we use some more
parameters which are set dynamically during the execution
of algorithm. They are:

1. Parameter e: This parameter is used to ensure a mini-
mum gap between any two clusters, i.e. within (1+¢)x*r
(r - radius of the cluster) region around the center of
a cluster no other cluster can be placed. Its range is
(0, 1] and the value is set randomly.

2. Mazimum radius of a cluster Tmaxz: Tmaee denotes the
maximum allowable values for the cluster radius, which
is calculated from the user-inputs and e.

3. Minimum radius of a cluster rp;,: This parameter de-
termines the minimum allowable radius for a cluster.
This depends on how small a cluster can be when com-
pared with the largest cluster. It is determined by &
(ratio of Tmaz t0 Tmin. Where k can take any value
greater than 1.

4. Noise percentage m: 1 denotes the percentage of noise
points. The range of the noise points is (0 , 11? * .
The rest of the points are allocated to each cluster in
the proportion to its radius.

4.1 Algorithm for Cluster-Placement

The algorithm proceeds with assigning the center and ra-
dius for first cluster randomly. For the remaining clusters,
the cluster center and radius are set depending on the place-
ment of the previous clusters. For every cluster, the center
pi and radius r; are generated randomly. The generated
center is checked such that it is at a distance of radius r;
from the edges along each dimension i.e m — p;; > r; or
pij > ri Vj € [1,d]. Once the center is generated, it is
checked against each of the already placed clusters for the
minimum gap that needs to be maintained. If there is any
cluster with which the current cluster does not have the
minimum required gap, the radius of the current cluster is
reduced. If the reduced radius is less than that of the min-
imum allowable radius then the process is started again for
generating a new center as well as radius. The algorithm is
given in Table 1.

Input: {(pr,7x)} Set of the centers and radii of
already placed clusters (k =1 ...i-1),
Tmin Minimum allowable radius,
Tmaz Maximum allowable radius.

Output: p; and Radius r; of the current cluster C;
Algorithm: Cluster-Placement

1.  7r; «+ Generate-radius(rmin, 'maz)

/* Generate-radius randomly generates a
value between Tmin and Tmaee */

2. p; < Generate-center(r;)

/* Generate-center randomly generates a
point in d dimensional space such that
distance between the center and any edge
of bounding box of given space is at least
Radius of that cluster */

3.  while cluster C; is not placed

4. for each (p;j,r;) in {(pr, %)}

5. if gap between C; and C; is not enough then

6. Reduce (r;)

7. if (7; < Tmin ) then

8. Cluster-Placement({(ux,7%) },"min ;Fmaz )
9. end if

10. end if

11. end for
12. end while

13. end

Table 1: Algorithm for Cluster-Placement

4.2 Algorithm for Cluster-Points-Generation

After fixing the cluster centers and radii from the Cluster-

Placement algorithm, a random number (€ (0, 11? xn] ) of



points are allotted for noise. The remaining points are al-
lotted to each of the cluster in proportion to the cluster’s
radius. A shape (circle, ellipse, rectangle, square or irreg-
ular) for each cluster is assigned randomly. Points for a
cluster are generated according to its shape. For a circular
shaped cluster, points are generated in such a way that all
the points are within a distance of radius r; from its center
w;. For rectangular and elliptical shaped clusters, the extent
of radius (along a dimension) is reduced in atmost d — 1 di-
mensions, points will be within the feasible cluster area. For
irregular shaped clusters, we employ two different methods:

1. The first method is analogous to the reverse mecha-
nism of DB-SCAN algorithm [10]. A point p is ran-
domly chosen and a small percentage of the total allo-
cated points (min_pts) are sprinkled around p within a
distance of eps (eps < r). A new point p’, which is at
a distance of ¢ (eps < q¢' < eps + eps’ and eps’ K 1),
from p is chosen and min_pts’ points are sprinkled
around p’ within a distance of eps’. This process is
continued till all the required number of points are
generated. The condition that the distance ¢’ between
points p and p’ should be within (eps,eps + eps’) en-
sures the connectivity of the generated points.

2. The second technique is based on the hyper-dimensional
grids. In this method, the bounding box of the clus-
ter is divided into small d dimensional hyper cubes,
from which one hyper cube is randomly chosen and
is filled with points. Following that, an empty hy-
per cube which is adjacent to the filled hyper cube is
chosen to be filled with points. This process is contin-
ued till the required number of points are generated
for that cluster. In this method, it is ensured that
each point that is generated for a cluster is within the
bounding box of the cluster.

In case of regular shaped clusters, generated points may
follow Gaussian distribution. Where as irregular shaped
clusters do not follow any regular distribution. The algo-
rithm is given in table 2. Given a center u; and radius
ri, the function generate-point generates a point within the
bounding box of the cluster. Function sprinkle-points gen-
erates min_pts points within eps region of a selected point
and function get-a-point generates a point p’ which is at
a distance ¢ from p. Function is-within-cluster-area checks
whether a point is with-in the feasible area (depending upon
the shape of cluster, feasible area changes) of the cluster.

4.3 Algorithm for Noise-Points-Generation

With the cluster points generated, we now generate 7 per-
centage of n (number of points in the dataset) noise points.
While generating noise points, care is taken such that a point
generated for noise will not be with in the space of any clus-
ter where cluster points are generated. The generated point
p is a potential noise point if it is not within the bounding
box of any cluster. Otherwise if one of the following condi-
tions is satisfied then p is treated as valid noise point. If the
shape of the cluster is

e circle: p is not within distance r; from the center of
the cluster p;.

Input: n; No.of points to be generated,u; Center,
r; Radius, Shape of cluster
Radii; extent in each dimension for ellipse
and rectangle, a sprinkle percentage.

Output: n; points with in the bounding box
of the cluster

Algorithm: Cluster-Points-Generation

1. if Shape is IRREGULAR

2. p « generate-point(u;, ;)

3.  min_pts < a*n;

4. generate min_pts points using

. sprinkle-points(p,eps,min_pts)

5. until n; points are generated do

6. p < get-a-point(p,eps,eps’)

7. min_pts’ < a*n;

8.  generate min_pts’ points using
sprinkle-points(p’,eps’,min _pts’)

9. p<+p eps ¢ eps’

10. until

1l.else

12. until n; points are generated do

13. point < generate-point (u;, r;)

14. if is-within-cluster-area(Shape,point,u;,r;,
. Radiij) then
15. consider ‘point’ as cluster point

16. endif
17.  until
18. end if

Table 2: Algorithm for Cluster-Points-Generation

e cllipse: p is not within the space of the ellipse.

o rectangle: for any dimension i, |p; — pij| is > Radii;;
(Radiis;; is radius of cluster ¢ along dimension j).

e jrregular: p is not within the eps distance of any point
which is used as pivot to sprinkle the points.

The algorithm is given in Table 3.

4.4 Complexity of Algorithms

SynDECA generates the required datasets within a rea-
sonable time (it does not take more than 10 seconds of time
to generate 1,000,000 point, 2-dimensional data containing
100 clusters). For high-dimensional large datasets, it is not
easy to evaluate the time analysis because at times, getting
the position of a point such that it satisfies various condi-
tions is a time-consuming task. Since the generation of the
points and other measures is random, time complexity anal-
ysis of the algorithms is beyond the scope of this paper.

5. EVALUATION OF GENERATED DATASETS

Given the user inputs: number of points in the dataset n,
dimensionality d, number of clusters ¢ and maximum allow-
able value in each dimension m, the toolkit generates the
required number n points in R?, d-dimensional space with ¢

30



clusters, m maximum extent of any dimension.
Output: 7 percentage of noise points.

Algorithm: Noise-Points-Generation
1.until 7 percentage of noise points generated do

and returns true/false accordingly */

7. consider ‘point’ as noise point
8. end if

9. end if

10.end until

1l.end

Input: 7 Percentage of noise points, n Total number of points in the dataset,
(pk, fr) Set of pairs of center of cluster and other features such as Shape, Radius, Radii of each
rectangular/elliptical shaped clusters and selected points along with corresponding eps in case of irregular

2. point < Generate-point-in-space(m)

3 if ‘point’ is not within the bounding box of any cluster then
4. consider ‘point’ as noise point

5 else

6 if is-within-free-space-of-cluster (point,(ux, fr)) then

/* is-within-free-space-of-cluster function checks whether the point is in the free space of cluster

Table 3: Algorithm for Noise-Points-Generation

clusters along with some noise points (calculated based on
the other parameter values).

A random number between 0 to 11_?_% is selected as noise
percent 7. The maximum limit on noise percent ensures
the average number of points that are given for a cluster
is greater than or equal to noise points, which is explained
below.

[—100_77]*71, > nEn
c
100 > (1+4c¢)=n
100
<
= 13e

The amount of space provided is, s = m¢.

Since any size of bounding box (for ¢ clusters) can not fit
in the space provided, there should be a restriction on the
size of the bounding box of the cluster. So we need to define
a maximum and minimum allowable radius (rmaz, rmin) for
each cluster.

Computation of 7,4:

Maximum space allocated for each cluster is 7. The size
of the bounding box of largest cluster (which includes the e
space) in terms of T'mae and € is [2 * Fmae * (1 + €))%

]d

O lw

[2 % Prnae * (1 +€)

9 ]

Tmaz

1

Minimum allowable radius, i, = ETmM

where k (> 1), is the ratio of rmez t0 rmin. k can take
any value, depending on how small a cluster can be when
compared to the largest cluster.

Size of bounding box of cluster with 7,4, as radius is

<[]

S 1 14
= Zx
c |[1+¢

Similarly, the size of bounding box of cluster with 7, as
radius is

] 1 d
Ch|—
c |kx(1+e¢)

if every cluster takes rmae as its radius, then

v
s— — *C
cll+e

“[H

Minimum free space available
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Similarly if every cluster takes 7, as its radius, then

Maximum free space available

s 1 d
S_E[k*(1+e)] e
Ex(14+e)]?—1
[£*(1+¢€)]e

The step 5 of the algorithm for Cluster-Placement (given
in Table 1) checks whether the current cluster ¢ is within
the (14 €) *r; (radius of cluster j) space around u; (center
of cluster j, which is already placed). If there is any such
overlap then the radius of the current cluster is reduced.
Moreover ¢ * r; space around the bounding box of cluster j
is left free. Hence we can have the following lemma.

LEMMA 1. The algorithm for Cluster Placement (table 1)
generates clusters that are non-overlapping.

THEOREM 1. The dataset generated by the above step-by-
step process mentioned in section 3, will exactly contain c
clusters.

PRrROOF. From Lemma 1 it is assured that the bounding
boxes of the clusters will not overlap. Each cluster has its
own private bounding box, within which there will not be
any other cluster’s points or the noise points. Now if we
can prove that the density of the points within the bound-
ing box of each cluster is more than that of the noise, then
we can assure that there exists exactly ¢ clusters (i.e. there
will be exactly ¢ sets of points which are denser than the
surrounding space) in the generated dataset.

When every cluster has 7,4, as radius and noise percentage

is 1 = 100
. . n
Number of ts = ——
umber of noise points 100 xn
= L *n
T 14ec
1 —
Total number of cluster points = 0?00 U
1
= ]_ —
[ - ] “n
= C sn
T l+ec
-.» all the clusters have same radius
Number of points for each cluster = _°  _«n
(14¢)xc
1 *
= n
1+c¢

The number of points allotted for every cluster is the same
as that of the noise points.

bounding box size of a cluster = [2 % Fmaz]®

s 1 14
= —%
c |1+e€

i (rrava)]

Total free space = Total space provided
d
— Z(Bounding box size of cluster i)
i=1
d
S 1
Total free space = s—c* —*[ ]
1+e€
_ S(1+od—1
B (1+e)

Inorder to have the density of any cluster to be more than
that of the density of noise, (since each cluster has the same
number of points) the available free space should be greater
than that of the size of the bounding box of the cluster.

[fate ] > el
0

.. S >
" (14e€)d
1+e?-1 > %
1+ > 1te
c
1
i
e > [1+c] -1
c

If the above condition is ensured then the amount of free
space is greater than that of the size of the bounding box of
each cluster. So we make € to take values within the range

([<]z -1, 1).

Even when every cluster takes r,i, as radius, the number of
points in every cluster is same as number of noise points. In
this case the size of the bounding box of cluster is reduced
by -1 times and the amount of free space is increased. This
means that the same number of noise points(as above) are
spread over an increased free space and the same number of
cluster points (as above) occupy less space. Therefore even
in this case, density of any cluster is more than that of noise
density.

When z clusters have got 7,5, as radius, the remaining c—z
clusters have got rmq., as radius and n = 112(1, ¢ — x clusters
will get more number of points(as x clusters are having min-
imum radius) than in case 1 and the amount of free space is
also increased. Therefore, the density of ¢ —x clusters (with
Tmaz a8 radius) is greater than the noise density.

Points allotted for cluster with 7maez as radius

k c

[k*(c—x)+x * 1+c*n-‘

Points allotted for cluster with r,,;, as radius

= L &
T |k*x(c—x)+zxz l+c n

When = = 1 the cluster with i, as radius gets the least
share of points, since the denominator is more when com-
pared to all the other cases.
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Example 1. Let k = 3, ¢ = 10, n = 10,000
when T = 4,
Points allotted for cluster with Ty, as radius = 438

when z = 1,
Points allotted for cluster with rm:n as radius = 824 0O

free space is increased by (2% T‘maz)d — (2% Tmin)d
= (2 * Tmaz)d — (% * Tma:v)d
_ k-1 o5
Lk +e)t] e
(1+e)? -1 k-1 s
Total f = | T gl * o
otal free space [ 1+ o¢ * s+ x (1L+6)° *c

The size of the bounding box of the cluster with 7, as
radius is

s 1 d
= - % | ———
c [kx(1+e¢)
and the density of the cluster with r,,;, as radius is

1
- DTT ¥ Trc ¥

d
1
%*[k*(1+e):|

The density of noise is determined by

n
T+c
(14+e)d-1 1
[ (1+€)d :| *5+[(k*(1+6))d]

*." density of cluster should be greater than noise density.

o |e

1
DT F T ¥

a
1
* |:k*(1+e):|

(1+¢)¢

n

1+c
(14€)2—1 kd—1 s
[ (+eyd ] *s+[(k*(1+e))d] *3

n¥cxk? (14 )

>

cxnxcxkdx

s(1+c)(k*[c—1]+1) > s(1+c)[ckd((1+€)d — 1) + (k4 —
. nxexk? (146)?
s(14-c) >0
kx(c—1)+1
cxkdx (1+e)?—1)+ (k¢ —1)

ExkN((1+e%—1) >kc—k+1—cx(k*—1)

Exk((1+e?—1) > 1—k—cE' —k—1)

d 1—k—ckk?—k—-1)
(1+¢ >1+ g
1—k—ck?—k—1)]7 .
€ > c? x kd B
—c(k® —

1
(1 —n\*
< c2 % k4 ) <1

The right hand side of the equation is always negative
and as € is always positive, the above condition is satisfied.
Therefore, for each cluster the density is more than that of
noise. Hence, the theorem is proved. [

)

5.1 Discussion

Let m; be the maximum allowable value in each dimen-
sion. When maz? ,(m;) > minl,(m;), the given space
is skewed towards rectangular shape. The bounding box of
cluster can no longer be of square shaped. Since 74, Will
be more than that of mind_; (m;). So in this case we should
consider the rectangular shaped bounding boxes to generate
points.

Let I; be the length of the side of bounding box of large
=pi=1...d
When all the bounding boxes of clusters are large

space occupied by each cluster = s

d
= Hll* 1+6
i=1

Where (e * [;/2) is the amount of space left free around the
bounding box of cluster along dimension 4.

Q

d
S _ . d
. = Hl@*(l—l—e)

i=1

d
[Im:
=1

s =
d
Ht mi d
lcl hid = Hll*(1+€)
i=1
d .
Li? i cx (1+ e)d
iz li
Pt = cx(1+e)?

Value of either p or € needs to be fixed, inorder to get the size
of the large bounding box (to get the density of the cluster
with largest bounding box). If p is fixed then there could
be every chance that for some values of ¢ and d, € could
be negligible (the gap between clusters will also be negli-
gible). In this scenario we cannot ensure non-overlapping
clusters. e(< 1) is fixed to get the value of p with the help
of ¢ and d. We can prove that there are exactly c clusters in
the generated data in the similar way mentioned in above
theorem.

6. EXPERIMENTAL RESULTS

SynDECA[15] is developed in C++ language on Linux
platform. For the high dimensional data space, not all the
generated points (those will fall within the bounding box of
the cluster) will be with in the feasible region of the circular,
elliptical or random shaped clusters. As the number of di-
mensions increases, the ratio of feasible region to bounding
box size of the cluster will decrease. In this scenario time
taken to generate cluster points will increase. To overcome
this, care is taken to make sure that each generated point
will be within the feasible region of the cluster.

In the case of the grid method for random shaped clusters,
as the number of the dimensions increases, number of cells in
the grid will explode. Moreover, there is no control over the
size of the bounding box of the cluster. Since the maximum
allowable size of each dimension can take a large value, it
is not possible to maintain the information about each and
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every cell. Since the number of the points allotted to a
cluster can be large and a very small percentage of the points
are filled in a cell, maintaining information about filled cells
can become cumbersome.

Few examples of two dimensional data are given in Figure
2. The time taken to generate datasets for various inputs is
given in Table 4. Few three dimensional datasets without
noise are shown in Figure 3

No.of No.of | No.of Max Value | Time taken
Points dim’s | Clusters | for a dim (in sec)
1,000 2 10 100 0.30
10,000 2 10 100 0.10
100,000 2 50 100 0.99
1,000,000 2 50 100 8.22
1,000,000 2 100 100 8.25
1,000,000 2 100 1,000 8.93
10,000,000 2 100 1,000 88.21
100,000 10 100 100 8.55
100,000 10 100 1,000 7.42
1,000,000 10 100 1,000 47.06
100,000 50 50 100 397.92
100,000 50 100 100 500.54
100,000 100 50 100 1,196.1
100,000 100 50 1,000 1,568.31

Table 4: Time taken for generating datasets for var-
ious inputs

6.1 Comparison with “clusutils”

Since the current version of the “clusutils” tool is not
working properly, we could not give much of the compar-
ison of the output. The figure 4 shows results by “clusutils”
in the top row and results by “SynDECA” in the bottom
row. The major inputs for clusutils are as follows.

e Number of clusters.

e Number of points.

e Number of dimensions.
e Density level.

e Random noise (this value will be added to each and
every dimension of every point).

e Percentage of outliers (this is the percentage of number
of extra points to be added as outliers/noise).

Inputs common to both the tools are as follows.

Number of points = 500
Number of clusters =5
Number of dimensions = 2

Input for the density level to clusutils parameter is 1, means
all the clusters will have same density. The first two columns
are the datasets without noise points, SynDECA is modi-
fied sightly for generating noise less datasets. In the last

column the dataset of the clusutils is given random noise
as 50.0 and noise points are generated in the case of Syn-
DECA. Even when the inputs are same clusutils have taken
different ranges in both x and y dimensions. In the case of
SynDECA the first image is in 10 x 10 space and the sec-
ond image is in 100 x 100 space (Remember here the user
can specify the maximum value taken by a dimension). The
last image of clusutils shows that there are no clusters even
though it is specified that there should be five clusters in
the dataset. Whereas SynDECA ensures that there will be
required number of clusters in the generated dataset.

7. CONCLUSIONS

The problem of generating synthetic datasets requires a
thorough understanding of real-life data and the models that
best-fit them. We presented a first-cut solution with theo-
retical evaluation, to generate clusters of complex shapes
in high dimensional data along with the inclusion of noise
points. We also showed that SynDECA is superior to the
existing dataset generating tool and can generate very high-
dimensional datasets with inclusion of noise.

Currently, SynDECA only handles numerical datasets. In
future we will address the problem of generating datasets
dealing with categorical and heterogeneous data types. Fu-
ture work also includes handling the rectangular space and
other new methods to generate the clusters. In this paper,
the algorithms generate clusters which are non-overlapping
in all the dimensions. We would like to extend this and
consider the case when the clusters overlap with each other
along each dimension, yet they are separable only when all
the dimensions are taken into consideration (as shown in
figure 5, where the two clusters are overlapping when con-
sidered only along x-axis and only along y-axis, though they
are well-separated).

Figure 5: Clusters overlapped in single dimension
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